Physical-Chemical Properties and Environmental Fate for Organic Chemicals
 
Second Edition 
HANDBOOK OF © 2006 by Taylor & Francis Group, LLC
Volume I Introduction and Hydrocarbons 
Volume II Halogenated Hydrocarbons 
Volume III Oxygen Containing Compounds 
Volume IV Nitrogen and Sulfur Containing Compounds and Pesticides

A CRC title, part of the Taylor & Francis imprint, a member of the 
Taylor & Francis Group, the academic division of T&F Informa plc. 
Boca Raton London New York 
Physical-Chemical 
Properties and 
Environmental Fate for 
Organic Chemicals 
Volume I 
Introduction and Hydrocarbons 
Donald Mackay 
Wan Ying Shiu 
Kuo-Ching Ma 
Sum Chi Lee 
Second Edition 
HANDBOOK OF 
Volume II 
Halogenated Hydrocarbons 
Volume III 
Oxygen Containing Compounds 
Volume IV 
Nitrogen and Sulfur Containing Compounds 
and Pesticides 
© 2006 by Taylor & Francis Group, LLC

Published in 2006 by 
CRC Press 
Taylor & Francis Group 
6000 Broken Sound Parkway NW, Suite 300 
Boca Raton, FL 33487-2742 
© 2006 by Taylor & Francis Group, LLC 
CRC Press is an imprint of Taylor & Francis Group 
No claim to original U.S. Government works 
Printed in the United States of America on acid-free paper 
10 9 8 7 6 5 4 3 2 1 
International Standard Book Number-10: 1-56670-687-4 (Hardcover) 
International Standard Book Number-13: 978-1-56670-687-2 (Hardcover) 
Library of Congress Card Number 2005051402 
This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are 
indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the 
publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. 
No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known 
or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission 
from the publishers. 
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact 
the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that 
provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system 
of payment has been arranged. 
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation 
without intent to infringe. 
Library of Congress Cataloging-in-Publication Data 
Handbook of physical-chemical properties and environmental fate for organic chemicals.--2nd ed. / by Donald Mackay ... [et al.]. 
p. cm. 
Rev. ed. of: Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals / Donald Mackay, 
Wan Ying Shiu, and Kuo Ching Ma. c1992-c1997. 
Includes bibliographical references and index. 
ISBN 1-56670-687-4 (set : acid-free paper) 
1. Organic compounds--Environmental aspects--Handbooks, manuals, etc. 2. Environmental chemistry--Handbooks, manuals, etc. 
I. Mackay, Donald, 1936- II. Mackay, Donald, 1936- Illustrated handbook of physical-chemical properties and environmental fate 
for organic chemicals. 
TD196.O73M32 2005 
628.5'2--dc22 2005051402 
Visit the Taylor & Francis Web site at 
http://www.taylorandfrancis.com 
and the CRC Press Web site at 
http://www.crcpress.com Taylor & Francis Group is the Academic Division of T&F Informa plc. 
© 2006 by Taylor & Francis Group, LLC

Preface 
This handbook is a compilation of environmentally relevant physical-chemical data for similarly structured groups of 
chemical substances. These data control the fate of chemicals as they are transported and transformed in the multimedia 
environment of air, water, soils, sediments, and their resident biota. These fate processes determine the exposure experienced 
by humans and other organisms and ultimately the risk of adverse effects. The task of assessing chemical fate locally, 
regionally, and globally is complicated by the large (and increasing) number of chemicals of potential concern; by 
uncertainties in their physical-chemical properties; and by lack of knowledge of prevailing environmental conditions 
such as temperature, pH, and deposition rates of solid matter from the atmosphere to water, or from water to bottom 
sediments. Further, reported values of properties such as solubility are often in conflict. Some are measured accurately, 
some approximately, and some are estimated by various correlation schemes from molecular structures. In some cases, 
units or chemical identity are wrongly reported. The user of such data thus has the difficult task of selecting the “best” 
or “right” values. There is justifiable concern that the resulting deductions of environmental fate may be in substantial 
error. For example, the potential for evaporation may be greatly underestimated if an erroneously low vapor pressure 
is selected. 
To assist the environmental scientist and engineer in such assessments, this handbook contains compilations of 
physical-chemical property data for over 1000 chemicals. It has long been recognized that within homologous series, 
properties vary systematically with molecular size, thus providing guidance about the properties of one substance from 
those of its homologs. Where practical, plots of these systematic property variations can be used to check the reported 
data and provide an opportunity for interpolation and even modest extrapolation to estimate unmeasured properties of 
other substances. Most handbooks treat chemicals only on an individual basis and do not contain this feature of chemicalto-
chemical comparison, which can be valuable for identifying errors and estimating properties. This most recent edition 
includes about 1250 compounds and contains about 30 percent additional physical-chemical property data. There is a 
more complete coverage of PCBs, PCDDs, PCDFs, and other halogenated hydrocarbons, especially brominated and 
fluorinated substances that are of more recent environmental concern. Values of the physical-chemical properties are 
generally reported in the literature at a standard temperature of 20 or 25°C. However, environmental temperatures vary 
considerably, and thus reliable data are required on the temperature dependence of these properties for fate calculations. 
A valuable enhancement to this edition is the inclusion of extensive measured temperature-dependent data for the first 
time. The data focus on water solubility, vapor pressure, and Henry’s law constant but include octanol/water and octanol/air 
partition coefficients where available. They are provided in the form of data tables and correlation equations as well as 
graphs. 
We also demonstrate in Chapter 1 how the data may be taken a stage further and used to estimate likely environmental 
partitioning tendencies, i.e., how the chemical is likely to become distributed between the various media that comprise 
our biosphere. The results are presented numerically and pictorially to provide a visual impression of likely environmental 
behavior. This will be of interest to those assessing environmental fate by confirming the general fate characteristics or 
behavior profile. It is, of course, only possible here to assess fate in a “typical” or “generic” or “evaluative” environment. 
No claim is made that a chemical will behave in this manner in all situations, but this assessment should reveal the 
broad characteristics of behavior. These evaluative fate assessments are generated using simple fugacity models that 
flow naturally from the compilations of data on physical-chemical properties of relevant chemicals. Illustrations of 
estimated environmental fate are given in Chapter 1 using Levels I, II, and III mass balance models. These and other 
models are available for downloading gratis from the website of the Canadian Environmental Modelling Centre at Trent 
University (www.trent.ca/cemc). 
It is hoped that this new edition of the handbook will be of value to environmental scientists and engineers and to 
students and teachers of environmental science. Its aim is to contribute to better assessments of chemical fate in our 
multimedia environment by serving as a reference source for environmentally relevant physical-chemical property data 
of classes of chemicals and by illustrating the likely behavior of these chemicals as they migrate throughout our biosphere. 
© 2006 by Taylor & Francis Group, LLC

Acknowledgments 
We would never have completed the volumes for the first and second editions of the handbook and the CD-ROMs 
without the enormous amount of help and support that we received from our colleagues, publishers, editors, friends, 
and family. We are long overdue in expressing our appreciation. 
We would like first to extend deepest thanks to these individuals: Dr. Warren Stiver, Rebecca Lun, Deborah Tam, 
Dr. Alice Bobra, Dr. Frank Wania, Ying D. Lei, Dr. Hayley Hung, Dr. Antonio Di Guardo, Qiang Kang, Kitty Ma, 
Edmund Wong, Jenny Ma, and Dr. Tom Harner. During their past and present affiliations with the Department of 
Chemical Engineering and Applied Chemistry and/or the Institute of Environment Studies at the University of Toronto, 
they have provided us with many insightful ideas, constructive reviews, relevant property data, computer know-how, 
and encouragement, which have resulted in substantial improvements to each consecutive volume and edition through 
the last fifteen years. 
Much credit goes to the team of professionals at CRC Press/Taylor & Francis Group who worked on this second 
edition. Especially important were Dr. Fiona Macdonald, Publisher, Chemistry; Dr. Janice Shackleton, Input Supervisor; 
Patrica Roberson, Project Coordinator; Elise Oranges and Jay Margolis, Project Editors; and Marcela Peres, Production 
Assistant. 
We are indebted to Brian Lewis, Vivian Collier, Kathy Feinstein, Dr. David Packer, and Randi Cohen for their 
interest and help in taking our idea of the handbook to fruition. 
We also would like to thank Professor Doug Reeve, Chair of the Department of Chemical Engineering and Applied 
Chemistry at the University of Toronto, as well as the administrative staff for providing the resources and assistance 
for our efforts. 
We are grateful to the University of Toronto and Trent University for providing facilities, to the Natural Sciences 
and Engineering Research Council of Canada and the consortium of chemical companies that support the Canadian 
Environmental Modelling Centre for funding of the second edition. It is a pleasure to acknowledge the invaluable 
contributions of Eva Webster and Ness Mackay. 
© 2006 by Taylor & Francis Group, LLC

Biographies 
Donald Mackay, born and educated in Scotland, received his degrees in Chemical Engineering from the University of 
Glasgow. After working in the petrochemical industry he joined the University of Toronto, where he taught for 28 years 
in the Department of Chemical Engineering and Applied Chemistry and in the Institute for Environmental Studies. In 
1995 he moved to Trent University to found the Canadian Environmental Modelling Centre. Professor Mackay’s primary 
research is the study of organic environmental contaminants, their properties, sources, fates, effects, and control, and 
particularly understanding and modeling their behavior with the aid of the fugacity concept. His work has focused 
especially on the Great Lakes Basin; on cold northern climates; and on modeling bioaccumulation and chemical fate 
at local, regional, continental and global scales. 
His awards include the SETAC Founders Award, the Honda Prize for Eco-Technology, the Order of Ontario, and 
the Order of Canada. He has served on the editorial boards of several journals and is a member of SETAC, the American 
Chemical Society, and the International Association of Great Lakes Research. 
Wan-Ying Shiu is a Senior Research Associate in the Department of Chemical Engineering and Applied Chemistry, 
and the Institute for Environmental Studies, University of Toronto. She received her Ph.D. in Physical Chemistry from 
the Department of Chemistry, University of Toronto, M.Sc. in Physical Chemistry from St. Francis Xavier University, 
and B.Sc. in Chemistry from Hong Kong Baptist College. Her research interest is in the area of physical-chemical 
properties and thermodynamics for organic chemicals of environmental concern. 
Kuo-Ching Ma obtained his Ph.D. from Florida State University, M.Sc. from The University of Saskatchewan, and 
B.Sc. from The National Taiwan University, all in Physical Chemistry. After working many years in the aerospace, 
battery research, fine chemicals, and metal finishing industries in Canada as a Research Scientist, Technical Supervisor/ 
Director, he is now dedicating his time and interests to environmental research. 
Sum Chi Lee received her B.A.Sc. and M.A.Sc. in Chemical Engineering from the University of Toronto. She has 
conducted environmental research at various government organizations and the University of Toronto. Her research 
activities have included establishing the physical-chemical properties of organochlorines and understanding the sources, 
trends, and behavior of persistent organic pollutants in the atmosphere of the Canadian Arctic. 
Ms. Lee also possesses experience in technology commercialization. She was involved in the successful commercialization 
of a proprietary technology that transformed recycled material into environmentally sound products for the 
building material industry. She went on to pursue her MBA degree, which she earned from York University’s Schulich 
School of Business. She continues her career, combining her engineering and business experiences with her interest in 
the environmental field. 
© 2006 by Taylor & Francis Group, LLC

Contents 
Volume I 
Chapter 1 Introduction . . . . 1 
Chapter 2 Aliphatic and Cyclic Hydrocarbons . . 61 
Chapter 3 Mononuclear Aromatic Hydrocarbons . . . . . . . . . . . . . . . . 405 
Chapter 4 Polynuclear Aromatic Hydrocarbons (PAHs) and Related Aromatic Hydrocarbons . . . . . . . . . . . . . . 617 
Volume II 
Chapter 5 Halogenated Aliphatic Hydrocarbons . . . . . . . . . . . . . . . . 921 
Chapter 6 Chlorobenzenes and Other Halogenated Mononuclear Aromatics . . . . . . . . . . 1257 
Chapter 7 Polychlorinated Biphenyls (PCBs) . 1479 
Chapter 8 Chlorinated Dibenzo-p-dioxins . . . 2063 
Chapter 9 Chlorinated Dibenzofurans . . . . . . . 2167 
Volume III 
Chapter 10 Ethers . . . . . . 2259 
Chapter 11 Alcohols . . . . 2473 
Chapter 12 Aldehydes and Ketones . . . . . . . . . 2583 
Chapter 13 Carboxylic Acids . . . . . . . . . . . . . . 2687 
Chapter 14 Phenolic Compounds . . . . . . . . . . . 2779 
Chapter 15 Esters . . . . . . 3023 
Volume IV 
Chapter 16 Nitrogen and Sulfur Compounds . . 3195 
Chapter 17 Herbicides . . . 3457 
Chapter 18 Insecticides . . 3711 
Chapter 19 Fungicides . . . 4023 
Appendix 1 . . . . . . . . . . . . . . 4133 
Appendix 2 . . . . . . . . . . . . . . 4137 
Appendix 3 . . . . . . . . . . . . . . 4161 
© 2006 by Taylor & Francis Group, LLC

16 Nitrogen and Sulfur Compounds 
CONTENTS 
16.1 List of Chemicals and Data Compilations . . 3197 
16.1.1 Nitriles (Organic cyanides) . . . . . . 3197 
16.1.1.1 Acetonitrile . . . . . . . . . 3197 
16.1.1.2 Propionitrile . . . . . . . . . 3203 
16.1.1.3 Butyronitrile . . . . . . . . 3207 
16.1.1.4 Acrylonitrile (2-Propenenitrile) . . . . . . . . . . 3210 
16.1.1.5 Benzonitrile . . . . . . . . . 3214 
16.1.2 Aliphatic amines . . . . . . . . . . . . . . 3218 
16.1.2.1 Dimethylamine . . . . . . 3218 
16.1.2.2 Trimethylamine . . . . . . 3222 
16.1.2.3 Ethylamine . . . . . . . . . 3225 
16.1.2.4 Diethylamine . . . . . . . . 3228 
16.1.2.5 n-Propylamine . . . . . . . 3231 
16.1.2.6 n-Butylamine . . . . . . . . 3234 
16.1.2.7 Ethanolamine . . . . . . . . 3236 
16.1.2.8 Diethanolamine . . . . . . 3239 
16.1.2.9 Triethanolamine . . . . . . 3241 
16.1.3 Aromatic amines . . . . . . . . . . . . . . 3243 
16.1.3.1 Aniline . . . . . . . . . . . . . 3243 
16.1.3.2 2-Chloroaniline . . . . . . 3249 
16.1.3.3 3-Chloroaniline . . . . . . 3253 
16.1.3.4 4-Chloroaniline . . . . . . 3257 
16.1.3.5 3,4-Dichloroaniline . . . 3261 
16.1.3.6 o-Toluidine (2-Methylbenzeneamine) . . . . . . 3263 
16.1.3.7 m-Toluidine (3-Methylbenzeneamine) . . . . . 3267 
16.1.3.8 p-Toluidine (4-Methylbenzeneamine) . . . . . . 3270 
16.1.3.9 N,N.-Dimethylaniline . 3274 
16.1.3.10 2,6-Xylidine (2,6-Dimethylbenzeneamine) . 3277 
16.1.3.11 Diphenylamine . . . . . . 3279 
16.1.3.12 Benzidine . . . . . . . . . . . 3283 
16.1.3.13 3,3.-Dichlorobenzidine 3285 
16.1.3.14 N,N.-Bianiline . . . . . . . 3287 
16.1.3.15 .-Naphthylamine (1-Aminonaphthalene) . . . 3289 
16.1.3.16 .-Naphthylamine (2-Aminonaphthalene) . . . 3291 
16.1.3.17 2-Nitroaniline . . . . . . . 3293 
16.1.3.18 4-Nitroaniline . . . . . . . 3295 
16.1.4 Nitroaromatic compounds . . . . . . . 3297 
16.1.4.1 Nitrobenzene . . . . . . . . 3297 
16.1.4.2 2-Nitrotoluene . . . . . . . 3304 
16.1.4.3 4-Nitrotoluene . . . . . . . 3308 
16.1.4.4 2,4-Dinitrotoluene (DNT) . . . . . . . . . . . . . . . 3313 
© 2006 by Taylor & Francis Group, LLC

3196 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.4.5 2,6-Dinitrotoluene . . . . 3317 
16.1.4.6 2,4,6-Trinitrotoluene (TNT) . . . . . . . . . . . . . 3320 
16.1.4.7 1-Nitronaphthalene (.-Nitronaphthalene) . . 3326 
16.1.5 Amides and ureas . . . . . . . . . . . . . 3328 
16.1.5.1 Acetamide . . . . . . . . . . 3328 
16.1.5.2 Acrylamide . . . . . . . . . 3330 
16.1.5.3 Benzamide . . . . . . . . . . 3331 
16.1.5.4 Urea . . . . . . . . . . . . . . . 3333 
16.1.6 Nitrosamines 3336 
16.1.6.1 N-Nitrosodimethylamine . . . . . . . . . . . . . . . . 3336 
16.1.6.2 N-Nitrosodipropylamine . . . . . . . . . . . . . . . . 3338 
16.1.6.3 Diphenylnitrosoamine . 3340 
16.1.7 Heterocyclic compounds . . . . . . . . 3342 
16.1.7.1 Pyrrole . . . . . . . . . . . . . 3342 
16.1.7.2 Indole . . . . . . . . . . . . . . 3346 
16.1.7.3 Pyridine . . . . . . . . . . . . 3348 
16.1.7.4 2-Methylpyridine . . . . . 3354 
16.1.7.5 3-Methylpyridine . . . . . 3358 
16.1.7.6 2,3-Dimethylpyridine . 3362 
16.1.7.7 Quinoline . . . . . . . . . . . 3365 
16.1.7.8 Isoquinoline . . . . . . . . . 3369 
16.1.7.9 Benzo[f]quinoline . . . . 3372 
16.1.7.10 Carbazole . . . . . . . . . . . 3375 
16.1.7.11 Benzo[c,g]carbazole . . 3378 
16.1.7.12 Acridine . . . . . . . . . . . . 3380 
16.1.8 Sulfur compounds . . . . . . . . . . . . . 3383 
16.1.8.1 Carbon disulfide . . . . . 3383 
16.1.8.2 Dimethyl sulfide . . . . . 3386 
16.1.8.3 Dimethyl disulfide . . . . 3391 
16.1.8.4 Dimethyl sulfoxide (DMSO) . . . . . . . . . . . . 3394 
16.1.8.5 Dimethyl sulfate . . . . . 3397 
16.1.8.6 Methanethiol . . . . . . . . 3399 
16.1.8.7 Ethanethiol . . . . . . . . . 3402 
16.1.8.8 1-Propanethiol . . . . . . . 3406 
16.1.8.9 1-Butanethiol (Butyl mercaptan) . . . . . . . . . 3409 
16.1.8.10 Benzenethiol . . . . . . . . 3412 
16.1.8.11 Thiophene . . . . . . . . . . 3415 
16.1.8.12 Benzo[b]thiophene . . . 3419 
16.1.8.13 Dibenzothiophene . . . . 3421 
16.1.8.14 Thiourea . . . . . . . . . . . 3423 
16.1.8.15 Thioacetamide . . . . . . . 3425 
16.2 Summary Tables . . . . 3427 
16.3 References . . . . . . . . . 3438 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3197 
16.1 LIST OF CHEMICALS AND DATA COMPILATIONS 
16.1.1 NITRILES (ORGANIC CYANIDES) 
16.1.1.1 Acetonitrile 
Common Name: Acetonitrile 
Synonym: cyanomethane, ethanenitrile, methyl cyanide 
Chemical Name: acetonitrile 
CAS Registry No: 75-05-8 
Molecular Formula: C2H3N, CH3CN 
Molecular Weight: 41.052 
Melting Point (°C): 
–43.82 (Lide 2003) 
Boiling Point (°C): 
81.65 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.7857 (Dreisbach 1961; Weast 1982–83; Dean 1985) 
0.7803 (25°C, Dreisbach 1961) 
Molar Volume (cm3/mol): 
52.7 (calculated-density, Rohrschneider 1973) 
57.4 (exptl. at normal bp, Lee et al. 1972) 
56.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
29.1 (pKa, Riddick et al. 1986; Howard 1993) 
32.2 (pKs, Riddick et al. 1986) 
–10.12 (pKBH + , Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
35.01, 31.51 (25°C, bp, Dreisbach 1961) 
32.94, 29.82 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
8.167 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
> 3.1 . 106 (Booth & Everson 1948) 
miscible (Dean 1985; Riddick et al. 1986; Yaws et al. 1990; Howard 1993) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
11870* (interpolated-regression of tabulated data, temp range –47–81.8°C, Stull 1947) 
log (P/mmHg) = 7.12257 – 1315.2/(230 + t/°C), (Antoine eq., Dreisbach & Martin 1949) 
11240 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 7.07354 – 1279.2/(224.0 + t/°C), temp range 5–119°C, (Antoine eq. for liquid state, Dreisbach 
1961) 
12156* (25.56°C, measured range 7.3–27.38°C, Putnam et al. 1965) 
log (P/mmHg) = 7.89511 – 1773.06/(T/K); temp range 280–300.5 K (Antoine eq., Putnam et al. 1965) 
11510 (Hoy 1970) 
24459* (41.82°C, ebulliometry, measured range 41–82°C, Meyer et al. 1971) 
log (P/mmHg) = 6.23655 – 1397.9228/(239.275 + t/°C); temp range 41–82°C (ebulliometry, Meyer et al. 1971) 
log (P/mmHg) = [–0.2185 . 8173.2/(T/K)] + 7.938662; temp range: –47.0 to 81.8°C, (Antoine eq., Weast 
1972–73) 
11919* (25.3°C, measured range 15.1–89.2°C, Dojcanske & Heinrich 1974) 
N 
© 2006 by Taylor & Francis Group, LLC

3198 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
8306* (saturated-vapor volume, extrapolated from fitted Antoine eq., Mousa 1981) 
log (P/kPa) = 6.4914 – 1420.8649/(T/K – 42.15); temp range 438.9–530.1 K (ebulliometry, Mousa 1981) 
9864, 15330 (20°C, 30°C, Verschueren 1983) 
11790, 11830 (interpolated values-Antoine equations, Boublik et al. 1984) 
log (P/kPa) = 6.39532 – 1420.682/(241.852 + t/°C), temp range: 15.1–89.2°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
log (P/kPa) = 7.54606 – 2093.145/(298.369 + t/°C), temp range: 7.26–27.4°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
12310 (calculated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.11988 – 1314.4/(230 + t/°C), temp range: liquid (Antoine eq., Dean 1985, 1992) 
11840 (Riddick et al. 1986; Howard et al. 1986; quoted, Banerjee et al. 1990; Howard 1993) 
log (P/kPa) = 6.24747 – 1315.2/(230.0 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
11800 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.34522 – 1388.446/(–34.856 + T/K), temp range: 314–355 K, (Antoine eq., Stephenson & 
Malanowski 1987) 
11840 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.24724 – 1315.2/(230 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
log (P/mmHg) = 23.1953 – 2.3389 . 103/(T/K) –5.4954·log (T/K) + 7.9894 . 10–10 · (T/K) + 2.3293 . 10–6 · 
(T/K)2; temp range 229–546 K (vapor pressure eq., Yaws 1994) 
10604* (22.634°C, comparative ebulliometry, measured range 278–373 K, Ewing & Sanchez Ochoa 2004) 
ln (P/kPa) = 14.7340 – 3268.53/(T/K – 31.615), for temp range 290–362 K (comparative ebulliometry, Ewing 
& Sanchez Ochoa 2004) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional 
data at other temperatures designated* are compiled at the end of this section): 
3.50, 2.78 (exptl., calculated-bond contribution, Hine & Mookerjee 1975) 
2.07* (headspace-GC, measured range 0–25°C, Snider & Dawson 1985) 
2.033 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 
1.474* (20°C, headspace-GC, measured range 6.0–30°C, Benkelberg et al. 1995) 
1.474, 1.477, 1.685 (20°C, headspace-GC, deionized water, rain water, artificial seawater, Benkelberg et al. 1995) 
ln (kH/atm) = (13.8 ± 0.3) – (4106 ± 101)/T/K), temp range: 6–30°C (headspace-GC measurement, Benkelberg 
et al. 1995) 
1.55 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 2.353 – 1627/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
2.05 (Ostwald concentration coefficient-concn ratio-GC/FID, Bebahani et al. 2002) 
Octanol/Water Partition Coefficient, log KOW: 
–0.34 (shake flask-GC, Hansch & Anderson 1967; Leo et al. 1969, 1971; Hansch & Leo 1985) 
–0.54 (shake flask-GC, Tanii & Hashimoto 1984) 
–0.34 (recommended, Sangster 1989, 1993) 
–0.34 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
2.31 (head-space GC, Abraham et al. 2001) 
Bioconcentration Factor, log BCF: 
–0.523 (estimated-KOW as per regression eq of Bysshe 1982, Howard 1993) 
Sorption Partition Coefficient, log KOC: 
–0.523 (soil, estimated-KOW, Lyman et al. 1982; quoted, Howard 1993) 
–0.714 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. ~ 21 h from a model river of 1-m deep flowing at 1 m/s with a wind velocity of 3 m/s based 
on Henry’s law constant (Lyman et al. 1982; quoted, Howard 1993) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3199 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression 
see reference: 
photooxidation t. = 314 – 12559 yr in water, based on measured rate data for reaction with hydroxyl radical 
in aqueous solution (Dorfman & Adams 1973; Howard et al. 1991) 
kOH* = (4.94 ± 0.6) . 10–14 cm3 molecule–1 s–1 at 297.2 K, measured range 297–424 K (flash photolysisresonance 
fluorescence, Harris et al. 1981; quoted, Howard 1993) 
kOH* = (1.94 ± 0.37) . 10–14 cm3 molecule–1 s–1 at 298 K, measured range 250–363 K (flash photolysisresonance 
fluorescence, Kurylo & Knable 1984) 
kOH* = (2.1 ± 0.3) . 10–14 cm3 molecule–1 s–1 at 295 K, measured range 295–393 K (discharge flow-EPR, 
Poulet et al. 1984) 
kOH(exptl) = 2.1 . 10–14 cm3 molecule–1 s–1, kOH(calc) = 2.0 . 10–14 cm3 molecule–1 s–1 at 298 K (Atkinson 
1985) 
kOH = 3 . 10–14 cm3 molecule–1 s–1 (Atkinson 1985; quoted, Howard et al. 1991; Howard 1993) 
kOH = 1.90 . 10–14 cm3 molecule–1 s–1 and k(soln) = 3.70 . 10–14 cm3 molecule–1 s–1 for the solution-phase 
reaction with hydroxyl radical in aqueous solution (Wallington et al. 1988) 
kOH* = 2.14 . 10–14 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1989) 
Hydrolysis: 
k = 5.8 . 10–3 M–1 h–1 at pH 7 and 25°C with t. > 150000 yr (Ellington et al. 1987) 
kO3(aq.) . 6 . 10–5 M–1 s–1 for direct reaction with ozone in water at pH 2 and 22°C, with t. . 18 yr at pH 
7 (Yao & Haag 1991). 
Biodegradation: t.(aq. aerobic) = 168 – 672 h, based on aerobic river die-away test data (Ludzack et al. 1958; 
quoted, Howard et al. 1991); t.(aq. anaerobic) = 672 – 2688 h, based on estimated aqueous aerobic 
biodegradation half-life (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 1299 – 12991 h, based on measured rate constant k = 3 . 10–14 cm3 molecule–1 s–1 for 
the vapor phase reaction with hydroxyl radical in air (Atkinson 1985; quoted, Howard et al. 1991; Howard 
1993); 
atmospheric transformation lifetime was estimated to be > 5 d (Kelly et al. 1994). 
Surface water: t. = 168 – 672 h, based on aerobic river die-away test data (Howard et al. 1991); 
photooxidation t. = 314 – 12559 yr, based on measured rate data for reaction with hydroxyl radical in 
aqueous solution (Dorfman & Adams 1973; Howard et al. 1991); 
t. . 18 yr for direct reaction with ozone in water at pH 7 and 22°C (Yao & Haag 1991). 
Groundwater: t. = 336 – 8640 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
Sediment: 
Soil: t. = 168 – 672 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biota: 
TABLE 16.1.1.1.1 
Reported vapor pressures of acetonitrile at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3200 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.1.1.1 (Continued) 
1. 
Stull 1947 Putnam et al. 1965 Meyer et al. 1971 Dojcanske & Heinrich 1974 
summary of literature data manometer ebulliometry in Boublik et al. 1984 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–47.0 133.3 7.259 4997 41.82 24459 15.1 7359 
–26.6 666.6 10.47 5861 46.09 29026 20.1 9413 
–16.3 1333 13.791 6914 46.11 29032 25.3 11919 
–5.0 2666 18.701 8809 50.36 34288 30.7 15252 
7.7 5333 21.905 10244 55.37 41393 35 18292 
15.9 7999 23.401 11031 60.64 50155 39.95 22465 
27 13332 25.563 12156 65.91 60390 40 22625 
43.7 26664 27.38 13187 70.74 71145 44.9 27638 
62.5 53329 76.31 85512 50.1 33797 
81.8 101325 eq. 1 P/mmHg 81.87 101990 54.9 40517 
A 7.89511 81.89 102010 60 49022 
mp/°C –41.0 B 1773.06 64.4 57182 
bp/°C 81.66 64.95 58102 
eq. 2 P/mmHg 70 68967 
A 6.23655 73.05 76713 
B 1397.923 75.1 81380 
C 239.275 77.2 87952 
81.1 99431 
85.2 112364 
88.2 123189 
89.2 124776 
2. 
Mousa 1981 Ewing & Sanchez Ochoa 2004 
ebulliometry-pressure gauge comparative ebulliometry 
T/K P/kPa t/°C P/Pa t/°C P/kPa 
set A set B 
438.9 784.4 4.772 4323# 81.4 100.745 
440.9 842.8 5.475 4490# 87.792 122.631 
442.6 862.3 8.417 5247# 98.589 168.122 
444.5 876.9 12.226 6385# 105.665 204.592 
447.9 960.3 14.517 7165# 110.961 235.792 
450.5 999.2 17.497 8296 121.144 306.279 
455.7 1116.5 19.596 9182 132.086 399.5 
460.2 1234.6 22.634 10604 142.063 502.665 
505.3 2604.9 27.674 13366 150.533 605.601 
508.1 1704.6 30.661 15271 157.974 708.993 
512.1 1924.0 36.486 19639 164.152 804.861 
519.7 3243.3 42.283 24972 170.346 910.819 
521.6 3303.1 47.968 31311 176.446 1025.47 
524.8 3482.8 51.872 36387 182.586 1151.97 
530.1 3722.1 58.125 45907 188.724 1290.2 
63.263 55169 195.22 1450.28 
bp/K 354.8 68.029 65092 200.902 1602.63 
72.425 75440 206.004 1749.88 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3201 
TABLE 16.1.1.1.1 (Continued) 
Mousa 1981 Ewing & Sanchez Ochoa 2004 
ebulliometry-pressure gauge comparative ebulliometry 
T/K P/kPa t/°C P/Pa t/°C P/kPa 
eq.3 P/kPa 76.178 85311 211.619 2110.77 
A 6.4914 79.929 95589 217.22 2303.51 
B 1420.8649 81.515 101120 222.602 2523.66 
C –42.15 84.406 110614 228.33 2747.95 
88.462 125129 233.771 2999.22 
95.816 155329 339.66 3254.08 
100.02 175036 244.858 3512.89 
254.64 3760.37 
for temp range 290–373 K 258.929 4001.46 
eq. 2a P/mmHg 261.882 4174.61 
A 14.734 
B 3268.53 data fitted to Wagner eq. 
C –31.615 for temp range 354.5–535 K 
# data not used in regression 
FIGURE 16.1.1.1.1 Logarithm of vapor pressure versus reciprocal temperature for acetonitrile. 
Acetonitrile: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 
1/(T/K) 
P( gol 
S 
) aP/ 
experimental data 
Stull 1947 
b.p. = 81.65 °C m.p. = -43.82 °C 
© 2006 by Taylor & Francis Group, LLC

3202 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.1.1.2 
Reported Henry’s law constants of acetonitrile at various temperatures and temperature dependence 
equations 
ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a) 
ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a) 
ln (kH/atm) = A – B/(T/K) (3) 
ln [H/(Pa m3/mol)] = A – B/(T/K) (4) ln [H/(atm·m3/mol)] = A – B/(T/K) (4a) 
KAW = A – B·(T/K) + C·(T/K)2 (5) 
Snider & Dawson 1985 Benkelberg et al. 1995 
gas stripping-GC equil. vapor phase concn-GC 
t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) 
deionized water 
0 0.614 6 0.72 
25 2.066 10 1.0706 
20 1.474 
enthalpy of transfer: 30 2.356 
.H/(kJ mol–1) = 30.54 rain water 
20 1.477 
artificial 
20 1.685 
eq. 3 H/atm 
A 13.8 ± 0.3 
B 4106 ± 101 
FIGURE 16.1.1.1.2 Logarithm of Henry’s law constant versus reciprocal temperature for acetonitrile. 
Acetonitrile: Henry's law constant vs. 1/T 
-2.0 
-1.0 
0.0 
1.0 
2.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
m. aP( / H nl 
3 
) l om 
/ 
Snider & Dawson 1985 
Benkelberg et al. 1995 (in deionized water) 
Benkelberg et al. 1995 (in rain water) 
Hine & Mookerjee 1975 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3203 
16.1.1.2 Propionitrile 
Common Name: Propionitrile 
Synonym: propanenitrile, ethyl cyanide, cyanoethane, propyl nitrile 
Chemical Name: propionitrile 
CAS Registry No: 107-12-0 
Molecular Formula: C3H5N, CH3CH2CN 
Molecular Weight: 55.079 
Melting Point (°C): 
–92.78 (Lide 2003) 
Boiling Point (°C): 
97.14 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.7818 (Weast 1982–83; Dean 1985) 
0.78182, 0.77682 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
70.4 (calculated-density, Taft et al. 1985; Leahy 1986; Kamlet et al. 1986, 1987) 
78.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
33.54 (pKs, Riddick et al. 1986) 
Enthalpy of Vaporization, .Hvap, (kJ/mol): 
37.41, 32.77 (25°C, bp, Dreisbach 1961) 
36.03, 30.96 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
5.045 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
104950 (Seidell 1941) 
105200 (Hansch et al. 1968) 
103000 (Dean 1985; Riddick et al. 1986; Howard 1990) 
55000, 65000 (20°C, 30°C, shake flask-GC, measured range 0–90°C, Stephenson 1994) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
6005* (interpolated-regression of tabulated data, temp range –35–97.1°C, Stull 1947) 
10114* (35.5°C, ebulliometry, measured range 35.5–97.35°C, Dreisbach & Shrader 1949) 
log (P/mmHg) = 7.15217 – 1398.2/(230 + t/°C); temp range 35.5–97.35°C, (Antoine eq., Dreisbach & Martin 
1949) 
5333* (22.05°C, measured range –84.66–22.05°C, Milazzo 1956) 
5950 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 7.05846 – 1327.9/(221.0 + t/°C), temp range: 17–137°C, (Antoine eq. for liquid state, Dreisbach 
1961) 
log (P/mmHg) = [–0.2185 . 8769.0/(T/K)] + 8.079473; temp range: –35 to 97.1°C, (Antoine eq., Weast 1972–73) 
6140 (22.05°C, quoted exptl., Boublik et al. 1973, 1984) 
6163, 6143 (extrapolated values-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 5.89149 – 1181.562/(206.603 + t/°C), temp range: 35.5–97.39°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
log (P/kPa) = 4.43918 – 677.415/(160.551 + t/°C), temp range: –84.7 to 22.05°C (Antoine eq. from reported 
exptl. data, Boublik et al. 1984) 
N 
© 2006 by Taylor & Francis Group, LLC

3204 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
6140 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 5.2782 – 665.52/(159.0 + t/°C), temp range: –84 to 22°C (Antoine eq., Dean 1985, 1992) 
5950 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.27702 – 1398.2/(230 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
log (P/kPa) = 7.15190 – 1894.10/(T/K); temp range: 9–25°C, (Antoine eq., Riddick et al. 1986) 
6306 (calculated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.395 – 3213/(T/K), temp range: 357–413 K, (Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 10.31055 – 3994.667/(T/K), temp range: 373–413 K, (Antoine eq.-II, Stephenson & Malanowski 
1987) 
log (P/mmHg) = 33.7908 – 2.9113 . 103/(T/K) – 9.1506·log (T/K) + 1.1173 . 10–11·(T/K) + 3.2756 . 10–6·(T/K)2; 
temp range 180–564 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
3.800 (partial pressure, Butler & Ramchandani 1935) 
3.748 (partial vapor pressure-GC, Buttery et al. 1969) 
3.752, 3.752, 4.114 (exptl., calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
5.947 (Howard 1990) 
Octanol/Water Partition Coefficient, log KOW: 
0.041 (shake flask, Collander 1951) 
0.16 (shake flask-GC, Hansch & Anderson 1967; Hansch et al. 1968) 
– 0.10 (shake flask-GC, Tanii & Hashimoto 1984) 
0.16 (recommended, Sangster 1989, 1993) 
0.16 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
2.69 (head-space GC, Abraham et al. 2001) 
Bioconcentration Factor, log BCF: 
– 0.108 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
0.079 (soil, estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. = 13.3 h was estimated for a model river 1 m deep flowing 1 m/s 
with wind speed 3 m/s (Lyman et al. 1982; quoted, Howard 1990). 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression 
see reference: 
kOH* = (1.94 ± 0.20) . 10–13 cm3 molecule–1 s–1 at 298.2 K, measured range 298–423 K (flash photolysisresonance 
fluorescence, Harris et al. 1981) 
kOH = 1.9 . 10–13 cm3 molecule–1 s–1 at 298 K (Atkinson 1985) 
kOH = 1.94 . 10–13 cm3 molecule–1 s–1 at 298.2 K, k(soln) = 1.60 . 10–13 cm3 molecule–1 s–1 for the solutionphase 
reaction with hydroxyl radical in aqueous solution (Wallington et al. 1988) 
photooxidation t. = 83 d in air, based on experimental rate constant assuming t. = 12 h of sunlight for the 
vapor-phase reaction with hydroxyl radical in air and t. > 100 d for the reaction with ozone in the 
atmosphere (Howard 1990) 
kOH = 0.194 . 10–12 cm3 molecule–1 s–1 at 298.2 K (review, Atkinson 1989) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3205 
Half-Lives in the Environment: 
Air: t. = 83 d, based on experimental rate constant assuming 12 h of sunlight for the vapor-phase reaction with 
hydroxyl radical in air and t. > 100 d for the reaction with ozone in the atmosphere (Harris et al. 1981; 
quoted, Howard 1990). 
TABLE 16.1.1.2.1 
Reported aqueous solubilities and vapor pressures of propionitrile at various temperatures 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Aqueous solubility Vapor pressure 
Stephenson 1994 Stull 1947 Dreisbach & Shrader 1949 Milazzo 1956 
shake flask-GC summary of literature data ebulliometry 
t/°C S/g·m–3 t/°C P/Pa t/°C P/Pa t/°C P/Pa 
0 62000 –35.0 133.3 35.5 10114 –84.66 1 
20 55000 –13.8 666.6 43.76 16500 –77.01 2 
30 65000 –3.0 1333 70.45 42066 –67.42 6 
40 79000 8.8 2666 84.44 67661 –65.49 7 
50 94000 22 5333 97.35 101325 –59.72 13 
60 98000 30.1 7999 –52.96 17 
70 134000 41.4 13332 –46.19 49 
80 156000 58.2 26664 –34.95 133 
90 195000 77.7 53329 –22.85 356 
97.1 101325 –13.08 707 
–2.95 1347 
mp/°C –91.9 6.36 2400 
16.42 4146 
22.05 5333 
FIGURE 16.1.1.2.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for propionitrile. 
Propionitrile: solubility vs. 1/T 
-4.5 
-4.0 
-3.5 
-3.0 
-2.5 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x 
nl 
Stephenson 1994 
© 2006 by Taylor & Francis Group, LLC

3206 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.1.2.2 Logarithm of vapor pressure versus reciprocal temperature for propionitrile. 
Propionitrile: vapor pressure vs. 1/T 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
0.0026 0.003 0.0034 0.0038 0.0042 0.0046 0.005 0.0054 0.0058 
1/(T/K) 
P( gol 
S 
) aP/ 
Dreisbach & Shrader 1949 
Milazzo 1956 
Stull 1947 
b.p. = 97.14 °C m.p. = -92.78 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3207 
16.1.1.3 Butyronitrile 
Common Name: n-Butyronitrile 
Synonym: butanenitrile 
Chemical Name: butyronitrile 
CAS Registry No: 109-74-0 
Molecular Formula: C4H7N, CH3CH2CH2CN 
Molecular Weight: 69.106 
Melting Point (°C): 
–111.9 (Lide 2003) 
Boiling Point (°C): 
117.6 (Lide 2003) 
Density (g/cm3): 
0.7911, 0.7865 (20°C, 25°C, Riddick et al. 1986) 
Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
88.4 (30°C, Stephenson & Malanowski 1987) 
100.7 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Vaporization, .HV (kJ/mol): 
39.33, 34.43 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Sublimation, .Hsubl (kJ/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
5.021 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Other data at other temperatures designated * are compiled 
at the end of this section): 
33000 (selected, Riddick et al. 1986) 
33500* (20°C, shake flask-GC/TC, measured range 0–90°C, Stephenson 1994) 
Vapor Pressure (Pa at 25°C or as indicated and the reported temperature dependence equations. Additional data at 
other temperatures designated * are compiled at the end of this section): 
1333* (25.7°C, summary of literature data, temp range –20 to 117.5°C, Stull 1947) 
3592* (30.64°C, ebulliometry, measured range 30.64–120.223°C, Meyer et al. 1971) 
log (P/mmHg) = 6.771124 – 1444.5851/(t/°C + 223.275); temp range 30.64–120.223°C (Antoine eq., 
ebulliometric measurements, Meyer et al. 1971) 
13831* (59.807°C, ebulliometry, measured range 59.807–127.707°C, Meyer & Hotz 1976) 
2546 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.25390 – 1452.076/(t/°C + 224.1855); temp range not specified (Riddick et al. 1986) 
log (PL/kPa) = 6.25397 – 1452.076/(–46.9645 + T/K); temp range 332–401 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 4.8780 – 2.5505 . 103/(T/K) + 3.6306·log (T/K) – 1.663 . 10–2·(T/K) + 1.0604 . 10–5·(T/K)2; 
temp range 161–582 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
0.53 (shake flask-GC, Tanii & Hashimoto 1984) 
0.53 (recommended, Sangster 1993; Hansch et al. 1995) 
N 
© 2006 by Taylor & Francis Group, LLC

3208 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
TABLE 16.1.1.3.1 
Reported aqueous solubilities and vapor pressures of butyronitrile at various temperatures 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Aqueous solubility Vapor pressure 
Stephenson 1994 Stull 1947 Meyer et al. 1971 Meyer & Hotz 1976 
shake flask-GC summary of literature data ebulliometry ebulliometry 
t/°C S/g·m–3 t/°C P/Pa t/°C P/Pa t/°C P/Pa 
0 37500 –20.0 133.3 30.64 3592 59.807 13831 
20 33500 2.10 666.6 39.03 5459 65.615 17513 
30 33100 13.4 1333 49.913 9041 71.638 22151 
40 32500 25.7 2666 59.226 13527 77.023 27111 
50 32300 38.4 5333 67.536 18888 83.599 34366 
60 32100 47.3 7999 77.313 27448 89.462 42109 
70 31900 59.0 13332 86.71 39316 96.022 52382 
80 34000 76.7 26664 93.675 48525 102.279 63984 
90 36100 96.8 53329 100.638 60811 109.175 79081 
117.5 101325 100.701 60928 115.651 95737 
107.041 74214 121.838 114148 
mp/°C 112.04 88451 127.707 134135 
117.254 100344 
120.223 109170 
bp/°C 117.583 
log P = A – B/(C + t/°C) 
P/mmHg 
A 6.771124 
B 1444.5851 
C 223.275 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3209 
FIGURE 16.1.1.3.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for butyronitrile. 
FIGURE 16.1.1.3.2 Logarithm of vapor pressure versus reciprocal temperature for butyronitrile. 
Butyronitrile: solubility vs. 1/T 
-5.5 
-5.0 
-4.5 
-4.0 
-3.5 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x nl 
Stephenson 1994 
Butyronitrile: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0022 0.0026 0.003 0.0034 0.0038 0.0042 
1/(T/K) 
P 
( gol 
S 
) aP/ 
Meyer et al. 1971 
Meyer & Hotz 1976 
Stull 1947 
b.p. = 117.6 °C 
© 2006 by Taylor & Francis Group, LLC

3210 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.1.4 Acrylonitrile (2-Propenenitrile) 
Common Name: Acrylonitrile 
Synonym: cyanoethylene, propenenitrile, 2-propenenitrile, vinyl cyanide 
Chemical Name: acrylonitrile, cyanoethylene 
CAS Registry No: 107-13-1 
Molecular Formula: C3H3N, CH2=CHCN 
Molecular Weight: 53.063 
Melting Point (°C): 
–83.48 (Lide 2003) 
Boiling Point (°C): 
77.30 (Riddick et al. 1986; Howard 1989; Lide 2003) 
Density (g/cm3 at 20°C): 
0.8060, 0.8004 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
65.8 (20°C, calculated-density) 
71.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
6.230 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
79000 (Klein et al. 1957) 
75000 (Gunther et al. 1968) 
73500 (20°C, Windholz 1976) 
73240 (shake flask-LSC, Veith et al. 1980) 
7.35 wt%* (20°C, Kirk-Othmer Encyclopedia 3rd ed., measured range 0–60°C, quoted, Basu et al. 1983) 
73500 (20°C, Riddick et al. 1986) 
69000*, 66400 (20°C, 30°C, shake flask-GC, measured range 0–70°C, Stephenson 1994) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
14340* (interpolated-regression of tabulated data, temp range –51 to 78.5°C, Stull 1947) 
11732* (20°C, temp range 20–77°C, Gudkov et al. 1964; quoted, Boublik et al. 1984) 
14100 (Hoy 1970) 
log (P/mmHg) = [–0.2185 . 7941.4/(T/K)] + 7.851016; temp range: –51 to 78.5°C, (Antoine eq., Weast 1972–73) 
14720 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 4.77668 – 649.583/(155.006 + t/°C), temp range 20–70°C (Antoine eq. from reported exptl. data, 
Boublik et al. 1984) 
14370 (Daubert & Danner 1985) 
15240 (calculated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.03855 – 1232.53/(222.47 + t/°C), temp range –20 to 140°C (Antoine eq., Dean 1985, 1992) 
11000 (20°C, Riddick et al. 1986) 
log (P/kPa) = 6.643 – 11644.7/(T/K), temp range not specified (Antoine eq., Riddick et al. 1986) 
14560 (interpolated-Antoine eq.-II, Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.12021 – 1288.9/(–38.74 + T/K); temp range 257–352 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.4811 – 1518.381/(–12.003 + T/K); temp range 283–343 K (Antoine eq.-II, Stephenson & 
Malanowski 1987)
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3211 
15600 (calculated-solvatochromic parameters, Banerjee et al. 1990) 
log (P/mmHg) = 35.921 – 2.7763 . 103/(T/K) – 10.101·log (T/K) – 3.1547 . 10–10·(T/K) + 4.7299 . 10–6·(T/K)2; 
temp range 190–535 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
11.14 (Bocek 1976; quoted, Basu et al. 1983; Howard 1989) 
8.918 (calculated-P/C, Mabey et al. 1982) 
9.420 (quoted, WERL Treatability Database, Ryan et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
0.25 (shake flask-HPLC, Pratesi et al. 1979) 
0.00 (shake flask, Fujisawa & Masuhara 1980, 1981) 
0.09 (shake flask-GC, Tanii & Hashimoto 1984) 
0.25 (Hansch & Leo 1985) 
0.25 (recommended, Sangster 1989) 
0.25 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.68 (bluegill sunfish, Barrows et al. 1978) 
0.00 (estimated-S, Kenaga 1980) 
1.68, 0.32 (bluegill sunfish, calculated-KOW, Veith et al. 1980) 
0.017 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
Sorption Partition Coefficient, log KOC: 
0.954 (soil, calculated-S, Kenaga 1980) 
–0.071 (sediment-water, calculated-KOW, Mabey et al. 1982) 
1.101, 1.006; 1.09 (Captina silt loam, McLaurin sandy loam; weighted mean, batch equilibrium-sorption isotherm, 
Walton et al. 1992) 
–0.0899 (calculated-KOW, Walton et al. 1992) 
–0.0890 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 6, 1.2, 4.8 d in a typical pond, river and lake are 6, 1.2, and 4.8 d, respectively, with the 
reaeration for oxygen in typical bodies of water (Lyman et al. 1982; quoted, Howard 1989) 
evaporation t. = 795 min from water with an assumed 1-m depth (Basu et. al. 1983). 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
k < 1 . 108 M–1 h–1 for singlet oxygen, and 36 M–1 h–1 for peroxy radical at 25°C (Mabey et al. 1982) 
t. = 4.0 h for photooxidation in the troposphere (Callahan et al. 1979) 
kOH = (40.6 ± 4.1) . 10–13 cm3 molecule–1 s–1 at 299 K (flash photolysis-resonance fluorescence technique, 
Harris et al. 1981) 
kO3 < 1 . 10–19 cm3 molecule–1 s–1 at 296 ± 2 K, and tropospheric lifetimes, . > 115 d and . = 3 d due to 
reactions with O3 and OH radical, respectively (Atkinson et al. 1982) 
kO3 < 1 . 10–19 cm3 molecule–1 s–1 at 296 ± 2 K (Atkinson et al. 1983; quoted, Atkinson & Carter 1984) 
t. = 3.5 d for the reaction with photochemically produced hydroxyl radical by the sunlight (Edney et al. 
1983; quoted, Howard 1989) 
kOH = 4.8 . 10–12 cm3 molecule–1 s–1 at 298.7 K, and kOH = 3.4 . 10–12 cm3 molecule–1 s–1 at 296 K (review, 
flash photolysis-resonance fluorescence technique Atkinson 1985) 
photooxidation t. = 3.4–189 h, based on measured rate constant for the reaction with hydroxyl radical in 
air (Howard et al. 1991) 
kOH = (3.4 – 4.80) . 10–12 cm3 molecule–1 s–1 at 296–298.2 K (review, Atkinson 1989) 
© 2006 by Taylor & Francis Group, LLC

3212 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Hydrolysis: k(acid) = 4.2 . 10–2 M–1 h–1 at pH 5.0 with t. = 188 yr and k(base) = 6.1 . 10–2 M–1 h–1 at pH 9.0 
with t. = 13 yr (Ellington et al. 1987; quoted, Howard et al. 1991, Kollig 1993); 
t. = 1210 yr at pH 7.0, based on measured acid and base catalyzed hydrolysis constants (Ellington et al. 
1987; quoted, Howard et al. 1991) 
t. = 69 d at pH 2, t. = 440000 d at pH 7 and t. = 4.7 d at pH 12 in natural waters (Capel & Larson 1995). 
Biodegradation: t.(aq. aerobic) = 30–552 h, based on river die-away test data (Going et al. 1979; Ludzack 
et al. 1958; quoted, Howard et al. 1991); t.(aq. anaerobic) = 120–2208 h, based on estimated aqueous aerobic 
biodegradation half-life (Howard et al. 1991) 
14C labeled acrylonitrile at concentrations up to 100 ppm was completely degraded within 2.0 d in a London 
soil under aerobic conditions (Donberg et al. 1992) 
t.(aerobic) = 1.3 d, t.(anaerobic) = 5 d in natural waters (Capel & Larson 1995) 
Biotransformation: k = of 3 . 10–9 mL cell–1 h–1 for bacterial transformation in water (Mabey et al. 1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 4.0 h for photooxidation in the troposphere (Callahan et al. 1979); 
t. = 3.5 d for the reaction with photochemically produced hydroxyl radical by the sunlight (Edney et al. 
1983; quoted, Howard 1989); 
photooxidation t. = 13.4–189 h, based on measured rate constant for the reaction with hydroxyl radicals in 
air (Atkinson 1985; quoted, Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be 1 – 5 to > 5 d (Kelly et al. 1994). 
Surface water: t. = 30–552 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991) 
Biodegradation t.(aerobic) = 100 d, t.(anaerobic) = 400 d; hydrolysis t. = 69 d at pH 2, t. = 440000 d at 
pH 7 and t. = 4.7 d at pH 12 in natural waters (Capel & Larson 1995). 
Groundwater: t. = 60–1104 h based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Sediment: 
Soil: t. < 10 d in soil (USEPA 1979; quoted, Ryan et al. 1988); 
t. = 30–552 h based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biota: 
TABLE 16.1.1.4.1 
Reported aqueous solubilities and vapor pressures of acrylonitrile at various temperatures 
Aqueous solubility Vapor pressure 
Othmer Encyclopedia Stephenson 1994 Stull 1947 Gudkov et al. 1964 
Basu et al. 1983 shake flask-GC summary of literature data in Boublik et al. 1984 
t/°C S/g·m–3 t/°C S/g·m–3 t/°C P/Pa t/°C P/Pa 
0 72000 0 65800 –51.0 133.3 20 11732 
20 73500 10 66800 –30.7 666.6 30 18932 
40 79000 20 69000 –20.3 1333 40 27998 
60 91000 30 66400 –9.0 2666 50 38530 
40 68800 3.8 5333 60 57328 
50 73600 11.8 7999 70 78660 
60 73900 22.8 13332 
70 85600 38.7 26664 
58.3 53329 
78.5 101325 
mp/°C –82.0 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3213 
FIGURE 16.1.1.4.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for acrylonitrile. 
FIGURE 16.1.1.4.2 Logarithm of vapor pressure versus reciprocal temperature for acrylonitrile. 
Acrylonitrile: solubility vs. 1/T 
-4.5 
-4.0 
-3.5 
-3.0 
-2.5 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x nl 
Basu et al. 1983 
Stephenson 1994 
Veith et al. 1980 
Acrylonitrile: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0026 0.003 0.0034 0.0038 0.0042 0.0046 0.005 0.0054 
1/(T/K) 
P( gol 
S 
) aP/ 
Gudkov et al. 1964 
Stull 1947 
b.p. = 77.3 °C m.p. = -83.48 °C 
© 2006 by Taylor & Francis Group, LLC

3214 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.1.5 Benzonitrile 
Common Name: Benzonitrile 
Synonym: benzenecarbonitrile, cyanobenzene, phenyl cyanide 
Chemical Name: benzonitrile, benzoic acid nitrile 
CAS Registry No: 100-47-0 
Molecular Formula: C6H5CN 
Molecular Weight: 103.122 
Melting Point (°C): 
–13.99 (Lide 2003) 
Boiling Point (°C): 
191.1 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.0006 (25°C, Dean 1985; Riddick et al. 1986) 
Molar Volume (cm3/mol): 
103.1 (25°C, calculated-density) 
107.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
55.48, 45.94 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
10.88 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
4330 (shake flask-UV, McGowan et al. 1966) 
2000 (Dean 1985; Riddick et al. 1986) 
10000 (selected, Yaws et al. 1990) 
4000* (shake flask-GC/TC, measured range 0–90°C, Stephenson 1994) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
133.3* (38.4°C, static method, measured range 38.4–190.6°C, Kahlbaum 1898) 
133.3* (28.2°C, summary of literature data, temp range 28.2–190.6°C, Stull 1947) 
log (P/mmHg) = [–0.2185 . 11341.0/(T/K)] + 8.239760; temp range: 28.2–190.6°C (Antoine eq., Weast 1972–73) 
78.86 (calculated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 6.74631 – 1436.72/(181 + t/°C), temp range: liquid (Antoine eq., Dean 1985, 1992) 
100.0 (Riddick et al. 1986) 
log (P/kPa) = 5.87121 – 1436.72/(181.0 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
106.0 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.79506 – 2066.71/(–32.19 + T/K), temp range 301–464 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
55.32 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 
Octanol/Water Partition Coefficient, log KOW: 
1.56 (shake flask-UV spectrophotometry, Fujita et al. 1964; quoted, Leo et al. 1969; Hansch & Leo 1979) 
1.56 (shake flask-UV, Holmes & Lough 1976) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3215 
1.67 (calculated-fragment const., Rekker 1977) 
1.56 (shake flask at pH 7, Unger et al. 1978) 
1.66 (RP-HPLC-k. correlation, Miyake & Terada 1982) 
1.65 ± 0.01 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
1.50 (HPLC-k. correlation, Haky & Young 1984) 
1.56 (shake flask-GC, Tanii & Hashimoto 1984) 
1.56 (RP-HPLC-capacity ratio, Minick et al. 1988) 
1.45 (RP-HPLC-RT correlation, ODS column with masking agent, Bechalany et al. 1989) 
1.56 (recommended, Sangster 1989, 1993) 
1.56 (shake flask-GC, Alcorn et al. 1993) 
1.56 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
4.46 (head-space GC, Abraham et al. 2001) 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k; for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = 3.3 . 10–13 cm3 molecule–1 s–1 at room temp. (Zetzsch 1982; Atkinson 1989) 
kOH(calc) = 4.2 . 10–13 cm3 molecule–1 s–1 at room temp. (Atkinson 1985) 
kOH(calc) = 3.9 . 10–13 cm3 molecule–1 s–1 at room temp. (Atkinson et al. 1985) 
kOH(calc) = 3.6 . 10–13 cm3 molecule–1 s–1, kOH(obs) = 3.3 . 10–13 cm3 molecule–1 s–1 at room temp. (SAR 
structure-activity relationship, Atkinson 1987) 
kOH(calc) = 4.1 . 10–13 cm3 molecule–1 s–1 (molecular orbital calculations, Klamt 1993) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: an estimated t. = 1.3 d in Rhine River in case of first order reduction process (Zoeteman et al. 1980) 
TABLE 16.1.1.5.1 
Reported aqueous solubilities and vapor pressures of butyronitrile at various temperatures 
Aqueous solubility Vapor pressure 
Stephenson 1994 Kahlbaum 1898* Stull 1947 
shake flask-GC static-manometer summary of literature data 
t/°C S/g·m–3 t/°C P/Pa t/°C P/Pa t/°C P/Pa 
0 3500 38.4 133.3 141.4 26664 28.2 133.3 
10 3300 45.3 266.6 155.8 39997 55.3 666.6 
20 4000 50.0 400.0 165.8 53329 69.2 1333 
40 4500 53.8 533.3 174.4 66661 83.4 2666 
50 3800 56.9 666.6 181.6 79993 99.6 5333 
60 4200 69.1 1333.2 187.7 93326 109.8 7999 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3216 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.1.5.1 (Continued) 
Aqueous solubility Vapor pressure 
Stephenson 1994 Stull 1947 Meyer et al. 1971 Meyer & Hotz 1976 
shake flask-GC summary of literature data ebulliometry ebulliometry 
t/°C S/g·m–3 t/°C P/Pa t/°C P/Pa t/°C P/Pa 
70 6000 83.0 2666.4 190.6 101325 123.5 13332 
80 9500 92.1 3999.7 144.1 26664 
90 9100 98.5 5332.9 *complete list see ref. 156.7 53329 
103.9 6666.1 190.6 101325 
.Hsol/(kJ mol–1) 113.7 9999.2 
25 EC 121.3 13332 mp/EC –12.9 
FIGURE 16.1.1.5.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for benzonitrile. 
Benzonitrile: solubility vs. 1/T 
-8.0 
-7.5 
-7.0 
-6.5 
-6.0 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x n l 
Stephenson 1994 
McGowan et al. 1966 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3217 
FIGURE 16.1.1.5.2 Logarithm of vapor pressure versus reciprocal temperature for benzonitrile. 
Benzonitrile: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 
1/(T/K) 
log(PS/Pa) 
Kahlbaum 1898 
Stull 1947 
b.p. = 191.1 °C m.p. = -13.99 °C 
© 2006 by Taylor & Francis Group, LLC

3218 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.2 ALIPHATIC AMINES 
16.1.2.1 Dimethylamine 
Common Name: Dimethylamine 
Synonym: aminomethylmethane, N-methylmethanamine 
Chemical Name: aminomethylmethane, dimethylamine 
CAS Registry No: 124-40-3 
Molecular Formula: C2H7N, CH3NHCH3 
Molecular Weight: 45.084 
Melting Point (°C): 
–92.18 (Lide 2003) 
Boiling Point (°C): 
6.88 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.6804 (0°C, Weast 1982–83) 
0.6556, 0.6496 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
68.8 (20°C, calculated-density) 
67.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
10.732 (Perrin 1965; Weast 1982–83; Howard 1990) 
10.77 (protonated cation + 1, Dean 1985) 
10.77 (Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
23.84, 24.61 (25°C, bp, Dreisbach 1961) 
23.65, 24.61 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
5.941 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
very soluble (Dean 1985) 
620000 (selected, Yaws et al. 1990) 
miscible (Stephenson 1993b) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
101141* (280.018 K, static method, measured range 201.387–280.018 K, Ashton et al. 1939) 
236420* (extrapolated-regression of tabulated data, temp range –87.2 to + 7.4°C, Stull 1947) 
196800 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 7.06396 – 1024.4/(238.0 + t/°C), temp range –55 to 37°C, (Antoine eq. for liquid state, 
Dreisbach 1961) 
log (P/mmHg) = [–0.2185 . 6660.0/(T/K)] + 7.995166; temp range –87.7 to 162.6°C, (Antoine eq., Weast 
1972–73) 
172220 (20°C, Verschueren 1983) 
206180 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.21132 – 962.001/(221.852 + t/°C), temp range –71.77 to 6.858°C (Antoine eq. from reported 
exptl. data, Boublik et al. 1984) 
202620 (Daubert & Danner 1985) 
206000 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.08212 – 960.242/(221.67 + t/°C), temp range –72 to 6°C (Antoine eq., Dean 1985, 1992) 
HN 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3219 
196800 (quoted lit., Riddick et al. 1986) 
log (P/kPa) = 6.18886 – 1-024.40/(238.0 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
205300 (interpolated-Antoine eq-II., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.29031 – 993.586/(–48.12 + T/K), temp range 201–280 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.20646 – 965.728/(–50.151 + T/K), temp range 277–360 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.81489 – 2369.425/(141.433 + T/K), temp range 358–438 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 36.9182 – 2.4965 . 103/(T/K) – 10.417·log (T/K) – 1.6287 . 10–9·(T/K) + 4.6496 . 10–6·(T/K)2; 
temp range 181–438 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
1.796 (exptl., Hine & Mookerjee 1975; quoted, Howard 1990) 
1.796, 1.03 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
2.718 (calculated-molecular structure, Russell et al. 1992) 
Octanol/Water Partition Coefficient, log KOW: 
–0.38 (shake flask-RC at pH 13, Wolfenden 1978) 
–0.38 (Hansch & Leo 1985) 
–0.38 (recommended, Sangster 1989; 1993) 
–0.38 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
2.00 (calculated-Soct and vapor pressure P, Abraham et al. 2001) 
Bioconcentration Factor, log BCF: 
–0.523 (calculated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
2.638 (adsorption isotherm average for five soils, Rao & Davidson 1982; quoted, Howard 1990) 
0.602; 2.212; 2.706 (Podzol soil; Alfisol soil; sediment, von Oepen et al. 1991) 
2.63 (soil, calculated-MCI, Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. = 35.1 h was estimated for a model river of 1 m deep flowing at 
1 m/s with a wind velocity of 3 m/s (Lyman et al. 1982; selected, Howard 1990). 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated: 
kOH = 6.54 . 10–11 cm3 molecule–1 s–1 at 299 K (Atkinson et al. 1977; quoted, Carlier et al. 1986; Atkinson 
1989) 
photooxidation t. = 5.9 h in air was estimated for the vapor phase reaction with hydroxyl radical of 5 . 105 
radicals/cm3 in air (Atkinson et al. 1978; Atkinson 1985; quoted, Howard 1990); 
kO3 = (2.61 ± 0.30) . 10–18 cm3 molecule–1 s–1 at 296 ± 2 K (Atkinson & Carter 1984; quoted, Atkinson 1985) 
kOH = 6.5 . 10–11 cm3 ± molecule–1 s–1 for the gas-phase reaction with 5 . 105 OH radicals/cm3 at room temp. 
having a loss rate of 2.8 d–1 (Atkinson 1985) 
kOH(calc) = 63 . 10–12 cm3 molecule–1 s–1 at room temp. (Atkinson 1987). 
Hydrolysis: 
Biodegradation: aqueous aerobic t. = 2–79 h, based on river die-away test data (Digeronimo et al. 1979; Dojlido 
1979; selected, Howard et al. 1991); aqueous anaerobic t. = 8–316 h, based on estimated unacclimated 
aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
© 2006 by Taylor & Francis Group, LLC

3220 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Half-Lives in the Environment: 
Air: t. = 5.9 h was estimated for the vapor phase reaction with hydroxyl radical of 5 . 105 radicals/cm3 in air 
(Atkinson et al. 1978; Atkinson 1985; quoted, Howard 1990); 
photooxidation t. = 0.892–9.20 h, based on measured rate constant for the gas-phase reaction with OH 
radical (Atkinson 1985; quoted, Howard et al. 1991) and ozone (Tuazon et al. 1978; selected, Howard 
et al. 1991). 
Surface water: t. = 2–79 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Groundwater: t. = 4–158 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Sediment: 
Soil: t. = 86–336 h, based on soil die-away test data (Tate & Alexander 1976; Greene et al. 1981; selected, 
Howard et al. 1991). 
Biota: 
TABLE 16.1.2.1.1 
Reported vapor pressures of dimethylamine at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
log P = A – B/(T/K) – C log (T/K) + D·(T/K) – E·(T/K)2 + F·(T/K)3 (5) 
Ashton et al. 1939 Stull 1947 
static method summary of literature data 
T/K P/Pa t/°C P/Pa 
201.387 648 bp/K 280.04 –87.7 133.3 
213.802 1959 mp/K 180.97 –72.2 666.6 
222.078 3780 .HV/(kJ mol–1) = 26.48 (bp) –64.6 1333 
232.137 7775 .Hfus/(kJ mol–1) = 5.94 (mp) –56.0 2666 
242.078 14743 –46.7 5333 
249.640 22949 eq. 5 P/mmHg –40.7 7999 
256.449 33269 A 32.26370 –32.6 13332 
262.977 46404 B 2460.10 –20.4 26664 
270.182 65491 C 8.6390 –7.1 53329 
275.934 84860 D 7.6055.10–3 7.4 101325 
279.980 100974 E 3.51389.10–5 
277.680 91519 F 5.3241.10–8 mp/°C –96.0 
280.018 101141 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3221 
FIGURE 16.1.2.1.1 Logarithm of vapor pressure versus reciprocal temperature for dimethylamine. 
Dimethylamine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0034 0.0038 0.0042 0.0046 0.005 0.0054 0.0058 
1/(T/K) 
P 
( gol 
S 
) aP/ 
Aston et al. 1939 
Stull 1947 
b.p. = 6.88 °C m.p. = -92.18 °C 
© 2006 by Taylor & Francis Group, LLC

3222 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.2.2 Trimethylamine 
Common Name: Trimethylamine 
Synonym: dimethylamino methane, TMA 
Chemical Name: trimethylamine 
CAS Registry No: 75-50-3 
Molecular Formula: C3H9N, CH3N(CH3)2 
Molecular Weight: 59.110 
Melting Point (°C): 
–117.1 (Lide 2003) 
Boiling Point (C): 
2.87 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.6356 (Weast 1982–83) 
Molar Volume (cm3/mol): 
93 (20°C, calculated-density) 
93.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
9.801, 9.987 (Perrin 1972; quoted, Howard 1990) 
9.80 (pKa, protonated cation + 1, Dean 1985) 
9.79 (pKa, Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
22.85, 24.13 (25°C, bp, Dreisbach 1961) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C) or as indicated: 
410000 (Dean 1985) 
890000 (30°C, Howard 1990) 
291000 (selected, Yaws et al. 1990) 
miscible (Stephenson 1993b) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this chapter): 
221715* (isoteniscope, measured range 0–40°C, Swift & Hochanadel 1945) 
log (P/mmHg) = 24.91300 – 2018.37/(T/K) – 6.0303 · log (T/K); temp range 0–40°C (isoteniscope method, 
Swift & Hochanadel 1945) 
265200* (extrapolated-regression of tabulated data, temp range –97.1 to + 2.9°C, Stull 1947) 
226540 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 6.97038 – 968.7/(234.0 + t/°C), temp range –58 to 32°C (Antoine eq. for liquid state, Dreisbach 1961) 
log (P/mmHg) = [–0.2185 . 6361.7/(T/K)] + 7.952370; temp range –97.1 to 2.9°C (Antoine eq., Weast 1972–73) 
192500 (20°C, 30°C, Verschueren 1983) 
219300, 221800 (extrapolated-Antoine eq., interpolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 5.98554 – 1957.276/(237.664 + t/°C), temp range –80.3 to 3.45°C (Antoine eq. from reported 
exptl. data, Boublik et al. 1984) 
log (P/kPa) = 5.87712 – 894.366/(228.276 + t/°C), temp range 0–40°C (Antoine eq. from reported exptl. data, 
Boublik et al. 1984) 
214200 (Daubert & Danner 1985) 
219000 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 6.85755 – 955.94/(237.52 + t/°C), temp range –80 to 3°C (Antoine eq., Dean 1985, 1992) 
219900 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3223 
log (PL/kPa) = 6.01402 – 968.978/(–34.253 + T/K), temp range 192–277 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 58.6807 – 2.686 . 103/(T/K) – 20.36·log (T/K) + 1.3131 . 10–2·(T/K) – 6.563 . 10–13·(T/K)2; 
temp range 156–433 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
6.672 (exptl., Hine & Mookerjee 1975) 
12.71, 2.16 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
15.64 (calculated-molecular structure, Russell et al. 1992) 
Octanol/Water Partition Coefficient, log KOW: 
0.27 (shake flask-TN, Sandell 1962; quoted, Leo et al. 1971) 
0.27; 0.20 (calculated-f const., calculated-. const., Rekker 1977) 
0.16 (shake flask, Hansch & Leo 1985) 
0.16 (recommended, Sangster 1989) 
0.16 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 0.0 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
1.462 (soil, estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
0.602 (soil, estimated-solubility, Lyman et al. 1982; quoted, Howard 1990) 
0.778; 2.365; 2.831 (Podzol soil; Alfisol soil;, sediments von Oepen et al. 1991) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. = 11 h was estimated for a model river 1 m deep flowing at 1 m/s 
with a wind velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1990). 
Photolysis: 
Hydrolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = 6.09 . 10–11 cm3 molecule–1 s–1 at 299 K (Atkinson et al. 1977; Atkinson 1989) 
photooxidation t. = 62 d in water, based on rate constant k = 1.3 . 1010 L mol–1 s–1 for the reaction with 
photochemically produced hydroxyl radicals of 1 . 10–17 mol · L–1 in water (Mill et al. 1980; Guesten 
et al. 1981; quoted, Howard 1990) 
kOH = 6.10 . 10–11 cm3 molecule–1 s–1 for the gas-phase reaction with 1 . 106 OH radicals/cm3 with a loss 
rate of 5.0 d–1 and rate constant kO3 = 9.70 . 10–18 cm3 molecule–1 s–1 for the gas-phase reaction with 
7 . 1011 O3 molecules/cm3 with a loss rate of 0.6 d–1 both at room temp. (Atkinson & Carter 1984) 
calculated kOH = 64 . 10–12 cm3 molecule–1 s–1 at room temp. (SAR, Atkinson 1987). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 4.0 h, based on rate constant k = 6.09 . 10–11 cm3 molecule–1 s–1 for the vapor-phase 
reaction with photochemically produced hydroxyl radical of 8 . 105 radicals/cm3 in air at 25.5°C and 
t. = 1.4 d, based on rate constant k = 9.73 . 10–18 cm3 molecule–1 s–1 for the vapor-phase reaction with ozone 
of 6 . 1011 molecules/cm3 in air at 24.4°C (Atkinson 1985; GEMS 1986; quoted, Howard 1990). 
Surface water: t. = 62 d, based on rate constant k = 1.3 . 1010 L mol–1 s–1 for the reaction with photochemically 
produced hydroxyl radicals of 1 . 10–17 mol L–1 in water (Mill et al. 1980; Guesten et al. 1981; quoted, 
Howard 1990). 
© 2006 by Taylor & Francis Group, LLC

3224 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.2.2.1 
Reported vapor pressures of trimethylamine at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Aston et al. 1944 Swift & Hochanadel 1945 Stull 1947 
static method isoteniscope summary of literature data 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–80.315 805 0 91059 –97.1 133.3 
–74.081 1367 15 158520 –81.7 666.6 
–62.339 3354 20 188651 –73.8 1333 
–51.938 6777 25 221715 –65.0 2666 
–46.842 9305 30 259444 –55.2 5333 
–41.774 12548 35 302107 –48.8 7999 
–35.617 17684 40 349437 –40.3 13332 
–28.507 25624 –27.0 26664 
–24.155 31772 bp/K 276.03 –12.5 53329 
–23.067 33494 2.90 101325 
–20.164 38401 eq. 4 P/mmHg 
–15.974 46505 A 24.91300 mp/°C –117.1 
–11.422 56802 B 2018.37 
–8.985 63039 C 6.0303 
–7.399 67346 
–3.113 80208 .HV/(kJ mol–1) = 23.93 
0.780 93495 at bp 
2.928 101526 
3.454 103611 
FIGURE 16.1.2.2.1 Logarithm of vapor pressure versus reciprocal temperature for trimethylamine. 
Trimethylamine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.003 0.0034 0.0038 0.0042 0.0046 0.005 0.0054 0.0058 
1/(T/K) 
P( gol 
S 
) aP 
/ 
Aston et al. 1944 
Swift & Hochanadel 1945 
Stull 1947 
b.p. = 2.87 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3225 
16.1.2.3 Ethylamine 
Common Name: Ethylamine 
Synonym: aminoethane, ethanamine, monoethylamine 
Chemical Name: aminoethane, ethylamine 
CAS Registry No: 75-04-7 
Molecular Formula: C2H7N, CH3CH2NH2 
Molecular Weight: 45.084 
Melting Point (°C): 
–80.5 (Lide 2003) 
Boiling Point (°C): 
16.5 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.6829 (Dreisbach 1961; Weast 1982–83) 
0.6769 (25°C, Dreisbach 1961) 
Molar Volume (cm3/mol): 
65.4 (5°C, Stephenson & Malanowski 1987) 
66.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
10.79 (Perrin 1972) 
10.81 (20°C, Weast 1982–83) 
10.63 (protonated cation + 1, Dean 1985) 
10.70 (Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
27.08, 27.57 (25°C, bp, Dreisbach 1961) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Dean 1985; Howard 1990; Stephenson 1993b) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated* are compiled at the end of this section): 
156200* (extrapolated-regression of tabulated data, temp range –82.3 to 16.6°C, Stull 1947) 
141620 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 7.3862 – 1137.30/(235.85 + t/°C); temp range –43 to 47°C (Antoine eq. for liquid state, 
Dreisbach 1961) 
93325* (20°C, temp range 1.95 to 20°C, Bittrich et al. 1962) 
log (P/mmHg) = [–0.2185 . 6845.1/(T/K)] + 7.973674; temp range –82.3 to 176°C, (Antoine eq., Weast 
1972–73) 
121570, 172220 (20°C, 30°C, Verschueren 1983) 
139100 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 5.12561 – 559.427/(162.579 + t/°C); temp range 1.95–14.65°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
139700 (Daubert & Danner 1985) 
141000 (calculated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.05413 – 987.31/(220.0 + t/°C); temp range –20 to 90°C (Antoine eq., Dean l985, 1992) 
137500, 141200 (calculated-Antoine eq.-II, III, Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.57462 – 1167.57/(–34.18 + T/K); temp range 213–297 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.43082 – 1140.62/(–32.433 + T/K); temp range 290–449 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
NH2 
© 2006 by Taylor & Francis Group, LLC

3226 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (PL/kPa) = 6.21526 – 1009.66/(–49.804 + T/K); temp range 291–367 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.48782 – 1176.995/(–26.674 + T/K); temp range 377–456 K (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
140900 (calculated-Cox eq., Chao et al. 1990) 
log (P/mmHg) = 33.2962 – 2.4307 . 103/(T/K) – 9.0779·log (T/K) – 1.3848 . 10–9·(T/K) + 3.8183 . 10–6·(T/K)2; 
temp range 192–456 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
1.012 (partial pressure, Butler & Ramchandani 1935) 
0.683 (exptl., Hine & Mookerjee 1975) 
0.859, 0.730 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
0.421 (calculated-molecular structure, Russell et al. 1992) 
Octanol/Water Partition Coefficient, log KOW: 
–0.30 (shake flask-titration with ion correction, Korenman et al. 1973) 
–0.16, –0.14; –0.19 (calculated-fragment const.; calculated-. const., Rekker 1977) 
–0.13 (Hansch & Leo 1985) 
–0.13 (recommended, Sangster 1989) 
–0.14 (calculated-CLOGP, Jackel & Klein 1991) 
–0.13 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 0.0 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. = 2.0 d was estimated for a model river of 1 m deep flowing at 
1 m/s with a wind velocity of 3 m/s (Howard 1990). 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
photooxidation t. > 9.9 d for the gas-phase reaction with OH radical in air, based on the rate of disappearance 
of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976) 
kOH = 2.77 . 10–11 cm3·molecules–1·s–1 at 299 K (Atkinson et al. 1977; quoted, Carlier et al. 1986) 
photooxidation t. = 321 d in water, based on a rate constant k = 2.5 . 109 L·mol–1·s–1 for the aqueous-phase 
reaction with photochemically produced OH radical of 1 . 10–17 mol·L–1 (Mill et al. 1980; Guesten et al. 
1981; quoted, Howard 1990) 
kO3 = (2.76 ± 0.34) . 10–20 cm3·molecules–1·s–1 at 296 ± 2 K under atmospheric conditions (Atkinson & Carter 
1984) 
kOH = 27.7 . 10–12 cm3 molecule–1 s–1 at 299.6 K (Atkinson 1989) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. > 9.9 d for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of 
hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976); 
photooxidation t. = 8.6 h, based on rate constant k = 6.54 . 10–11 cm3·molecules–1·s–1 for the vapor-phase 
reaction with an average hydroxyl radical of 5 . 105 radicals/cm3 at 25.5°C (Atkinson 1985; quoted, 
Howard 1990). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3227 
Surface water: t. = 321 d, based on a rate constant k = 2.5 . 109 L·mol–1·s–1 for the aqueous-phase reaction with 
photochemically produced hydroxyl radical of 1 . 10–17 mol·L–1 (Mill et al. 1980; Guesten et al. 1981; 
quoted, Howard 1990). 
TABLE 16.1.2.3.1 
Reported vapor pressures of ethylamine at various temperatures 
Stull 1947 Bittrich et al. 1962 
summary of literature data 
t/°C P/Pa t/°C P/Pa 
–82.3 133.3 1.95 53329 
–66.4 666.6 4.55 59995 
–58.3 1333 6.85 66661 
–48.6 2666 9.15 73327 
–39.8 5333 11.05 79993 
–33.4 7999 12.85 86659 
–25.1 13332 14.65 93325 
–12.3 26664 
2.0 53329 
16.6 101325 
mp/°C –80.6 
FIGURE 16.1.2.3.1 Logarithm of vapor pressure versus reciprocal temperature for ethylamine. 
Ethylamine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.003 0.0034 0.0038 0.0042 0.0046 0.005 0.0054 
1/(T/K) 
P( gol 
S 
) aP/ 
Bittrich et al. 1962 
Stull 1947 
b.p. = 16.5 °C m.p. = -80.5 °C 
© 2006 by Taylor & Francis Group, LLC

3228 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.2.4 Diethylamine 
Common Name: Diethylamine 
Synonym: aminoethylethane, N-ethylethanamine 
Chemical Name: aminoethylethane, diethylamine 
CAS Registry No: 109-89-7 
Molecular Formula: C4H11N, CH3CH2NHCH2CH3 
Molecular Weight: 73.137 
Melting Point (°C): 
–49.8 (Lide 2003) 
Boiling Point (°C): 
55.5 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.6993, 0.6926 (20°C, 25°C, Dreisbach. 1961) 
0.7056 (Weast 1982–83) 
0.7070, 0.7016 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
103.4 (20°C, calculated-density) 
109.0 (exptl. at normal bp, Lee et al. 1972) 
111.9 (calculated-Le Bas method at normal boiling point,) 
Dissociation Constant, pKa: 
10.98 (Perrin 1965; quoted, Howard 1990) 
10.80 (35°C, Perrin 1972) 
10.80 (protonated cation + 1, Dean 1985) 
11.07 (Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
31.38, 29.50 (25°C, bp, Dreisbach 1961) 
31.32, 29.07 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
815000 (14°C, quoted, Verschueren 1983) 
miscible (Dean 1985; Riddick et al. 1986; Yaws et al. 1990) 
miscible (Stephenson 1993b) 
Vapor Pressure (Pa at 25°C and or as indicated reported temperature dependence equations. Additional data at other 
temperatures designated* are compiled at the end of this section): 
26664* (21°C, summary of literature data, temp range –33.0 to 55.5°C, Stull 1947) 
31130 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 7.14099 – 1209.9/(229.0 + t/°C); temp range –15 to 90°C (Antoine eq. for liquid state, Dreisbach 
1961) 
39997* (31.45°C, temp range 31.45–60.58°C, Bittrich & Kauer 1962) 
31471* (25.17°C, temp range 19.73–40.22°C, Kilian & Bittrich 1965) 
log (P/mmHg) = [–0.2185 . 7307.5/(T/K)] + 7.701718; temp range –33.0 to 210°C (Antoine eq., Weast 1972–73) 
26660, 38660 (20°C, 30°C, Verschueren 1983) 
30110, 31310 (extrapolated-Antoine eq., interpolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 4.97981 – 580.448/(143.68 + t/°C); temp range 31.45–60.58°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
log (P/kPa) = 5.84728 – 994.478/(203.53 + t/°C); temp range 19.758–40.22°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
NH 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3229 
31130 (selected, Riddick et al. 1986) 
log (P/kPa) = 4.92649 – 583.297/(144.145 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
31490 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 5.96802 – 1058.538/(–61.331 + T/K); temp range 302–328 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 5.92678 – 1028.405/(–66.2061 + T/K); temp range 325–437 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 5.8016 – 583.3/(144.1 + t/°C); temp range 31–61°C (Antoine eq., Dean 1992) 
log (P/mmHg) = 32.626 – 2.4918 . 103/(T/K) – 9.3285·log (T/K) + 3.990 . 10–3·(T/K) + 1.1732 . 10–12·(T/K)2; 
temp range 223–497 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
2.596 (exptl., Hine & Mookerjee 1975) 
2.537, 2.37 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
6.67 (calculated-vapor liquid equilibrium VLE data, Yaws et al. 1991) 
Octanol/Water Partition Coefficient, log KOW: 
0.43 (shake flask, Collander 1951) 
0.57 (shake flask-titration, Sandell 1962) 
0.60, 0.61; 0.70 (calculated-fragment const.; calculated-. const., Rekker 1977) 
0.58 (Hansch & Leo 1985) 
0.58 (20°C, shake flask-GC, Takayama et al. 1985) 
0.81 (HPLC-k. correlation, Eadsforth 1986) 
0.58 (recommended, Sangster 1989) 
0.58 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
0.210 (calculated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
1.699 (soil, calculated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. ~ 31.6 h for a model river 1 m deep flowing at 1 m/s with a wind 
velocity of 3 m/s (estimated, Lyman et al. 1982; quoted, Howard 1990). 
Photolysis: 
Oxidation: photooxidation t. > 9.9 d for the gas-phase reaction with hydroxyl radical in air, based on the rate 
of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976); 
photooxidation t. = 0.21 d in air, based on an estimated second-order rate constant k = 77.1 . 10–12 cm3 
molecule–1 s–1 for the vapor-phase reaction with photochemically produced hydroxyl radicals of 5 . 105 
radicals/cm3 in air (Atkinson 1987; quoted, Howard 1990). 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. > 9.9 d for the gas-phase reaction with hydroxyl radicals in air, based on the rate of disappearance of 
hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976); 
t. = 0.21 d, based on an estimated rate constant k ~ 77.1 . 10–12 cm3 molecule–1 s–1 for the vapor-phase 
reaction with photochemically produced hydroxyl radicals of 5 . 105 radicals/cm3 in air (Atkinson 1987; 
quoted, Howard 1990). 
© 2006 by Taylor & Francis Group, LLC

3230 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.2.4.1 
Reported vapor pressures of diethylamine at various temperatures 
Stull 1947 Bittrich & Kauer 1962 Kilian & Bittrich 1965 
summary of literature data 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–33.0 1333 31.45 39997 19.73 24718 
–22.6 2666 34.75 46663 25.17 31471 
–11.3 5333 38.05 53329 30.31 39343 
–4.0 7999 41.1 59995 34.99 47596 
6.0 13332 43.85 66661 40.22 58582 
21.0 26664 46.5 73327 
38.0 53329 48.85 79993 
55.5 101325 51.10 86659 
53.20 93325 
mp/°C –38.9 55.53 101325 
57.05 106658 
59.00 113324 
60.58 119990 
FIGURE 16.1.2.4.1 Logarithm of vapor pressure versus reciprocal temperature for diethylamine. 
Diethylamine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0028 0.0032 0.0036 0.004 0.0044 0.0048 
1/(T/K) 
P( gol 
S 
) aP 
/ 
Bittrich & Kauer 1962 
Kilian & Bittrich 1965 
Stull 1947 
b.p. = 55.5 °C m.p. = -49.8 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3231 
16.1.2.5 n-Propylamine 
Common Name: Propylamine 
Synonym: 1-aminopropane, 1-propanamine, n-propylamine 
Chemical Name: aminopropane, n-propylamine 
CAS Registry No: 107-10-8 
Molecular Formula: C3H9N, CH3CH2CH2NH2 
Molecular Weight: 59.110 
Melting Point (°C): 
–84.75 (Lide 2003) 
Boiling Point (°C): 
47.22 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.7173 (Dreisbach 1961; Weast 1982–83; Dean 1985; Riddick et al. 1986) 
0.7123 (25°C, Dreisbach 1961) 
Molar Volume (cm3/mol): 
82.4 (liquid molar volume, Kamlet et al. 1986, 1987) 
88.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
10.74, 10.789 (20°C, Perrin 1972) 
10.71 (pKa, 20°C, Weast 1982–83) 
10.57 (pKBH 
+ , Dean 1985; Riddick et al. 1986) 
10.68 (pKa, Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
31.13, 29.73 (25°C, bp, Dreisbach 1961) 
31.26, 29.54 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
10.974 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Dean 1985; Stephenson 1993b) 
miscible (Riddick et al. 1986; Howard 1990; Yaws et al. 1990) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
41800* (interpolated-regression of tabulated data, temp range –64.4 to 48.5°C, Stull 1947) 
41050 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 7.2672 – 1218.1/(229.9 + t/°C); temp range –20 to 81°C (Antoine eq. for liquid state, Dreisbach 
1961) 
42100* (ebulliometry, calculated-Antoine eq., Osborn & Douslin 1968) 
log (P/mmHg) = 6.92646 – 1044.028/(t/°C + 210.833); temp range 23–77.6°C (ebulliometric method, Antoine 
eq., Osborn & Douslin 1968) 
log [(P/atm) = [1 – 320.379 ± (T/K)] . 10^{0.922208 – 10.51259 . 10–4·(T/K) + 11.25530 . 10–7·(T/K)2}, temp 
range: 34–77.6°C (ebulliometric method, Cox eq., Osborn & Douslin 1968) 
log (P/mmHg) = [–0.2185 . 7408.0/(T/K)] + 7.867998; temp range –64.4 to 214.5°C (Antoine eq., Weast 
1972–73) 
32660 (20°C, 31°C, Verschueren 1983) 
38550; 42110 (22.97°C, quoted exptl., calculated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.05146 – 1044.082/(210.84 + t/°C); temp range 22.97–77.6°C (Antoine eq. from reported exptl. 
data of Osborn & Douslin 1968, Boublik et al. 1984) 
42120 (calculated-Antoine eq., Dean 1985, 1992) 
NH2 
© 2006 by Taylor & Francis Group, LLC

3232 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/mmHg) = 6.92651 – 1044.05/(210.84 + t/°C); temp range: 23–77°C (Antoine eq., Dean l985, 1992) 
41050 (Riddick et al. 1986) 
log (P/kPa) = 6.05136 – 1044.028/(210.833 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
42120 (interpolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.04693 – 1041.725/(–62.596 + T/K); temp range 295–351 K (Antoine eq., Stephenson & 
Malanowski 1987) 
42125 (calculated-Cox eq., Chao et al. 1990) 
log (P/mmHg) = 24.6420 – 2.3152 . 103/(T/K) – 5.8711·log (T/K) – 4.6258 . 10–11·(T/K) + 1.582 . 10–6·(T/K)2; 
temp range 190–497 (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
1.274 (partial pressure, Butler & Ramchandani 1935) 
0.784; 0.732 (exptl.; calculated-group contribution, Hine & Mookerjee 1975) 
1.330 (calculated-bond contribution, Hine & Mookerjee 1975) 
0.637 (calculated-molecular structure, Russell et al. 1992) 
2.01 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
0.28 (shake flask-GC, Korenman et al. 1973) 
0.37, 0.39; 0.31‘ (calculated-f const.; calculated-. const., Rekker 1977) 
0.48 (shake flask-GC, pH 13, Yakayama et al. 1985) 
0.48 (recommended, Sangster 1989) 
0.48 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
–0.886 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
< 1.699 (soil, estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. ~ 2.44 d was estimated for a model river 1 m deep flowing at 
1 m/s with a wind speed of 3 m/s (estimated, Lyman et al. 1982; quoted, Howard 1990). 
Photolysis: 
Oxidation: photooxidation t. = 12 h in air, based on estimated rate constant k = 3.21 . 10–12 cm3·molecule–1·s–1 
for the vapor-phase reaction with hydroxyl radical of 5 . 105/cm3 at 25°C in the atmosphere (Atkinson 1987; 
quoted, Howard 1990). 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 12 h, based on estimated second-order rate constant of 3.21 . 10–12 cm3·molecule–1·s–1 for the vaporphase 
reaction with hydroxyl radical of 5 . 105/cm3 at 25°C in the atmosphere (Atkinson 1987; quoted, 
Howard 1990). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3233 
TABLE 16.1.2.5.1 
Reported vapor pressures of n-propylamine at various temperatures 
Stull 1947 Osborn & Douslin 1968 
summary of literature data ebulliometric method 
t/°C P/Pa t/°C P/Pa 
–64.4 133.3 22.973 38547 
–46.3 666.6 27.750 47359 
–37.2 1333 32.564 57803 
–27.1 2666 37.414 70109 
–16.0 5333 42.304 84525 
–9.0 7999 47.229 101325 
0.50 13332 52.193 120798 
15.0 26664 57.195 143268 
31.5 53329 62.235 169052 
48.5 101325 67.314 198530 
72.430 232087 
mp/°C –83.0 77.587 270110 
FIGURE 16.1.2.5.1 Logarithm of vapor pressure versus reciprocal temperature for n-propylamine. 
n -Propylamine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0026 0.003 0.0034 0.0038 0.0042 0.0046 0.005 0.0054 
1/(T/K) 
log(PS/Pa) 
Osborn & Douslin 1968 
Stull 1947 
b.p. = 47.22 °C m.p. = -84.75 °C 
© 2006 by Taylor & Francis Group, LLC

3234 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.2.6 n-Butylamine 
Common Name: Butylamine 
Synonym: 1-aminobutane, n-butylamine. 1-butanamine 
Chemical Name: 1-aminobutane, n-butylamine 
CAS Registry No: 109-73-9 
Molecular Formula: C4H11N, CH3CH2CH2CH2NH2 
Molecular Weight: 73.137 
Melting Point (°C): 
–49.1 (Dreisbach 1961; Riddick et al. 1986; Stephenson & Malanowski 1987; Lide 2003) 
Boiling Point (°C): 
77.0 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.7414 (Dreisbach 1961; Weast 1982–83) 
0.7392 (Riddick et al. 1986) 
Molar Volume (cm3/mol): 
98.8 (20°C, calculated-density) 
110.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
10.77 (Perrin 1965; pKa, 20°C, Weast 1982–83; Howard 1990) 
10.65 (Perrin 1972) 
10.64 (pKa, protonated + 1, Dean 1985; Sangster 1989) 
10.77 (pKBH + , Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
35.54, 32.11 (25°C, bp, Dreisbach 1961) 
35.74, 31.80 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Dean 1985; Howard 1990; Yaws et al. 1990) 
miscible (Riddick et al. 1986) 
miscible (Stephenson 1993b) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
13850 (Hoy 1970; Abraham 1984) 
12230 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 7.213 – 1308.4/(224.2 + t/°C); temp range 4–114°C (Antoine eq. for liquid state, Dreisbach 
1955) 
9600 (20°C, Verschueren 1983) 
12230 (quoted lit., Riddick et al. 1986; quoted, Howard 1990) 
log (P/kPa) = 6.07009 – 1157.810/(207.80 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
12520 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.2635 – 1258.745/(–54.49 + T/K); temp range 313–350 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 25.0711 – 2.5701 . 103/(T/K) – 5.8985·log (T/K) + 7.9399 . 10–10·(T/K) + 1.192 . 10–6·(T/K)2; 
temp range 124–532 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
1.526 (partial pressure, Butler & Ramchandani 1935) 
1.528 (exptl., Hine & Mookerjee 1975) 
NH2 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3235 
1.676, 1.68 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
0.880 (calculated-molecular structure, Russell et al. 1992) 
1.785 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
0.68 (shake flask, Collander 1951) 
0.88 (shake flask-titration, Sandell 1962) 
0.81 (shake flask, unpublished result, Leo et al. 1971; Hansch & Leo 1987) 
0.74 (shake flask-titration, Korenman et al. 1973) 
0.90, 0.92; 0.81 (calculated-f const.; calculated-. const., Rekker 1977) 
0.80 (inter-lab. shake flask average, Eadsforth & Moser 1983) 
0.97 (shake flask-GC, Takayama et al. 1985) 
0.86 (recommended, Sangster 1989) 
0.97 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
3.61 (calculated-Soct and vapor pressure P, Abraham et al. 2001) 
Bioconcentration Factor, log BCF: 
0.505 (calculated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
1.903 (soil, calculated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
1.176, 2.021, 2.029 (Podzol soil, Alfisol soil, sediment, von Oepen et al. 1991) 
1.880 (soil, quoted exptl., Meylan et al. 1992) 
1.780 (soil, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. =1.95 d was predicted for evaporation from a model river 1 m 
deep, flowing at 1 m/s with a wind velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1990). 
Photolysis: 
Oxidation: estimated vapor phase photooxidation t. = 0.479 d in air, based on a result of reaction with 
photochemically produced hydroxyl radical at a concentration of 5 . 105 radicals/cm3 (USEPA 1986; quoted, 
Howard 1990). 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: estimated vapor phase t. = 0.479 d, based on a result of reaction with photochemically produced hydroxyl 
radical at a concentration of 5 . 105 radicals/cm3 (USEPA 1986; quoted, Howard 1990). 
© 2006 by Taylor & Francis Group, LLC

3236 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.2.7 Ethanolamine 
Common Name: Ethanolamine 
Synonym: .-aminoethyl alcohol, ethylolamine, 2-hydroxyethylamine, .-hydroxyethylamine, monoethanolamine, MEA 
Chemical Name: ethanolamine, 2-aminoethanol 
CAS Registry No: 141-43-5 
Molecular Formula: C2H7NO, HOCH2CH2NH2 
Molecular Weight: 61.098 
Melting Point (°C): 
10.5 (Lide 2003) 
Boiling Point (°C): 
171 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.0180 (Weast 1982–83) 
1.0147 (Riddick et al. 1986) 
Molar Volume (cm3/mol): 
60.4 (Stephenson & Malanowski 1987) 
73.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
9.48, 9.4994 (Perrin 1972; quoted, Howard 1990) 
9.50 (pKBH 
+ , Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
92.09, 49.831 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
20.50 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus J/mol K: 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Dean 1985) 
miscible (Riddick et al. 1986; quoted, Howard 1990) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
deisgnated * are compiled at the end of this section): 
893* (65.4°C, Ramsay-Young method, measured range 65.4–170.9°C, Matthews et al. 1950) 
log (P/mmHg) = 44.008 – 4089/(T/K) – 11.446 ± log (T/K); temp range 65.4–170.9°C (Kirchhoff eq., ebulliometry, 
Matthews et al. 1950) 
8707* (106.1°C, ebulliometry, measured range 106.1–170.37°C, McDonald et al. 1959) 
log (P/mmHg) = 7.7380 –1772.11/(186.25 + t/°C); temp range 106–170°C, or pressure range 65.31–760 mmHg 
(ebulliometry, McDonald et al. 1959) 
53.32 (20°C, Verschueren 1983) 
41.64, 46.67 (extrapolated values-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.54175 – 1554.149/(171.175 + t/°C); temp range 65.5–170.9°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
log (P/kPa) = 6.86239 – 1725.168/(185.556 + t/°C); temp range 106.1–170.37°C (Antoine eq. from reported 
exptl. data, Boublik et al. 1984) 
42.51 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.4568 – 1577.67/(172.37 + t/°C); temp range 65–171°C (Antoine eq., Dean 1985, 1992) 
48.0 (Riddick et al. 1986) 
log (P/kPa) = 6.86290 – 1732.11/(186.215 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
47.34 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.8629 – 1732.11/(–86.6 + T/K); temp range 310–444 K (liquid, Antoine eq., Stephenson & 
Malanowski 1987) 
NH2 
HO 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3237 
34.66 (from Dow Chemical’s Handbook, Howard 1990) 
log (P/mmHg) = 72.9125 – 5.8595 . 103/(T/K) –21.914·log (T/K) – 7.1511 . 10–10·(T/K) + 5.9841 . 10–6·(T/K)2; 
temp range 284–638 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0041 (calculated-bond method, Hine & Mookerjee 1975) 
Octanol/Water Partition Coefficient, log KOW: 
–1.31 (shake flask, Collander 1951) 
–1.29; –1.35 (calculated-f const., calculated-. const., Rekker 1977) 
–1.31 (recommended, Sangster 1993) 
–1.31 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 0.0 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
0.699 (soil, estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
Oxidation: photooxidation t. = 11 h in air, based on an estimated rate constant k ~ 3.5 . 10–11 cm3 ± molecule–1 s–1 
for the vapor phase reaction with photochemically produced hydroxyl radical of 5 . 105 radicals/cm3 in air 
(Atkinson 1987; quoted, Howard 1990). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: half-life of 11 h, based on an estimated rate constant of 3.5 . 10–11 cm3 molecule–1 s–1 for the vapor phase 
reaction with photochemically produced hydroxyl radical of 5 . 105 radicals/cm3 in air (Atkinson 1987; 
quoted, Howard 1990). 
© 2006 by Taylor & Francis Group, LLC

3238 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.2.7.1 
Reported vapor pressures of ethanolamine at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Matthews et al. 1950 McDonald et al. 1959 
Ramsay-Young method ebulliometric method 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
65.4 893 137.9 32264 106.1 8707 
65.5 947 144.6 42236 108.43 10058 
69.5 1160 150.0 54195 112.29 11427 
70.0 1253 161.4 73860 114.55 12702 
75.4 1760 170.9 100125 116.79 14049 
81.1 2320 125.73 20454 
86.4 3280 bp/K 444.1 159.79 71862 
90.0 3813 169.20 97584 
96.4 5440 .HV/(kJ mol–1) = 46.07 at bp 170.37 101325 
101.7 7146 Kirchhoff, Rankine, Dupre 
105.5 8559 eq. 4 P/mmHg mp/°C 10.31 
112.1 11306 A 44.008 eq. 2 P/mmHg 
117.3 14012 B 4809 A 7.7380 
125.0 19452 C 11.446 B 173211 
132.0 25771 C 186.215 
FIGURE 16.1.2.7.1 Logarithm of vapor pressure versus reciprocal temperature for ethanolamine. 
Ethanolamine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Matthews et al. 1950 
McDonald et al. 1959 
b.p. = 171 °C m.p. = 10.5 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3239 
16.1.2.8 Diethanolamine 
Common Name: Diethanolamine 
Synonym: 2,2.-amino-diethanol, 3-aza-1,5-pentanediol, diethylolamine, bis(hydroxyethyl)amine, 2,2.-dihydroxydiethylamine, 
.,..-dihydroxydiethylamine, 2,2.-iminobisethanol, 2,2.-iminodiethanol 
Chemical Name: diethanolamine 
CAS Registry No: 111-42-2 
Molecular Formula: C4H11NO2, HOCH2CH2NHCH2CH2OH 
Molecular Weight: 105.136 
Melting Point (°C): 
28.0 (Weast 1982–83; Dean 1985; Riddick et al. 1986; Stephenson & Malanowski 1987; Lide 2003) 
Boiling Point (°C): 
268.8 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.0966 (Weast 1982–83) 
1.0936 (25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
96.5 (30°C, Stephenson & Malanowski 1987) 
126.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
8.88, 8.97 (Perrin 1972) 
8.88 (pKBH 
+ , Dean 1985; Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
70.3, 65.229 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
25.104 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.934 (mp at 28°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
954000 (Verschueren 1983) 
964000 (Dean 1985) 
954000 (20°C, Riddick et al. 1986) 
miscible (from Dow Chemical’s Handbook, Howard 1990) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
< 1.333 (20°C, Verschueren 1983) 
0.040 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 8.1388 – 2327.9/(174.4 + t/°C); temp range 194–241°C (Antoine eq., Dean l985, 1992) 
0.030 (quoted lit., Riddick et al. 1986) 
log (P/kPa) = 7.26458 – 2328.56/(174.399 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
log (PL/kPa) = 7.26044 – 2326.23/(–98.907 + T/K); temp range: 423–542 K (liquid, Antoine eq., Stephenson & 
Malanowski 1987) 
0.0373 (quoted from Dow Chemical’s Handbook, Howard 1990) 
log (P/mmHg) =122.0877 –8.8422 . 103/(T/K) –40.422·log (T/K) + 1.4062 . 10–2·(T/K) + 1.1986 . 10–12·(T/K)2; 
temp range 301–542 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
5.42 . 10–9 (Hine & Mookerjee 1975) 
HN
OH HO 
© 2006 by Taylor & Francis Group, LLC

3240 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
–1.43 (shake flask, Collander 1951) 
–1.51 (calculated-fragment const., Rekker & De Kort 1979) 
–1.43 (recommended, Sangster 1993) 
–1.43 (recommended, Hansch et al 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 0.0 (estimated-KOW, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
0.602 (soil, estimated-KOW, Howard 1990) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
Oxidation: photooxidation t. = 0.72–7.2 h in air, based on estimated rate constant for the reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard 1990; Howard et al. 1991). 
Biodegradation: aqueous aerobic t. = 14.4–168 h, based on measured half-life in surface water grab sample 
experiment (Boethling & Alexander 1979; quoted, Howard et al. 1991) and aqueous aerobic screening test 
data (Gerike & Fischer 1979; Bridie et al. 1979; quoted, Howard et al. 1991); aqueous anaerobic 
t. = 57.6–672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 0.72–7.2 h, based on estimated rate constant for the reaction with hydroxyl radical in 
air (Atkinson 1987; quoted, Howard 1990; Howard et al. 1991); 
atmospheric transformation lifetime by reaction with water was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: t. = 14.4–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Groundwater: t. = 28.8–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: 
Soil: t. = 14.4–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3241 
16.1.2.9 Triethanolamine 
Common Name: Triethanolamine 
Synonym: 2,2.,2.-nitrilotriethanol, 2,2.,2.-nitrilotrisethanol, triethylolamine, trihydroxytriethylamine, trolamine, 
tris(hydroxyethyl)–amine, TEA 
Chemical Name: triethanolamine 
CAS Registry No: 102-71-6 
Molecular Formula: C6H15NO3, (HOCH2CH2)3N 
Molecular Weight: 149.188 
Melting Point (°C): 
20.5 (Lide 2003) 
Boiling Point (°C): 
335.4 (Dean 1985; Riddick et al. 1986; Stephenson & Malanowski 1987; Lide 2003) 
Density (g/cm3 at 20°C): 
1.1242 (Weast 1982–83; Dean 1985) 
1.1196 (25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
133.3 (Stephenson & Malanowski 1987) 
182.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
7.92 (Perrin 1972; quoted, Howard 1990) 
7.76 (pKBH 
+ , Dean 1985; Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
67.475 (bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
27.20 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Dean 1985; Howard 1990) 
miscible (Riddick et al. 1986) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
< 1.33 (20°C, Verschueren 1983) 
0.0131 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 9.19319 – 4543.817/(297.839 + t/°C), temp range: 252.7–305.6°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
0.0100 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 10.0675 – 4542.78/(297.76 + t/°C), temp range: 252–305°C (Antoine eq., Dean l985, 1992) 
< 1.30 (20°C, Riddick et al. 1986) 
log (P/kPa) = 7.67989 – 2962.73/(186.75 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
log (PL/kPa) = 9.53861 – 4951.87/(49.99 + T/K), temp range: 523–579 K, (Antoine eq., Stephenson & 
Malanowski 1987) 
4.79 . 10–4 (quoted from Dow Chemical’s Handbook, Howard 1990) 
log (P/mmHg) = 135.3206 –1.0312 . 104/(T/K) –44.637·log (T/K) + 1.4368 . 10–2·(T/K) – 1.7552 . 10–13·(T/K)2; 
temp range 294–787 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
3.42 . 10–14 (Hine & Mookerjee 1975) 
N 
OH HO 
OH 
© 2006 by Taylor & Francis Group, LLC

3242 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
–1.32, –1.75 (calculated, Verschueren 1983) 
–1.59 (Howard 1990) 
–1.00 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 0.0 (estimated-KOW, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
0.477 (soil, estimated-KOW, Howard 1990) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
Oxidation: photooxidation t. = 4.0 h in air, based on an estimated rate constant k ~ 10.4 . 10–11 cm3·molecule–1 s–1 
for the vapor phase reaction with photochemically produced hydroxyl radical of 5 . 105 radicals/cm3 in air 
at 25°C (Atkinson 1987; quoted, Howard 1990). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 4.0 h, based on an estimated rate constant k ~ 10.4 . 10–11 cm3 molecule–1 s–1 for the vapor phase 
reaction with photochemically produced hydroxyl radical of 5 . 105 radicals/cm3 in air at 25°C (Atkinson 
1987; quoted, Howard 1990). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3243 
16.1.3 AROMATIC AMINES 
16.1.3.1 Aniline 
Common Name: Aniline 
Synonym: phenylamine, aminobenzene, benzeneamine, benzenamine 
Chemical Name: aniline 
CAS Registry No: 62-53-3 
Molecular Formula: C6H5NH2 
Molecular Weight: 93.127 
Melting Point (°C): 
–6.02 (Lide 2003) 
Boiling Point (°C): 
184.1 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.02173, 1.01750 (20°C, 25°C, Dreisbach 1955) 
1.02173 (20°C, Weast 1982–83) 
Molar Volume (cm3/mol): 
91.2 (20°C, calculated-density) 
110.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
4.596 (Perrin 1972; Howard 1989) 
4.600 (McLeese et al. 1979; Riddick et al. 1986; Sangster 1989 ) 
4.630 (Weast 1982–83) 
4.58, 3.96 (quoted, HPLC, Miyake et al. 1987) 
Enthalpy of Vaporization, .HV (kJ/mol): 
54.28, 43.17 (25°C, bp, Dreisbach 1955) 
55.843, 44.53 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
36650 (Hill & Macy 1924) 
36070 (Seidell 1941) 
38670 (shake flask-residue volume method, Booth & Everson 1948) 
36220 (shake flask-interferometry, Donahue & Bartell 1952) 
34100 (Stephen & Stephen 1963) 
36600 (Kenaga 1980) 
34000 (Verschueren 1983) 
56900 (calculated-activity coeff. . by UNIFAC, Fu & Luthy 1985, 1986) 
33800 (selected, Riddick et al. 1986) 
34200 (selected, Yaws et al. 1990) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
133.3 (43.7°C, static method, measured range 43.7–183.9°C, Kahlbaum 1898) 
85.71* (extrapolated-regression of tabulated data, temp range 34.8–184.4°C Stull 1947) 
log (P/mmHg) = 7.57170 – 1941.7/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 
10351* (112.92°C, ebulliometry, measured range 112.92–183.93°C, Dreisbach & Shrader 1949) 
89.52 (calculated by formula, Dreisbach 1955; quoted, Riddick et al. 1986) 
NH2 
© 2006 by Taylor & Francis Group, LLC

3244 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/mmHg) = 7.24179 – 1674.3/(200.0 + t/°C); temp range 90–250°C (Antoine eq. for liquid state, Dreisbach 
1955) 
6806* (102.59°C, ebulliometry, measured range 102.59–185.15°C, McDonald et al. 1959) 
log (P/mmHg) = 7.25375 – 1684.35/(201.175 + t/°C, temp range 103–185°C (Antoine eq., ebulliometry, 
McDonald et al. 1959) 
133.3* (31.55°C, calculated-thermodynamic properties, temp range 31.55–184.40°C, Hatton et al. 1962) 
log (P/mmHg) = [–0.2185 . 11307.6/(T/K)] + 8.221995; temp range 34.8–422.4°C (Antoine eq., Weast 1972–73) 
88.30 (extrapolated-Antoine eq., Boublik et al. 1973) 
log (P/mmHg) = 7.3201 – 1731.515/(205.049 + t/°C); temp range 102.6–185.2°C (Antoine eq. from reported 
exptl. data of McDonald et al.1959, Boublik et al. 1973) 
log (P/mmHg) = [–0.2185 . 11307.6/(T/K)] + 8.221995; temp range 34.8–422.4°C (Antoine eq., Weast 1972–73) 
82.71 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 457.025/(T/K)] . 10^{0.911551 – 6.64936 . 10–4·(T/K) + 5.25455 . 10–7·(T/K)2}; temp range: 
267.3–695.0 K (Cox eq., Chao et al. 1983) 
80 ± 6 (gas saturation-HPLC/UV, Sonnefeld et al. 1983) 
40.0 (20°C, Verschueren 1983) 
88.0, 48.24 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.43196 – 1722.154/(205.002 + t/°C); temp range 102.6–185.2°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
log (P/kPa) = 5.68977 – 1234.569/(151.207 + t/°C); temp range 112.9–183.9°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
65.18 (Daubert & Danner 1985) 
89.30 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.32010 – 1731.515/(206.049 + t/°C); temp range 102–185°C (Antoine eq., Dean l985, 1992) 
log (P/kPa) = 5.69066 – 1941.7/(230.0 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
89.60 (calculated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.40627 – 1702.817/(–70.155 + T/K); temp range 304–458 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 8.1019 – 2728/(T/K); temp range 273–338 K (Antoine eq.-II, Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.41147 – 1708.239/(–69.454 + T/K); temp range 373–458 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.44338 – 1682.348/(–78.065 + T/K); temp range: 455–523 K (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
86.70 (calculated-Cox eq., Chao et al. 1990) 
log (P/mmHg) =124.3764 –7.1676 . 103/(T/K) –42.763·log (T/K) + 1.7336 . 10–2·(T/K) + 5.7138 . 10–15·(T/K)2; 
temp range 267–699 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
13778 (Hakuta et al. 1977) 
12.16 (measured, Yoshida et al. 1983) 
0.193 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
0.90 (shake flask-UV, Fujita et al. 1964) 
0.90 (shake flask, Iwasa et al. 1965) 
0.90 (shake flask-UV, Hansch et al. 1968) 
0.90 (Leo et al. 1971; Hansch & Leo 1979; Hansch & Leo 1983, Hansch & Leo 1985) 
0.89 (shake flask-UV at pH 5.6, Umeyama et al. 1971) 
0.90 (HPLC-k. correlation, Carlson et al. 1975) 
0.85 (shake flask, Lu & Metcalf 1975) 
0.90 (HPLC-RT correlation, Mirrlees et al. 1976) 
0.93 ± 0.05 (shake flask at pH 7, Unger et al. 1978) 
0.90, 0.98, 0.85 (shake flask, Hansch & Leo 1979) 
0.91 (HPLC-k. correlation, Konemann et al. 1979) 
0.90 (shake flask-UV, Briggs 1981) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3245 
1.03 (RP-HPLC-k. correlation, D’Amboise & Hanai 1982) 
0.90 (HPLC-k. correlation, Hammers et al. 1982) 
0.90 (inter-laboratory studies. shake flask average, Eadsforth & Moser 1983) 
1.09 (inter-laboratory studies, HPLC-RT correlation, average, Eadsforth & Moser 1983; Brooke et al. 
1990) 
1.34, 1.27, 1.08 (HPLC-RT correlation, Harnish et al. 1983) 
1.08 (shake flask average, OECD/EEC lab. comparison tests, Harnish et al. 1983) 
0.79, 0.96 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
0.89 (shake flask-UV at pH 7.4, El Tayar et al. 1984) 
0.99 (calculated-activity coeff. . from UNIFAC, Campbell & Luthy 1985) 
0.81, 1.08 (HPLC-k. correlation, Eadsforth 1986) 
0.91 (RP-HPLC-RT correlation, Eadsforth 1986) 
0.98 (shake flask-UV at pH 7.5, Martin-Villodre et al. 1986) 
0.93 (HPLC method average, Ge et al. 1987) 
0.78 (HPLC-k. correlation, Miyake et al. 1987) 
1.18 (calculated-activity coeff. . from UNIFAC, Banerjee & Howard 1988) 
0.940 ± 0.006 ( shake flask/slow-stirring-GC, De Bruijn et al. 1989) 
0.90 (recommended, Sangster 1989, 1993) 
0.942 ± 0.010; 0.940 ± 0.006 (shake flask/stir-flask method by BRE; RITOX, inter-laboratory studies, Brooke 
et al. 1990) 
0.90 (shake flask-GC, Alcorn et al. 1993) 
1.21, 0.89, 0.87, 1.09 (HPLC-k. correlation, different combinations of stationary and mobile phases under 
isocratic conditions, Makovskaya et al. 1995) 
0.92 (shake flask-dialysis tubing-HPLC/UV, both phases, Andersson & Schrader 1999) 
0.88 (microemulsion electrokinetic chromatography-retention factor correlation, Jia et al. 2003) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
0.78 (fish, Lu & Metcalf 1975) 
0.30 (calculated-S, Kenaga 1980) 
< 1.0 (fish, Freitag et al. 1982) 
< 1.0, 0.602, 3.01 (golden orfe, algae, activated sludge, Freitag et al. 1982) 
0.602 (alga Chlorella fusca, wet wt. basis, Geyer et al. 1984) 
0.845 (alga Chlorella fusca, calculated-KOW, Geyer et al. 1984) 
< 1.0, < 1.0, 2.70 (golden ide, algae, activated sludge, Freitag et al. 1985) 
2.77 (Daphnia magna, based on elimination phase, Dauble et al. 1986) 
1.87 (Daphnia magna, based on 14C and exposure water, Dauble et al. 1986) 
0.70 (fish, correlated-KOW, Isnard & Lambert 1988) 
0.78 (quoted, Isnard & Lambert 1988, 1989) 
0.41 (zebrafish, Kalsch et al. 1991) 
0.41 (zebrafish, Zok et al. 1991) 
0.41; 1.04, –0.87, 0.03 (quoted exptl.; calculated values-KOW, Bintein et al. 1993) 
Sorption Partition Coefficient, log KOC: 
3.11; 2.11 (H-montmorillonite at pH 8.35; pH 6.80, Bailey et al. 1968) 
1.86 (soil average, Moreale & Van Bladel 1976) 
1.41 (average of seven agricultural soils, Briggs 1981) 
3.59 (colloidal organic carbon/ground water, Means et al.1982) 
2.11; 2.61 (soil; more acidic soil, Pillai et al. 1982) 
2.49; 2.11 (nonsterile Hagerstown soil; sterile Hagerstown soil, Pillai et al. 1982) 
2.96; 2.61 (nonsterile Palouse soil; sterile Palouse soil, Pillai et al. 1982) 
1.17 (soil, quoted as log KOM, Sabljic 1987) 
2.12, 2.05, 2.06 (calculated values: Podzol soil, Alfisol soil, sediment, von Oepen et al. 1991) 
0.596 (calculated-KOW, Kollig 1993) 
© 2006 by Taylor & Francis Group, LLC

3246 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
1.08, 1.25, 0.98 (RP-HPLC-k. correlation on 3 different stationary phases, Szabo et al. 1995) 
1.41 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.07; 1.65 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
2.70, 1.64, 2.08, 2.04, 2.29 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask-batch equilibrium-
HPLC/UV, Gawlik et al. 1998) 
2.384, 1.503, 1.279, 1.437, 2.136 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask-batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
1.0–1.54 (5 soils, pH 2.8–7.2, batch equilibrium-sorption isotherm, Li et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 12 d from a measured Henry’s law constant of 1.2 . 10–4 atm m3 mol–1 (Yoshida 
et al. 1983; quoted, Howard 1989) for a model river of 1-m deep with a 1 m/s current and a 3 m/s wind 
(Lyman et al. 1982; quoted, Howard 1989); 
volatilization t.(calc) = 55 d (Torang et al. 2002). 
Photolysis: first-order rate constants for photosensitized reactions in water with various humic substances as 
sensitizers: k = 0.17 h–1 with aquatic humus from Aucilla River, k = 0.12 h–1 with Aldrich humic acid, 
k = 0.091 h–1 with Fluka humic acid and k = 0.11 h–1 with Contech fulvic acid in sunlight, corresponding 
to half-lives of 4 to 8 h (Zepp et al. 1981); photolysis t. = > 50 yr at 15°C and a pH 5–9 (Torang et al. 2002). 
Oxidation: rate constant k; for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression 
see reference: 
k = 1 . 104 M–1 s–1 for oxidation by RO2 radical at 30°C in aquatic systems with t. = 0.8 d (Howard 1972; 
Hendry et al. 1974; quoted, Mill 1982) 
k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 yr (Foote 1976; 
Mill 1979; quoted, Mill 1982) 
kOH = 1.20 . 10–10 cm3 molecule–1 s–1, kOH(av.) = 1.17 . 10–10 cm3 molecule–1 s–1 at 296 K (flash photolysis 
-RF, Rinke & Zetzsch 1984; Witte et al. 1986) 
kOH* = 1.10 . 10–10 cm3 molecule–1 s–1 at 298 K, measured range: 239–362 K (flash photolysis-resonance 
fluorescence, Witte et al. 1986) 
kOH(calc) = 1.54 . 10–10 cm3·molecule–1 s–1 at room temp. (Atkinson et al. 1985) 
kOH(obs) . 6.0 . 10–11 cm3 molecule–1 s–1; kOH(calc.) = 1.16 . 10–10 cm3 molecule–1 s–1 at room temp. 
(Atkinson 1985) 
kOH(calc) = 1.36 . 10–10 cm3 molecule–1 s–1, kOH(obs.) = 1.17 . 10–10 cm3 molecule–1 s–1, (SAR structureactivity 
relationship, Atkinson 1987) 
kOH*(exptl) = 1.18 . 10–10 cm3 molecule–1 s–1 at 296 ± 2 K, measured range: 265–455 K; and kO3 = 1.12 . 
10–18 cm3 molecule–1 s–1 at 296 ± 2 K (relative rate method, Atkinson et al. 1987) 
kOH* = 1.11 . 10–10 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1989) 
kOH(calc) = 1.385 . 10–10 cm3 molecule–1 s–1 (molecular orbital calculations, Klamt 1993) 
Hydrolysis: 
Biodegradation: completely degraded by a soil inoculum in 4 d (Alexander & Lustigman 1966; quoted, Verschueren 
1983; Howard 1989); 
completely degraded in 20 d by bacteria in river mud (Calamari et al. 1980; quoted, Howard 1989); 
k = 0.23 d–1 and corresponding to a t. = 3 d in samples of White Lake water at 29°C (Subba-Rao et al. 
1982); 
average rate of biodegradation k = 19.0 mg COD g–1 h–1 for 94.5% removal (Scow 1982); 
biodegradation t. = 4.5 d in unpolluted and t. < 0.5 d in polluted pond water as model environments (Lyons 
et al. 1984); 
0.46 mM aniline solution degraded by strain Ani1 within 14 d in water (Schnell et al. 1989); 
average exptl. k = 0.044 h–1 compared to the group-contribution method predicted rate constants of 0.050 h–1 
(nonlinear) and 0.018 h–1 (Tabak & Govind 1993); 
first-order k = 1.0 d–1 for batch expt. with Elbe water at 20°C (Bornick et al. 2001); 
field first-order degradation k ~ 1.8 d–1 for 2 different dates with water temperatures of 21.9 and 14.7°C, 
respectively, in Rhine river and rate constant obtained in laboratory shake flask batch tests with Rhine 
water averaged 1.5 d–1 at 15°C and 2.0 d–1 at 20°C (Torang et al. 2002). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3247 
Biotransformation: mean bacteria transformation rate constant for all three sites of (1.1 ± 0.8) . 10–11 
L·organism–1·h–1 (Paris & Wolfe 1987; quoted, Steen 1991). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 0.052 ± 0.0067 h–1; k2 = 7.200 ± 1.3000 h–1 (Kalsch et al. 1991) 
k1 = 11.10 ± 3.2000 h–1 (zebrafish, Zok et al. 1991) 
Half-Lives in the Environment: 
Air: atmospheric lifetimes of 2.3 h in clean troposphere and 1.2 h in moderately polluted atmosphere, based on 
gas-phase reaction with hydroxyl radical at room temp.; atmospheric lifetimes of 15.0 d in clean troposphere 
and 5.0 d in moderately polluted atmosphere, based on gas-phase reaction with O3 at room temp. (Atkinson 
et al. 1987) 
t. ~ 3.3 h, based on reaction with photochemically produced hydroxyl radical (Howard 1989); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: estimated t. = 2.3 d in Rhine river in case of a first order reduction process (Zoeteman et al. 
1980; quoted, Howard 1989); 
estimated t. = 0.3–3.0 d in river waters (Zoeteman et al. 1980); 
t. = 4 to 8 h in May sunlight with both commercial humic acids and aquatic humus as photosensitizers 
near-surface water and t. ~ 1 wk in distilled water (Zepp et al. 1981); 
t. = 6 d in eutropic pond and t. = 21 d in an oligotrophic lake (Subba-Rao et al. 1982; quoted, Howard 1989); 
biodegradation t. = 4.5 d in unpolluted and t. < 0.5 d in polluted pond water as model environments (Lyons 
et al. 1984); 
t. = 4–33 d at 15°C (Ingerslev & Nyholm 2000); 
t. ~ 9 h in the Rhine river at 15 and 22°C (Torang et al. 2002). 
Ground water: estimated t. ~ 30–300 d (Zoeteman et al. 1980). 
Sediment: 
Soil: 
Biota: 
TABLE 16.1.3.1.1 
Reported vapor pressures of aniline at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 Dreisbach & Shrader 1949 McDonald et al. 1959 Hatton et al. 1962 
summary of literature data ebulliometry ebulliometry calc-thermodynamic properties 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
34.8 133.3 112.92 10351 102.59 6806 31.55 133.3 
57.9 666.6 125.16 17039 117.22 12295 41.82 666.6 
69.4 1333 153.2 42103 137.5 25439 52.59 1333 
82.0 2666 168.21 67701 160.08 51913 68.62 2666 
96.7 5333 183.93 101325 182.4 97103 82.11 5333 
106.0 7999 184.24 101912 97.02 7999 
119.9 13332 bp/°C 183.93 185.15 104589 119.41 13332 
140.1 26664 138.90 26664 
161.9 53329 mp/°C –6.02 161.05 53329 
184.4 101325 184.40 101325 
eq. 2 P/mmHg 
mp/°C –6.2 A 7.25375 
B 1684.35 
C 201.175 
© 2006 by Taylor & Francis Group, LLC

3248 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.3.1.1 Logarithm of vapor pressure versus reciprocal temperature for aniline. 
Aniline: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.002 0.0024 0.0028 0.0032 0.0036 0.004 
1/(T/K) 
P( gol 
S 
) aP/ 
Kahlbaum 1898 
Dreisbach & Shrader 1949 
McDonald et al. 1959 
Hatton et al. 1962 
Stull 1947 
b.p. = 184.17 °C m.p. = -6.02 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3249 
16.1.3.2 2-Chloroaniline 
Common Name: 2-Chloroaniline 
Synonym: 1-amino-2-chlorobenzene, o-aminochlorobenzene, o-chloroaniline, 2-chlorophenylamine 
Chemical Name: 1-amino-2-chlorobenzene, o-chloroaniline, 2-chloroaniline 
CAS Registry No: 95-51-2 
Molecular Formula: C6H4NH2Cl 
Molecular Weight: 127.572 
Melting Point (°C): 
–1.94 (.-2-chloroaniline, Dreisbach 1955; Weast 1872–83, Riddick et al. 1986) 
–14.0 (.-2-chloroaninline, Weast 1982–83; Verschueren 1983; Howard 1989) 
–1.9 (Lide 2003) 
Boiling Point (°C): 
208.8 (Kahlbaum 1898; Stull 1947; Dreisbach 1955; Weast 1982–83; Lide 2003) 
Density (g/cm3 at 20°C): 
1.21266, 1.20787 (20°C, 25°C, Dreisbach 1955) 
1.21251, 1.20775 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
105.2 (20°C, Stephenson & Malanowski 1987) 
131.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
2.661 (Perrin 1972; quoted, Howard 1989) 
2.650 (Weast 1982–83) 
2.640 (protonated cation + 1, Dean 1985) 
2.640 (Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
57.5 ± 5 (25°C, Piacente et al. 1985) 
56.756, 44.35 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
11.88 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
8760 (Dreisbach 1955) 
3765 (20°C, shake flask-GC, Chiou 1981; Chiou & Schmedding 1981; Chiou et al. 1982) 
3763 (calculated-KOW, Muller & Klein 1992) 
4740 (calculated-group contribution method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
40.31* (extrapolated-regression of tabulated data, measured range 64.4–208.8°C, Kahlbaum 1898) 
37.77* (extrapolated-regression of tabulated data, temp range 46.3–208.8°C, Stull 1947) 
log (P/mmHg) = 7.63311 – 2085.5/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 
7605* (124.48°C, ebulliometry, measured range 124.48–208.84°C, Dreisbach & Shrader 1949) 
33.77 (calculated by formula, Dreisbach 1955; selected, Riddick et al. 1986) 
log (P/mmHg) = 7.19240 – 1762.74/(200.0 + t/°C); temp range 110–330°C (Antoine eq. for liquid state, 
Dreisbach 1955) 
log (P/mmHg) = [–0.2185 . 12441.0/(T/K)] + 8.56946; temp range 46.3–208.8°C (Antoine eq., Weast 1972–73) 
33.88 (calculated-Antoine eq., Dean 1985, 1992) 
NH2 
Cl 
© 2006 by Taylor & Francis Group, LLC

3250 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/mmHg) = 7.56265 – 1998.6/(220.0 + t/°C), temp range 20–108°C (Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.19240 – 1762.74/(200.0 + t/°C), temp range: 108–300°C (Antoine eq., Dean 1985, 1992) 
35.30* (torsion-weighing effusion, Piacente et al. 1985) 
log (P/kPa) = (8.63 ± 0.16) – (3006 ± 56)/(T/K); temp range: 287–336 K (Antoine eq., combined torsionweighing 
effusion, Piacente et al. 1985) 
log (P/kPa) = 6.75801 – 2085.50/(230.0 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
18.97 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 5.84227 – 1432.2/(–108.81 + T/K); temp range 397–482 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 90.6491 – 6.041 . 103/(T/K) – 31.118·log (T/K) + 1.1564 . 10–2·(T/K) + 4.8388 . 10–13·(T/K)2; 
temp range 271–722 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.760 (calculated-P/C, Howard 1989) 
0.425 (calculated-P/C, Meylan & Howard 1991) 
0.143 (estimated-bond contribution, Meylan & Howard 1991) 
Octanol/Water Partition Coefficient, log KOW: 
1.81 (shake flask, Fujita et al. 1964) 
1.90 (Leo et al. 1971; Hansch & Leo 1979; Hansch & Leo 1985) 
1.92 (exptl., Leo et al. 1971; McCall 1975; Rekker 1977) 
1.92 (HPLC-k. correlation, Carlson et al. 1975) 
1.63 (calculated-. const., Norrington et al. 1975) 
1.61, 1.73 (calculated-. const., calculated-f const., Rekker 1977) 
1.90, 1.92 (shake flask, Hansch & Leo 1979) 
1.74 (HPLC-k. correlation, Konemann et al. 1979) 
1.74 (calculated-f const., Rekker & De Kort 1979) 
1.91 ± 0.01 (HPLC-k., Hammers et al. 1982) 
1.99 (HPLC-k. correlated, Hammers et al. 1982) 
1.926 ± 0.021 (slow-stirring-GC, De Bruijn et al. 1989) 
1.88 (recommended, Sangster 1993) 
1.93 ± 0.14, 1.55 ± 0.51 (solvent generated liquid-liquid chromatography SGLLC-correlation, RP-HPLC-k. 
correlation, Cichna et al. 1995) 
1.90 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 2.0 (Kawasaki 1980) 
1.30 (estimated, Canton et al. 1985) 
1.18 (zebrafish, Zok et al. 1991) 
0.301–0.57 (carp, Tsuda et al. 1993) 
1.18; 1.56, 0.73, 0.94 (quoted; calculated values-KOW, Bintein et al. 1993) 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. ~ 5.6 d was estimated for a model river of 1-m deep (Lyman 
et al. 1982; quoted, Howard 1989); 
estimated t. = 64 d from a representative environmental pond (stagnant) (USEPA 1987; quoted, Howard 1989). 
Photolysis: 
Oxidation: rate constant of 5.1 . 10–12 cm3/molecule·s for the reaction with hydroxyl radical in a typical ambient 
atmosphere at 25°C with t. ~ 2 d (GEMS 1987; quoted, Howard 1989). 
Hydrolysis: 
Biodegradation: average biodegradation rate of 25 mg COD g–1 h–1 for 95.6% removal (Scow 1982). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3251 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 7.10 h–1 (zebrafish, Zok et al. 1991) 
k2 = 0.19 h–1 (carp, Tsuda et al. 1993) 
Half-Lives in the Environment: 
Air: estimated atmospheric t. = 2 d, based on the reaction with sunlight-produced hydroxyl radical (GEMS 
1987; quoted, Howard 1989). 
Surface water: 
Groundwater: 
Sediment: 
Soil: 
Biota: t. = 3.6 h in carp with excretion rate constant k = 0.19 h–1 (Tsuda et al. 1993). 
TABLE 16.1.3.2.1 
Reported vapor pressures of 2-chloroaniline at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Kahlbaum 1898 Stull 1947 Piacente et al. 1985 Piacente et al. 1985 
static method summary of literature data torsion-weighing effusion torsion-weighing effusion 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
run 62 average average 
64.4 400 46.3 133.3 14 18 23 36 
72.3 666.6 72.3 666.6 20 32 24 41 
84.8 1333 84.8 1333 27 45 28 50 
92.9 2000 99.2 2666 32 72 30 66 
99.2 2666 115.6 5333 34 96 31 62 
104.2 3333 125.7 7999 34.5 86 32 83 
108.4 4000 139.5 13332 38 117 34 87 
112.0 4666 160.0 26664 43 200 35 90 
115.2 6333 183.7 53329 34 203 38 112 
118.1 6000 208.8 101325 48.5 251 41 167 
120.7 6666 52.5 347 43 190 
131.4 9999 mp/°C - 54 362 45 200 
139.5 13332 63 505 47 218 
160.0 26664 49 269 
173.6 39997 Dreisbach & Shrader 1949 51 275 
183.7 53329 ebulliometry 51 309 
192.0 66661 t/°C P/Pa 55 343 
199.4 79993 56 354 
208.8 101325 124.48 7605 57 398 
131.54 10114 
145.3 16500 overall vapor pressure eq. 
154.55 42066 eq. 1 P/kPa 
192.71 67661 A 8.63 ± 0.16 
208.84 101325 B 3006 ± 56 
.HV/(kJ mol–1) = 57.5 ± 5 
at 25°C 
© 2006 by Taylor & Francis Group, LLC

3252 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.3.2.1 Logarithm of vapor pressure versus reciprocal temperature for 2-chloroaniline. 
2-Chloraniline: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Kahlbaum 1898 
Dreisbach & Shrader 1949 
Piacente et al. 1985 
Stull 1947 
b.p. = 208.8 °C m.p. = -1.9 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3253 
16.1.3.3 3-Chloroaniline 
Common Name: 3-Chloroaniline 
Synonym: 1-amino-3-chlorobenzene, m-chloroaniline, 3-chlorophenylamine 
Chemical Name: 1-amino-3-chlorobenzene, m-chloroaniline, 3-chloroaniline 
CAS Registry No: 108-42-9 
Molecular Formula: C6H4NH2Cl 
Molecular Weight: 127.572 
Melting Point (°C): 
–10.28 (Lide 2003) 
Boiling Point (°C): 
230.5 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.21606 (20°C, Weast 1982–83) 
1.2150 (22°C, Dean 1985; Budavari 1989) 
Molar Volume (cm3/mol): 
105.0 (22°C, calculated-density, Stephenson & Malanowski 1987) 
131.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
3.52 (Perrin 1972) 
3.50 (McLeese et al. 1979) 
3.46 (Weast 1982–83) 
3.52 (protonated cation + 1, Dean 1985) 
Enthalpy of Vaporization, .HV (kJ/mol): 
61.04, 46.016 (25°C, bp, Dreisbach 1955) 
60.9 ± 5 (25°C, Piacente et al. 1985) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
10.25 (Dreisbach 1955) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
5442 (20°C, shake flask-GC, Chiou 1981; Chiou & Schmedding 1981; Chiou et al. 1982) 
5447 (calculated-KOW, Muller & Klein 1992) 
4740 (calculated-group contribution method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
13.14* (extrapolated-regression of tabulated data, measured range 81.7–228.5°C, Kahlbaum 1898) 
11.94* (extrapolated-regression of tabulated data, temp range 63.5–228.5°C, Stull 1947) 
11.17 (calculated by formula, Dreisbach 1955) 
log (P/mmHg) = 7.23603 – 1857.75/(196.64 + t/°C); temp range 125–350°C (Antoine eq. for liquid state, 
Dreisbach 1955) 
log (P/mmHg) = [–0.2185 . 133854.6/(T/K)] + 8.761546; temp range 63.5–228.5°C (Antoine eq., Weast 
1972–73) 
11.06 (calculated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.59939 – 2073.75/(215.0 + t/°C), temp range 15–125°C (Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.23603 – 1857.75/(196.64 + t/°C), temp range 125–310°C (Antoine eq., Dean 1985, 1992) 
15.60* (torsion-weighing effusion, Piacente et al. 1985) 
NH2 
Cl 
© 2006 by Taylor & Francis Group, LLC

3254 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/kPa) = (8.86 ± 0.10) – (3180 ± 40)/(T/K); temp range ~290–345 K (Antoine eq., combined torsionweighing 
effusion, Piacente et al. 1985) 
9.530 (extrapolated from Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.36093 – 1857.75/(–76.51 + T/K); temp range 398–573 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 65.6033 – 5.3779 . 103/(T/K) –20.518·log (T/K) + 6.7861 . 10–3·(T/K) + 2.1167 . 10–13·(T/K)2; 
temp range 263–751 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.223 (calculated-P/C) 
0.102 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
1.88 (shake flask-UV, Fujita et al. 1964) 
1.88 (Ichikawa et al. 1969) 
1.88 (Leo et al. 1971; Hansch & Leo 1979) 
1.90 (exptl., Leo et al. 1971; Rekker 1977) 
1.98 (calculated-. const., Norrington et al. 1975) 
1.73, 1.75; 1.61 (calculated-f const., calculated-. const., Rekker 1977) 
1.90, 1.88 (shake flask, Hansch & Leo 1979) 
1.57 (HPLC-k. correlation, Konemann et al. 1979) 
1.89 ± 0.01 (HPLC-k. correlation, Hammers et al. 1982) 
2.00 (HPLC-k. correlation, Hammers et al. 1982) 
1.910 ± 0.013 (slow-stirring-GC, De Bruijn et al. 1989) 
1.88 (recommended, Sangster 1993) 
1.91 ± 0.14, 1.52 ± 0.51 (solvent generated liquid-liquid chromatography SGLLC-correlation, RP-HPLC-k. correlation, 
Cichna et al. 1995) 
1.88 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.06 (zebrafish, Zok et al. 1991) 
–0.097 to 0.342 (average for carp, Tsuda et al. 1993) 
1.06; 1.55, 0.70, 0.92 (quoted; calculated values, Bintein et al. 1993) 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: direct aqueous photolysis rate constant k = 0.393 ± 0.006 min–1 with a calculated t. = 1.76 min 
(Stegeman et al. 1993). 
Oxidation: 
Hydrolysis: direct photohydrolysis rate constant k = 0.393 ± 0.006 min–1 with a calculated t. = 1.76 min 
(Stegeman et al. 1993). 
Biodegradation: average biodegradation rate of 6.2 mg COD g–1 h–1 for 97.2% removal (Scow 1982). 
Biotransformation: mean bacteria transformation rate constant for all three sites of (2.2 ± 1.7) . 10–12 
L·organism–1·h–1 (Paris & Wolfe 1987; quoted, Steen 1991). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 19.1 h–1 (zebrafish, Zok et al. 1991) 
k2 = 0.21 h–1 (carp, Tsuda et al. 1993) 
Half-Lives in the Environment: 
Biota: t. = 3.3 h in carp with excretion rate k = 0.21 h–1 (Tsuda et al. 1993). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3255 
TABLE 16.1.3.3.1 
Reported vapor pressures of 3-chloroaniline at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Kahlbaum 1898 Stull 1947 Piacente et al. 1985 
static method summary of literature data torsion-weighing effusion 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
run 63 average run 64 average 
81.7 400 63.5 133.3 19 8 31 19 
89.8 666.6 89.8 666.6 29 17 39 41 
102 1333 102 1333 36.5 33 42 50 
110.4 2000 116.7 2666 43 49 44 52 
116.8 2666 133.6 5333 50 89 45 56 
122.0 3333 144.1 7999 57.5 145 46 66 
126.2 4000 158 13332 65 250 47 70 
129.8 4666 179.5 26664 73 376 49 89 
133.2 6333 203.5 53329 50 85 
136.2 6000 228.5 101325 51 95 
138.8 6666 52 105 
149.9 9999 mp/°C –10.4 53 102 
158.0 13332 55 126 
179.5 26664 57 146 
193.2 53329 59 151 
203.5 66661 60.5 170 
211.9 79993 62 190 
228.5 101325 63 204 
65 240 
69 296 
overall vapor pressure eq. 
eq. 1 P/kPa 
A 8.86 ± 0.10 
B 3180 ± 40 
.HV/(kJ mol–1) = 60.9 ± 5 
at 25°C 
© 2006 by Taylor & Francis Group, LLC

3256 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.3.3.1 Logarithm of vapor pressure versus reciprocal temperature for 3-chloroaniline. 
3-Chloraniline: vapor pressure vs. 1/T 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 
1/(T/K) 
P 
( gol 
S 
) aP/ 
Kahlbaum 1898 
Piacente et al. 1985 
Stull 1947 
b.p. = 230.5 °C m.p. = -10.28 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3257 
16.1.3.4 4-Chloroaniline 
Common Name: 4-Chloroaniline 
Synonym: 1-amino-4-chlorobenzene, p-chloroaniline, 4-chlorophenylamine 
Chemical Name: 1-amino-4-chlorobenzene, p-chloroaniline, 4-chloroaniline 
CAS Registry No: 106-47-8 
Molecular Formula: NH2C6H4Cl 
Molecular Weight: 127.572 
Melting Point (°C): 
70.5 (Lide 2003) 
Boiling Point (°C): 
232.0 (Weast 1982–83; Verschueren 1983; Howard 1989) 
Density (g/cm3 at 20°C): 
1.429 (19°C, Weast 1982–83) 
Molar Volume (cm3/mol): 
131.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
3.98 (Perrin 1972; Freitag et al. 1984; quoted, Howard 1989) 
4.20 (McLeese et al. 1979) 
4.15 (Weast 1982–83) 
3.99 (protonated + 1, Dean 1985) 
Enthalpy of Vaporization, .HV (kJ/mol): 
79 ± 5 (25°C, Piacente et al. 1985) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
15.69 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
57.74 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.358 (mp at 70.5°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
3000 (Philpot et al. 1940) 
3900 (Kilzer et al. 1979) 
2620 (Schmidt-Bleek et al. 1982; Rott et al. 1982) 
2487 (calculated-group contribution method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
1.707* (20°C, Knkudsen effusion, measured range 10–30°C, Swan & Mack 1925) 
15.19* (extrapolated-regression of tabulated data, temp range 59.3–230.5°C, Stull 1947) 
log (P/mmHg) = [–0.2185 . 12832.8/(T/K)] + 8.461034; temp range 59.3–230.5°C (Antoine eq., Weast 
1972–73) 
3.173 (effusion method, DePablo 1976) 
3.33 (extrapolated, Verschueren 1977) 
2.00, 6.67 (20°C, 30°C, quoted, Verschueren 1983) 
0.224 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 3.55438 – 521.556/(47.392 + t/°C); temp range 90–150°C (Antoine eq. from reported exptl. data, 
Boublik et al. 1984) 
1.636* (torsion-weighing effusion, Piacente et al. 1985) 
NH2 
Cl 
© 2006 by Taylor & Francis Group, LLC

3258 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/kPa) = (11.20 ± 0.20) – (4170 ± 60)/(T/K); temp range ~298–360 K (Antoine eq., combined torsionweighing 
effusion, Piacente et al. 1985) 
3.66 (calculated-Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PS/kPa) = 13.448 – 4736/(T/K), temp range 283–303 K (Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.3489 – 2729/(T/K), temp range 363–505 K (Antoine eq.-II, Stephenson & Malanowski 1987) 
3.33, 32.0 (quoted, calculated-solvatochromic parameters, Banerjee et al. 1990) 
log (P/mmHg) = –15.3259 – 2.8592 . 103/(T/K) + 11.527·log (T/K) – 1.8071 . 10–2·(T/K) + 7.2359 . 10–6·(T/K)2; 
temp range 343–754 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
1.0840 (calculated-P/C, Howard 1989) 
0.0395 (calculated-P/C, Meylan & Howard 1991) 
0.1430 (estimated-bond contribution, Meylan & Howard 1991) 
Octanol/Water Partition Coefficient, log KOW: 
1.84 (Ichikawa et al. 1969) 
1.83 (quoted exptl., Leo et al. 1969, 1971; Hansch & Leo 1985) 
1.83 (HPLC-k. correlation; Carlson et al. 1975) 
1.83 (shake flask, Hansch & Leo 1979) 
1.57 (HPLC-k. correlation, Konemann et al. 1979) 
1.83, 20.2 (HPLC-k. correlation, Hammers et al. 1982) 
1.64 (inter-laboratory studies, HPLC-RT correlation average, Eadsforth & Moser 1983) 
1.88 ± 0.02 (HPLC-RV correlation-ALPM; Garst & Wilson 1984) 
2.78 (shake flask, OECD 1981 Guidelines, Geyer et al. 1984) 
1.83 (shake flask, Log P Database, Hansch & Leo 1987) 
1.83 (RP-HPLC-k. correlation, Minick et al. 1988) 
1.88 ± 0.014 (shake flask/slow-stirring-GC, De Brujin et al. 1989) 
1.83 (shake flask, Leahy et al. 1989) 
1.80, 1.82 (shake flask, HPLC-RT correlation, Wang et al. 1989) 
2.01 (centrifugal partition chromatography CPC-RV correlation, El Tayar et al. 1991) 
1.83 (recommended, Sangster 1993) 
1.83 (pH 7.4, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 1.30 (golden orfe for 3-d exposure, Korte et al. 1978) 
3.08 (green algae for 24-h exposure of dry wt. basis, Korte et al. 1978) 
2.42 (green algae for 24-h exposure of wet wt. basis, Korte et al. 1978) 
< 1.0, 2.41, 3.11 (golden orfe, algae, activated sludge, Freitag et al. 1982) 
2.42 (alga Chlorella fusca, wet wt. basis, Geyer et al. 1984) 
2.06 (alga Chlorella fusca, calculated-KOW, Geyer et al. 1984) 
1.11, 2.42, 2.45 (golden ide, algae, activated sludge, Freitag et al. 1985) 
0.91 (zebrafish, Zok et al. 1991) 
–0.097–0.23 (carp, Tsuda et al. 1993) 
0.91; 1.52, 0.63, 0.88 (quoted; calculated values, Bintein et al. 1993) 
2.58 (algae Chlorella fusca, wet wt basis, Wang et al. 1996) 
Sorption Partition Coefficient, log KOC: 
2.36–2.67 (five Belgium soils, Van Bladel & Moreale 1977) 
1.98–3.18 (five German soils, Rott et al. 1982) 
3.74 (colloidal org. matter in ground water, Means 1983) 
1.86 (calculated-MCI ., Sabljic 1987) 
2.08 (RP-HPLC-k. correlation, cyanopropyl column, Hodson & Williams 1988) 
1.96, 1.86 (soil, quoted exptl., calculated-MCI . and fragment contribution, Meylan et al. 1992) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3259 
1.61 (calculated-KOW, Kollig 1993) 
1.96 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.28; 1.86 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
3.086, 2.21, 2.48, 2.374, 2.973 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1998) 
2.801, 2.326, 2.145, 2.420 (second generation Eurosoils ES-1, ES-3, ES-4, ES-5, shake flask/batch equilibrium- 
HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 6.4 h from using Henry’s law constant for a model river of 1-m deep with 1 m/s 
current and 3 m/s wind (Lyman et al. 1982; quoted, Howard 1989); 
t. = 3 d in an experimental pond with spiked 4-chloroaniline (Schauerte et al. 1982; quoted, Howard 1989). 
Photolysis: 
Oxidation: rate constant k; for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = (8.3 ± 0.42) . 10–11 cm3 molecule–1 s–1 at 295 K (flash photolysis-resonance fluorescence, Wahner & 
Zetzsch 1983) 
kOH(obs.) = 83 . 10–12 cm3 molecule–1 s–1; kOH(calc) = 34.7 . 10–12 cm3 molecule–1 s–1 at room temp. in air 
(Atkinson 1985; Atkinson et al. 1985) 
kOH(calc) = 54 . 10–12 cm3 molecule–1 s–1; kOH(obs.) = 83 . 10–12 cm3 molecule–1 s–1 at room temp. (SAR, 
Atkinson 1987) 
kOH = (83 to ~44) . 10–12 cm3 molecule–1 s–1 at 295–296 K (Atkinson 1989) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 42.9 h–1 (zebrafish, Zok et al. 1991) 
k2 = 0.16 h–1 (carp, Tsuda et al. 1993) 
k1 = 17.74 h, k2 = 0.0465 h (algae Chlorella fusca, Wang et al. 1996) 
Half-Lives in the Environment: 
Air: t. = 4.6 h, based on estimated reaction rate with photochemically produced hydroxyl radical of 5 . 105 
radicals/cm3 in atmosphere (Wahner & Zetzsch 1983; quoted, Howard 1989). 
Surface water: estimated t. = 0.3–3.0 d in river waters in case of a first order reduction process (Zoeteman 
et al. 1980); 
72.1 mg/L total organic carbon (TOC) degraded to 92% TOC after 5 h illumination with a 250 watt tungsten 
lamp by photo-Fenton reaction in distilled water (Ruppert et al. 1993). 
Groundwater: estimated t. = 30–300 d in Rhine River (Zoeteman et al. 1980). 
Sediment: 
Soil: 
Biota: t. = 4.3 h in carp with excretion rate k = 0.16 h–1 (Tsuda et al. 1993). 
© 2006 by Taylor & Francis Group, LLC

3260 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.3.4.1 
Reported vapor pressures of 4-chloroaniline at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Swan & Mack 1925 Stull 1947 Piacente et al. 1985 
Knudsen effusion summary of literature data torsion-weighing effusion 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
Run 58 average Run 66 average 
10 0.513 59.3 133.3 26 3.0 52 56 
20 1.707 87.9 666.6 31 6.0 56.5 75 
30 6.493 102.1 1333 34 8.0 61 128 
117.8 2666 39 13 63 136 
135.0 5333 40 17 65 152 
145.8 7999 43 20 68 238 
eq. 4 P/mmHg 159.9 13332 48 31 71 275 
A 415.007 182.3 26664 49.5 35 72 316 
B 22322 206.6 53329 53 48 
C 138.475 230.5 101325 59 87 
60.5 100 overall vapor pressure eq. 
.HV/(kJ mol–1) = 90.37 mp/°C 70.5 63.5 127 eq. 1 P/kPa 
at 20°C 67 170 A 11.20 ± 0.20 
69.5 224 B 4170 ± 60 
82.5 549 
88.5 832 .HV/(kJ mol–1) = 70.9 ± 5 
at 25°C 
FIGURE 16.1.3.4.1 Logarithm of vapor pressure versus reciprocal temperature for 4-chloroaniline. 
4-Chloraniline: vapor pressure vs. 1/T 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 
1/(T/K) 
P 
( gol 
S 
) aP 
/ 
Swan & Mack 1925 
Piacente et al. 1985 
Stull 1947 
b.p. = 232 °C m.p. = -70.5 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3261 
16.1.3.5 3,4-Dichloroaniline 
Common Name: 3,4-Dichloroaniline 
Synonym: 
Chemical Name: 3,4-dichloroaniline 
CAS Registry No: 95-76-1 
Molecular Formula: C6H5Cl2N, C6H3NH2Cl2 
Molecular Weight: 162.017 
Melting Point (°C): 
72.0 (Weast 1982–83; Lide 2003) 
Boiling Point (°C): 
272.0 (Weast 1982–83; Lide 2003) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
111.7 (calculated-density, Jaworska & Schultz 1993) 
152.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
2.968, 3.0 (Perrin 1972) 
2.00 (estimated, Wolff & Crossland 1985) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.346 (mp at 72°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
92.03 (20°C, Wolff & Crossland 1985) 
93.2; 740 (quoted exptl.; calculated-group contribution method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
1.30 (20°C, Wolff & Crossland 1985) 
2.27 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.6189 – 3060.03/(T/K); temp range 420–545 K (Antoine eq., Stephenson & Malanowski 1987) 
log (P/mmHg) = –15.2685 – 3.3857 . 103/(T/K) + 11.926·log (T/K) –1.9227 . 10–2·(T/K) + 7.4179 . 10–6·(T/K)2; 
temp range 345–800 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
2.289 (calculated-P/C) 
Octanol/Water Partition Coefficient, log KOW: 
2.69 (unpublished result, Leo et al. 1971, Hansch & Leo 1979) 
2.12 (HPLC-k. correlation, Konemann et al. 1979) 
2.78 (20°C, shake flask-UV, Briggs 1981) 
2.69, 2.67 (HPLC-k. correlation, Hammers et al. 1982) 
2.62 (inter-laboratory studies, shake flask average, Eadsforth & Moser 1983) 
2.30 (inter-laboratory studies, HPLC-RT correlation average, Eadsforth & Moser 1983) 
2.14, 2.63 (HPLC-k. correlation, Eadsforth 1986) 
2.69 (shake flask, Log P Database, Hansch & Leo 1987) 
2.68 (recommended, Sangster 1993) 
2.69 (recommended, Hansch et al. 1995) 
2.69 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
NH2 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

3262 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.48 (zebrafish, Zok et al. 1991) 
1.48; 2.02, 1.88, 1.75 (fish: quoted; calculated values-KOW, Bintein et al. 1993) 
Sorption Partition Coefficient, log KOC: 
2.29 (20°C, sorption isotherm-GC, converted from KOM multiplied by 1.724, Briggs 1981) 
1.40 (calculated-KOW, wet sediment, Wolff & Crossland 1985) 
2.29 (Sabljic 1987) 
2.05 (soil, quoted, Sabljic 1987) 
2.29, 2.08 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
2.29 (calculated-MCI 1., Sabljic et al. 1995) 
2.26, 2.39 (RP-HPLC-k. correlation including MCI related to non-dispersive intermolecular interactions, 
hydrogen-bonding indicator variable, Hong et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: first order rate constant k(calc) = 5.0 . 10–3 d–1 (Wolff & Crossland 1985). 
Photolysis: phototransformation rate constant k = 0.12 to 0.20 d–1 (Wolff & Crossland 1985). 
Oxidation: 
Hydrolysis: not expected to occur (Wolff & Crossland 1985). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 78.5 h–1 (zebrafish, Zok et al. 1991) 
Half-Lives in the Environment: 
Surface water: overall rate of loss predicted from outdoor ponds was calculated based on direct phototransformation, 
and indirect phototransformation k = 0.13 to 0.22 d–1 corresponding to t. = 3.2 to 5.3 d; the observed 
rate of loss varied from 0.11 to 0.17 d–1 corresponding to t. = 4.1 – 6.3 d (Wolff & Crossland 1985). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3263 
16.1.3.6 o-Toluidine (2-Methylbenzeneamine) 
Common Name: o-Toluidine 
Synonym: 2-aminotoluene, o-aminotoluene, 2-methylaniline, 2-methylbenzeneamine 
Chemical Name: 2-aminotoluene, o-methylaniline, o-toluidine 
CAS Registry No: 95-53-4 
Molecular Formula: C7H9N, C6H4(CH3)NH2 
Molecular Weight: 107.153 
Melting Point (°C): 
–14.41 (Lide 2003) 
Boiling Point (°C): 
200.3 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9984, 0.99430 (10, 25°C, Dreisbach 1955, Riddick et al. 1986) 
0.9984 (20°C, Weast 1982–83) 
Molar ]Volume (cm3/mol): 
107.3 (20°C, calculated-density, Stephenson & Malanowski 1987) 
132.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
4.40, 4.447, 4.46 (Perrin 1972) 
4.44 (Weast 1982–83) 
4.45 (protonated cation + 1, Dean 1985) 
4.43 (Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
56.739, 44.597 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
7.535 (Dreisbach 1955) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
16330 (20°C, shake flask-GC, Chiou 1981; Chiou & Schmedding 1981; Chiou et al. 1982) 
15000 (quoted, Verschueren 1983) 
16300 (calculated-KOW, Muller & Klein 1992) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
133.3* (48.2°C, static method, measured range 48.2–199.7°C, Kahlbaum 1898) 
42.72* (extrapolated-regression of tabulated data, temp range 44–199.7°C, Stull 1947) 
log (P/mmHg) = 7.60681 – 2033.6/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 
7605* (118.46°C, ebulliometry, measured range 118.46–200.30°C, Dreisbach & Shrader 1949) 
42.26 (calculated by formula, Dreisbach 1955) 
log (P/mmHg) = 7.28896 – 1768.7/(201.0 + t/°C); temp range 103–320°C (Antoine eq. for liquid state, Dreisbach 
1955) 
log (P/atm) = [–0.2185 . 12663.4/(T/K)] + 8.440371; temp range 41–203.3°C (Antoine eq., Weast 1972–73) 
42.93 (extrapolated-Cox eq., Chao et al. 1983) 
log (P/mmHg) = [1 – 473.369/(T/K)] . 10^{0.907135 – 6.44774 . 10–4·(T/K) + 4.94693 . 10–7·(T/K)2}; temp 
range: 300.0–710.0 K (Cox eq., Chao et al. 1983) 
13.33, 40.0 (20°C, 30°C, quoted, Verschueren 1983) 
33.96 (extrapolated-Antoine eq., Boublik et al. 1984) 
NH2 
CH3 
© 2006 by Taylor & Francis Group, LLC

3264 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/kPa) = 6.20039 – 1623.158/(186.641 + t/°C); temp range 118.5–200.3°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
43.0 (selected lit., Riddick et al. 1986) 
log (P/mmHg) = 6.73171 – 2033.6/(230.0 + t/°C); temp range: not specified (Antoine eq., Riddick et al. 1986) 
34.18 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.08203 – 1627.72/(187.13 + t/°C); temp range 118–200°C (Antoine eq., Dean l985, 1992) 
36.46 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.26948 – 1672.87/(–81.47 + T/K); temp range 391–474 K, (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 96.5685 – 6.2643 . 103/(T/K) – 32.265·log (T/K) + 1.2361 . 10–2·(T/K) + 6.2915 . 10–13·(T/K)2; 
temp range 249–694 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.095 (calculated-P/C) 
0.201 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
1.29 (shake flask-UV, Leo et al. 1971) 
1.43 (HPLC-k. correlation, Carlson et al. 1975) 
1.63 (RP-HPLC-RT correlation, Veith et al. 1979a) 
1.42 (shake flask-UV at pH 7.5, Martin-Villodre et al. 1986) 
1.34 (HPLC-RT correlation, average, Ge et al. 1987) 
1.32 (shake flask, Log P Database, Hansch & Leo 1987) 
1.32 (recommended, Sangster 1989) 
1.44, 1.57 (shake flask, HP:C-RT correlation, Wang et al. 1989) 
1.43 (recommended, Sangster 1993) 
1.32 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
1.24 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
Oxidation: rate constant k = 1 . 104 M–1 s–1 for oxidation by RO2 radicals at 30°C in aquatic systems with 
t. = 0.8 d (Howard 1972; Hendry et al. 1974; quoted, Mill 1982); 
rate constant k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 
yr (Foote 1976; Mill 1979; quoted, Mill 1982); 
photooxidation t. = 62.4 – 3480 h in water, based on estimated rate constants for reactions of representative 
aromatic amines with OH and RO2 radicals (Mill & Mabey 1985; quoted, Howard et al. 1991); 
photooxidation t. = 0.394 – 3.94 h in air, based on estimated rate constant for the reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991). 
Biodegradation: decomposition by a soil microflora in > 64 d (Alexander & Lustigman 1966; quoted, Verschueren 
1983); 
aqueous aerobic t. = 24 – 168 h, based on aqueous aerobic screening test data (Baird et al. 1977; Sasaki 
1978; quoted, Howard et al. 1991); 
average biodegradation k = 15.1 mg COD g–1 h–1 for 97.7% removal (Scow 1982); 
aqueous anaerobic t. = 96 – 672 h, based on estimated unacclimated aqueous aerobic biodegradation halflife 
(Howard et al. 1991). 
Biotransformation: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3265 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 0.394 – 3.94 h, based on estimated rate constant for the reaction with hydroxyl radical 
in air (Atkinson 1987; quoted, Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: estimated t. = 1.0 d for methylaniline in Rhine River in case of a first order reduction process 
(Zoeteman et al. 1980) 
photooxidation t. = 62.4 – 3480 h, based on estimated rate constants for reactions of representative aromatic 
amines with OH and RO2 radicals (Mill & Mabey 1985; quoted, Howard et al. 1991). 
Groundwater: t. = 48 – 336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Sediment: 
Soil: t. = 24 – 168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
Biota: 
TABLE 16.1.3.6.1 
Reported vapor pressures of o-toluidine at various temperatures 
Kahlbaum 1898 Stull 1947 Dreisbach & Shrader 1949 
static method-manometer* summary of literature data ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
48.2 133.3 44.0 133.3 118.46 7605 
55.3 266.6 69.3 666.6 122.22 8851 
61.4 400.0 81.4 1333 125.99 10106 
65.7 533.3 95.1 2666 139.0 16500 
69.3 666.6 110.0 5333 168.06 42066 
81.4 1333.2 119.8 7999 184.80 67661 
94.9 2666.4 133.0 13332 200.30 101325 
103.6 3999.7 153.0 26664 
110.0 5332.9 170.2 53329 
115.1 6666.1 199.7 101325 
125.4 9999.2 
133.0 13332 mp/°C –16.3 
154.0 26664 
166.2 39997 
176.2 53329 
183.9 66661 
190.5 79993 
196.2 93326 
199.7 101325 
*complete list see ref. 
© 2006 by Taylor & Francis Group, LLC

3266 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.3.6.1 Logarithm of vapor pressure versus reciprocal temperature for o-toluidine. 
o -Toluidine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 
1/(T/K) 
P( gol 
S 
) aP/ 
Kahlbaum 1898 
Dreisbach & Shrader 1949 
Stull 1947 
b.p. = 200.3 °C m.p. = -14.41 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3267 
16.1.3.7 m-Toluidine (3-Methylbenzeneamine) 
Common Name: m-Toluidine 
Synonym: 3-aminotoluene, 3-methylbenzeneamine, 3-methylaniline 
Chemical Name: 3-aminotoluene, m-amino-methylbenzene, m-methylaniline, m-toluidine 
CAS Registry No: 108-44-1 
Molecular Formula: C6H4(CH3)NH2 
Molecular Weight: 107.153 
Melting Point (oC): 
–31.3 (Lide 2003) 
Boiling Point (°C): 
203.3 (Stull 1947; Weast 1982–83; Lide 2003) 
Density (g/cm3 at 20°C): 
0.9889 (Dreisbach 1955; Weast 1982–83) 
Molar Volume (cm3/mol): 
108.4 (20°C, Stephenson & Malanowski 1987) 
132.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
4.66, 4.712, 4.72 (Perrin 1972) 
4.73 (Weast 1982–83) 
4.71 (protonated cation + 1, Dean 1985) 
4.70 (Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
57.283, 44.848 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
7.08 (Dreisbach 1955) 
3.891 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
15031 (20°C, shake flask-GC, Chiou 1981; Chiou & Schmedding 1981; Chiou et al. 1982) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
133.3* (49.8°C, static method, measured range 49.8–203.3°C, Kahlbaum 1898) 
49.54* (extrapolated-regression of tabulated data, temp range 41–203.3°C, Stull 1947) 
log (P/mmHg) = 7.616512 – 2052.0/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 
7605* (121.77°C, ebulliometry, measured range 121.77-203.34°C, Dreisbach & Shrader 1949) 
36.64 (calculated by formula, Dreisbach 1955) 
log (P/mmHg) = 7.27435 – 1772.06/(200.0 + t/°C); temp range 105–320°C (Antoine eq. for liquid state, 
Dreisbach 1955) 
log (P/mmHg) = [–0.2185 . 12104.1/(T/K)] + 8.440371; temp range 41–203°C (Antoine eq., Weast 1972–73) 
33.49 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 476.329/(T/K)] . 10^{0.923479 – 6.91988 . 10–4·(T/K) + 5.41104 . 10–7·(T/K)2}; temp range: 
280.0–705.0 K (Cox eq., Chao et al. 1983) 
27.91 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.21454 – 1620.608/(203.346 + t/°C); temp range 121.9–203.4°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
25.66 (extrapolated-Antoine eq., Dean 1985, 1992) 
NH2 
CH3 
© 2006 by Taylor & Francis Group, LLC

3268 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/mmHg) = 7.09367 – 1631.43/(183.91 + t/°C); temp range 122–203°C (Antoine eq., Dean l985, 1992) 
36.0 (quoted lit., Riddick et al. 1986) 
log (P/kPa) = 17.6292 – 3200.9/(T/K) – 3.323·log (T/K), temp range not specified (vapor pressure eq., Riddick 
et al. 1986) 
26.86 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.27299 – 1669.26/(–85.339 + T/K); temp range 394–447 K (Antoine eq., Stephenson & 
Malanowski 1987) 
25.50 (calculated-Cox eq., Chao et al. 1990) 
log (P/mmHg) = 7.0317 – 3.2034 . 103/(T/K) + 2.3006·log (T/K) – 9.7791 . 10–3·(T/K) + 4.6824 . 10–6·(T/K)2; 
temp range 243–709 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.257 (calculated-P/C) 
0.169 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
1.40 (shake flask-UV, Fujita et al. 1964) 
1.43 (HPLC-k. correlation, Carlson et al. 1975) 
1.42 (20°C, shake flask-UV, Briggs 1981) 
1.43 (shake flask, Log P Database, Hansch & Leo 1987) 
1.40 (recommended, Sangster 1989) 
1.49, 1.37 (shake flask, HPLC-RT correlation, Wang et al. 1989) 
1.40 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
1.41 (soil, quoted obs. as log KOM, Sabljic 1987) 
1.65 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
Oxidation: rate constant k = 1 . 104 M–1 s–1 for oxidation by RO2 radical at 30°C in aquatic systems with t. = 0.8 d 
(Howard 1972; Hendry et al. 1974; quoted, Mill 1982); 
k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 yr (Foote 1976; 
Mill 1979; quoted, Mill 1982). 
Biodegradation: decomposition by a soil microflora in 8 d (Alexander & Lustigman 1966; quoted, Verschueren 
1983); 
average biodegradation rate of 30.0 mg COD g–1 h–1 for 97.7% removal (Scow 1982). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: estimated t. = 1.0 d for methylaniline in Rhine River in case of a first order reduction process 
(Zoeteman et al. 1980) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3269 
TABLE 16.1.3.7.1 
Reported vapor pressures of m-toluidine at various temperatures 
Kahlbaum 1898 Stull 1947 Dreisbach & Shrader 1949 
static method-manometer* summary of literature data ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
49.8 133.3 41.0 133.3 121.77 7605 
58.9 266.6 68.0 666.6 125.57 8851 
64.8 400.0 82.0 1333 129.03 10114 
69.3 533.3 96.7 2666 142.27 16500 
72.8 666.6 113.5 5333 171.18 42066 
85.3 1333.2 123.8 7999 187.87 67661 
98.5 2666.4 136.7 13332 203.34 101325 
107.1 3999.7 157.6 26664 
113.6 5332.9 180.6 53329 
118.7 6666.1 203.3 101325 
129.0 9999.2 
136.6 13332 mp/°C –31.5 
157.6 26664 
169.8 39997 
179.8 53329 
187.5 66661 
194.0 79993 
199.8 93326 
203.3 101325 
*complete list see ref. 
FIGURE 16.1.3.7.1 Logarithm of vapor pressure versus reciprocal temperature for m-toluidine. 
m-Toluidine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 
1/(T/K) P ( g o l S ) a P / 
Kahlbaum 1898 
Dreisbach & Shrader 1949 
Stull 1947 
b.p. = 203.3 °C m.p. = -31.3 °C 
© 2006 by Taylor & Francis Group, LLC

3270 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.3.8 p-Toluidine (4-Methylbenzeneamine) 
Common Name: p-Toluidine 
Synonym: 4-aminotoluene, 4-methylaniline, 4-methylbenzenamine 
Chemical Name: 4-aminotoluene, p-amino-methylbenzene, p-methylaniline, p-toluidine 
CAS Registry No: 106-49-0 
Molecular Formula: C6H4(CH3)NH2 
Molecular Weight: 107.153 
Melting Point (°C): 
43.6 (Lide 2003) 
Boiling Point (C): 
200.4 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9619 (20°C, Weast 1982–83) 
1.043 (Verschueren 1983) 
Molar Volume (cm3/mol): 
132.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
5.02, 5.08, 5.084 (Perrin 1972) 
5.08 (Weast 1982–83; Sangster 1989) 
5.08 (protonated cation + 1, Dean 1985) 
5.17 (shake flask-HPLC/UV, Johnson & Westall 1990) 
Enthalpy of Vaporization, .HV (kJ/mol): 
56.195, 44.271 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
17.32 (Tsonopoulos & Prausnitz 1971) 
18.91 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
54.81 (Tsonopoulos & Prausnitz 1971) 
57.61 (observed, Yalkowsky & Valvani 1980) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.657 (mp at 43.6°C) 
Water Solubility (g/m3 or mg/L at 25°C as indicated): 
65400 (20–25°C, shake flask-gravimetric, Dehn 1917) 
8965 (Seidell 1941, 1952) 
7400 (21°C, Verschueren 1983) 
6643, 5370 (20°C, shake flask-UV, calculated, Hashimoto et al. 1984) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
133.3* (46.9°C, static method, measured range 46.9–200.4°C, Kahlbaum 1898) 
log (P/mmHg) = –2597/(T/K) + 8.366 (isoteniscope method, temp range not specified, Kobe et al. 1941) 
46.27* (extrapolated-regression of tabulated data, temp range 42–200.4°C, Stull 1947) 
44.70 (calculated by formula, Dreisbach 1955) 
log (P/mmHg) = 7.25173 – 1755.0/(201.0 + t/°C); temp range 103–330°C (Antoine eq. for liquid state, Dreisbach 
1955) 
log (P/atm) = [–0.2185 . 12428.6/(T/K)] + 8.748585; temp range 42–200.4°C (Antoine eq., Weast 1972–73) 
38.13 (calculated-Cox eq., Chao et al. 1983) 
NH2 
CH3 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3271 
log (P/mmHg) = [1– 473.445/(T/K)] . 10^{0.915691 – 6.57014 . 10–4·(T/K) + 5.11261 . 10–7·(T/K)2}; temp 
range 290.0–700.0 K (Cox eq., Chao et al. 1983) 
40.17 (calculated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.26022 – 1758.55/(201.0 + t/°C); temp range not specified (Antoine eq., Dean 1985,1992) 
45.0 (quoted lit., Riddick et al. 1986) 
log (P/kPa) = 18.2818 – 3269.3/(T/K) – 3.877·log (T/K); temp range not specified (vapor pressure eq., Riddick 
et al. 1986) 
27.03 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.17451 – 1585.0/(–93.44 + T/K); temp range 393–474 K (Antoine eq., Stephenson & Malanowski 
1987) 
log (P/mmHg) = –13.9927 – 2.5795 . 103/(T/K) –10.823·log (T/K) –1.7705 . 10–2·(T/K) + 7.6741 . 10–6·(T/K)2; 
temp range 317–693 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.656 (calculated-P/C) 
0.0768 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
1.39 (shake flask-UV, Fujita et al. 1964) 
1.41 (HPLC-k. correlation, Carlson et al. 1975) 
1.56 (shake flask-UV, Ezumi & Kubota 1980) 
1.40 (20°C, shake flask-UV, Briggs 1981) 
1.44 ± 0.03 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
1.42 (HPLC-k. correlation, Haky & Young 1984) 
1.39 (shake flask-UV at pH 7.5, Martin-Villodre et al. 1986) 
1.41 (HPLC-RT correlation, average, Ge et al. 1987) 
1.39 (shake flask, Leahy et al. 1989) 
1.39 (recommended, Sangster 1989, 1993) 
1.38, 1.39 (shake flask, HPLC-RT correlation, Wang et al. 1989) 
1.40 (shake flask-HPLC/UV, Johnson & Westall 1990) 
1.40 (shake flask-UV, Roberts et al. 1991) 
1.40 (32°C, shake flask-UV, pH 7, Takahashi et al.1993) 
1.39 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
2.51, 2.70, 2.71 (Morocco soil, Oakville soil, Milford soil, Graveel et al. 1986) 
1.66 (soil, quoted obs. as log KOM, Sabljic 1987) 
2.74, 2.22, 2.20 (Podzol soil, Alfisol soil, sediment, von Oepen et al. 1991) 
1.24 (calculated-KOW, Kollig 1993) 
1.90 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.21; 1.86 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
3.28, 2.01, 2.30, 2.084 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, shake flask/batch equilibrium- 
HPLC/UV, Gawlik et al. 1998) 
2.138, 2.133, 2.212, 2.041 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, shake flask-batch equilibrium- 
HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
© 2006 by Taylor & Francis Group, LLC

3272 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Oxidation: rate constant k = 1 . 104 M–1 s–1 for oxidation by RO2 radical at 30°C in aquatic systems with t. = 0.8 d 
(Howard 1972; Hendry et al. 1974; quoted, Mill 1982); 
k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 yr (Foote 1976; 
Mill 1979; quoted, Mill 1982). 
Biodegradation: decomposition by a microflora in 4 d (Alexander & Lustigman 1966; quoted, Verschueren 1983); 
average biodegradation rate of 20 mg COD g–1 h–1 for 97.7% removal (Scow 1982). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: estimated t. = 1.0 d for methylaniline in Rhine River in case of a first order reduction process 
(Zoeteman et al. 1980)
TABLE 16.1.3.8.1 
Reported vapor pressures of p-toluidine at various 
temperatures 
Kahlbaum 1898 Stull 1947 
static method-manometer* summary of literature data 
t/°C P/Pa t/°C P/Pa 
46.9 133.3 42.0 133.3 
55.9 266.6 68.2 666.6 
62.0 400.0 81.8 1333 
66.4 533.3 95.8 2666 
70.1 666.6 111.5 5333 
82.2 1333.2 121.5 7999 
95.6 2666.4 133.7 13332 
104.3 3999.7 154.0 26664 
110.7 5332.9 176.9 53329 
115.8 6666.1 200.4 101325 
126.1 9999.2 
133.7 13332 mp/°C 44.5 
154.7 26664 
166.9 39997 
176.9 53329 
184.6 66661 
191.1 79993 
196.9 93326 
200.4 101325 
*complete list see ref. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3273 
FIGURE 16.1.3.8.1 Logarithm of vapor pressure versus reciprocal temperature for p-toluidine. 
p -Toluidine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 
1/(T/K) 
P( gol 
S 
) aP/ 
Kahlbaum 1898 
Stull 1947 
b.p. = 200.4 °C m.p. = 43.6 °C 
© 2006 by Taylor & Francis Group, LLC

3274 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.3.9 N,N’-Dimethylaniline 
Common Name: N,N.-Dimethylaniline 
Synonym: N,N.-dimethylbenzenamine 
Chemical Name: N,N.-dimethylaniline 
CAS Registry No: 121-69-7 
Molecular Formula: C8H11N, C6H5N(CH3)2 
Molecular Weight: 121.180 
Melting Point (°C): 
2.42 (Lide 2003) 
Boiling Point (°C): 
194.0 (Weast 1982–83) 
194.15 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9557 (Weast 1982–83) 
Molar Volume (cm3/mol): 
154.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pK: 
5.15 (pKBH 
+ , Riddick et al. 1986) 
5.10 (Sangster 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
11.42 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
41.46 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1105 (shake flask-GC, Chiou et al. 1982) 
1540, 1680 (20, 30°C, shake flask-GC/TC, measured range 0–90°C, Stephenson 1993c) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
106.3 (extrapolated-regression of tabulated data, temp range 20.0–193.1°C, Stull 1947) 
133.3 (29.5°C, Stull 1947) 
83.90 (calculated-Antoine eq., Boublik et al. 1973) 
log (P/atm) = [–0.2185 . 11320.4/(T/K)] + 8.197379; temp range: 29.5–193°C, (Antoine eq., Weast 1972–73) 
68.95 (calculated-Cox eq., Chao et al. 1983) 
log (P/mmHg) = [1– 466.445/(T/K)] . 10^{0.909397 – 7.07673 . 10–4 ± (T/K) + 5.69581 . 10–7 ± (T/K)2}; temp 
range 275.0–685.0 K (Cox eq., Chao et al. 1983) 
84.5 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.5031 – 1865.084/(211.171 + t/°C); temp range 71.02–196.8°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
83.91 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 6.91048 – 946.35/(246.68 + t/°C); temp range –87 to 7°C (Antoine eq., Dean 1985, 1992) 
670.0 (quoted from Stull 1947, Riddick et al. 1986) 
107.0 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.07329 – 2301.63/(–12.001 + T/K); temp range 302–467 K (liquid, Antoine eq.-I, Stephenson 
& Malanowski 1987) 
log (PL/kPa) = 6.55663 – 1864.075/(–55.854 + T/K); temp range 363–418 K (liquid, Antoine eq.-II, Stephenson 
& Malanowski 1987) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3275 
log (P/mmHg) = 2–.177 – 3.1095 . 103/(T/K) – 4.0127·log (T/K) + 5.8538 . 10–10·(T/K) + 3.5387 . 10–7·(T/K)2; 
temp range 276–687 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol): 
11.73 (calculated-P/C) 
Octanol/Water Partition Coefficient, log KOW: 
2.31 (shake flask-UV, Fujita et al. 1964) 
2.62 (shake flask-UV at pH 7.4, Rogers & Cammarata 1969) 
1.66 (shake flask-UV, Leo et al. 1971) 
2.29 (shake flask-UV, Yaguzhinskii et al. 1973) 
2.30 (shake flask at pH 7, Unger et al. 1978) 
2.43 (HPLC-RT correlation, Miyake et al. 1986) 
2.28 (RP-HPLC-RT correlation, ODS column with masking agent, Bechalany et al. 1989) 
2.32 (CPC correlation, El Tayar et al. 1991) 
2.31 (recommended, Sangster 1993) 
2.31 (recommended, Hansch et al. 1995) 
2.05 (microemulsion electrokinetic chromatography-retention factor correlation, Poole et al. 2000) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
1.99; 2.53; 2.06 (Alfisol soil; Podzol soil; sediment, von Oepen et al. 1991) 
2.26, 1.89 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
2.26 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k; for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
k = 1 . 104 M–1 s–1 for oxidation by RO2 radical at 30°C in aquatic systems with t. = 0.8 d (Howard 1972; 
Hendry et al. 1974; quoted, Mill 1982) 
k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 yr (Foote 1976; 
Mill 1979; quoted, Mill 1982) 
kOH*(exptl) = (1.48 ± 0.11) . 10–10 cm3 molecule–1 s–1, measured range 278–464 K; kO3 = (9.1 ± 1.0) . 10–18 
cm3 molecule–1 s–1 at 296 ± 2 K (relative rate method, Atkinson et al. 1987) 
kOH = 1.5 . 10–10 cm3 molecule–1 s–1 with atmospheric lifetimes of 1.9 h in clean troposphere and 1.0 h in 
moderately polluted atmosphere; kO3 = 9.1 . 10–18 cm3 molecule–1 s–1 with atmospheric lifetimes of 1.8 d 
in clean troposphere and 14 h in moderately polluted atmosphere at room temp. (Atkinson et al. 1987) 
kOH(calc) = 4.66 . 10–10 cm3 molecule–1 s–1, kOH(obs) = 1.48 . 10–10 cm3 molecule–1 s–1, (SAR structureactivity 
relationship, Atkinson 1987) 
kOH(calc) = 1.78 . 10–10 cm3 molecule–1 s–1 (molecular orbital calculations, Klamt 1993) 
Hydrolysis: 
Biodegradation: aerobic t. = 672–4320 h, based on unacclimated aqueous screening test data and anaerobic 
t. = 2880–17280 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: atmospheric lifetimes of 1.9 h in clean troposphere and 1.0 h in moderately polluted atmosphere, based on 
the gas-phase reaction with hydroxyl radical in air at room temp.; atmospheric lifetimes of 1.8 d in clean 
© 2006 by Taylor & Francis Group, LLC

3276 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
troposphere and 14 h in moderately polluted atmosphere, based on the gas-phase reaction with O3 in air at 
room temp. (Atkinson et al. 1987); 
t. = 2.7–21 h, based on photooxidation half-life in air (Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: estimated t. = 2.3 d in Rhine River in case of a first order reduction process (Zoeteman et al. 
1980) 
t. = 19.3–1925 h, based on reaction with singlet oxygen in aqueous solution (Howard et al. 1991) 
Groundwater: t. = 1344–8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991) 
Sediment: 
Soil: t. = 672–4320 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991) 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3277 
16.1.3.10 2,6-Xylidine (2,6-Dimethylbenzeneamine) 
Common Name: 2,6-Xylidine 
Synonym: 2,6-dimethylaniline, 2,6-dimethylbenzeneamine 
Chemical Name: 2,6-dimethylaniline 
CAS Registry No: 87-62-7 
Molecular Formula: C8H11N, 2,6-(CH3)2C6H3NH2 
Molecular Weight: 121.180 
Melting Point (°C): 
11.20 (Weast 1982–83; Riddick et al. 1986; Lide 2003) 
Boiling Point (°C): 
214.0 (at 739 mm Hg, Weast 1982–83; Verschueren 1983) 
215 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9842 (Weast 1982–83; Riddick et al. 1986) 
Molar Volume (cm3/mol): 
123.1 (20°C, calculated-density) 
154.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pK: 
3.95 (pKBH 
+ , Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
slightly soluble (Dean 1985; Budavari 1989) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
43.03 (extrapolated-regression of tabulated data, temp range 44–217.9°C, Stull 1947) 
log (P/atm) = [1– 490.795/(T/K)] . 10^{0.926009 – 6.89676 . 10–4·(T/K) + 5.31053 . 10–7·(T/K)2}; temp range: 
285.0–720.0 K (Cox eq., Chao et al. 1983) 
17.33 (Howard et al. 1986) 
670.0 (quoted from Stull 1947, Riddick et al. 1986) 
35.99 (calculated-solvatochromic parameters, Banerjee et al. 1990) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
17.28 (calculated-P/C from selected value) 
Octanol/Water Partition Coefficient, log KOW: 
1.96 (calculated, Verschueren 1983) 
1.91 (calculated-CLOGP, Jackel & Klein 1991) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
NH2 
© 2006 by Taylor & Francis Group, LLC

3278 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k = 1 . 104 M–1 s–1 for oxidation by RO2 radical at 30°C in aquatic systems with t. = 0.8 d 
(Howard 1972; Hendry et al. 1974; quoted, Mill 1982); 
k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 yr (Foote 1976; 
Mill 1979; quoted, Mill 1982); 
photooxidation t. = 0.33–3.3 h in air, based on estimated reaction rate constant with OH radical (Atkinson 
1987; selected, Howard et al. 1991) and photooxidation t. = 62.4–3480 h in water, based on reaction 
rate constants of amine class with RO2· and OH radicals in water (Guesten et al. 1981; Mill & Mabey 
1985; selected, Howard et al. 1991). 
Hydrolysis: no hydrolyzable group (Howard et al. 1991). 
Biodegradation: aqueous aerobic biodegradation t. = 672–4320 h, based on a biological screening study (Baird 
et al. 1977; selected Howard et al. 1991) and a soil degradation study (Bollag et al. 1978; selected, Howard 
et al. 1991); aqueous anaerobic biodegradation t. = 2688–17280 h, based on estimated aqueous biodegradation 
half-lives (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.33–3.3 h, based on estimated photooxidation half-lives in air from estimated reaction rate constant 
with OH radical in air (Atkinson 1987; selected, Howard et al. 1991). 
Surface water: estimated t. = 2.0 d for dimethylaniline in Rhine River in case of a first order reduction process 
(Zoeteman et al. 1980) 
t. = 62.4–3480 h, based on photooxidation half-life in water (Howard et al. 1991). 
Groundwater: t. = 1344–8640 h, based on estimated aqueous aerobic biodegradation half-lives (Howard et al. 
1991). 
Sediment: 
Soil: t. = 72–7584 h, based on soil persistence and soil biodegradation studies (Bollag et al. 1978; Medvedev 
& Davidov 1981; selected, Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3279 
16.1.3.11 Diphenylamine 
Common Name: Diphenylamine 
Synonym: N-diphenylamine, N-phenyl aniline, DPA 
Chemical Name: N-diphenylamine, diphenylamine 
CAS Registry No: 122-39-4 
Molecular Formula: C12H11N, C6H5NHC6H5 
Molecular Weight: 169.222 
Melting Point (°C): 
53.2 (Lide 2003) 
Boiling Point (°C): 
302.0 (Stull 1947; Weast 1982–83; Verschueren 1983; Dean 1985; Lide 2003) 
Density (g/cm3 at 20°C): 
1.160 (Weast 1982–83; Dean 1985) 
Molar Volume (cm3/mol): 
145.9 (20°C calculated-density) 
200.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
0.89 (Perrin 1972) 
0.90 (protonated cation + 1, Dean 1985) 
0.78 (Sangster 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
17.53 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
53.56 (Tsonopoulos & Prausnitz 1971) 
54.81; 56.5 (exptl., calculated, Yalkowsky & Valvani 1980) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.529 (mp at 53.2°C) 
Water Solubility (g/m3 or mg/L at 25°C as indicated): 
150 (20–25°C, shake flask-gravimetric method, Dehn 1917) 
308 (Briggs 1981) 
48 (20°C, shake flask and membrane filter-fluorophotometric, Hashimoto et al. 1982) 
52, 54 (20°C, shake flask and glass fiber filters-fluorophotometric, Hashimoto et al. 1982) 
300 (Verschueren 1983) 
53 (20°C, Yalkowsky et al. 1987) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
0.5682* (extrapolated-regression of tabulated data, temp range 108.3–302°C, Stull 1947) 
log (P/mmHg) = [–0.2185 . 14920.3/(T/K)] + 8.564067; temp range 108.3–302°C (Antoine eq., Weast 1972–73) 
log (P/atm) = [1 – 575.114/(T/K)] . 10^{0.936992 – 6.17195 . 10–4·(T/K) + 4.32696 . 10–7·(T/K)2}; temp range 
335.0–670.0 K (Cox eq., Chao et al. 1983) 
0.0612 (calculated-Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PS/kPa) = 12.704 – 5043.9/(T/K); temp range 298–323 K (solid, Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.15045 – 2778.28/(–35.102 + T/K); temp range 381–575 K (liquid, Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.5746 – 2430.7/(–41.15 + T/K); temp range 573–673 K (liquid, Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 9.7736 – 3.9008 . 103/(T/K) + 0.91207·log (T/K) – 5.898 . 10–3·(T/K) + 2.3012 . 10–6·(T/K)2; 
temp range 326–817 K (vapor pressure eq., Yaws 1994) 
HN 
© 2006 by Taylor & Francis Group, LLC

3280 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa m3/mol at 25°C): 
0.285 (calculated-P/C, Meylan & Howard 1991) 
0.106 (estimated-bond contribution, Meylan & Howard 1991) 
0.035 (calculated-P/C from selected values) 
Octanol/Water Partition Coefficient, log KOW: 
3.23 (shake flask-UV, pH 7.4, Rogers & Cammarata 1969) 
3.34 (unpublished result, Leo et al. 1971) 
3.34, 3.50, 3.72 (unpublished results, Rekker 1977) 
2.37 (RP-HPLC-RT correlation, Veith et al. 1979a) 
3.45 (Hansch & Leo 1979) 
3.42 (shake flask-UV, Briggs 1981) 
3.37 (inter-laboratory shake flask average, Eadsforth & Moser 1983) 
3.72 ± 0.03 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
2.69 (HPLC-RT correlation, average, Ge et al. 1987) 
3.42 (shake flask, Log P Database, Hansch & Leo 1987) 
3.50 (recommended, Sangster 1989, 1993) 
3.70, 3.68 (shake flask, HPLC-RT correlation, Wang et al. 1989) 
3.50 (recommended, Hansch et al. 1995) 
2.99, 3.13, 3.04, 3.18 (HPLC-k. correlation, different combinations of stationary and mobile phases under 
isocratic conditions, Makovskaya et al. 1995) 
3.35 (microemulsion electrokinetic chromatography-retention factor correlation, Poole et al. 2000) 
Octanol/Air Partition Coefficient, log KOA: 
7.64 (calculated-Soct and vapor pressure P, Abraham et al. 2001) 
Bioconcentration Factor, log BCF: 
1.48 (fathead minnow, Veith et al. 1979b) 
1.48, 2.10 (quoted, calculated-KOW, Mackay 1982) 
Sorption Partition Coefficient, log KOC: 
2.78 (sorption isotherm-GC, converted from KOM organic matter-water in various soils, Briggs 1981) 
2.78, 3.28 (soil, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
3.30 (calculated-KOW, Kollig 1993) 
2.70 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.80, 2.93 (RP-HPLC-k. correlation including MCI related to non-dispersive intermolecular interactions, 
hydrogen-bonding indicator variable, Hong et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k = 1 . 104 M–1 s–1 for oxidation by RO2 radical at 30°C in aquatic systems with t. = 0.8 d 
(Howard 1972; Hendry et al. 1974; quoted, Mill 1982); 
k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 yr (Foote 1976; 
Mill 1979; quoted, Mill 1982); 
photooxidation t. = 31–1740 h in water, based on photooxidation rate constants with OH and RO2 radicals 
for the amine class (Mill & Mabey 1985; Guesten et al. 1981; selected, Howard et al. 1991); 
photooxidation t. = 0.247–2.47 h, based on estimated rate data for the reaction with hydroxyl radicals in 
air (Atkinson 1987; selected, Howard et al. 1991). 
Hydrolysis: rate constant k = 1.2 . 1010 L mol–1 s–1 for reactions with hydroxyl radical in aqueous solution, 
(Buxton et al. 1986; quoted, Armbrust 2000); 
measured hydroxy radical rate constant k = 4.9 . 1013 M–1·h–1 (Armbrust 2000) 
Biodegradation: aqueous aerobic t. = 168–672 h, based on estimated aqueous aerobic biodegradation screening 
test data (Malaney 1960; quoted, Howard et al. 1991); 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3281 
aqueous anaerobic t. = 672–2688 h, based on estimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 0.247–2.47 h, based on estimated rate data for the reaction with hydroxyl radical in air 
(Atkinson 1987; selected, Howard et al. 1991). 
Surface water: photooxidation t. = 31–1740 h in water, based on photooxidation rate constants with OH and 
RO2 radicals for the amine class (Mill & Mabey 1985; Guesten et al. 1981; selected, Howard et al. 1991); 
t. = 31–672 h, based on estimated unacclimated aqueous aerobic degradation half-life and photooxidation 
half-life in water (Howard et al. 1991). 
Groundwater: t. = 336–1344 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Sediment: 
Soil: t. = 168–672 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biota: 
TABLE 16.1.3.11.1 
Reported vapor pressures of diphenylamine at 
various temperatures 
Stull 1947 
summary of literature data 
t/°C P/Pa 
108.3 133.3 
141.7 666.6 
157.0 1333 
175.2 2666 
194.3 5333 
206.9 7999 
222.9 13332 
247.5 26664 
274.1 53329 
302.0 101325 
mp/°C 52.9 
© 2006 by Taylor & Francis Group, LLC

3282 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.3.11.1 Logarithm of vapor pressure versus reciprocal temperature for diphenylamine. 
Diphenylamine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0016 0.0018 0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 
1/(T/K) 
P( gol 
S 
) aP/ 
Stull 1947 
b.p. = 302 °C m.p. = 53.2 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3283 
16.1.3.12 Benzidine 
Common Name: Benzidine 
Synonym: p,p.-bianiline, 4,4.-diaminobiphenyl, 4,4.-biphenyldiamine, (1,1.-biphenyl)-4,4.-diamine 
Chemical Name: p-benzidine 
CAS Registry No: 92-87-5 
Molecular Formula: C12H12N2, NH2C6H4C6H4NH2 
Molecular Weight: 184.236 
Melting Point (°C): 
128 (Weast 1982–83) 
120 (Lide 2003) 
Boiling Point (°C): 
400 (Weast 1982–83) 
401 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.250 (Verschueren 1983) 
Molar Volume (cm3/mol): 
213.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
4.66 (pK1), 3.57 (pK2) (30°C, Perrin 1965; quoted, Mabey et al. 1982; Howard 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.117 (mp at 120°C) 
Water Solubility (g/m3 or mg/L at 25°C as indicated): 
400 (12°C, Verschueren 1977, 1983) 
520 (Shriner et al. 1978) 
360 (24°C at pH 5.9, shake flask-LSC, Means et al. 1980) 
276 (20°C, Schmidt-Bleek et al. 1982) 
359 (Gerstl & Helling 1987) 
Vapor Pressure (Pa at 25°C): 
0.724 (calculated-Trouton’s rule, Mabey et al. 1982) 
1.0 . 10–6 (20°C, Schmidt-Bleek et al. 1982) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
3.93 . 10–6 (estimated, Hine & Mookerjee 1975) 
0.0394 (calculated-P/C at 12°C, Mabey et al. 1982) 
4.60 . 10–7 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.34 (shake flask, Korenman 1971) 
1.34 (recommended, Sangster 1993) 
1.34 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.74, 2.66, 2.81, 3.4 (fish, mosquitoes, snail, algae; Lu et al. 1977) 
1.60 (bluegills, USEPA 1980; quoted, Howard 1989) 
1.00 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
H2N NH2 
© 2006 by Taylor & Francis Group, LLC

3284 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
1.90, 2.93, 3.08 (golden ide, algae, activated sludge, Freitag et al. 1985) 
Sorption Partition Coefficient, log KOC: 
1.66 (soil/sediment, equilibrium sorption isotherm by shake flask-LSC at pH 5.9, Means et al. 1980) 
1.02 (sediment-water, calculated-KOW, Mabey et al. 1982) 
5.95; 5.68; 5.35; 5.91 (Russell soil; Chalmers soil; Kokomo soil; Milford soil, Graveel et al. 1986) 
3.00 (calculated-MCI ., Gerstl & Helling 1987) 
3.46, 3.44 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
1.26 (calculated-KOW, Kollig 1993) 
3.46 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
Oxidation: aqueous oxidation rate constants for singlet oxygen k < 4 . 107 M–1 h–1 and for peroxy radical of 
1.1 . 108 M–1 h–1 at 25°C (Mabey et al. 1982); 
photooxidation t. = 0.312–3.12 h, based on estimated rate constant for the reaction with hydroxyl radical 
in air (Atkinson 1987; quoted, Howard et al. 1991). 
Biodegradation: aqueous aerobic t. = 48–192 h, based on aerobic soil die-away test data (Lu et al. 1977; quoted, 
Howard et al. 1991); 
overall biodegradation t. = 76 d, when in sludge was applied to a sandy loam soil in a biological soil reactor 
and worked into the top 20 cm of soil (Kincannon & Lin 1985; quoted, Howard 1989); 
aqueous aerobic t. = 192–768 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Biotransformation: rate constant for bacterial transformation of 1 . 10–10 mL·cell–1·h–1 in water (Mabey et al. 
1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.312–3.12 h, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 
1987; quoted, Howard et al. 1991); 
estimated t. ~ 1 d for the reaction with hydroxyl radical and ozone (Howard 1989); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: estimated t. ~ 1 d for the reaction with radicals and redox reactions with naturally occurring 
cations, etc. and perhaps with photodegradation (Howard 1989); 
t. = 31.2–192 h, based on estimated photooxidation half-life in water and estimated unacclimated aqueous 
aerobic biodegradation half-life (Howard et al. 1991). 
Ground water: t. = 96–484 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Sediment: 
Soil: t. < 10 d in soil (USEPA 1979; quoted, Ryan et al. 1988); 
t. = 48–192 h, based on aerobic soil die-away test data (Lu et al. 1977; quoted, Howard et al. 1991); 
overall biodegradation t. = 76 d, when in sludge was applied to a sandy loam soil in a biological soil reactor 
and worked into the top 20 cm of soil (Kincannon & Lin 1985; quoted, Howard 1989). 
Biota: depuration t. ~ 7 d from bluegills (Lu et al. 1977; quoted, Howard 1989). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3285 
16.1.3.13 3,3’-Dichlorobenzidine 
Common Name: 3,3.-Dichlorobenzidine 
Synonym: 3,3.-dichloro-4,4.-diamino(1,1.-biphenyl), DCB 
Chemical Name: 3,3.-dichlorobenzidine 
CAS Registry No: 91-94-1 
Molecular Formula: C12H10Cl2N2, NH2C6H3(Cl)C6H3(Cl)NH2 
Molecular Weight: 253.126 
Melting Point (°C): 
132.5 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
254.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKb: 
11.7 (Kollig 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0882 (mp at 132.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
4.00 (22°C, as dihydrochloride, Banerjee et al. 1978) 
3.99 (22°C, at pH 6.9 as DCB.2HCl, quoted, Verschueren 1983) 
3.11 (shake flask-UV/LSC, Banerjee et al. 1980) 
Vapor Pressure (Pa at 25°C): 
0.00133 (estimated, Mabey et al. 1982) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0811 (calculated-P/C, Mabey et al. 1982) 
Octanol/Water Partition Coefficient, log KOW: 
3.02 (calculated as per Leo et al.1971) 
3.51 (23°C, shake flask, Banerjee et al. 1980) 
3.35 (calculated-activity coeff. . from UNIFAC, Banerjee & Howard 1988) 
3.51 (recommended, Sangster 1993) 
3.51 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.70 (bluegill sunfish, Appleton & Sikka 1980) 
2.97 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
2.79, 2.97, 3.49 (fish, algae, activated sludge, Freitag et al. 1985) 
Sorption Partition Coefficient, log KOC: 
3.19 (sediment-water, calculated-KOW, Mabey et al. 1982) 
4.35, 3.87 (soil: quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
3.30 (calculated-KOW, Kollig 1993) 
4.35 (soil, calculated-MCI 1., Sabljic et al. 1995) 
H2N NH2 
Cl Cl 
© 2006 by Taylor & Francis Group, LLC

3286 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
direct aqueous photolysis rate constant k = 2.1 . 10–6 h–1 in summer at 40°N latitude (Mabey et al. 1982); 
both aqueous and atmospheric photolysis t. = 0.025–0.075 h, based on direct photolysis in distilled water 
in midday summer sunlight (Banerjee et al. 1978; Sikka et al. 1978; quoted, Callahan et al. 1979; Howard 
et al. 1991) and approximate winter sunlight direct photolysis half-life (Banerjee et al. 1978; Sikka 
et al. 1978; Lyman et al. 1982; quoted, Howard et al. 1991). 
Hydrolysis: 
Oxidation: aqueous oxidation rate constants for singlet oxygen k < 4 . 107 M–1 h–1 and for peroxy radical 
k < 4 . 107 M–1 h–1 at 25°C (Mabey et al. 1982); 
photooxidation t. = 31.2 – 1740 h in water, based on estimated rate constants for reactions with OH and 
RO2 radicals in water (Mill & Mabey 1985; quoted, Howard et al. 1991); 
photooxidation t. = 0.905 – 9.05 h in air, based on estimated rate constant for the reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991) 
Biodegradation: aqueous aerobic t. = 672 – 4320 h, based on lake die-away study test data (Appleton et al. 
1978; quoted, Howard et al. 1991) and a soil die-away test (Boyd et al. 1984; quoted, Howard et al. 1991); 
aqueous anaerobic t. = 2688 – 17280 h, based on estimated unacclimated aqueous aerobic biodegradation 
half-life (Howard et al. 1991). 
Biotransformation: rate constant for bacterial transformation k = 3 . 10–12 mL·cell–1·h–1 in water (Mabey et al. 
1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.905 – 9.05 h, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 
1987; quoted, Howard et al. 1991); 
estimated t. ~ 1 d for the reaction with hydroxyl radical and ozone (Howard 1989); 
atmospheric transformation lifetime by photolysis was estimated to be < 1 d (Kelly et al 1994). 
Surface water: t. = 0.025 – 0.075 h, based on direct photolysis in distilled water in midday summer sunlight 
(Banerjee et al. 1978; Sikka et al. 1978; quoted, Howard et al. 1991) and approximate winter sunlight 
direct photolysis half-life (Banerjee et al. 1978; Sikka et al. 1978; Lyman et al. 1982; quoted, Howard 
et al. 1991). 
Ground water: t. = 1344 – 8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: t. = 30 min by suspended microcrystalline clays may be considered the most important fate process 
in the aquatic environment (Callahan et al. 1979). 
Soil: t. = 672 – 4320 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3287 
16.1.3.14 N,N’-Bianiline 
Common Name: N,N.-Bianiline 
Synonym: 1,2-diphenylhydrazine, hydrazobenzene 
Chemical Name: 1,2-diphenylhydrazine, hydrazobenzene 
CAS Registry No: 122-66-7 
Molecular Formula: C12H12N2, C6H5NHNHC6H5 
Molecular Weight: 184.236 
Melting Point (°C): 
131 (Weast 1982–83; Lide 2003) 
Boiling Point (°C): 
293 (as azobenzene, IARC 1975) 
Density (g/cm3 at 20°C): 
1.158 (16°C, Weast 1982–83) 
Molar Volume (cm3/mol): 
213.0 (calculated-Le Bas method at normal boiling point) 
Dissociation constant pKb: 
13.2 (Kollig 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0912 (mp at 131°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
0.252 (20°C, as azobenzene, Takagishi et al. 1968) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00347 (quoted, Mabey et al. 1982) 
log (P/mmHg) = 16.8982 – 5.0039 . 103/(T/K) –0.35846·log (T/K) –9.9629 . 10–3·(T/K) + 4.2938 . 10–6·(T/K)2; 
temp range 404–573 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
3.45 . 10–4 (calculated-P/C, Mabey et al. 1982) 
Octanol/Water Partition Coefficient, log KOW: 
3.82 (shake flask-UV as for azobenzene, Fujita et al. 1964) 
3.03 (calculated as per Leo et al. 1971, Callahan et al. 1979) 
2.94 (shake flask, Hansch & Leo 1979; 1987) 
2.94 (recommended, Sangster 1993) 
2.94 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.46 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
Sorption Partition Coefficient, log KOC: 
2.62 (sediment-water, calculated-KOW, Mabey et al. 1982) 
1.40 (calculated-KOW, Kollig 1993) 
HN
NH 
© 2006 by Taylor & Francis Group, LLC

3288 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
Oxidation: aqueous oxidation rate constants for singlet oxygen k < 4 . 107 M–1 h–1 and for peroxy radical, 
k < 1 . 109 M–1 h–1 at 25°C (Mabey et al. 1982); 
photooxidation t. = 31 – 1740 h, based on photooxidation rate constants with OH and RO2 radicals for the 
amine class (Guesten et al. 1981; Mill & Mabey 1985; quoted, Howard et al. 1991); 
photooxidation t. = 0.3 – 3.0 h in air, based on estimated rate data for the reaction with hydroxyl radical 
in air (Atkinson 1987; quoted, Howard et al. 1991). 
Biodegradation: aqueous aerobic t. = 672 – 4320 h, based on acclimated aerobic aqueous screening test data 
(Malaney 1960; quoted, Howard et al. 1991); aqueous anaerobic t. = 2880 – 17280 h, based on estimated 
unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biotransformation: bacterial transformation k = 1 . 10–10 mL·cell–1·h–1 in water (Mabey et al. 1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 0.3 – 3.0 h, based on estimated rate data for the reaction with hydroxyl radical in air 
(Atkinson 1987; quoted, Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: photooxidation t. = 31 – 1740 h, based on photooxidation rate constants with OH and RO2 radicals 
for the amine class (Guesten et al. 1981; Mill & Mabey 1985; quoted, Howard et al. 1991). 
Groundwater: t. = 1344 – 8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: 
Soil: t. = 672 – 4320 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3289 
16.1.3.15 .-Naphthylamine (1-Aminonaphthalene) 
Common Name: 1-Naphthylamine 
Synonym: 1-naphthalenamine, .-naphthylamine, 1-NA, 1-aminonaphthalene, naphthalidine 
Chemical Name: 1-naphthalenamine 
CAS Registry No: 134-32-7 
Molecular Formula: C10H7NH2 
Molecular Weight: 143.185 
Melting Point (°C): 
49.2 (Lide 2003) 
Boiling Point (°C): 
300.7 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.1229 (25°C, Weast 1982–8) 
1.123 (Dean 1985) 
Molar Volume (cm3/mol): 
161.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
3.92 (Sangster 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
14.23 ± 0.105 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
44.35 ± 3.35 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.579 (mp at 49.2°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
1700 (Verschueren 1983) 
590 parts in water (Budavari 1989) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
0.803 (extrapolated-regression of tabulated data, temp range 104.3–300.8°C, Stull 1947) 
log (P/mmHg) = [–0.2185 . 14529.5/(T/K)] + 8.29900; temp range 104.3–300.8°C (Antoine eq., Weast 1972–73) 
0.557 (extrapolated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 574.066/(T/K)] . 10^{0.822931 – 2.94554 . 10–4·(T/K) + 2.19845 . 10–7·(T/K)2}; temp range: 
325.0–645.0 K (Cox eq., Chao et al. 1983) 
0.446 (extrapolated, liquid, Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.88407 – 2570.55/(–46.989 + T/K); temp range 377–574 K (Antoine eq., Stephenson & 
Malanowski 1987) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
6.197 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
2.23 (Leo et al. 1969) 
2.25 (shake flask, Hansch & Leo 1979) 
2.27 (shake flask-UV at pH 7.5, Martin-Villodre et al. 1986) 
2.33 (HPLC-k. correlation, Minick et al. 1988) 
2.25 (recommended, Sangster 1993) 
2.25 (recommended, Hansch et al. 1995) 
2.34 (microemulsion electrokinetic chromatography-retention factor correlation, Poole et al. 2000) 
NH2 
© 2006 by Taylor & Francis Group, LLC

3290 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
3.58, 3.43, 3.50 (Milford soil, Morocco soil, Oakville soil, Graveel et al. 1986) 
2.63, 2.68, 3.15 (sediment, Alfisol soil, Podzol soil, von Oepen et al. 1991) 
3.51, 3.48 (soil, quoted exptl., calculated-MCI ., Meylan et al. 1992) 
3.51 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.0–2.65 (5 soils, pH 2.8–7.4, batch equilibrium-sorption isotherm, Li et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k = 1 . 104 M–1 s–1 for oxidation by RO2 radical at 30°C in aquatic systems with t. = 0.8 d 
(Howard 1972; Hendry et al. 1974; quoted, Mill 1982); 
rate constant k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 yr 
(Foote 1976; Mill 1979; quoted, Mill 1982); 
atmospheric t. = 0.292–2.92 h, based on estimated rate constants for the reaction with OH radical in air 
and aqueous photooxidation t. = 62.4–3480 h, based on estimated rate constants for reaction of representative 
aromatic amines with OH and RO2 radicals in aqueous solution (Howard et al. 1991); 
photooxidation t. = 0.08–0.13 h under sunlight and t. = 0.25–9.1 h under UV light when adsorbed on silica; 
t. = 0.10–0.15 h under sunlight and t. = 0.15–10.5 h under UV light when adsorbed on alumina on the 
TLC plates under simulated atmospheric conditions (Hasegawa et al. 1993). 
Hydrolysis: 
Biodegradation: aqueous aerobic biodegradation t. = 672–4320 h and aqueous anaerobic biodegradation 
t. = 2688–17280 h, based on slow biodegradation observed in aerobic soil die-away test study and aerobic 
activated sludge screening tests (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.292–2.92 h, based on estimated photooxidation half-life in air (Howard et al. 1991). 
Surface water: t. = 0.62.4–3840 h, based on estimated rate constants for reactions of aromatic amines with OH 
and RO2 radicals in aqueous solutions (Howard et al. 1991). 
Groundwater: t. = 1344–8640 h, based on slow biodegradation observed in an aerobic soil die-away test study 
and aerobic activated sludge screening tests (Howard et al. 1991). 
Sediment: 
Soil: t. = 672–4320 h, based on slow biodegradation observed in an aerobic soil die-away test study and aerobic 
activated sludge screening tests (Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3291 
16.1.3.16 .-Naphthylamine (2-Aminonaphthalene) 
Common Name: 2-Naphthylamine 
Synonym: 2-naphthalenamine, .-naphthylamine, 2-NA, 2-aminonaphthalene, naphthalidine 
Chemical Name: 2-naphthalenamine 
CAS Registry No: 91-59-8 
Molecular Formula: C10H7NH2 
Molecular Weight: 143.185 
Melting Point (°C): 
113 (Weast 1982–83; Lide 2003) 
Boiling Point (°C): 
306.2 (Lide 2003) 
Density (g/cm3): 
1.0614 (at 98°C, Weast 1982–83; Verschueren 1983; Dean 1985) 
Molar Volume (cm3/mol): 
161.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
4.15 (Sangster 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
21.97 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
57.32 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.137 (mp at 113°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
6.40 (18°C, Ciusa 1922; quoted, Tsonopoulos & Prausnitz 1971) 
0.19 (18–20°C, Neish 1948; quoted, Tsonopoulos & Prausnitz 1971) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
0.634 (extrapolated-regression of tabulated data, temp range 108–306.1°C, Stull 1947) 
log (P/atm) = [–0.2185 . 14679.6/(T/K)] + 8.435133; temp range 108–306.1°C (Antoine eq., Weast 1972–73) 
0.369 (extrapolated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1 – 579.422/(T/K)] . 10^{0.860256 – 4.44286 . 10–4·(T/K) + 3.71453 . 10–7·(T/K)2}; temp 
range: 385.0–645.0 K (Cox eq., Chao et al. 1983) 
0.035 (Howard et al. 1986) 
0.035 (interpolated, solid, Antoine eq., Stephenson & Malanowski 1987) 
0.362 (extrapolated, liquid, Antoine eq., Stephenson & Malanowski 1987) 
log (PS/kPa) = 8.4859 – 3859/(T/K), temp range: 283–323 K, (Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.88978 – 2604.31/(–46.068 + T/K), temp range 388–579 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
0.340 (calculated-solvatochromic parameters, Banerjee et al. 1990) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
2.28 (shake flask, Hansch & Leo 1979) 
2.26 (20°C, shake flask, Korenman & Polumestnaya, 1982) 
2.40 (calculated-UNIFAC activity coeff., Campbell & Luthy 1985) 
2.40 (shake flask-AS, pH 7.5, Martin-Villodre et al. 1986) 
2.34 (recommended, Sangster 1993) 
2.28 (recommended, Hansch et al. 1995) 
NH2 
© 2006 by Taylor & Francis Group, LLC

3292 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
1.77 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k = 1 . 104 M–1 s–1 for oxidation by RO2 radicals at 30°C in aquatic systems with 
t. = 0.8 d (Howard 1972; Hendry et al. 1974; quoted, Mill 1982); 
rate constant k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 
yr (Foote 1976; Mill 1979; quoted, Mill 1982); 
photooxidation t. = 0.30–2.90 h in air, based on estimated rate constant for the vapor-phase reaction with 
hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
aqueous photooxidation t. = 62–3480 h, based on estimated rate constants for reaction of representative 
aromatic amines with OH and RO2 radicals in aqueous solution (Guesten et al. 1981; Mill & Mabey 
1985; quoted, Howard et al. 1991); 
photooxidation t. = 0.05–0.14 h under sunlight and 0.20–10.0 h under UV light when adsorbed on silica 
and t. = 0.16–0.19 h under sunlight and t. = 0.22–10.8 h under UV light when adsorbed on alumina 
TLC plates under simulated atmospheric conditions (Hasegawa et al. 1993). 
Hydrolysis: 
Biodegradation: aqueous aerobic biodegradation t. = 672–4320 h, based on unacclimated aerobic screening test data 
(Fochtman & Eisenberg 1979; quoted, Howard et al. 1979) and unacclimated soil grab sample data (Medvedev 
& Davidov 1981; quoted, Howard et al. 1991); aqueous anaerobic biodegradation t. = 2880–17280 h, based on 
estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 0.30–2.90 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 62.0–3840 h, based on estimated rate constants for reactions of aromatic amines with OH 
and RO2 radicals in aqueous solutions (Guesten et al. 1981; Mill & Mabey 1985; quoted, Howard et al. 1991). 
Groundwater: t. = 1344–8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: 
Soil: t. = 672–4320 h, based on unacclimated aerobic screening test data (Fochtman & Eisenberg 1979; quoted, 
Howard et al. 1991) and unacclimated aerobic soil grab sample data (Medvedev & Davidov 1981; quoted, 
Howard et al. 1981). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3293 
16.1.3.17 2-Nitroaniline 
Common Name: 2-Nitroaniline 
Synonym: 1-amino-2-nitrobenzene, o-aminonitrobenzene, o-nitroaniline, 2-nitrophenylamine, 2-nitrobenzeneamine 
Chemical Name: 1-amino-2-nitrobenzene, o-nitroaniline, 2-nitroaniline 
CAS Registry No: 88-74-4 
Molecular Formula: C6H6N2O2, C6H4NH2NO2 
Molecular Weight: 138.124 
Melting Point (°C): 
71.0 (Lide 2003) 
Boiling Point (°C): 
284 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.442 (15°C, Weast 1982–83; Verschueren 1983; Dean 1985) 
Molar Volume (cm3/mol): 
138.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
16.11 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
46.86 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.354 (mp at 71.0°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicted): 
1212, 2423 (25, 40°C, synthetic method-shake flask-titration, Collet & Johnson 1926) 
1740 (calculated-KOW, Yalkowsky & Morozowich 1980) 
1260 (Verschueren 1983) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
log (P/mmHg) = 8.81842 – 3336.52/(T/K); measured range 150–215°C (isoteniscope, Berliner & May 1925) 
log (P/mmHg) = 9.55950 – 4037.7/(T/K); measured range 190–250°C (isoteniscope, Berliner & May 1925) 
0.620 (extrapolated-regression of tabulated data, temp range 104–284.5°C, Stull 1947) 
0.072 (Knudsen method, calculated-Antoine eq., Hoyer & Peperle 1958) 
log (P/mmHg) = 12.50 – 4701/(T/K), temp range 0–50°C (Knudsen effusion method, Hoyer & Peperle 1958) 
log (P/mmHg) = [–0.2185 . 15284.0/(T/K)] + 8.868383; temp range 104–284.5°C (Antoine eq., Weast 1972–73) 
< 13.3 (30°C, Verschueren 1983) 
0.650 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 8.8684 – 3336.5/(T/K); temp range 150–260°C (Antoine eq., Dean 1985, 1992) 
log (PS/kPa) = 11.625 – 4701/(T/K); temp range 273–323 K (Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 11.3629 – 7444.3/(240.83 + T/K); temp range 423–553 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = –112.5774 –1.5945 . 103/(T/K) + 54.577·log (T/K) –7.6775 . 10–2·(T/K) + 3.6152 . 10–5·(T/K)2; 
temp range 345–558 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
1.44 (shake flask-UV, Fujita et al. 1964) 
1.83 (shake flask-UV, Hansch & Anderson 1967) 
1.62 (HPLC-RT correlation, Carlson et al. 1975) 
1.81 (Hansch & Leo 1979) 
NH2 
NO2 
© 2006 by Taylor & Francis Group, LLC

3294 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
1.72 (shake flask, Eadsforth & Moser 1983) 
1.67 (calculated-HPLC-k. correlation, Deneer et al. 1987) 
1.50 (calculated-linear extrapolation exptl. log k at various solvent compositions, Deneer et al. 1987) 
1.93, 1.73 (25°C, 60°C, shake flask-UV, Kramer & Henze 1990) 
1.85 (recommended, Sangster 1993) 
1.80 ± 0.14, 1.35 ± 0.51 (solvent generated liquid-liquid chromatography SGLLC-correlation, RP-HPLC-k. 
correlation, Cichna et al. 1995) 
1.85 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
0.91; 1.49, 0.55, 0.83 (quoted exptl.; calculated values-KOW, Bintein et al. 1993) 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Surface water: estimated t. = 1.4 d in Rhine River in case of a first order reduction process (Zoeteman et al. 1980) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3295 
16.1.3.18 4-Nitroaniline 
Common Name: 4-Nitroaniline 
Synonym: 1-amino-4-nitrobenzene, p-aminonitrobenzene, p-nitroaniline, 4-nitrobenzenamine, 4-nitrophenylamine 
Chemical Name: 1-amino-4-nitrobenzene, p-nitroaniline, 4-nitroaniline 
CAS Registry No: 100-01-6 
Molecular Formula: C6H6N2O2, C6H4NH2NO2 
Molecular Weight: 138.124 
Melting Point (°C): 
147.5 (Lide 2003) 
Boiling Point (°C): 
332 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.424 (Weast 1982–83; Verschueren 1983) 
1.4370 (14°C, Dean 1985) 
Molar Volume (cm3/mol): 
138.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
21.09 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
50.21 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0628 (mp at 147.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
568, 1157 (25, 40°C, synthetic method-shake flask-titration, Collet & Johnson 1926) 
728 (30°C, shake flask-interferometry, Gross et al. 1931) 
603 (calculated-KOW, Yalkowsky & Morozowich 1980) 
380 (20°C, shake flask-membrane filter-fluorophotometry, Hashimoto et al. 1982) 
390, 400 (20°C, shake flask-glass fiber filters-fluorophotometry, Hashimoto et al. 1982) 
800; 22000 (19°C, 100°C, Verschueren 1983) 
800 (Dean 1985) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
log (P/mmHg) = 9.55950 – 4037.7/(T/K); measured range 190–250°C (isoteniscope, Berliner & May 1925) 
0.035 (extrapolated-regression of tabulated data, temp range 142.4–336°C, Stull 1947) 
log (P/mmHg) = 13.69 – 5707/(T/K), temp range 30–90°C, (Knudsen effusion method, Hoyer & Peperle 1958) 
log (P/mmHg) = [–0.2185 . 17220.2/(T/K)] + 9.041879; temp range 142.4–336°C (Antoine eq., Weast 1972–73) 
0.200, 0.933 (20°C, 30°C, Verschueren 1983) 
0.014 (extrapolated-Antoine eq., Dean 1985) 
log (P/mmHg) = 9.5595 – 4039.73/(T/K); temp range 190–260°C (Antoine eq., Dean 1985, 1992) 
log (PS/kPa) = 11.1109 – 5093/(T/K); temp range 346–366 K (solid, Antoine eq.-I, Stephenson & Malanowski 
1987) 
log (PL/kPa) = 8.7988 – 4071.3/(T/K); temp range 473–538 K (liquid, Antoine eq.-II., Stephenson & Malanowski 
1987) 
log (P/mmHg) = 56.1642 – 5.3655 . 103/(T/K) –17.958·log (T/K) + 9.092 . 10–3·(T/K) + 7.0305 . 10–10·(T/K)2; 
temp range 421–609 K (vapor pressure eq., Yaws 1994) 
NH2 
NO2 
© 2006 by Taylor & Francis Group, LLC

3296 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
1.39 (shake flask-UV, Fujita et al. 1964; Hansch & Leo 1979) 
0.59 (calculated-activity coeff. . from UNIFAC, Campbell & Luthy 1985) 
1.16 (HPLC-k. correlation, Deneer et al. 1987) 
1.10 (calculated-linear extrapolation exptl. values of log k at various solvent compositions, Deneer et al. 
1987) 
1.15 (HPLC-RT correlation, Wang et al. 1989) 
1.51, 1.36 (25°C, 60°C, shake flask-UV, Kramer & Henze 1990) 
1.30 (CPC-RV correlation, Tsai et al. 1991) 
1.30 (CPC-RV correlation, El Tayar et al. 1991) 
1.35 (recommended, Sangster 1993) 
1.39 ± 0.14, 0.75 ± 0.48 (solvent generated liquid-liquid chromatography SGLLC-correlation, RP-HPLC-k. correlation, 
Cichna et al. 1995) 
1.37 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
2.26; 2.66; 2.12 (Alfisol soil; Podzol soil; sediment, von Oepen et al. 1991) 
0.64; 1.25, –0.18, 0.41 (quoted exptl.; calculated values-KOW, Bintein et al. 1993) 
2.16, 2.22, 2.19 (RP-HPLC-k. correlation on 3 different stationary phases, Szabo et al. 1995) 
1.86, 1.84 (RP-HPLC-k. correlation including MCI related to non-dispersive intermolecular interactions, hydrogen-
bonding indicator variable, Hong et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Surface water: estimated t. = 2.3 d in Rhine River in case of a first order reduction process (Zoeteman et al. 1980) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3297 
16.1.4 NITROAROMATIC COMPOUNDS 
16.1.4.1 Nitrobenzene 
Common Name: Nitrobenzene 
Synonym: nitrobenzol, oil of mirbane 
Chemical Name: nitrobenzene 
CAS Registry No: 98-95-3 
Molecular Formula: C6H5NO2 
Molecular Weight: 123.110 
Melting Point (°C): 
5.7 (Stull 1947; Dreisbach 1955; Weast 1982–83; Howard 1989; Lide 2003) 
Boiling Point (°C): 
210.8 (Weast 1982–83; Lide 2003) 
Density (g/cm3 at 20°C): 
1.2032, 1.1982 (20°C, 25°C, Dreisbach 1955) 
1.2036 (20°C, Weast 1982–83) 
Molar Volume (cm3/mol): 
102.0 (calculated from density, Rohrschneider 1973; Chiou 1985) 
112.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
55.186, 43.421 (25°C, bp, Dreisbach 1961) 
55.013, 40.769 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
11.59 (Dreisbach 1955) 
12.13 (Tsonopoulos & Prausnitz 1971) 
11.63 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
43.51 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
1780, 2050 (15, 30°C, shake flask-interferometry, Gross et al. 1931) 
2060* (30°C, shake flask-interferometry and titration, measured range 0–60°C, Vermillion et al. 1941) 
1204 (shake flask-centrifuge, Booth & Everson 1948) 
1930 (Seidell 1941) 
2018 (shake flask-interferometry, Donahue & Bartell 1952) 
1950 (Deno & Berkheimer 1960) 
2259 (35°C, shake flask-UV spectrophotometry, Hine et al. 1963) 
2060 (Hansch et al. 1968) 
1900 (20°C, Verschueren 1977, 1983) 
2093 (shake flask-LSC, Banerjee et al. 1980) 
2090 (shake flask-radioactive analysis, Veith et al. 1980) 
2043 (20–27°C, shake flask-GC, Chiou 1985) 
1900 (20°C, Riddick et al. 1986; quoted, Howard 1989) 
1930* (20°C, shake flask-UV spectrophotometry, measured range 10–40°C, Benes & Dohnal 1999) 
NO2 
© 2006 by Taylor & Francis Group, LLC

3298 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
133.3* (53.1°C, static-manometer, measured range 53.1–208.3°C, Kahlbaum 1898) 
38.80 (saturated vapor density-gas saturation, Puck & Wise 1946) 
42.06* (extrapolated-regression of tabulated data, temp range 44.4–210.6°C, Stull 1947) 
10063* (134.1°C, ebulliometry, measured range 134.1–210.629°C, Brown 1952) 
37.86 (calculated by formula, Dreisbach 1955; quoted, Hine & Mookerjee 1975) 
log (P/mmHg) = 7.08283 – 1722.2/(199.0 + t/°C); temp range 108–300°C (Antoine eq. for liquid state, Dreisbach 1955) 
32.3* (23.14°C, gas saturation, measured range 6.09–23.14°C, Lynch & Wilke 1960) 
log (P/mmHg) = 7.545 – 2064/(t/°C + 230); temp range 6.09–23.14°C (gas saturation, Lynch & Wilke 1960) 
80.0 (35°C, gas saturation-gravitational or UV spectrophotometry, Hine et al. 1963) 
log (P/mmHg) = [–0.2185 . 12168.2/(T/K)] + 8.416268; temp range 44.4–210.6°C (Antoine eq., Weast 1972–73) 
34.60 (extrapolated-Antoine eq., Boublik et al. 1973) 
log (P/mmHg) = 7.11562 – 1746.585/(201.783 + t/°C), temp range 134–210.6°C (Antoine eq. from reported 
exptl. data, Boublik et al. 1973) 
20.00 (20°C, Verschueren 1977, 1983) 
28.37 (calculated-bp, Mackay et al. 1982) 
34.36 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.23424 – 1741.779/(201.257 + t/°C); temp range 134–210.6°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 

log (P/kPa) = 4.06596 – 323.457/(–58.276 + t/°C); temp range 239–291°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
34.63 (extrapolated-Antoine eq., Dean 1985; 1992) 
log (P/mmHg) = 6.91048 – 946.35/(246.68 + t/°C); temp range –87 to 7°C (Antoine eq., Dean 1985, 1992) 
37.0 (quoted lit., Riddick et al. 1986) 
log (P/kPa) = 6.670 – 2064.0/(230.0 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
37.65 (extrapolated-Antoine eq.-II, Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.22069 – 1732.222/(–72.886 + T/K); temp range 407–484 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.6699 – 2064/(–43.15 + T/K); temp range 279–296 K (Antoine eq.-II, Stephenson & Malanowski 1987) 
33.33 (Howard et al. 1986) 
log (P/mmHg) = –54.4937 –2.1123 . 103/(T/K) + 29.321·log (T/K) –4.4839 . 10–2·(T/K) + 2.0162 . 10–5·(T/K)2; 
temp range 279–719 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
2.367, 4.51, 4.723 (exptl., calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
1.327 (calculated-P/C, Mabey et al. 1982) 
2.472 (estimated, Lyman et al. 1982) 
5.06 (calculated-molecular structure, Russell et al. 1992) 
0.868 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
1.85 (shake flask-UV, Fujita et al. 1964; Hansch et al. 1968; Leo et al. 1969, 1971; Hansch & Leo 1979, 
1985;) 
1.74 (Neely et al. 1974) 
1.85, 1.84 (Hansch & Leo 1979) 
1.82 (HPLC-RT correlation, Veith et al. 1979a) 
1.83 (shake flask-LSC, Banerjee et al. 1980) 
1.98, 1.78 (HPLC-k. correlation, McDuffie 1981) 
1.85 (generator column-HPLC, Wasik et al. 1981; Tewari et al. 1982;) 
1.88 (shake flask-UV, Unger & Chiang 1981) 
1.99 (RP-HPLC-k. correlation, Miyake & Terada 1982) 
1.83, 1.84 (calculated-activity coeff. . from UNIFAC, octanol and water solubility considered; calculatedactivity 
coeff. . from UNIFAC, octanol and water solubility not considered, Arbuckle 1983) 
1.85, 1.88 (lit. values, Verschueren 1983) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3299 
1.83 ± 0.02 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
1.84 (calculated-activity coefficient . from UNIFAC, Campbell & Luthy 1985) 
1.87 (Lu et al. 1986) 
1.85 (RP-HPLC-k. correlation, Minick et al. 1988) 
1.89 (HPLC-k. correlation, Deneer et al. 1987) 
1.84 (calculated-activity coeff. . from UNIFAC, Banerjee & Howard 1988) 
1.70 (RP-HPLC-RT correlation, ODS column with masking agent, Bechalany et al. 1989) 
1.828 ± 0.001 (shake flask/slow-stirring-GC, De Bruijn et al. 1989) 
1.85 (recommended, Sangster 1989, 1993) 
1.836 ± 0.051; 1.828 ± 0.001 (average values, stir-flask method by BRE; by RITOX, Brooke et al. 1990) 
1.83, 1.85, 1.88 (CPC-retention volume correlation; Gluck & Martin 1990) 
1.94, 2.25 (25°C, 60°C, shake flask-UV, Kramer & Henze 1990) 
1.57 (shake flask-UV, Nakagawa et al. 1992) 
1.85 (shake flask-GC, Alcron et al. 1993) 
1.85 (recommended, Hansch et al. 1995) 
2.25, 2.12, 2.20, 2.23 (HPLC-k. correlation, different combinations of stationary and mobile phases under 
isocratic conditions, Makovskaya et al. 1995) 
1.88 (shake flask-dialysis tubing-HPLC/UV, both phases, Andersson & Schrader 1999) 
1.93 (microemulsion electrokinetic chromatography-retention factor correlation, Poole et al. 2000) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.18 (fathead minnows, Veith et al. 1979b) 
0.06 (calculated-KOW, Veith et al. 1980) 
< 1.0; 1.36 (golden orfe; green algae, Freitag et al. 1982) 
1.38; 1.42 (alga Chlorella fusca, wet wt. basis; calculated-KOW, Geyer et al. 1984) 
0.78 (P. reticulata, Canton et al. 1985; quoted, Howard 1989) 
< 1.0, 1.38, 1.60 (golden orfe, algae, activated sludge, Freitag et al. 1982) 
< 1.0, 1.30, 1.60 (golden ide, algae, activated sludge, Freitag et al. 1985) 
1.47 ± 0.12 (guppy-fat wt. basis, Deneer et al. 1987) 
Sorption Partition Coefficient, log KOC: 
1.94 (20°C, sorption isotherm-GC, converted from KOM multiplied by 1.724, Briggs 1981) 
2.30 (Lincoln fine sand, calculated exptl. value, Wilson et al. 1981) 
2.23, 2.57 (Danish subsoils, Loekke 1985) 
1.63, 1.84 (two Norwegian organic soils, Seip et al. 1986) 
1.70 (soil, quoted, Sabljic 1987) 
1.95 ± 0.84, 2.02 ± 1.18; 1.99 (Captina slit loam, McLaurin sandy loam; weighted mean, batch equilibriumsorption 
isotherm, Walton et al. 1992) 
1.43 (predicted-KOW, Walton et al. 1992) 
1.51 (calculated-KOW, Kollig 1993) 
2.20 (soil, calculated-QSAR MCI 1., Sabljic et al. 1995) 
2.05, 2.16, 2.15 (RP-HPLC-k. correlation on 3 different stationary phases, Szabo et al. 1995) 
1.99, 1.84 (RP-HPLC-k. correlation including MCI related to non-dispersive intermolecular interactions, 
hydrogen-bonding indicator variable, Hong et al. 1996) 
2.20; 2.28 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
2.51, 2.03, 2.26, 2.09, 1.90 (soil: calculated-KOW; HPLC-screening method using LC-columns of different 
stationary phases, Szabo et al. 1999) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t.(calc) . 200 h from water bodies (Mackay & Leinonen 1975; quoted, Callahan et al. 1979) 
t. = 45 d was estimated in a model river 1 m deep with a 1.0 m/s current and a 3 m/s wind (Lyman et al. 
1982; quoted, Howard 1989). 
© 2006 by Taylor & Francis Group, LLC

3300 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Photolysis: aqueous photolysis t. = 67–200 d, based on measured photolysis rate constant in distilled water 
under midday sun at 40°N latitude (Simmons & Zepp 1986; Howard 1989; Howard et al. 1991); 
atmospheric photolysis t. = 67–200 d, based on measured photolysis rate constant in distilled water under 
midday sun at 40°N latitude (Simmons & Zepp 1986; quoted, Howard 1989; Howard et al. 1991); 
rate constant k = 2.37 . 10–3 h–1 with H2O2 under photolysis at 25°C in F-113 solution and with HO- in the 
gas (Dilling et al. 1988). 
Hydrolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated *data at other temperatures see reference: 
photooxidation t. = 125 d to 22 yr in water, based on measured rate constant for reaction with hydroxyl 
radical in water (Dorfman & Adams 1973; Anbar & Neta 1967; quoted, Howard et al. 1991) 
k << 360 M–1 h–1 for singlet oxygen, k << 1.0 M–1 h–1 for peroxy radical at 25°C (Mabey et al. 1982) 
k = (0.09 ± 0.02) M–1 s–1 for 5–10 mM to react with ozone in water using 50–1000 mM of t-BuOH as 
scavenger at pH 2 and 20–23°C (Hoigne & Bader 1983) 
kOH(obs.) = 0.15 . 10–12 cm3 molecule–1 s–1 at 296 K (Becker et al. 1984; quoted, Carlier et al. 1986) 
kOH = 0.21 . 10–12 cm3 molecule–1 s–1 at room temp. (Zetzsch 1982) 
kOH(calc) = 0.30 . 10–12 cm3 molecule–1 s–1 and 0.27 . 10–12 cm3 molecule–1 s–1 at room temp. (Atkinson 
1985; Atkinson et al. 1985) 
kOH* = 0.137 . 10–12 cm3 molecule–1 s–1 at 299 K, measured range 259–362 K (flash photolysis-resonance 
fluorescence, Witte et al. 1986) 
kOH(calc) = 1.1 . 10–13 cm3 molecule–1 s–1, 1.7 . 10–13 cm3 molecule–1 s–1 (addition of OH for different 
positions of the electrophilic attack, Witte et al. 1986) 
kO3 < 7 . 10–21 cm3 molecule–1 s–1 at 296 ± 2 K (relative rate method, Atkinson et al. 1987) 
kOH = 1.3 . 10–13 cm3 molecule–1 s–1 with atmospheric lifetimes . = 180 d in clean troposphere and 90 d in 
moderately polluted atmosphere; kO3 < 7 . 10–21 cm3 molecule–1 s–1 with atmospheric lifetimes . > 6 yr 
in clean troposphere and . > 2 yr in moderately polluted atmosphere at room temp. (Atkinson et al. 1987) 
kOH(calc) = 2.5 . 10–13 cm3·molecule–1 s–1, kOH(obs.) = 1.4 . 10–13 cm3·molecule–1 s–1 (SAR structure-activity 
relationship, Atkinson 1987) 
kOH = (0.16 – < 0.90) . 10–12 cm3 molecule–1 s–1 at 296 K (review, Atkinson 1989) 
phototransformation decay rate constant of 0.17 min–1 on 0.20 g/L of TiO2, 8.8 min–1 on 0.20 g/L of ZnO 
and 3.1 min–1 on 1.0 g/L of Al2O3 (Minero et al. 1994) 
Abiotic Transformation: Degradation in reductive environment: 
k = 0.187 min–1 with solute concn of 50 µM in a 19 day-old 0.2g/L magnetite suspension at pH 7 and 
1.5 mM Fe(II) at 25°C (Klusen et al. 1995) 
k = (7.39 ± 1.28) . 10–2 M–1 s–1 in H2S with (mercapto)juglone (an abiotic reductant found in natural systems) 
solution at pH 6.65 (Wang & Arnold 2003) 
Biodegradation: 
decomposition by a soil microflora in more than 64 d (Alexander & Lustigman 1966; quoted, Verschueren 1983) 
t.(aq. anaerobic) = 48–300 h, based on anaerobic natural die-away test data for 2,4-dinitrotoluene (Spanggord 
et al. 1980; quoted, Howard et al. 1991) 
k = 14 mg COD g–1 h–1 average biodegradation rate for 98% removal (Scow 1982) 
t.(aq. aerobic) = 322–4728 h, based on aerobic soil column biodegradation study data (Kincannon & Lin 
1985; quoted, Howard et al. 1991) 
t.(aerobic) = 13 d, t.(anaerobic) = 2 d in natural waters (Capel & Larson 1995) 
Biotransformation: first-order rate constant of 0.7 d–1 corresponding to a half-life of 1 d in adopted activated 
sludge under aerobic conditions (Mills et al. 1982); rate constant for bacterial transformation of 3 . 10–9 
mL cell–1 h–1 in water (Mabey et al. 1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: atmospheric lifetimes: . = 180 d in clean troposphere and . = 90 d in moderately polluted atmosphere, based 
on gas-phase reaction with OH radical in atmosphere at room temp. and atmospheric lifetimes . > 6 yr in 
clean troposphere and . > 2 yr in moderately polluted atmosphere, based on gas-phase reaction with O3 
(estimated rate constant) in atmosphere at room temp. (Atkinson et al. 1987); 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3301 
photooxidation t. = 0.544 – 5.44 h, based on measured rate constant for reaction with hydroxyl radical in 
air (Atkinson et al. 1987; quoted, Howard 1989; Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be > 5 d (Kelly et al. 1994). 
Surface water: photooxidation t. = 125 d to 22 yr, based on measured rate constant for reaction with hydroxyl 
radical in water (Dorfman & Adams 1973; Anbar & Neta 1967; quoted, Howard et al. 1991); 
estimated t. = 0.3 – 3.0 d in rivers (Zoeteman et al. 1980); 
t. = 322 – 4728 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991) 
t.(aerobic) = 13 d, t.(anaerobic) = 2 d in natural waters (Capel & Larson 1995). 
Groundwater: estimated t. = 1.0 d in Rhine River in case of a first order reduction process (Zoeteman et al. 1980) 
t. = 48 – 9456 h, based on estimated unacclimated aqueous anaerobic biodegradation half-life for 2,4- 
dinitrotoluene and estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Sediment: 
Soil: estimated degradation t. = 625 d in activated sludge (Freitag et al. 1985; quoted, Anderson et al. 1991) 
t. = 322 – 4728 h, based on aerobic soil column biodegradation study data (Kincannon & Lin 1985; quoted, 
Howard et al. 1991); 
calculated t. = 9.1 d from first-order kinetic of degradation rate in sterilized soils (Anderson et al. 1991). 
Biota: 
TABLE 16.1.4.1.1 
Reported aqueous solubilities of nitrobenzene at various temperatures 
Gross et al. 1931 Vermillion et al. 1941 Benes & Dohnal 1999 
shake flask-interferometry interferometry shake flask-UV 
t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 
15 1780 0 1660 10 1770 
30 2050 6 1700 20 1930 
30 2060 30 2060 
60 3120 40 2200 
titration .Hsol/(kJ mol–1) =5.4 ± 0.2 
30 2060 at 25°C. 
50 2640 
FIGURE 16.1.4.1.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for nitrobenzene. 
Nitrobenzene: solubility vs. 1/T 
-9.0 
-8.5 
-8.0 
-7.5 
-7.0 
0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x 
nl 
Gross et al. 1931 
Vermillion et al. 1941 
Benes & Dohnal 1999 
© 2006 by Taylor & Francis Group, LLC

3302 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.4.1.2 
Reported vapor pressures of nitrobenzene at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Kahlbaum 1898* Stull 1947 Lynch & Wilke 1960 Brown 1952 
static-manometer summary of literature data gas saturation ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
53.1 133.3 44.4 133.3 6.09 8.799 134.1 10063 
59.8 266.6 71.6 666.6 12.57 14.80 139.75 13372 
64.9 400.0 84.9 1333 12.67 13.33 143.17 16084 
69.2 533.3 99.3 2666 14.67 16.93 149.73 18692 
72.9 666.6 115.4 5333 14.72 17.73 154.61 21866 
85.4 1333.2 125.8 7999 21.37 29.06 159.77 25704 
99.1 2666.4 139.9 13332 21.54 29.33 164.45 29641 
108.2 3999.7 161.2 26664 23.12 32.26 168.72 33649 
114.9 5332.9 185.8 53329 23.14 32.26 172.96 38002 
120.0 6666.1 210.6 101325 176.48 44455 
131.1 9999.2 bp/°C 210.8 182.07 49014 
139.9 13332 mp/°C 5.7 185.70 54019 
160.5 26664 eq. 2 P/mmHg 188.90 58839 
174.5 39997 A 7.545 196.63 65426 
184.5 53329 B 2064 200.41 71843 
192.5 66661 C 230 203.88 78997 
199.5 79993 206.62 86075 
205.0 93326 209.49 92023 
208.3 101325 210.626 101322 
210.629 101330 
*complete list see ref. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3303 
FIGURE 16.1.4.1.2 Logarithm of vapor pressure versus reciprocal temperature for nitrobenzene. 
Nitrobenzene: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 
1/(T/K) 
P( gol 
S 
) aP/ 
Kahlbaum 1898 
Brown 1952 
Lynch & Wilke 1960 
Stull 1947 
b.p. = 210.8 °C m.p. = 5.7 °C 
© 2006 by Taylor & Francis Group, LLC

3304 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.4.2 2-Nitrotoluene 
Common Name: 2-Nitrotoluene 
Synonym: 1-methyl-2-nitrobenzene, o-nitrotoluene, 2-methylnitrobenzene 
Chemical Name: 2-nitrotoluene, o-nitrotoluene 
CAS Registry No: 88-72-2 
Molecular Formula: C7H7NO2, CH3C6H4NO2 
Molecular Weight: 137.137 
Melting Point (°C): 
–10.4 (Lide 2003) 
Boiling Point (°C): 
222 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.15693, 1.15232 (20°C, 25°C, Dreisbach & Martin 1949) 
1.1629 (Weast 1982–83) 
Molar Volume (cm3/mol): 
117.9 (20°C, Stephenson & Malanowski 1987) 
153.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C. Additional data at other temperatures designated * are compiled at the end 
of this section): 
652 (30°C, shake flask-interferometer, Gross et al. 1933) 
656 (quoted, Deno & Berkheimer 1960) 
< 233 (shake flask-centrifuge, Booth & Everson 1948) 
324 (Hansch et al. 1968) 
656, 2076 (quoted, predicted-KOW, Valvani et al. 1981) 
652 (30°C, Verschueren 1983) 
656, 771 (quoted, calculated-fragment const., Wakita et al. 1986) 
641; 444 (quoted exptl.; calculated-group contribution method, Kuhne et al. 1995) 
609* (20°C, shake flask-UV spectrophotometry, measured range 10–40°C, Benes & Dohnal 1999) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
23.97* (extrapolated-regression of tabulated data, Kahlbaum 1898) 
27.69* (extrapolated-regression of tabulated data, temp range 50–222.3°C, Stull 1947) 
log (P/mmHg) = 7.49454 – 2086.1/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 
3640* (115.842°C, ebulliometry, measured range 115.842–174.744°C, Dreisbach & Shrader 1949) 
log (P/mmHg) = [–0.2185 . 12239.7/(T/K)] + 8.286642; temp range 50–222.3°C (Antoine eq., Weast 1972–73) 
13.33 (20°C, Verschueren 1983) 
1.670 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 5.01415 – 967.744/(99.208 + t/°C); temp range 129.31–222.2°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
1.440 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 5.851 – 946/(96 + t/°C), temp range 129–222°C (Antoine eq., Dean 1985, 1992) 
log (PL/kPa) = 6.32043 – 1827.66/(–71.63 + T/K); temp range 402–496 K (Antoine eq., Stephenson & 
Malanowski 1987)
NO2 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3305 
24.80* (ebulliometry, average from extrapolated-Antoine eq., Aim 1994) 
log (P/mmHg) = 7.8266 – 2.9906 . 103/(T/K) + 1.1064·log (T/K) – 4.9168 . 10–3·(T/K) + 2.2375 . 10–6·(T/K)2; 
temp range 270–720 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
5.811 (exptl., Hine & Mookerjee 1975) 
4.723, 4.616 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
Octanol/Water Partition Coefficient, log KOW: 
2.30 (Leo et al. 1971; Hansch & Leo 1985) 
2.30 (HPLC-k. correlation, Deneer et al. 1987) 
2.30 (unpublished data quoted from CLOGP Database and recommended, Sangster 1989) 
2.39, 2.43, 2.58 (CPC-RV correlation, Gluck & Martin 1990) 
2.46, 2.60; 2.30 (25°C, 60°C, shake flask-UV; quoted lit. value, Kramer & Henze 1990) 
2.13 (shake flask-UV, Nakagawa et al. 1992) 
2.30 (recommended, Sangster 1993) 
2.40 ± 0.15, 2.21 ± 0.53 (solvent generated liquid-liquid chromatography SGLLC-correlation, RP-HPLC-k. 
correlation, Cichna et al. 1995) 
2.30 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 2.0 (carprinus carpio, Sasaki 1978; Kawasaki 1980) 
1.52, 1.20 (calculated-KOW, S, Lyman et al. 1982; quoted, Howard 1989) 
2.28 ± 0.06 (guppy-fat basis, Deneer et al. 1987) 
Sorption Partition Coefficient, log KOC: 
2.63, 2.09 (soil, calculated-KOW, S, Lyman et al. 1982; quoted, Howard 1989) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 21 h using Henry’s law constant for a model river 1-m deep flowing 1 m/s with a 
wind speed of 3 m/s (Lyman et al. 1982; quoted, Howard 1989). 
Photolysis: 
Oxidation: rate constant k =3.0 . 10–11 cm3 molecules–1 s–1 for the reaction with 8 . 10–5 molecules/cm3 photochemically 
produced hydroxyl radical in air (GEMS 1986; quoted, Howard 1989); rate constant 
k = 7.0 . 10–11 cm3 molecule–1 s–1 for the gas-phase reactions with OH radical at 298 K (Atkinson 1989). 
Hydrolysis: 
Abiotic Transformation: Degradation in reductive environment: 
k = 0.141 min–1 with solute concn of 50 µM in a 19 day-old 0.2g/L magnetite suspension at pH 7 and 1.5 
mM Fe(II) at 25°C (Klusen et al. 1995) 
Biodegradation: average biodegradation rate of 32.5 mg COD g–1 h–1 for 98% removal (Scow 1982). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 8 h, based on a rate constant k = 3.0 . 10–11 cm3 molecules–1 s–1 for the reaction with 8 . 10–5 
molecules/cm3 photochemically produced hydroxyl radical in air (GEMS 1986; quoted, Howard 1989). 
Surface water: estimated t. = 3.2 d in Rhine River in case of a first order reduction process (Zoeteman et al. 1980) 
midday t.(calc) = 45 min in Aucilla River water due to indirect photolysis using an experimentally 
determined reaction rate constant k = 0.92 h–1 (Zepp et al. 1984; quoted, Howard 1989); 
estimated t. = 3.2 d for a river 4 to 5 m deep, based on monitoring data (Zoeteman et al. 1980; quoted, 
Howard 1989). 
Ground water: 
Sediment: 
Soil: 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3306 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.4.2.1 
Reported aqueous solubilities of 2-nitrotoluene at 
various temperatures 
Gross et al. 1931 Benes & Dohnal 1999 
shake flask-interferometry shake flask-UV 
t/°C S/g·m–3 t/°C S/g·m–3 
15 - 10 531 
30 652 20 609 
30 688 
40 773 
.Hsol/(kJ mol–1) = 9.4 ± 0.1 
25°C 
FIGURE 16.1.4.2.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2-nitrotoluene. 
TABLE 16.1.4.2.2 
Reported vapor pressures of 2-nitrotoluene at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Kahlbaum 1898 Stull 1947 Dreisbach & Shrader 1949 Aim 1994 
static method summary of literature data ebulliometry comparative ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
81.8 666.6 50.0 133.3 129.31 6287 115.842 3640 
94.8 1333.2 79.1 666.6 134.51 7605 115.847 3639 
109.6 2666.4 93.8 1333 138.75 8851 127.245 5773 
114.8 3333.1 109.6 2666 142.43 10114 127.268 5778 
2-Nitrotoluene: solubility vs. 1/T 
-10.0 
-9.5 
-9.0 
-8.5 
-8.0 
0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x nl 
Benes & Dohnal 1999 
Gross et al. 1931 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3307 
TABLE 16.1.4.2.2 (Continued) 
Kahlbaum 1898 Stull 1947 Dreisbach & Shrader 1949 Aim 1994 
static method summary of literature data ebulliometry comparative ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
119.2 3999.7 126.3 5333 156.61 16500 137.028 8376 
122.8 4666.3 137.6 7999 185.48 42077 137.052 8375 
126.1 5333 151.5 13332 205.48 67661 144.838 11104 
131.7 6666 173.7 26664 222.15 101325 151.379 13955 
150.6 13332 197.7 53329 151.415 13946 
172.4 26664 222.3 101325 bp/°C 222.15 157.004 16843 
186.1 39997 157.028 16827 
196.0 53329 mp/°C –4.1 162.792 20322 
204.2 66661 162.840 20311 
211.3 79993 168.856 24597 
217.5 93326 168.917 24587 
220.4 101325 174.744 29405 
mp/°C –2.90 
bp/°C 222.946 
eq. 3 P/kPa 
A 6.45342 
B 1906.532 
C 65.441 
for temp range: 115–175°C 
FIGURE 16.1.4.2.2 Logarithm of vapor pressure versus reciprocal temperature for 2-nitrotoluene. 
2-Nitrotoluene: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 
1/(T/K) 
P( gol 
S 
) aP/ 
Kahlbaum 1898 
Dreisbach & Shrader 1949 
Aim 1994 
Stull 1947 
b.p. = 222 °C m.p. = -10.4 °C 
© 2006 by Taylor & Francis Group, LLC

3308 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.4.3 4-Nitrotoluene 
Common Name: 4-Nitrotoluene 
Synonym: 1-methyl-4-nitrobenzene, p-nitrotoluene, 4-methylnitrobenzene 
Chemical Name: 4-nitrotoluene, p-nitrotoluene 
CAS Registry No: 99-99-0 
Molecular Formula: CH3C6H4NO2 
Molecular Weight: 137.137 
Melting Point (°C): 
51.63 (Lide 2003) 
Boiling Point (°C): 
238.3 (Stull 1947; Weast 1982–83; Dean 1985; Howard 1989) 
Density (g/cm3 at 20°C): 
1.16278, 1.15799 (20°C, 25°C, Dreisbach & Martin 1949) 
1.392 (Dean 1985) 
Molar Volume (cm3/mol): 
124.2 (75°C, Stephenson & Malanowski 1987) 
153.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
–11.27 (Perrin 1972) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
17.15 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
50.21 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.548 (mp at 51.63°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
442 (30°C, shake flask-interferometer, Gross et al. 1933) 
< 278 (shake flask-centrifuge, Booth & Everson 1948) 
302 (Tsonopoulos & Prausnitz 1971) 
442 (30°C, Verschueren 1983) 
288 (20°C, shake flask-UV spectrophotometry, Hashimoto et al. 1984) 
307 (calculated-group contribution method, Kuhne et al. 1995) 
242* (20°C, shake flask-UV spectrophotometry, measured range 10–40°C, Benes & Dohnal 1999) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
13.98* (extrapolated-regression of tabulated data, measured range 92–237°C, Kahlbaum 1898) 
log (P/mmHg) = –2630/(T/K) + 8.025 (isoteniscope method, temp range not specified, Kobe et al. 1941) 
22.81* (extrapolated-regression of tabulated data, temp range 53.7–238.2°C, Stull 1947) 
log (P/mmHg) = 7.52323 – 2150.6/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 
8851* (147.71°C, ebulliometry, measured range 147.71–233.25°C, Dreisbach & Shrader 1949) 
0.622* (23.886°C, Knudsen effusion, measured range 297.036–309.518 K, Lenchitz & Velicky 1970) 
log (P/mmHg) = 11.5424 – 4130.0708/(T/K); temp range 297–310 K (Knudsen effusion, Lenchitz & Velicky 
1970) 
log (P/mmHg) = [–0.2185 . 11915.0/(T/K)] + 7.965025; temp range 53.7–238.3°C (Antoine eq., Weast 1972–73) 
5.50* (ebulliometry, fitted to Antoine eq., measured range 144–239°C, Ambrose & Gundry 1980) 
9.50 (extrapolated-supercooled liq., Ambrose & Gundry 1980) 
NO2 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3309 
13.33 (20°C, Verschueren 1983; quoted, Howard 1989) 
8.347 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.11507 – 1716.897/(184.543 + t/°C); temp range 147.7–233.3°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
8.38 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 6.9948 – 1720.39/(184.9 + t/°C); temp range 148–233°C (Antoine eq., Dean l985, 1992) 
0.653 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PS/kPa) = 10.6673 – 4130.07/(T/K); temp range 296–310 K (solid, Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.40605 – 2889.12/(23.37 + T/K); temp range 423–512 K (liquid, Antoine eq.-II, Stephenson & 
Malanowski 1987) 
15.18* (ebulliometry, average of extrapolated-Antoine eq., Aim 1994) 
log (P/mmHg) = 9.9641 – 2.6549 . 103/(T/K) – 0.80182·log (T/K) + 5.3926 . 10–4·(T/K) – 4.109 . 10–14·(T/K)2; 
temp range 325–736 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
5.065 (calculated, Hine & Mookerjee 1975) 
Octanol/Water Partition Coefficient, log KOW: 
2.37 (shake flask-UV, Fujita et al. 1964) 
2.40 (unpublished result, Leo et al. 1971) 
2.34 (HPLC-k. correlation, Deneer et al. 1987) 
2.42 (recommended, Sangster 1989) 
2.10, 2.05 (25°C, 60°C, shake flask-UV, Kramer & Henze 1990) 
2.61 (shake flask-UV, Nakagawa et al. 1992) 
2.37 (recommended, Sangster 1993) 
2.37 ± 0.15 (solvent generated liquid-liquid chromatography SGLLC-correlation, Cichna et al. 1995) 
2.42 (recommended, Hansch et al. 1995) 
2.18 (microemulsion electrokinetic chromatography-retention factor correlation, Poole et al. 2000) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 2.0 (Carprinus carpio, Sasaki 1978; Kawasaki 1980) 
1.57, 1.30 (calculated-KOW, S, Lyman et al. 1982; quoted, Howard 1989) 
2.37 ± 0.05 (guppy-fat basis, Deneer et al. 1987) 
Sorption Partition Coefficient, log KOC: 
2.67, 2.18 (soil, calculated-KOW, S, Lyman et al. 1982; quoted, Howard 1989) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: based on Henry’s law constant an estimated t. = 25 h was obtained for a model river of 1- m 
deep with a current of 1 m/s and wind speed of 3 m/s (Lyman et al. 1982; quoted, Howard 1989). 
Photolysis: 
Oxidation: photooxidation t. = 8.0 h in air, based on measured rate constant k = 3 . 10–11 cm3 molecule–1 s–1 at 
25°C for the reaction with photochemically produced 8 . 105 molecules/cm3 hydroxyl radical (GEMS 1986; 
quoted, Howard 1989). 
Hydrolysis: 
Abiotic Transformation: Degradation in reductive environment: 
k = 0.101 min–1 with solute concn of 50 µM in a 19 d-old 0.2g/L magnetite suspension at pH 7 and 1.5 
mM Fe(II) at 25°C (Klusen et al. 1995) 
Biodegradation: average biodegradation rate of 32.5 mg COD g–1 h–1 for 98% removal (Scow 1982). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
© 2006 by Taylor & Francis Group, LLC

3310 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Half-Lives in the Environment: 
Air: photooxidation t. = 8.0 h, based on measured rate constant of 3 . 10–11 cm3 molecule–1 s–1 at 25°C for the 
reaction with photochemically produced 8 . 105 molecules/cm3 hydroxyl radical (GEMS 1986; quoted, 
Howard 1989). 
Surface water: estimated t. = 2.7 d in Rhine River in case of a first order reduction process (Zoeteman et al. 1980) 
estimated t. = 2.7 d, based on monitoring data for a river of 4 to 5-m deep (Zoeteman et al. 1980; quoted, 
Howard 1989). 
Groundwater: 
Sediment: 
Soil: 
Biota: 
TABLE 16.1.4.3.1 
Reported aqueous solubilities of 4-nitrotoluene at 
various temperatures 
Gross et al. 1931 Benes & Dohnal 1999 
shake flask-interferometry shake flask-UV 
t/°C S/g·m–3 t/°C S/g·m–3 
15 - 10 179 
30 442 20 242 
30 322 
40 418 
.Hsol/(kJ mol–1) = 21.1 ± 0.1 
25°C 
FIGURE 16.1.4.3.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 4-nitrotoluene. 
4-Nitrotoluene: solubility vs. 1/T 
-11.0 
-10.5 
-10.0 
-9.5 
-9.0 
0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x 
nl 
Benes & Dohnal 1999 
Gross et al. 1931 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3311 
TABLE 16.1.4.3.2 
Reported vapor pressures of 4-nitrotoluene at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
1. 
Kahlbaum 1898 Stull 1947 Dreisbach & Shrader 1949 Lenchitz & Velicky 1970 
static method-manometer summary of literature data ebulliometry Knudsen effusion 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
92.3 666.6 53.7 133.3 147.71 8851 23.886 0.6218 
105.6 1333.2 85.0 666.6 151.43 10114 23.888 0.6283 
120.3 2666.4 100.5 1333 165.98 16500 26.042 0.7311 
125.7 3333 117.7 2666 197.75 42077 26.06 0.7330 
130.4 3999.7 136.0 5333 216.17 67661 28.029 0.9426 
134.4 4666 147.9 7999 233.25 101325 28.065 0.8994 
137.9 5333 163.0 13332 30.205 1.0348 
143.8 6666 186.7 26664 bp/°C 233.25 30.207 1.0423 
164.0 13332 212.5 53329 32.012 1.3291 
186.5 26664 238.3 101325 32.033 1.2987 
201.2 39997 34.16 1.6681 
212.2 53329 mp/°C 51.9 34.165 1.6551 
220.8 66661 35.348 2.3313 
228.4 79993 35.358 2.2839 
234.8 93326 36.368 2.3087 
237.7 101325 
mp/°C 51.5 
enthalpy of sublimation: 
.Hsub = 43.095 kJ mol–1 
at 25°C 
eq. 1 P/mmHg 
A 11.5424 
B 4130.0828 
2. 
Ambrose & Gundry 1980 Aim 1994 
bubble-cap ebulliometer comparative ebulliometry 
t/°C P/Pa t/°C P/Pa 
143.498 5649 128.161 3639 
148.11 7742 128.167 3639 
153.159 9254 140.078 5776 
158.081 10956 140.132 5787 
163.205 12999 150.293 8378 
168.438 15403 150.369 8400 
173.494 18066 158.455 11107 
180.103 22110 158.487 11118 
185.757 26135 165.32 13946 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3312 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.4.3.2 (Continued) 
Ambrose & Gundry 1980 Aim 1994 
bubble-cap ebulliometer comparative ebulliometry 
t/°C P/Pa t/°C P/Pa 
192.227 31460 165.32 13967 
198.564 37505 171.181 16823 
205.643 44864 171.225 16845 
212.568 54256 171.236 16848 
218.948 63659 177.246 20306 
225.722 75033 177.30 20332 
233.058 89121 183.698 24639 
238.685 101268 
239.269 102565 mp/°C 51.5 
bp/°C 238.343 
tp/°C 51.64 
bp/°C 238.675 eq. 2 P/kPa 
.Hfus = 16.81 kJ mol–1 A 6.36793 
.HV = 46.60 kJ mol–1, at bp B 1931.718 
C 68.661 
eq. 3 P/kPa for temp range: 128–184°C 
A 6.27217 
B 1682,295 
C –75.321 
for temp range: 416 to 513 K 
vapor pressure eq. for solid: 
eq. 1 P/kPa 
A 32.2514 
B 9018.0 
at triple pt P = 67.72 Pa 
at 298.15 K P = 5.5Pa 
FIGURE 16.1.4.3.2 Logarithm of vapor pressure versus reciprocal temperature for 4-nitrotoluene. 
4-Nitrotoluene: vapor pressure vs. 1/T 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
experimental data 
Lenchitz & Velicky 1970 
Stull 1947 
b.p. = 238.3 °C m.p. = 51.63 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3313 
16.1.4.4 2,4-Dinitrotoluene (DNT) 
Common Name: 2,4-Dinitrotoluene 
Synonym: dinitrotoluol, 1-methyl-2,4-dinitrobenzene, DNT 
Chemical Name: 2,4-dinitrotoluene, 1-methyl-2,4-dinitrobenzene 
CAS Registry No: 121-14-2 
Molecular Formula: C7H6N2O4, CH3C6H3(NO2)2 
Molecular Weight: 182.134 
Melting Point (°C): 
70.5 (Lide 2003) 
Boiling Point (°C): 
300 dec. (Weast 1982–83; Lide 2003) 
Density (g/cm3 at 20°C): 
1.521 (15°C, Verschueren 1983) 
Molar Volume (cm3/mol): 
175.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
–13.53 (Perrin 1972) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
58.99 (Yalkowsky & Valvani 1980) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.358 (mp at 70.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional 
data at other temperatures designated * are compiled at the end of this section): 
270 (22°C, Verschueren 1977, 1983) 
300 (22°C, Dunlap 1981) 
276; 145 (quoted exptl.; calculated-group contribution method, Kuhne et al. 1995) 
199 (25.2°C, shake flask-HPLC/UV, Phelan & Barnett 2001) 
188* (22°C, shake flask-HPLC/UV, measured range 12.4–61.8°C, Phelan & Barnett 2001) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
0.133* (59°C, Knudsen effusion, measured range 59–69°C, Lenchitz & Velicky 1970) 
0.00321 (extrapolated-Antoine eq., Lenchitz & Velicky 1970) 
log (P/mmHg) = 12.6177 – 5139.058/(T/K); temp range 331.913–342.277 K (Knudsen effusion, Lenchitz & 
Velicky 1970) 
0.0177* (20°C, gas saturation-GC/ECD, measured range 277.5–344.15 K, Pella 1977) 
0.0290 (gas saturation-GC/ECD, interpolated-Antoine eq., measured range 277.5–344.15 K Pella 1977) 
log (P/mmHg) = (13.08 ± 0.19) – (4992 ± 59)/(T/K); temp range 277.5–344.15 K (gas saturation, Pella 1977) 
0.0147 (20°C, Spanggord et al. 1980) 
0.6800 (quoted, Mabey et al. 1982) 
log (P/kPa) = 5.06336 – 1216.523/(76.54 + t/°C); temp range 100–199°C (Antoine eq. from reported exptl. data, 
Boublik et al. 1984) 
0.0296, 0.0032 (extrapolated-Antoine eq.-I, eq.-II, Stephenson & Malanowski 1987) 
log (PS/kPa) = 12.27361 – 5009.432/(T/K); temp range 277–343 K (solid, Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PS/kPa) = 11.7426 – 5139.058/(T/K); temp range 331–342 K (solid, Antoine eq.-II, Stephenson & 
Malanowski 1987)
NO2 
NO2 
© 2006 by Taylor & Francis Group, LLC

3314 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (PL/kPa) = 7.1423 – 3039/(T/K); temp range 473–572 K (liquid, Antoine eq.-III, Stephenson & Malanowski 
1987) 
log (PL/kPa) = 6.04898 – 1956.095/(–108.183 + T/K); temp range 344–572 K (liquid, Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 5.798 – 1118/(61.8 + t/°C); temp range 200–299°C (Antoine eq., Dean 1992) 
log (P/mmHg) = 11.5966 – 3.0079 . 103/(T/K) –1.6468·log (T/K) + 1.5949 . 10–3·(T/K) – 1.8722 . 10–14·(T/K)2; 
temp range 343–814 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0160 (calculated-P/C, Smith et al. 1981) 
0.4560 (calculated-P/C, Mabey et al. 1982) 
0.0878 (Smith et al. 1983; quoted, Howard 1989) 
32.23 (quoted from WERL Treatability database, Ryan et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
1.98 (shake flask, Hansch & Leo 1985) 
2.04 (HPLC-k. correlation, Deneer et al. 1987) 
1.98 (recommended, Sangster 1993) 
1.98 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.59 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
1.11, 1.76 (daphnia magna, lumbriculus variegatus, Liu et al. 1983) 
> 3.30 (selanastrum capricornutum, Liu et al. 1983) 
1.89, 0.602 (bluegill sunfish in viscera, bluegill sunfish in muscle, Liu et al. 1983) 
2.31 ± 0.03 (guppy-fat basis, Deneer et al. 1987) 
Sorption Partition Coefficient, log KOC: 
1.65 (sediment-water, calculated-KOW, Mabey et al. 1982) 
1.68 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: half-life of approximately 100 d (Mills et al. 1982). 
Photolysis: direct photolysis rate constant k = 1.6 . 10–2 h–1 for summer at 40°N latitude in water (Mabey et al. 
1982); 
aqueous photolysis t. = 23–72 h, based on measured photolysis rates in water (Mill & Mabey 1985; 
Simmons & Zepp 1986; quoted, Howard et al. 1991); 
atmospheric transformation lifetime . ~ 1–5 d (Kelly et al. 1994). 
Hydrolysis: 
Oxidation: aqueous oxidation rate constants k << 360 M–1 h–1 for singlet oxygen and k = 144 M–1 h–1 for peroxy 
radical at 25°C (Mabey et al. 1982); 
photooxidation t. = 284 – 2840 h in air, based on estimated rate constant for the reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
photooxidation t. = 3–33 h, based on measured photooxidation rates in natural waters (Spanggord et al. 
1980; Simmons & Zepp 1986; quoted, Howard et al. 1991). 
Biodegradation: aqueous anaerobic t. = 48–240 h, based on anaerobic natural water die-away test data (Spanggord 
et al. 1980; quoted, Howard et al. 1991); aqueous aerobic t. = 672–4320 h, based on aerobic natural water 
die-away test data (Spanggord et al. 1981; quoted, Howard et al. 1991). 
Biotransformation: rate constant of 1 . 10–7 mL cell–1 h–1 for bacterial transformation in water (Mabey et al. 1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3315 
Half-Lives in the Environment: 
Air: photooxidation t. = 284–2840 h, based on estimated rate constant for the reaction with hydroxyl radical in 
air (Atkinson 1987; quoted, Howard et al. 1991); 
atmospheric transformation lifetime . ~ 1–5 d (Kelly et al. 1994). 
Surface water: photooxidation t. = 3–33 h, based on measured photooxidation rates in natural waters (Spanggord 
et al. 1980; Simmons & Zepp 1986; quoted, Howard et al. 1991); 
estimated t. = 1.7 d in Rhine River in case of a first order reduction process (Zoeteman et al. 1980) 
sunlight photolysis t. ~ 42 h in pure water but ranged from 3 h to 10 h in three natural waters (Mabey 
et al. 1982). 
Groundwater: t. = 48 – 8640 h, based on estimated unacclimated aqueous anaerobic and aerobic biodegradation 
half-life (Howard et al. 1991). 
Sediment: 
Soil: t. = 672 – 4320 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Biota: 
TABLE 16.1.4.4.1 
Reported aqueous solubilities and vapor pressures of 2,4-dinitrotoluene at various temperatures and the 
coefficients for the vapor pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Aqueous solubility Vapor pressure 
Phelan & Barnett 2001 Lenchitz & Velicky 1970 Pella 1977 
shake flask-HPLC/UV Knudsen effusion gas saturation-GC 
t/°C S/g·m–3 t/°C P/Pa t/°C P/Pa 
12.4 129 58.765 0.1731 4.0 0.00164 
22.0 188 59.927 0.2073 10.0 0.0038 
21.7 182 59.927 0.2138 20.0 0.0177 
32.0 269 60.883 0.2328 30.0 0.0453 
42.0 410 62.926 0.2568 40.0 0.171 
51.0 608 62.824 0.3192 50.0 0.695 
61.8 975 64.002 0.3450 60.0 1.663 
41.2 397 65.115 0.3836 71.0 5.295 
25.2 199 67.023 0.4380 
68.10 0.4952 mp/°C 69.75–70.95 
69.127 0.5202 
eq. 1 P/mmHg 
mp/°C 71.1 A 13.08 
B 4992 
enthalpy of sublimation: 
.Hsubl = 98.324 kJ mol–1 enthalpy of sublimation: 
(at 25°C) .Hsubl = 95.81 kJ mol–1 
eq. 1 P/mmHg 
A 12.6177 
B 5139.058 
© 2006 by Taylor & Francis Group, LLC

3316 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.4.4.1 Logarithm of vapor pressure versus reciprocal temperature for 2,4-dinitrotoluene. 
2,4-Dinitrotoluene: vapor pressure vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Lenchitz & Velicky 1970 
Pella 1977 
m.p. = 70.5 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3317 
16.1.4.5 2,6-Dinitrotoluene 
Common Name: 2,6-Dinitrotoluene 
Synonym: dinitrotoluol, 1-methyl-2,6-dinitrobenzene, 2-methyl-1,3-dinitrobenzene 
Chemical Name: 2,6-dinitrotoluene, 1-methyl-2,6-dinitrobenzene 
CAS Registry No: 606-20-2 
Molecular Formula: C7H6N2O4, CH3C6H3(NO2)2 
Molecular Weight: 182.134 
Melting Point (°C): 
66.0 (Weast 1982–83; Howard 1989; Lide 2003) 
Boiling Point (°C): 
285 (Verschueren 1977; Callahan et al. 1979; Howard 1989; Lide 2003) 
Density (g/cm3 at 20°C): 
1.2833 (111°C, Weast 1982–83; Dean 1985) 
Molar Volume (cm3/mol): 
141.9 (111°C, Stephenson & Malanowski 1987) 
175.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.396 (mp at 66.0°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated.): 
180 (20°C, estimated, Mabey et al. 1982) 
300 (selected, Mills et al. 1982) 
182; 155 (quoted exptl.; calculated-group contribution method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
2.40 (29°C, Mabey et al. 1982) 
0.0756* (gas saturation-GC/ECD, fitted to Antoine eq., temp range 277.5–323.15 K, Pella 1977) 
log (P/mmHg) = (13.99 ± 0.18) – (5139 ± 52)/(T/K), temp range 277.5–323.15 K (gas saturation, Pella 1977) 
0.0756 (Howard et al. 1986; quoted, Banerjee et al. 1990) 
0.0767 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PS/kPa) = 11.9436 – 4446.22/(–21.279 + T/K); temp range 277–323 K (solid, Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.329 – 2971/(T/K); temp range 423–523 K (liquid, Antoine eq.-II, Stephenson & Malanowski 
1987) 
log (PL/kPa) = 6.70024 – 2160.968/(–93.282 + T/K); temp range 330–533 K (liquid, Antoine eq.-III, 
Stephenson & Malanowski 1987) 
0.0756, 1.008 (quoted, calculated-solvatochromic parameters, Banerjee et al. 1990) 
log (P/mmHg) = 4.372 – 380/(–43.6 + t/°C); temp range 150–260°C (Antoine eq., Dean 1992) 
log (P/mmHg) = –14.5673 – 4.2746 . 103/(T/K) + 12.904·log (T/K) – 2.380 . 10–2·(T/K) + 9.4513 . 10–6·(T/K)2; 
temp range 339–770 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C) 
0.800 (calculated-P/C, Mabey et al. 1982) 
32.23 (quoted from WERL Treatability database, Ryan et al. 1988) 
0.022 (SOGC 1987; quoted, Howard 1989) 
NO2 O2N 
© 2006 by Taylor & Francis Group, LLC

3318 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
1.72 (shake flask, Hansch & Leo 1985) 
2.02 (HPLC-k. correlation, Deneer et al. 1987) 
2.02 (shake flask-HPLC, Leggett et al. 1992) 
2.07 (shake flask-UV, Nakagawa et al. 1992) 
2.06 (recommended, Sangster 1993) 
2.10 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
3.72 (algal biomass, Davis et al. 1981) 
1.71 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
1.08 (calculated-KOW, Lyman et al. 1982; quoted, Howard 1989) 
2.44 ± 0.04 (guppy-fat basis, Deneer et al. 1987) 
Sorption Partition Coefficient, log KOC: 
1.96 (sediment-water, calculated-KOW, Mabey et al. 1982) 
2.31 (soil, calculated-KOW, Lyman et al. 1982; quoted, Howard 1989) 
1.40 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. ~ 100 d (Mills et al. 1982). 
Photolysis: aqueous photolysis t. = 17–25 h, based on measured photolysis rates in water (Simmons & Zepp 
1986; Mill & Mabey 1985; quoted, Howard et al. 1991) 
89% was photo-transformed in 24 h and none left after 72 h from seawater solution under UV light (Nipper 
et al. 2004). 
Hydrolysis: 
Oxidation: aqueous oxidation rate constants k << 360 M–1 ± h 1 for singlet oxygen and k = 144 M–1 h–1 for peroxy 
radical at 25°C (Mabey et al. 1982); 
photooxidation t. = 2–17 h in water, based on measured photooxidation rates in natural waters (Simmons 
& Zepp 1986; quoted, Howard et al. 1991); 
photooxidation t. = 284–2840 h, based on estimated rate constant for the reaction with hydroxyl radical in 
air (Atkinson 1987; quoted, Howard et al. 1991). 
Biodegradation: aqueous anaerobic t. = 48–300 h, based on anaerobic natural water die-away test data for 
2,4-dinitrotoluene; aqueous aerobic t. = 672–4320 h, based on aerobic natural water die-away test data 
(Spanggord et al. 1981; quoted, Howard et al. 1991). 
Biotransformation: k = 1 . 10–10 mL cell–1 h–1 for bacterial transformation in water (Mabey et al. 1982) 
Biotransformation in marine sediments: all broken down in 28 d when incubated at 10°C, and in 7 d when 
incubated at 20°C in the sandy sediment; degraded by days 7 and 3 for incubation at 10 and 20°C, 
respectively, in fine-grained sediment (Nipper et al. 2004). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: estimated atmospheric t. = 8 h, based on the vapor phase reaction with hydroxyl radical in air (GEMS 
1985; quoted, Howard 1989); photooxidation t. = 284 – 2840 h, based on estimated rate constant for the 
reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: midday t. ~ 12 min in Aucilla river due to indirect photolysis using experimentally determined 
rate constant k = 3.6 h–1 (Zepp et al. 1984); 
photooxidation t. = 2 – 17 h in water, based on measured photooxidation rates in natural waters (Simmons 
& Zepp 1986; quoted, Howard et al. 1991) 
89% was photo-transformed in 24 h and none left after 72 h from seawater solution under UV light (Nipper 
et al. 2004). 
Ground water: t. = 48 – 8640 h, based on estimated unacclimated aqueous anaerobic biodegradation half-life 
2,4-dinitrotoluene and estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3319 
Sediment: degraded by days 28 and 7 for incubation at 10 and 20°C, respectively, in sandy marine sediment; 
degraded by days 7 and 3 for incubation at 10 and 20°C, respectively, in fine-grain sediment (Nipper et al. 
2004) 
Soil: t. = 672 – 4320 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
TABLE 16.1.4.5.1 
Reported vapor pressures of 2,6-dinitrotoluene at 
various temperatures 
Pella 1977 
gas saturation-GC 
t/°C P/Pa 
4.0 0.00342 
10.0 0.0107 
20.0 0.0383 
30.0 0.147 
40.0 0.483 
50.0 1.718 
mp/°C 57.25–57.75 
eq. 1 P/mmHg 
log P = A – B/(T/K) 
A 13.99 
B 5139 
enthalpy of sublimation: 
.Hsubl = 98.324 kJ mol–1 
FIGURE 16.1.4.5.1 Logarithm of vapor pressure versus reciprocal temperature for 2,6-dinitrotoluene. 
2,6-Dinitrotoluene: vapor pressure vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Pella 1977 
m.p. = 66 °C 
© 2006 by Taylor & Francis Group, LLC

3320 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.4.6 2,4,6-Trinitrotoluene (TNT) 
Common Name: 2,4,6-Trinitrotoluene 
Synonym: TNT 
Chemical Name: 2,4,6-trinitrotoluene 
CAS Registry No: 118-96-7 
Molecular Formula: C7H5N3O6, (NO2)3C6H2CH3 
Molecular Weight: 227.131 
Melting Point (°C): 
80.5 (Lide 2003) 
Boiling Point (°C): 
240 explodes (Weast 1982–83; Dean 1992; Lide 2003) 
Density (g/cm3): 
1.654 (20°C, Weast 1982–83; Dean 1992) 
Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
137.3 (20°C, calculated-density) 
187.1 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.285 (mp at 80.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional 
data at other temperatures designated * are compiled at the end of this section): 
120* (20°C, shake flask, measured range 0.30–99.5°C, Taylor & Rinkenbach 1923) 
85.8 (21°C, Hale et al. 1979) 
104* (20°C, temp range 10–30°C, Spanggord et al. 1983) 
200 (15°C, Verschueren 1983) 
100 (Dean 1992) 
101.5* (average value at pH < 9.1, shake flask-HPLC/UV, measured range 6–42°C, Ro et al. 1996) 
101.6, 100.5, 110.5 (pH 3.5, pH 6.8, pH 9.1, shake flask-HPLC/UV spectrophotometry, Ro et al. 1996) 
ln [S/(mg L–1)] = 16.12 – 3413/(T/K), temp range 6–42°C, (pH < 8, shake flask-HPLC/spec., Ro et al. 1996) 
115* (23.02°C, shake flask-HPLC/UV, measured range 13.6–61°C, Phelan & Barnett 2001) 
99.85* 97.7* 99.9* (20°C, pH 4.2, 5.7, 6.2, shake flask-HPLC/UV, measured range 2.3–38°C, Lynch et al. 2001) 
ln [S/(mg L–1)] = 16.981 – 3607.5/(T/K); temp range 2.3–38°C (composite solubility prediction correlation, shake 
flask-HPLC/UV measurements, Lynch et al. 2001) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
0.352* (53°C, Knudsen effusion, measured range 50–143°C, Edwards 1950) 
log (PS/cmHg) = 14.34 – 6180/(T/K); range 50–81°C (solid, Knudsen effusion, Edwards 1950) 
log (PL/cmHg) = 10.90 – 4960/(T/K); range 81–143°C (liquid, Knudsen effusion, Edwards 1950) 
0.0568* (54.756°C, Knudsen effusion, measured range 55–76°C, Lenchitz & Velicky 1970) 
log (P/mmHg) = 13.0776 – 5400.536/(T/K); temp range 55–76°C (Knudsen effusion, Lenchitz & Velicky 1970) 
0.00107* (gas saturation-GC/ECD, measured range 287.15–329.65 K, Pella 1977) 
log (P/mmHg) = (12.31 ± 0.34) – (5175 ± 105)/(T/K), temp range 287.15–329.65 K (gas saturation, Pella 1977) 
log (P/kPa) = 7.36331 – 3199.923/(248.004 + t/°C); temp range 230–250°C (liquid, Antoine eq. from reported 
exptl. data, Boublik et al. 1984) 
0.00078 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987) 
NO2 
NO2 
O2N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3321 
log (PS/kPa) = 13.596 – 5874.238/(T/K); temp range 293–353 K (solid, Antoine eq.-I, Stephenson & Malanowski 
1987) 
log (PS/kPa) = 12.2025 – 5400.536/(T/K); temp range 337–350 K (solid, Antoine eq-II., Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.40336 – 2191.85/(–121.43 + T/K); temp range 353–523 K (liquid, Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 7.67152 – 2669.4/(205.6 + t/°C); temp range 230–250°C (Antoine eq., Dean 1992) 
log (P/mmHg) = 6.3156 – 2.6756 . 103/(T/K) – 4.6215·log (T/K) + 6.1747 . 10–9·(T/K) – 2.3743 . 10–12·(T/K)2; 
temp range 354–518 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
1.60 (shake flask, Log P Database, Hansch & Leo 1987) 
1.8 (shake flask-HPLC, Leggett et al. 1992) 
1.73 (recommended, Sangster 1993) 
2.05 (estimated-SPARC, Elovitz & Weber 1999) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.09 (aquatic oligochaete Tubifex tubifex, Conder et al. 2004) 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 14 h in summer, t. = 22–84 h in winter in pure water and photolyzed very rapidly in natural 
waters (Mabey et al. 1983) 
photocatalytic degradation rates of TNT in a circular photocatalytic reactor using a UV lamp as a light source 
and TiO2 as a photocatalyst: 1) at different initial TNT concns: k = 0.0989 min–1 with t. = 7.07 min at initial 
concn of 10 mg/L; k = 0.0644 min–1 with t. = 10.76 min at initial concn of 20 mg/L; k = 0.0405 min–1 with 
t. = 17.11 min at initial concn of 30 mg/L; k = 0.0269 min–1 with t. = 25.77 min at initial concn of 50 
mg/L; and k = 0.0165 min–1 with t. = 42.01 min at initial concn of 100 mg/L. 2) at different pH: k = 0.0173 
min–1 with t. = 27.6 min at pH 3.0; k = 0.0422 min–1 with t. = 20.1 min at pH 7.0 and k = 0.0451 min–1 
with t. = 21.5 min at pH 11.0 (Son et al. 2004) 
Photooxidation: 
Hydrolysis: 
Biodegradation: 95% disappearance within 2 h under aerobic conditions, and complete loss within 10 min under 
anaerobic conditions in sediment-water systems (Elovitz & Weber 1999) 
Biotransformation: 100 % biotransformed when incubated at both 10 and 20°C in 7 d in fine-grain sediment; 
in sandy sediment although some picric acid could still be measured after 28 d of incubation at 10°C, none 
left after 56 d of incubation at 20°C (Nipper 2004) 
Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 
Half-Lives in the Environment: 
Air: 
Surface water: photolysis t. = 14 h in summer, t. = 22–84 h in water in pure water, less than 1/2 h in some 
natural waters (Mabey et al. 1983) 
photocatalytic degradation t. = 7.07 min to 42.1 min for different initial concn of TNT from 10- 100 mg/L, and 
t. = 27.1 – 21.5 min at pH 3.0–7.0 in a circular reactor, using a UV lamp as a light source and TiO2 as a 
photocatalyst (Son et al. 2004) 
Ground water: 
Sediment: rapid disappearance 95% within 2 h, of TNT in an aerobic sediment-water system; under anaerobic 
conditions, TNT loss was complete within 10 min (Elovitz & Weber 1999) 
© 2006 by Taylor & Francis Group, LLC

3322 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
100 % biotransformed when incubated at both 10 and 20°C in 7 d in fine-grain sediment; in sandy sediment 
although some picric acid could still be measured after 28 d of incubation at 10°C, none left after 56 d 
of incubation at 20°C (Nipper 2004) 
Soil: 
Biota: steady-state concn reached within 1-h in uptake experiments, and TNT depuration after a 24-h exposure 
occurred completely by 3 h (aquatic oligochaete, Conder et al. 2004) 
TABLE 16.1.4.6.1 
Reported aqueous solubilities of 2,4,6-trinitrotoluene (TNT) at various temperatures 
ln S = A – B/(T/K) (1) 
1. 
Taylor & Rinkenbach ‘23 Spanggord et al. 1983 Ro et al. 1996 Phelan & Barnett 2001 
shake flask shake flask-HPLC/UV shake flask-HPLC/UV 
t/°C S/g·m–3 t/°C S/g·m–3 t/°C pH S/g·m–3 t/°C S/g·m–3 
average* 
0.30 110 10 67 6 3.7 52.5 13.9 86 
5.9 113 20 104 6 6.9 51.3 23.02 115 
20.0 120 30 165 12 6.9 64.0 33.3 191 
33.1 203 13 3.7 72.2 42.6 266 
44.2 340 13 6.9 64.4 51.8 427 
45.0 370 20 4.2 86.2 61.0 641 
53.0 534 20 7.3 88.5 33.2 191 
57.15 614 20 9.2 96.8 13.6 90 
73.25 963 20 9.4 95.7 13.6 92 
94.4 1375 20 10.1 91.2 
99.5 1467 21 3.5 74.5 
21 6.8 82.5 
average of 3 sets of data 21 9.1 88.2 
25 3.5 101.6 
25 6.8 100.5 
25 9 110.5 
42 4.0 204.9 
42 6.8 204.5 
42 9.3 167.6 
ln [S/(mg/L)] = 16.12 – 3413/(T/K) 
for pH < 8 
2. 
Lynch et al. 2001 
shake flask-HPLC/UV 
t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 
pH 4.2 pH 5.7 pH 6.2 
2.3 49.5 2.3 54.5 2.4 55.0 
2.3 50.5 2.2 54.2 2.4 56.4 
2.6 54.9 2.3 47.5 2.4 54.9 
2.6 55.7 2.3 47.3 2.4 55.4 
4.2 57.6 4.1 47.9 4.7 56.7 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3323 
TABLE 16.1.4.6.1 (Continued) 
Lynch et al. 2001 
shake flask-HPLC/UV 
t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 
4.2 57.7 4.1 48.2 4.7 57.4 
4.2 45.7 4.6 58.1 5.2 56.7 
4.2 48.4 4.6 59.1 5.2 56.1 
20 100.7 20 96.7 20 99.6 
20 99.0 20 98.7 20 100.2 
20 99.2 20.1 98.9 20.1 99.5 
20 101.7 20.1 100.6 20.1 96.3 
20.1 96.3 20.2 98.8 20.1 99.5 
20.1 95.9 20.2 99.8 20.1 99.8 
20.1 96.0 20.2 97.5 20.2 94.6 
20.1 97.8 20.2 100.4 20.2 97.2 
36 211.7 35.7 208.5 35.9 216.5 
36 213.1 35.7 213.5 35.9 213.9 
36 208.5 36 215.2 36 212.2 
36 211.6 36 214.3 36 215.3 
37.7 219.6 37.7 229.7 37.6 229.4 
37.7 219.4 37.7 230.6 37.6 231.4 
37.8 218.2 37.7 226.2 38 234.4 
37.8 214.8 37.7 228.3 38 235 
eq. 1 S/(mg L–1) eq. 1 S/(mg L–1) eq. 1 S/(mg L–1) 
A 22.741 A 22.399 A 23.244 
B 6332 B 6230 B 6506.8 
composite correlation eq. : ln [S/(mg L–1) = 16981 – 3607.5/(T/K); temp range 2.3–38°C 
FIGURE 16.1.4.6.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2,4,6-trinitrotoluene. 
2,4,6-Trinitrotoluene (TNT): solubility vs. 1/T 
-12.5 
-12.0 
-11.5 
-11.0 
-10.5 
-10.0 
-9.5 
0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x nl 
Taylor & Rinkenbach 1923 
Spanggord et al. 1983 
Phelan & Barnett 2001 
© 2006 by Taylor & Francis Group, LLC

3324 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.4.6.2 
Reported vapor pressures of 2,4,6-trinitrotoluene (2,4,6-TNT) at various temperatures and the coefficients 
for the vapor pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Edwards 1950 Lenchitz & Velicky 1970 Pella 1977 
Knudsen method Knudsen effusion gas saturation-GC 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
53.0 0.0352 54.756 0.0568 14.0 0.000302 
60.1 0.0724 59.704 0.0935 19.0 0.000412 
60.8 0.0843 64.853 0.1613 25.0 0.00107 
61.5 0.0915 70.02 0.3118 25.3 0.00128 
61.0 0.0829 72.469 0.3665 26.5 0.00170 
72.1 0.4146 72.493 0.3409 35.0 0.00676 
72.1 0.4186 75.065 0.5142 40.0 0.00887 
78.5 0.8586 65.91 0.1811 45.0 0.0143 
78.5 0.7839 68.933 0.2342 50.0 0.0243 
78.3 0.8293 73.981 0.4453 55.0 0.0446 
79.8 0.8733 76.057 0.5796 56.5 0.05406 
80.2 0.9546 
82.4 1.0612 mp/°C 81.1 mp/°C 80.15–81.25 
86.9 1.5865 
99.5 5.2529 enthalpy of sublimation: eq. 2 P/mmHg 
99.5 5.4262 .Hsubl = 120.92 kJ mol–1 A 12.31 
110.6 11.012 (at 25°C) B 5175 
110.5 10.612 
131.5 46.396 eq. 1 P/mmHg enthalpy of sublimation: 
141.4 82.793 A 13.0776 .Hsubl = 99.161 kJ mol–1 
142.0 87.728 B 5400.536 
142.5 82.260 
For solid: 
eq. 1 P/cmHg 
A 14.34 
B 6180 
.Hsubl = 118.41 kJ mol–1 
For liquid: 
eq. 1 P/cmHg 
A 10.90 
B 4960 
.Hsubl = 94.98.34 kJ mol–1 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3325 
FIGURE 16.1.4.6.2 Logarithm of vapor pressure versus reciprocal temperature for 2,4,6-trinitrotoluene. 
2,4,6-Trinitrotoluene: vapor pressure vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Edwards 1950 
Lenchitz & Velicky 1970 
Pella 1977 
b.p. =240 °C explodes b.p. = 80.5 °C 
© 2006 by Taylor & Francis Group, LLC

3326 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.4.7 1-Nitronaphthalene (.-Nitronaphthalene) 
Common Name: 1-Nitronaphthalene 
Synonym: .-nitronaphthalene 
Chemical Name: 1-nitronaphthalene, .-nitronaphthalene 
CAS Registry No: 86-57-7 
Molecular Formula: C10H7NO2 
Molecular Weight: 173.169 
Melting Point (°C): 
61 (Lide 2003) 
Boiling Point (°C): 
304.0 (Weast 1982–83; Dean 1985; Stephenson & Malanowski 1987) 
Density (g/cm3 at 20°C): 
1.3320 (Weast 1982–83) 
1.2230 (Dean 1985) 
Molar Volume (cm3/mol): 
176.1 (calculated-Le Bas method at normal boiling point) 
135.8 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
17.99 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
54.39 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.443 (mp at 61°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
50.0 (Aqueous Solubility Database, Yalkowsky et al. 1987) 
9.82 (generator column-HPLC/UV, Yu & Xu 1992) 
9.83 (calculated-molar concentration, Yu & Xu 1992) 
50; 34.6 (quoted exptl.; calculated-group contribution method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
0.202 (effusion method-fitted to Antoine eq., Radchenko & Kitiagorodskii 1974) 
0.202 (solid, extrapolated-Antoine eq.-I, Stephenson & Malanowski 1987) 
0.184 (liquid, extrapolated-Antoine eq.-III, Stephenson & Malanowski 1987) 
log (PS/kPa) = 8.31261 – 3579.698/(T/K); temp range 309–326 K (solid, Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PS/kPa) = 13.223 – 5584/(T/K); temp range 325–332 K (solid, Antoine eq.-II, Stephenson & Malanowski 
1987) 
log (PL/kPa) = 7.8959 – 3468.4/(T/K); temp range 332–580 K (liquid, Antoine eq.-III, Stephenson & Malanowski 
1987) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
3.463 (calculated-P/C with selected values) 
0.178 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
3.19 (Hansch & Leo 1979) 
3.19 (shake flask, Hansch & Leo 1987) 
NO2 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3327 
3.19 (shake flask-UV, Debnath & Hansch 1992) 
3.19 (recommended, Sangster 1993) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: measured photolysis rate constant are: 15.9 . 10–4 s–1 in a 6400-L indoor all-Teflon chamber under 
blacklamp irradiation and 1.37 . 10–4 s–1 outdoor in a 1000-L all-Teflon chamber under natural solar 
irradiation (Atkinson et al. 1989); 
photolysis rate kphot = 1.5 . 10–4 s–1 with a half-life of 1.7 h (Arey et al. 1990) 
Hydrolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = (5.4 ± 1.8) . 10–12 cm3 molecule–1 s–1; kNO3 . 7.2 . 10–15 cm3 molecule–1 s–1, kO3 < 6.0 . 10–19 cm3 
molecule–1 s–1 and kN2O5 = 1.3 . 10–18 cm3 molecule–1 s–1 with N2O5 and at 298 ± 2 K in the atmosphere 
(Atkinson et al. 1989) 
kOH = 5.4 . 10–12 cm3 molecule–1 s–1 with calculated lifetime of 2.9 d; kNO3 . 7.2 . 10–15 cm3 molecule–1 s–1 
with calculated lifetime of –13 d, kO3 < 6.0 . 10–19 cm3 molecule–1 s–1 with a lifetime of > 28 d and 
kN2O5 = 1.3 . 10–18 cm3 molecule–1 s–1 with N2O5 a calculated lifetime of 2.4 yr at 298 ± 2 K in the 
atmosphere (Arey et al. 1990) 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: calculated lifetime of ~2 h based on measured outdoor photolysis rate and rate constants the gas-phase 
reactions (Atkinson et al. 1989); 
photolysis t. = 1.7 h using an average 12-h daytime NO2 photolysis rate k = 5.2 . 10–3 s–1 – a dominant 
atmospheric loss process; calculated lifetimes of 2.9 d, –13 d, > 28 d and 2.4 yr due to reactions with 
OH radial, NO3 radical, O3 and N2O5 (Arey et al. 1990) 
© 2006 by Taylor & Francis Group, LLC

3328 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.5 AMIDES AND UREAS 
16.1.5.1 Acetamide 
Common Name: Acetamide 
Synonym: ethanamide 
Chemical Name: acetamide, acetic acid amine 
CAS Registry No: 60-35-5 
Molecular Formula: C2H5NO, CH3CONH2 
Molecular Weight: 59.067 
Melting Point (°C): 
80.16 (Lide 2003) 
Boiling Point (°C): 
221 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9986 (78°C, Weast 1982–83) 
1.159 (Verschueren, 1983) 
Molar Volume (cm3/mol): 
59.2 (calculated-density, Stephenson & Malanowski 1987) 
66.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 7.62 
Enthalpy of Vaporization, .HV (kJ/mol): 
56.1 (at bp, Riddick et al. 1986) 
Enthalpy of Sublimation, .Hsubl (kJ/mol): 
78.66 (25°C, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
17.707 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.288 (mp at 80.16°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
975000 (20°C, Verschueren 1983) 
408000 (20°C, Riddick et al. 1986) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
8.61 (extrapolated-regression of tabulated data, temp range 65–222°C, Stull 1947) 
log (P/mmHg) = [–0.2185 . 14025.3/(T/K)] + 9.088352; temp range 65.0–222°C (Antoine eq., Weast 1972–73) 
100 (Riddick et al. 1986) 
log (P/kPa) = 8.24516 – 3282.80/(T/K); temp range 65–150°C (Antoine eq., Riddick et al. 1986) 
log (P/kPa) = 7.93409 – 2936.07/(T/K); temp range 65–bp (Antoine eq., Riddick et al. 1986) 
2.44 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PS/kPa) = 10.9717 – 4050.1/(T/K); temp range 298–349 K (solid, Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.97079 – 1998.3/(–89.32 + T/K); temp range 381–492 K (liquid, Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = –413.1683 + 8.1328 . 103/(T/K) + 172.9·log (T/K) – 0.16059·(T/K) + 5.3892 . 10–5·(T/K)2; 
temp range 354–761 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
3.53 . 10–4 (calculated-P/C with selected values) 
Octanol/Water Partition Coefficient, log KOW: 
–1.09 (shake flask-radiochemical method, Cornford 1982) 
O 
NH2 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3329 
–1.26 (shake flask, Log P Database, Hansch & Leo 1987) 
–1.26 (shake flask-GC, Sotomatsu et al. 1987) 
–1.26 (recommended Sangster 1989, 1993) 
–1.23 (calculated-QSAR, Kollig 1993) 
–1.26 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
–1.55 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: photooxidation t. = 3.2–32 h in air, based on estimated rate constant for the vapor-phase reaction 
with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Hydrolysis: overall rate constant kh = 5.5 . 10–12 s–1 with t. = 3950 yr; acid rate constant kA = 8.36 . 10–6 s–1 
and base rate constant kB = 5.5 . 10–5 s–1 at 25°C and pH 7 (Mabey & Mill 1978) 
acid rate constant k = 0.03 [M ± (H+) ± h]–1 at pH 5 and base rate constant k = 0.17 [M ± (OH–) ± h]–1 at 
pH 9 with first-order hydrolysis t. = 3950 yr at pH 7 and 25°C, (Mabey & Mill 1978; quoted, Howard 
et al. 1991). 
Biodegradation: aqueous aerobic biodegradation t. = 24–168 h, based on aerobic aqueous screening test data 
(Malaney & Gerhold 1962, 1969; Urano & Kato 1986; quoted, Howard et al. 1991); aqueous anaerobic 
biodegradation t. = 96–672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 3.2–32 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: t. = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Groundwater: t. = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Sediment: 
Soil: t. = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3330 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.5.2 Acrylamide 
Common Name: Acrylamide 
Synonym: 2-propenamide 
Chemical Name: acrylamide 
CAS Registry No: 79-06-1 
Molecular Formula: C3H5NO, CH2=CHCONH2 
Molecular Weight: 71.078 
Melting Point (°C): 
84.5 (Lie 2003) 
Boiling Point (°C): 
192.5 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.122 (30°C, Dean 1985) 
Molar Volume (cm3/mol): 
80.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.261 (mp at 84.5°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
2050000 (quoted, Verschueren 1983) 
2150000 (30°C, Dean 1985) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
0.616 (average, extrapolated-Antoine eq.-I and II, Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.395 – 3213/(/K), temp range 357–413K (Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 10.31055 – 3994.667/(T/K), temp range 373–413 K (Antoine eq.-II, Stephenson & Malanowski 1987) 
log (P/mmHg) = 17.0034 – 4.4434 . 103/(T/K) –1.7158·log (T/K) + 2.0063 . 10–6·(T/K) – 8.0394 . 10–10·(T/K)2; 
temp range 358–477 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pam3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
–0.90 (shake flask, Fujisawa & Masuhara 1980, 1981) 
–1.24 (calculated-HPLC-RT correlation, Fujisawa & Masuhara 1981) 
–0.67 (shake flask, Log P Database, Hansch & Leo 1987) 
–0.78 (recommended, Sangster 1989) 
–0.67 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
–0.969 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Surface water: measured rate constant k = (1.0 ± 0.1) . 105 M–1 s–1 for direct reaction with ozone in water at pH 
5.4–5.8 and 22 ± 1°C, with t. = 0.3 s at pH 7 (Yao & Haag 1991). 
O 
NH2 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3331 
16.1.5.3 Benzamide 
Common Name: Benzamide 
Synonym: benzoylamide 
Chemical Name: benzamide 
CAS Registry No: 55-21-0 
Molecular Formula: C7H7NO, C6H5CONH2 
Molecular Weight: 121.137 
Melting Point (°C): 
127.3 (Lide 2003) 
Boiling Point (°C): 
290 (Lide 2003) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
112.2 (130°C, Stephenson & Malanowski 1987) 
132.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0992 (mp at 127.3°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
13500 (20–25°C, shake flask-gravimetric method, Dehn 1917) 
13499 (Tsonopoulos & Prausnitz 1971) 
13490 (Windholz 1983) 
13515 (1 g in 74 mL, Budavari 1989) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
0.00522 (extrapolated, Antoine eq., Stephenson & Malanowski 1987) 
log (PS/kPa) = 11.69847 – 5062.899/(T/K), temp range 325–342 K (solid, Antoine eq., Stephenson & Malanowski 
1987) 
Henry’s Law Constant (Pam3/mol at 25°C): 
4.52 . 10–5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
0.64 (shake flask-UV, Fujita et al. 1964) 
0.65 (shake flask, Leo et al. 1971; Hansch & Leo 1979; Hansch & Leo 1987) 
0.66 (shake flask-UV, Yaguzhinskii et al.1973) 
0.84 (HPLC-k. correlation, Hammers et al. 1982) 
0.64 (shake flask-UV, Sotomatsu et al. 1987) 
0.50 (centrifugal partition chromatography CPC, Berthod et al. 1988) 
0.81 (RP-HPLC-RT correlation, ODS column with masking agent, Bechalany et al. 1989) 
0.64 (recommended, Sangster 1989, 1993) 
0.65 (counter-current chromatography, Vallat et al. 1990) 
0.65 (CPC-RV correlation, El Tayar et al. 1991) 
0.64 (shake flask-GC, Alcorn et al. 1993) 
0.64 (recommended, Hansch et al. 1995) 
NH2 
O 
© 2006 by Taylor & Francis Group, LLC

3332 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
0.954; 1.301; 1.756 (sediment; Alfisol soil; Podzol soil, von Oepen et al. 1991) 
1.46 (soil, quoted exptl., Meylan et al. 1992) 
1.71 (soil, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
1.46 (soil, mean value, Kordel et al. 1993) 
1.46 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.46; 1.71 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
1.87, 2.17, 1.12, 1.36, 1.645 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1998) 
1.46, 1.22; 2.18, 1.75, 1.88, 1.83, 1.31 (soil: quoted lit., calculated-KOW; HPLC-screening method using LCcolumns 
of different stationary phases, Szabo et al. 1999) 
1.747, 1.358, 1.236 (second generation of European reference soil set, Eurosoils ES-1, ES-3, ES-5, shake 
flask/batch equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: aqueous photooxidation t. = 960–7.4 . 104 h, based on measured rates for reaction with OH radical 
in water (Anbar et al. 1966; Dorfman and Adams 1973; selected, Howard et al. 1991); 
photooxidation t. = 3.1 – 31 h in air, based on estimated rate constant for the vapor-phase reaction with 
hydroxyl radicals in air (Atkinson et al. 1987; selected, Howard et al. 1991). 
Hydrolysis: not expected to be significant based on estimated half-lives for hydrolysis of acetamide of 261, 3950, 
and 46 yr at pH 5,7,9, respectively, which were calculated using experimental acid and base hydrolysis rate 
constants for acetamide (Mabey & Mill 1978; selected, Howard et al. 1991). 
Biodegradation: aqueous aerobic biodegradation t. = 48 – 360 h, and aqueous anaerobic biodegradation 
t. = 192 – 1400 h, both based on grab sample aerobic soil column test data (Fournier & Salle 1974; selected, 
Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 3.1 – 31 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl 
radical in air (Atkinson et al. 1987; selected, Howard et al. 1991). 
Surface water: t. = 48 – 360 h, based on grab sample aerobic soil column test data (Fournier & Salle 1974; 
selected, Howard et al. 1991). 
Ground water: t. = 96 – 720 h, based on grab sample aerobic soil column test data (Fournier & Salle 1974; 
selected, Howard et al. 1991). 
Sediment: 
Soil: t. = 48 – 360 h, based on grab sample aerobic soil column test data (Fournier & Salle 1974; selected, 
Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3333 
16.1.5.4 Urea 
Common Name: Urea 
Synonym: carbamide, carbonyldiamide, Aquacare, Aqiadrate, Basodexam, Keratinamin, Nutraplus, Onychomal, 
Pastaron, Ureaphil, Ureophil, Ureapearl 
Chemical Name: urea, carbamide, carbonyldiamide 
CAS Registry No: 57-13-6 
Molecular Formula: CH4N2O, H2NCONH2 
Molecular Weight: 60.055 
Melting Point (°C): 
133 (Lide 2003) 
Boiling Point (°C): 
decompose (Weast 1982–83; Lide 2003) 
Density (g/cm3): 
1.323 (Weast 1982–83) 
Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
58.0 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol ± K), F: 0.0872 (mp at 133°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
975000* (shake flask, measured range 0–69.5°C, Speyers 1902) 
790000 (20–25°C, shake flask-gravimetric method, Dehn 1917) 
1047000* (20°C, shake flask, measured range 0–70°C, Pinck & Kelly 1925) 
53.97 wt %* (23.85°C, synthetic method, measured range 18.72–73.11°C, Shnidman & Sunier 1932) 
log x = – 609.8/(T/K) + 1.468; temp range 20–70°C (synthetic method, Shnidman & Sunier 1932) 
0.4388* (60°C, mole fraction solubility, synthetic method, measured range 60–100°C, Kakinuma 1941) 
997400 (W indholz 1983) 
1000000 (Dean 1985; Budavari 1989) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
1.61 . 10–3 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PS/kPa) = 9.565 – 4579/(T/K); temp range 345–368 K (solid, Antoine eq., Stephenson & Malanowski 1987) 
Henry’s Law Constant (Pam3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
–1.09 (Hansch & Leo 1979) 
–3.00 (Kenaga & Goring 1980) 
–1.21, –1.79 to –0.62 (shake flask method: mean, range of mean values, OECD 1981) 
–1.54 (shake flask-radiochemical method, Cornford 1982) 
–1.57 (HPLC-RT correlation, Harnish et al. 1983) 
–1.56 (shake flask, OECD 1981 Guidelines, Geyer et al. 1984) 
–1.66, –2.11 (shake flask, Log P Database, Hansch & Leo 1987) 
–1.60 (shake flask-UV, pH 7.4, Huang 1990) 
–2.11 (from Medchem software value, Chessells et al. 1992) 
–2.11 (recommended, Sangster 1993) 
–1.66 (Hansch et al. 1995) 
O 
H2N NH2 
© 2006 by Taylor & Francis Group, LLC

3334 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
4.068 (alga chlorella fusca, wet wt. basis, Geyer et al. 1984) 
–0.10 (alga chlorella fusca, calculated-KOW, Geyer et al. 1984) 
Sorption Partition Coefficient, log KOC: 
0.50, 0.62 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
0.90 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Half-Lives in the Environment: 
TABLE 16.1.5.4.1 
Reported aqueous solubilities of urea at various temperatures 
Speyers 1902 Shnidman & Sunier 1932 Kakinuma 1941 
re-calcd by Pinck & Kelly synthetic method-heating -shake flask synthetic method 
t/°C S/g·m–3 t/°C wt % x t/°C wt % x t/°C x 
urea 1# urea 2# 
0 674000 18.72 51.10 0.2387 21.59 52.80 0.2513 60 0.4388 
11.0 875000 26.80 55.37 0.2712 23.85 53.97 0.2602 65 0.4610 
19.8 975000 27.31 55.83 0.2740 30.38 57.51 0.2888 70 0.4903 
31.7 1310000 35.42 59.94 0.3099 35.15 59.97 0.3102 75 0.5204 
51.4 1930000 37.36 60.87 0.3183 41.11 62.95 0.3377 80 0.6617 
69.5 2530000 43.94 64.19 0.3489 43.85 64.31 0.3510 85 0.5843 
46.56 65.39 0.3618 54.97 69.53 0.4065 90 0.6190 
54.77 69.33 0.4041 55.88 70.10 0.4131 95 0.6542 
67.02 70.38 0.4163 69.13 71.49 0.4294 100 0.6910 
.Hsol/(kJ mol–1) 61.76 72.59 0.4428 63.79 73.64 0.4561 
25°C 73.11 77.57 0.5093 70.49 76.60 0.4956 log x = A –B/(T/K) 
A 1.5314 
mp/°C 132.7 mp/°C 132.6 B 631.86 
Pinck & Kelly 1925 mole fraction solubility expressed as: 
shake flask log x = – 609.8/(T/K) + 1.468; temp range 20–70°C 
t/°C S/g·m–3 
0 670000 
10.0 840000 
20.0 1047000 
30.0 1360000 
39.7 1654000 
50.0 2050000 
50.6 2064000 
60.0 2460000 
68.5 2950000 
70.0 3146000 
urea 1# – urea made by synthetic NH2 + CO2 process—re-crystallized from water 
urea 2# – urea made from calcium-cyanamid — re-crystallized from water and methanol 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3335 
FIGURE 16.1.5.4.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for urea. 
Urea: solubility vs. 1/T 
-2.5 
-2.0 
-1.5 
-1.0 
-0.5 
0.0 
0.5 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x nl 
Speyers 1902 
Pinck & Kelly 1925 
Shnidman & Sunier 1932 
Kakinuma 1941 
© 2006 by Taylor & Francis Group, LLC

3336 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.6 NITROSAMINES 
16.1.6.1 N-Nitrosodimethylamine 
Common Name: Dimethylnitrosoamine 
Synonym: N-nitrosodimethylamine, N-methyl-N-nitrosomethanamine, nitrous dimethylamine 
Chemical Name: dimethylnitrosoamine, N-nitrosodimethylamine 
CAS Registry No: 62-75-9 
Molecular Formula: C2H6N2O, CH3N(NO)CH3 
Molecular Weight: 74.081 
Melting Point (°C): 
Boiling Point (°C): 
152 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.005 (18°C, Verschueren 1983) 
Molar Volume (cm3/mol): 
73.7 (10°C, Stephenson & Malanowski 1987) 
87.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
< 1.0 (Kollig 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Mirvish et al. 1976) 
Vapor Pressure (Pa at 25°C and the reported temperature dependence equations): 
1080 (Mabey et al. 1982) 
730 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.10632 – 2159.476/(T/K), temp range 309–423 K (Antoine eq., Stephenson & Malanowski 1987) 
Henry’s Law Constant (Pam3/mol at 25°C): 
3.344 (calculated, Mabey et al. 1982) 
Octanol/Water Partition Coefficient, log KOW: 
0.06 (Radding et al. 1977) 
–0.57 (shake flask-UV, Singer et al. 1977) 
–0.68 (calculated-f const., Mabey et al. 1982) 
0.46 (30.5°C, shake flask-HPLC, Vera et al. 1992) 
0.76 (calculated, Kollig 1993) 
–0.57 (recommended, Sangster 1993) 
–0.57 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
–0.96 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
Sorption Partition Coefficient, log KOC: 
–1.00 (sediment-water, calculated-KOW, Mabey et al. 1982) 
0.448 (calculated-KOW, Kollig 1993) 
NO 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3337 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: both aqueous and atmospheric photolysis t. = 0.5–1.0 h, based on measured rate of photolysis in 
the vapor phase under sunlight (Hanst et al. 1977; quoted, Howard et al. 1991). 
Hydrolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
rate constants k < 3600 M–1 h–1 for singlet oxygen, and k < 3600 M–1 h–1 for peroxy radical at 25°C (Mabey 
et al. 1982); 
kOH = 3.0 . 10–12 cm3 molecule–1 s–1 and kO3 . 1 . 10–20 cm3 molecule–1 s–1 at 298 K (Tuazon et al. 1984); 
photooxidation t. = 25.4–254 h in air, based on measured rate constant for the reaction with OH radical in 
air (Howard et al. 1991); 
kOH = (2.53 – 3.6) . 10–12 cm3 molecule–1 s–1 for the gas-phase reactions with OH radical at 296–298 K 
(Atkinson 1989). 
Biodegradation: aqueous aerobic t. = 504–4320 h, based on aerobic soil die-away test data; and aqueous anaerobic 
t. = 2016–17280 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (derived from 
results of Tate & Alexander 1975; and Oliver et al. 1979; Howard et al. 1991). 
Biotransformation: rate constant for bacterial transformation k = 3 . 10–12 mL ± cell–1 ± h–1 in water (Mabey 
et al. 1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.5–1.0 h, based on measured rate of photolysis in the vapor phase under sunlight (Hanst et al. 1977; 
quoted, Howard et al. 1991); 
estimated photolysis t. ~ 5 min, t. = 3 d for reaction with OH radical and t. > 2 yr for reaction with O3 
(Tuazon et al. 1984); 
photooxidation t. = 25.4–254 h, based on measured rate constant for the reaction with OH radical in air 
(Atkinson 1985; quoted, Howard et al. 1991). 
Surface water: t. = 0.5–1.0 h, based on measured rate of photolysis in the vapor phase under sunlight (Hanst 
et al. 1977; quoted, Howard et al. 1991). 
Groundwater: t. = 1008–8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: 
Soil: degradation t. ~ 3 wk in 4 aerobic soils (shake flask-GC, Oliver et al. 1979) 
t. = 504–4320 h, based on aerobic soil die-away test data (derived from data of Tate & Alexander 1975 
and Oliver et al. 1979, Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3338 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.6.2 N-Nitrosodipropylamine 
Common Name: Di-n-Propylnitrosoamine 
Synonym: N-nitrosodi-n-propylamine, N-nitroso-N-propyl-1-propanamine 
Chemical Name: di-n-propylnitrosoamine, N-nitrosodi-n-propylamine 
CAS Registry No: 621-64-7 
Molecular Formula: C6H14N2O, CH3CH2CH2N(NO)CH2CH2CH3 
Molecular Weight: 130.187 
Melting Point (°C): 
Boiling Point (°C): 
206 (Lide 2003) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
176.5 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C): 
9900 (Mirvish et al. 1976) 
Vapor Pressure (Pa at 25°C): 
53.33 (37°C, calculated-Troutin’s rule, Mabey et al. 1982) 
Henry’s Law Constant (Pam3/mol at 25°C): 
0.638 (calculated-P/C, Mabey et al. 1982) 
0.355 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.31 (calculated as per Leo et al. 1971 from Mirvish et al. 1976 data, Callahan et al. 1979) 
1.36 (shake flask-UV, Singer et al. 1977) 
1.49 (calculated-f const., Mabey et al. 1982) 
2.35 (30.5°C, shake flask-HPLC, Vera et al. 1992) 
2.45 (recommended, Sangster 1993) 
1.35 (Kollig 1993) 
1.36 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
0.99 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
Sorption Partition Coefficient, log KOC: 
1.18 (sediment-water, calculated-KOW, Mabey et al. 1982) 
1.09 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: both aqueous and atmospheric photolysis t. = 0.17–1.0 h, based on measured rate of photolysis in 
the vapor phase under sunlight (Oliver 1981; quoted, Howard et al. 1991). 
Hydrolysis: 
NO 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3339 
Oxidation: rate constants in water for singlet oxygen k < 3600 M–1 h–1 and for peroxy radical k < 3600 M–1 h–1 
at 25°C (Mabey et al. 1982); 
photooxidation t. = 2.66–26.6 h in air, based on estimated rate constant for the reaction with hydroxyl 
radicals in air (Howard et al. 1991). 
Biodegradation: aqueous aerobic t. = 504–4320 h, based on aerobic soil die-away test data, and aqueous anaerobic 
t. = 2016–17280 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (derived rom 
results of Tate & Alexander 1975 and Oliver et al. 1979, Howard et al. 1991). 
Biotransformation: rate constant for bacterial biotransformation k ~ 3 . 10–12 mL ± cell–1 ± h–1 in water (Mabey 
et al. 1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 2.66–26.6 h, based on estimated rate constant for the reaction with hydroxyl radicals 
in air (Howard et al. 1991). 
Surface water: t. = 0.17–1.0 h, based on measured rate of photolysis in the vapor phase under sunlight (Oliver 
1981; quoted, Howard et al. 1991). 
Groundwater: t. = 1008–8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: 
Soil: degradation t. ~ 3 wk in 4 aerobic soils (shake flask-GC, Oliver et al. 1979) 
t. = 504 – 4320 h, based on aerobic soil die-away test data (derived from results of Tate & Alexander 1975 
and Oliver et al. 1979, Howard et al. 1991). 
Biota 
© 2006 by Taylor & Francis Group, LLC

3340 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.6.3 Diphenylnitrosoamine 
Common Name: Diphenylnitrosoamine 
Synonym: N-nitrosodiphenylamine, N-nitroso-N-phenylbenzamine 
Chemical Name: diphenylnitrosoamine, N-nitrosodiphenylamine 
CAS Registry No: 86-30-6 
Molecular Formula: C12H10N2O, C6H5N(NO)C6H5 
Molecular Weight: 198.219 
Melting Point (°C): 
66.5 (Weast 1982–83; Lide 2003) 
Boiling Point (°C): 
151–153 (Windholz 1976; Callahan et al. 1979) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
220.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.392 (mp at 66.5°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
35.1 (shake flask-LSC, Banerjee et al. 1980) 
40.0 (calculated-S, Mabey et al. 1982) 
Vapor Pressure (Pa at 25°C): 
13.33 (estimated, Mabey et al. 1982) 
Henry’s Law Constant (Pam3/mol at 25°C): 
66.87 (calculated-P/C, Mabey et al. 1982) 
Octanol/Water Partition Coefficient, log KOW: 
3.13 (shake flask-LSC, Banerjee et al. 1980;) 
3.13 (recommended, Sangster 1993) 
3.13 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.63 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
2.34 (quoted, Isnard & Lambert 1988) 
Sorption Partition Coefficient, log KOC: 
2.81 (sediment-water, calculated-KOW, Mabey et al. 1982) 
2.84 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
NO 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3341 
Oxidation: rate constants in water for singlet oxygen k < 3600 M–1 h–1 and for peroxy radical k < 3600 M–1 ± h–1 
at 25°C (Mabey et al. 1982); 
photooxidation t. = 0.70 – 7.0 h in air, based on measured rate constant for the reaction with hydroxyl 
radicals in air (Howard et al. 1991). 
Biodegradation: aqueous aerobic t. = 240 – 816 h, based on data from one soil-die-away test; a range was 
bracketed around the reported t. = 22 d (Mallik & Tesfai 1981; quoted, Howard et al. 1991); aqueous 
anaerobic t. = 960 – 3264 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Biotransformation: rate constant for bacterial transformation k = 1 . 10–10 mL ± cell–1 ± h–1 in water (Mabey 
et al. 1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 0.70 – 7.0 h, based on estimated rate constant for the reaction with hydroxyl radicals 
in air (quoted, Howard et al. 1991). 
Surface water: t. = 240 – 816 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Groundwater: t. = 480 – 1632 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: 
Soil: t. = 240 – 816 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3342 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7 HETEROCYCLIC COMPOUNDS 
16.1.7.1 Pyrrole 
Common Name: Pyrrole 
Synonym: 1H-pyrrole 
Chemical Name: pyrrole, 1H-pyrrole 
CAS Registry No: 109-97-7 
Molecular Formula: C4H4NH 
Molecular Weight: 67.090 
Melting Point (°C): 
–23.39 (Lide 2003) 
Boiling Point (°C): 
129.79 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9691 (Weast 1982–83; Dean 1985) 
0.96985, 0.96565 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
69.2 (20°C, calculated-density, Stephenson & Malanowski 1987) 
78.2 (calculated-Le Bas method at normal boiling point 
Dissociation Constant, pKa: 
–4.40 (Perrin 1972) 
–3.80 (Riddick et al. 1986) 
–4.10 (Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
45.15, 38.75 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
7.908 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
47000 (Dean 1985) 
45000 (Riddick et al. 1986) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
358285* (176.67°C, static-Bourdon gauge, measured range 176.67–271.11°C, Kobe et al. 1956) 
1102* (ebulliometry, extrapolated-Antoine eq., measured range 65.67–166°C, Scott et al. 1967; Osborn & 
Douslin 1968) 
log (P/mmHg) = 7.30295 – 1507.015/(t/°C + 211.010); temp range 65.67–166°C (Antoine eq., ebulliometry, 
Scott et al. 1967) 
log [(P/atm) = [1 – 402.914 ± (T/K)] . 10^{0.870073 – 5.43768 . 10–4 ± (T/K) + 4.16086 . 10–7 ± (T/K)2}, 
temp range: 65.67–166°C (ebulliometric method, Cox eq., Scott et al. 1967) 
log (P/mmHg) = 7.30275 – 1506.877/(t/°C + 210.995), temp range 65.57–166°C (ebulliometric method, Antoine 
eq., Scott et al. 1967; Osborn & Douslin 1968) 
log [(P/atm) = [1 – 402.915 ± (T/K)] . 10^{0.872196 – 5.54923 . 10–4 ± (T/K) + 4.30369 . 10–7 ± (T/K)2}, 
temp range: 65.57–166°C (ebulliometric method, Cox eq., Osborn & Douslin 1968) 
8386* (60.3°C, isoteniscope method, measured range 60.3–100.3°C, Eon et al. 1971) 
1136 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 402.916/(T/K)] . 10^{0.880256 – 6.05913 . 10–4 ± (T/K) + 5.02726 . 10–7 ± (T/K)2}; temp 
range: 250.0–635.0 K (Cox eq., Chao et al. 1983) 
NH 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3343 
1100 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.42113 – 1502.586/(129.775 + t/°C); temp range 65.67–166°C (Antoine eq. from exptl. data of 
Scott et al. 1967, Boublik et al. 1984) 
1100 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.29470 – 1501.56/(210.42 + t/°C); temp range 66–166°C (Antoine eq., Dean l985, 1992) 
1100 (quoted lit., Riddick et al. 1986) 
log (P/kPa) = 6.42765 – 1506.877/(210.995 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
1103 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.42263 – 1504.171/(–62.39 + T/K); temp range 338–440 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 54.1597 – 4.2745 . 103/(T/K) –15.873·log (T/K) – 4.5171 . 10–10·(T/K) + 4.2338 . 10–6·(T/K)2; 
temp range 250–640 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
1.640 (calculated-P/C with selected values) 
Octanol/Water Partition Coefficient, log KOW at 25°C or as indicated 
0.75 (shake flask-AS, Hansch & Anderson 1967; Leo et al. 1971; Hansch & Leo 1979) 
0.62 (HPLC-RV correlation, Garst 1984) 
0.82 (23°C, shake flask-HPLC, De Voogt et al. 1988) 
0.80 (23°C, TLC-RT correlation, De Voogt et al. 1990) 
0.75 (recommended, Sangster 1989, 1993) 
0.75 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression 
see reference: 
kOH = (1.22 ± 0.04) . 10–10 cm3 molecule–1 s–1 at 295 K (relative rate method, Atkinson et al. 1984) 
kO3 = 1.6 . 10–17 cm3 ± molecule–1 s–1 with loss rate of 1.0 d–1, kOH = 1.2 . 10–10 cm3 molecule–1 s–1 with 
loss rate of 10 d–1 and kNO3 = 4.9 . 10–11 cm3 molecule–1 s–1 with loss rate of 1000 d–1 (review, Atkinson 
& Carter 1984) 
kO3 = 1.6 . 10–17 cm3 ± molecule–1 s–1 with loss rate of 1.0 d–1, kOH = 1.2 . 10–10 cm3 molecule–1 s–1 with 
loss rate of 5.2 d–1 and kNO3 = 4.9 . 10–11 cm3 molecule–1 s–1 with loss rate k = 1000 d–1 (review, Atkinson 
1985) 
kNO3 = (4.9 ± 1.1) . 10–11 cm3 molecule–1 s–1 at 295 ± 1 K (relative rate method, Atkinson et al. 1985) 
kO3 = 1.6 . 10–17 cm3 ± molecule–1 s–1 with calculated tropospheric lifetime . = 24 h, kOH = 1.2 . 10–10 cm3 
molecule–1 s–1 with .(calc) = 2.3 h during daylight hours, kNO3 = 4.9 . 10–11 cm3 molecule–1 s–1 with 
.(calc) = 1.4 min during nighttime hours at room temp. (Atkinson et al. 1985) 
kOH = 1.2 . 10–10 cm3 molecule–1 s–1 with a loss rate of 5.2 d–1 at room temp. (Atkinson 1985) 
kOH* = (1.03 ± 0.06) . 10–10 cm3 molecule–1 s–1 at 298 K, measured range 298–442 K (flash photolysisresonance 
fluorescence, Wallington et al. 1988) 
kOH* = 9.31 . 10–10 cm3 molecule–1 s–1 at 298 K, measured range 298–442 K (flash photolysis-resonance 
fluorescence, Atkinson 1989) 
kOH = 1.10 . 10–12 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1989) 
kOH(calc) = 287.45 . 10–12 cm3 molecule–1 s–1 (molecular orbital calculations, Klamt 1993) 
Hydrolysis: 
© 2006 by Taylor & Francis Group, LLC

3344 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: calculated lifetimes of 2.3 h, 1.4 min and 24 h due to gas-phase reactions with OH radical (concn of 
1 . 106 cm–3 during daylight hours), No3 radical (conc of 2.4 . 106 cm–3 during nighttime hours) and O3 
(clean tropospheric conc of 7.2 . 1011 molecule cm–3), respectively, at room temp. (Atkinson et al. 
1985) 
TABLE 16.1.7.1.1 
Reported vapor pressures of pyrrole at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Kobe et al. 1956 Scott et al. 1967 Eon et al. 1971 
static-Bourdon gauge ebulliometry isoteniscope/manometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
176.67 358285 65.671 9582 60.3 8386 
182.22 399626 68.522 10884 70.3 13025 
187.78 454747 71.374 12335 80.3 19732 
193.33 509867 77.098 15740 90.3 29198 
198.89 571878 79.970 17725 100.3 42263 
204.44 647669 82.847 19920 
210.00 730351 88.622 25007 .HV/(kJ mol–1) = 41.84 
215.56 806142 94.422 31160 
221.11 895713 100.244 38547 
226.67 992174 106.096 47359 
232.22 1081746 111.972 57803 
237.78 1185097 117.875 70109 
243.33 1309119 123.806 84525 
248.89 1440031 129.764 101325 
254.44 1564053 135.753 120798 
260.00 1715635 141.768 143268 
265.56 1867217 147.812 169052 
271.11 2032580 153.884 198530 
159.984 232087 
166.109 270110 
eq. 2 P/mmHg 
A 7.30295 
B 1507.015 
C 210.010 
bp/°C 129.764 
.HV/(kJ mol–1) = 45.10 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3345 
FIGURE 16.1.7.1.1 Logarithm of vapor pressure versus reciprocal temperature for pyrrole. 
Pyrrole: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 
1/(T/K) 
P( gol 
S 
) aP/ 
Kobe et al. 1956 
Scott et al. 1967 
Eon et al. 1971 
b.p. =129.79 °C 
© 2006 by Taylor & Francis Group, LLC

3346 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.2 Indole 
Common Name: Indole 
Synonym: benzo[b]pyrrole, 1-benzo[b]pyrrole, 1H-indole 
Chemical Name: indole 
CAS Registry No: 120-72-9 
Molecular Formula: C8H7N 
Molecular Weight: 117.149 
Melting Point (°C): 
52.5 (Weast 1982–83; Lide 2003) 
Boiling Point (°C): 
254.0 (Weast 1982–83; Stephenson & Malanowski 1987) 
253.6 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.2200 (Weast 1982–83) 
1.0643 (Dean 1985) 
Molar Volume (cm3/mol): 
133.4 (calculated-Le Bas method at boiling point) 
Dissociation Constant, pKa: 
–3.5, –3.62 (Perrin 1972) 
–3.17 (Sangster 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus J/mol K: 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.537 (mp at 52.5°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
3558 (shake flask-GC, Price 1976) 
1874 (Pearlman et al. 1984) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
2.24 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.369 – 1933.005/(254.707 + t/°C); temp range 193.3–254.7°C (Antoine eq., Boublik et al. 1984) 
1.565 (calculated-Antoine eq., Stephenson & Malanowski 1987) 
log (PS/kPa) = 10.3289 – 3916/(T/K); temp range 291–319 K, (solid, Antoine eq., Stephenson & Malanowski 
1987) 
log (P/mmHg) = 94.1625 – 6.9431 . 103/(T/K) – 30.613·log (T/K) + 9.928 . 10–3·(T/K) + 1.7461 . 10–13·(T/K)2; 
temp range 274–790 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pam3/mol at 25°C): 
0.14 (calculated-P/C with selected values) 
Octanol/Water Partition Coefficient, log KOW: 
1.14 ± 0.01 (shake flask-UV, Iwasa et al. 1965) 
2.14 (shake flask-UV, Hansch & Anderson 1967) 
2.25 (shake flask-UV at pH 7.4, Rogers & Cammarata 1969) 
2.00 (unpublished result, Leo et al. 1971) 
2.00, 2.25, 2.13 ( Hansch & Leo 1979) 
1.66 (RP-HPLC-RT correlation, Veith et al. 1979a) 
2.17 (RP-HPLC-RT correlation, Hanai & Hubert 1982) 
2.14 (inter-laboratory studies, shake flask average, Eadsforth & Moser 1983) 
NH 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3347 
1.92 (inter-laboratory studies, HPLC average, Eadsforth & Moser 1983) 
2.16 ± 0.03 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
1.81 (HPLC-k. correlation, Eadsforth 1986) 
2.16 (HPLC-RT correlation, Minick et al. 1988) 
2.14 (recommended, Sangster 1989; 1993) 
2.27 (23°C, shake flask-HPLC, De Voogt et al. 1988, 1990) 
2.07 (HPLC-RT correlation, De Voogt et al. 1990) 
2.19 (HPLC-RT correlation, Ritter et al. 1994) 
2.14 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants or Half-Lives: 
Half-Lives in the Environment: 
© 2006 by Taylor & Francis Group, LLC

3348 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.3 Pyridine 
Common Name: Pyridine 
Synonym: 
Chemical Name: pyridine 
CAS Registry No: 110-86-1 
Molecular Formula: C5H5N 
Molecular Weight: 79.101 
Melting Point (°C): 
–41.7 (Lide 2003) 
Boiling Point (°C): 
115.23 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9819 (Weast 1982–83) 
Molar Volume (cm3/mol): 
80.6 (calculated-density, Rohrschneider 1973) 
93.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
5.23 (pKa, Leo et al. 1971; Jori et al. 1983; Zachara et al. 1987) 
5.198, 5.21, 5.22, 5.229 (Perrin 1972) 
5.54 (UV, Yeh & Higuchi 1976) 
5.23, 5.16 (quoted, shake flask-TN, Clarke 1984) 
5.17 (pKBH 
+ , Dean 1985; Riddick et al. 1986) 
5.21 (pKa, Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
40.41, 36.39 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
7.414 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Andon & Cox 1952; Andon et al. 1954; Jori et al. 1983; Riddick et al. 1986) 
miscible (Dean 1985; Zachara et al. 1987; Stephenson 1993a) 
miscible (Yaws et al. 1990) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
2666* (24.8°C, summary of literature data, temp range –18.9 to 115.4°C, Stull 1947) 
2520 (interpolated-regression of tabulated data, Stull 1947) 
620, 2109 (0, 20°C, static method-tensimeter, Brown & Barbaras 1947) 
2775* (ebulliometry, measured range 47.3–115.5°C, extrapolated-Antoine eq., Herington & Martin 1953) 
log (P/mmHg) = 7.05811 – 1384.991/(216.296 + t/°C); temp range 47.3–115.5°C (Antoine eq., ebulliometric 
measurements, Herington & Martin 1953) 
2774* (gas saturation, measured range 20–40°C, Andon et al. 1954) 
461637* (176.67°C, static-Bourdon gauge, measured range 176.67–343.33°C, Kobe et al. 1956) 
19920* (67.299°C, comparative ebulliometry, measured range 67.299–152.886°C, McCullough et al. 1957) 
log (P/mmHg) = 7.04162 – 1374.103/(215.014 + t/°C); temp range 67.3–152.9°C (Antoine eq. ebulliometry, 
McCullough et al. 1957) 
2763* (ebulliometry, calculated-Antoine eq., Osborn & Douslin 1968) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3349 
log (P/mmHg) = 7.04144 – 1373.990/(t/°C + 215.001); temp range 67.3–152.9°C (ebulliometric method, Antoine 
eq., Osborn & Douslin 1968) 
log [(P/atm) = [1 – 399.384 ± (T/K)] . 10^{0.856586 – 6.60597 . 10–4 ± (T/K) + 5.93625 . 10–7 ± (T/K)2}, 
temp range: 67.3–152.9°C (ebulliometric method, Cox eq., Osborn & Douslin 1968) 
2789 (calculated-Antoine eq., Cabani et al. 1971) 
log (P/mmHg) = [–0.2185 . 9649.4/(T/K)] + 8.347670; temp range –18.9 to 115.4°C (Antoine eq., Weast 
1972–73) 
2767 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 388.399/(T/K)] . 10^{0.848882 – 6.09810 . 10–4 ± (T/K) + 5.15399 . 10–7 ± (T/K)2}; temp 
range: 235.0–620.0 K (Cox eq., Chao et al. 1983) 
2775, 2763 (extrapolated-Antoine equations, Boublik et al. 1984) 
log (P/kPa) = 6.18358 – 1385.39/(115.256 + t/°C); temp range 47.3–115.47°C (Antoine eq. from reported exptl. 
data of Herington & Martin 1953, Boublik et al. 1984) 
log (P/kPa) = 6.16609 – 1373.826/(115.235 + t/°C); temp range 67.3–152.9°C (Antoine eq. from reported exptl. 
data of McCullough et al. 1957, Boublik et al. 1984) 
2763 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.04115 – 1373.80/(214.98 + t/°C); temp range 67–153°C (Antoine eq., Dean l985, 1992) 
2773 (Howard et al. 1986; quoted, Banerjee et al. 1990) 
2700 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.18595 – 1386.683/(216.469 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
2770 (interpolated-Antoine eq. II, Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.17372 – 1379.953/(–57.436 + T/K); temp range 323–426 K (Antoine eq. I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.30308 – 1448.781/(–50.948 + T/K); temp range 296–353 K (Antoine eq. II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.16446 – 1373.263/(–58.18 + T/K); temp range 348–434 K (Antoine eq. III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.284 – 1455.584/(–48.272 + T/K); temp range 431–558 K (Antoine eq. IV, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.25663 – 2578.625/(115.604 + T/K); temp range 552–620 K (Antoine eq. V, Stephenson & 
Malanowski 1987) 
2773, 1653 (measured, calculated-solvatochromic parameters, Banerjee et al. 1990) 
2573* (24.82°C, ebulliometry, measured range 23.55–116.23°C, Lencka 1990) 
ln (P/kPa) = 14.1480 – 3132.3/[(T/K) – 59.179); temp range 295.7–388.4 K (ebulliometric measurements, 
Antoine eq., Lencka 1990) 
log (P/mmHg) = 33.5541 – 3.1318 . 103/(T/K) –8.8646·log (T/K) + 7.1293 . 10–12·(T/K) + 2.2813 . 10–6·(T/K)2; 
temp range 232–620 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.895 (volatility ratio-transpiration method, Andon et al. 1954) 
0.900 (exptl., Hine & Mookerjee 1975) 
0.595, 0.766 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
1.114 (modified gas-stripping, Hawthorne et al. 1985) 
1.120 (computed, Yaws et al. 1991) 
0.305 (calculated-molecular structure, Russell et al. 1992) 
27.78 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = –1.508 – 128/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
0.65 (shake flask-UV, Iwasa et al. 1965) 
0.64 (Gehring et al. 1967) 
0.65, 0.64 (Leo et al. 1971; Hansch & Leo 1979) 
0.66 (HPLC-RT correlation, Mirrlees et al. 1976) 
0.63 ± 0.02 (shake flask at pH 7, Unger et al. 1978) 
0.63 (shake flask-titration, Clarke 1984; Clarke & Cahoon 1987) 
© 2006 by Taylor & Francis Group, LLC

3350 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.63 ± 0.06 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
0.62 (shake flask-UV at pH 7.4, El Tayar et al. 1984) 
0.63 (shake flask-potentiometric titration, Clarke 1984) 
0.54 (calculated- activity coeff. . from UNIFAC, Campbell & Luthy 1985) 
1.28 (HPLC-k. correlation, Eadsforth 1986) 
0.79 (calculated-. from UNIFAC, Banerjee & Howard 1988) 
0.70 (shake flask-CPC, Berthod et al. 1988) 
0.63 (shake flask-HPLC at pH 7, De Voogt et al. 1988, 1990) 
0.65 (recommended, Sangster 1989, 1993) 
0.70 (RP-TLC-RT correlation, De Voogt et al. 1990) 
0.65 (shake flask-UV, Yamagami et al. 1990) 
0.60 (pH 7.2, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
–1.805 (estimated of Anvil Points subsurface materials, Zachara et al. 1987) 
–2.541 (estimated of Loring subsurface materials, Zachara et al. 1987) 
0.340 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, Half-Lives, t. 
Volatilization: 
Photolysis: 
Oxidation: rate constant k; for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated *data at other temperatures see reference: 
photooxidation t. = 14.7–24.4 yr in water, based on measured rate data for the reaction with hydroxyl radical 
in aqueous solution (Dorfman & Adams 1973; selected, Howard et al. 1991) 
kOH = (4.9 ± 0.4) . 10–13 cm3 molecule–1 s–1 with atmospheric lifetimes of 46 d in clean troposphere and 
23 d in moderately polluted atmosphere; kO3 < 1.1 . 10–20 cm3 molecule–1 s–1 with atmospheric lifetimes 
of > 4 yr in clean troposphere and > 1.3 yr in moderately polluted atmosphere at room temp. (relative 
rate method, Atkinson et al. 1987) 
kOH = (0.494 - 0.256) . 10–12 cm3 molecule–1 s–1 at 296–297 K (review, Atkinson 1989) 
kOH(calc) = 0.45 . 10–12 cm3 molecule–1 s–1 at room temp. (molecular orbital calculations, Klamt 1993) 
Hydrolysis: 
Biodegradation: aqueous aerobic t. = 24–168 h, based on unacclimated grab sample of aerobic soil (Sims & 
Sommers 1985; quoted, Howard et al. 1991); aqueous anaerobic t. = 168–672 h, based on anaerobic 
acclimated screening test data (Naik et al. 1972; selected, Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: atmospheric lifetimes of 46 d in clean troposphere and 23 d in moderately polluted atmosphere, based on 
the gas-phase reaction with hydroxyl radical in air at room temp. and > 4 yr in clean troposphere and > 1.3 yr 
in moderately polluted atmosphere, based on the gas-phase reaction with O3 (calculated rate constant) in 
air at room temp. (Atkinson et al. 1987); 
photooxidation t. = 128–1284 h, based on measured rate data for the reaction with hydroxyl radical in air 
(selected, Howard et al. 1991). 
Surface water: photooxidation t. = 14.7–24.4 yr, based on measured rate data for the reaction with hydroxyl 
radical in aqueous solution (Dorfman & Adams 1973; selected, Howard et al. 1991); 
t. = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Groundwater: t. = 48–336 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Sediment: 
Soil: disappears in less than 7 d in soil suspensions (Sims & O’Loughlin 1989); 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3351 
t. = 24–168 h, based on unacclimated grab sample of aerobic soil (Sims & Sommers 1985; selected, Howard 
et al. 1991). 
Biota: 
TABLE 16.1.7.3.1 
Reported vapor pressures of pyridine at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
log P = A[1 – B/(T/K)] (5) where log A = a – b(T/K) + c(T/K)2 
1. 
Stull 1947 Herington & Martin 1953 Andon et al. 1954 Kobe et al. 1956 
summary of literature data ebulliometry gas saturation static-Bourdon gauge 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–18.9 133.3 47.327 8506 20 2109 176.67 461637 
2.50 666.6 52.71 10820 25 2774 182.22 502988 
13.2 1333 58.349 13806 40 6013 187.78 564988 
24.8 2666 68.403 20805 193.33 633889 
38.0 5333 75.77 27592 198.89 702790 
46.8 7999 82.43 35246 204.44 778581 
57.8 13332 82.728 35597 210.00 868153 
75.0 26664 88.459 43472 215.56 950834 
95.6 53329 92.749 50279 221.11 1047295 
115.4 101325 100.994 65759 226.67 1157537 
105.356 75351 232.22 1267778 
mp/°C –42 107.169 79679 237.78 1378020 
110.028 86860 243.33 1495152 
113.222 95488 248.89 1632954 
113.232 95536 254.44 1763866 
113.374 95905 260.00 1908558 
114.015 97713 265.56 2067030 
114.699 99692 271.11 2232392 
115.112 100914 276.67 2397755 
115.287 101402 282.22 2590678 
115.407 101758 287.78 2790491 
115.473 101977 293.33 2997194 
298.89 3183226 
bp/°C 115.256 304.44 3438160 
.HV/(kJ mol–1) = 36.39 310.00 3672423 
Antoine eq. 315.56 3941137 
eq. 2 P/mmHg 321.11 4216741 
A 7.05811 326.67 4478565 
B 1384.991 332.22 4774839 
C 216.296 337.78 5084894 
343.33 5429399 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3352 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.7.3.1 (Continued) 
2.
McCullough et al. 1957 Osborn & Douslin 1968 Lencka 1990 
comparative ebulliometry ebulliometry ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
67.299 19920 67.299 19920 23.55 2394 
75.154 25007 73.154 25007 24.82 2573 
79.045 31160 79.054 31160 27.0 2902 
84.847 38547 84.974 38547 29.26 3290 
90.946 47359 90.946 47359 31.63 3720 
96.958 57803 96.958 57803 35.86 4626 
103.008 70109 103.008 70109 41.0 6035 
109.101 84525 109.101 84525 48.51 8525 
115.234 101325 115.234 101325 54.17 10999 
121.408 120789 121.408 120798 60.65 14321 
127.622 143268 127.622 143268 69.25 20650 
133.878 169052 133.878 169053 76.97 27794 
140.174 198530 140.174 198517 83.45 35213 
146.509 232067 146.509 232088 88.70 42359 
152.886 270110 152.886 270111 91.76 47951 
96.68 55423 
mp/°C 115.23 Antoine eq 100.01 61720 
Antoine eq eq. 2 P/mmHg 102.18 66148 
eq. 2 P/mmHg A 7.04144 106.03 74603 
A 7.04162 B 1373.990 112.70 91299 
B 1374.103 C 215.001 116.23 101277 
C 215.014 
data also fitted to Cox eq. eq. 3 cP/kPa 
data also fitted to Cox eq. A 14.1480 
eq. 5 P/atm B 3132.30 
A C 59.719 
a 0.858631 
10–4b 6.7114 
10–7c 6.0722 
B 388.394 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3353 
FIGURE 16.1.7.3.1 Logarithm of vapor pressure versus reciprocal temperature for pyridine. 
Pyridine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0016 0.002 0.0024 0.0028 0.0032 0.0036 0.004 
1/(T/K) 
P( gol 
S 
) aP/ 
experimental data 
Stull 1947 
b.p. =115.23 °C 
© 2006 by Taylor & Francis Group, LLC

3354 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.4 2-Methylpyridine 
Common Name: 2-Methylpyridine 
Synonym: .-picoline, 2-picoline 
Chemical Name: 2-methylpyridine, .-picoline 
CAS Registry No: 109-06-8 
Molecular Formula: C5H4NCH3 
Molecular Weight: 93.127 
Melting Point (°C): 
–66.68 (Lide 2003) 
Boiling Point (°C): 
129.38 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9443 (Weast 1982–83) 
0.9444, 0.93981 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
98.6 (20°C, calculated-density) 
115.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
5.957, 6.06 (Perrin 1972) 
5.97 (pKa, 20°C, Weast 1982–83) 
6.00 (pKBH 
+ , Riddick et al. 1986; quoted, Howard 1990) 
Enthalpy of Vaporization, .HV (kJ/mol): 
42.919, 36.271 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
9.724 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Andon & Cox 1952) 
miscible (Riddick et al. 1986; Yaws et al. 1990) 
miscible (Stephenson 1993a) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
1370* (interpolated-regression of tabulated data, temp range –11.0 to 128.8°C, Stull 1947) 
308, 1140 (0, 20.3°C, static method-tensimeter, Brown & Barbaras 1947) 
1277 (manometry, calculated-Antoine eq., Hopke & Sears 1951) 
1496* (ebulliometry, extrapolated-Antoine eq., measured range 64.3–130°C, Herington & Martin 1953) 
log (P/mmHg) = 7.03450 – 1417.578/(211.874 + t/°C); temp range 64.3–130°C (ebulliometric measurements, 
Antoine eq., Herington & Martin 1953) 
1496 (calculated-Antoine eq., Andon et al. 1954) 
19920* (79.794°C, comparative ebulliometry, measured range 79.8–168°C. Scott et al. 1963a) 
log (P/mmHg) = 7.03202 – 1415.494/(t/°C + 211.589); temp range 79.8–168°C (ebulliometric measurements, 
Antoine eq., Scott et al. 1963a) 
1493 (ebulliometry, calculated-Antoine eq., Osborn & Douslin 1968) 
log (P/mmHg) = 7.03192 – 1415.424/(t/°C + 211.589); temp range 79.8–168°C (ebulliometric measurements, 
Antoine eq., Osborn & Douslin 1968) 
log [(P/atm) = [1 – 402.536 ± (T/K)] . 10^{0.866637 – 6.80114 . 10–4 ± (T/K) + 6.00534 . 10–7 ± (T/K)2}, 
temp range: 79.8–168°C (ebulliometric method, Cox eq., Osborn & Douslin 1968) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3355 
log (P/mmHg) = [–0.2185 . 9933.2/(T/K)] + 8.290910; temp range –11.0 to 128.8°C (Antoine eq., Weast 
1972–73) 
1500 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 402.320/(T/K)] . 10^{0.887914 – 7.70705 . 10–4 ± (T/K) + 6.85261 . 10–7 ± (T/K)2}; temp 
range: 215.0–620.0 K (Cox eq., Chao et al. 1983) 
1067 (20°C, Verschueren 1983) 
1494, 1498 (extrapolated-Antoine equations, Boublik et al. 1984) 
log (P/kPa) = 6.16509 – 1421.237/(212.286 + t/°C); temp range 64.363–130.04°C (Antoine eq. from reported 
exptl. data of Herington & Martin 1953, Boublik et al. 1984) 
log (P/kPa) = 6.15718 – 1415.663/(211.617 + t/°C); temp range 79.79–168.36°C (Antoine eq. from reported 
exptl. data of Scott et al. 1963, Boublik et al. 1984) 
1494 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.0324 – 1415.73/(211.63 + t/°C), temp range: 80–168°C (Antoine eq., Dean 1985, 1992) 
1333 (Riddick et al. 1986) 
log (P/kPa) = 6.15940 – 1417.578/(211.874 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
1386 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 5.2309 – 1164.1/(–71.0 + T/K); temp range 209–245 K (Antoine eq.-I, Stephenson & Malanowski 
1987) 
log (PL/kPa) = 6.1558 – 1415.29/(–61.521 + T/K); temp range 352–442 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.15522 – 1414.906/(–61.566 + T/K); temp range 352–442 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.32356 – 1546.248/(–44.271 + T/K), temp range: 429–537 K (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.32144 – 2667.496/(107.978 + T/K); temp range 521–621 K (Antoine eq.-V, Stephenson & 
Malanowski 1987) 
1500* (ebulliometry, interpolated-Antoine eq., measured range 295.7–388.4 K, Lencka 1990) 
ln (P/kPa) = 14.1560 – 3249.15/[(T/K) – 61.863); temp range 295.7–388.4 K (ebulliometric measurements, 
Antoine eq., Lencka 1990) 
log (P/mmHg) = 34.3728 – 3.2825 . 103/(T/K) –9.0927·log (T/K) – 3.6324 . 10–10·(T/K) + 2.1425 . 10–6·(T/K)2; 
temp range 206–621 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 
1.010 (measured volatility ratio-transpiration method, Andon et al. 1954) 
1.010 (exptl., Hine & Mookerjee 1975) 
0.821, 0.749 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
2.90 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 
30.22 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = –0.700 – 354/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
0.52 (HPLC-RT correlation, Schultz & Moulton 1985) 
1.11 (shake flask, Log P Database, Hansch & Leo 1987) 
1.11 (shake flask-UV, Yamagami et al. 1990) 
1.11 (recommended, Sangster 1989; 1993) 
1.11 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
0.602 (calculated-KOW, Lyman et al. 1982) 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
© 2006 by Taylor & Francis Group, LLC

3356 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Volatilization: using Henry’s law constant, t. = 88 h for a model river 1 m deep flowing at 1 m/s with a wind 
velocity of 3 m/s (estimated, Howard 1990). 
Photolysis: 
Oxidation: photooxidation t. = 11.2 d in air, based on the gas-phase reaction with photochemically produced 
hydroxyl radicals in air (Atkinson 1987; quoted, Howard 1990). 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 11.2 d, based on the gas-phase reaction with photochemically produced hydroxyl radicals in air (Atkinson 
1987; quoted, Howard 1990). 
Surface water: estimated t. = 1.0 d for methylpyridine in Rhine River in case of a first order reduction process 
(Zoeteman et al. 1980) 
Groundwater: 
Sediment: 
Soil: 
Biota: 
TABLE 16.1.7.4.1 
Reported vapor pressures of 2-methylpryridine at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 Herington & Martin 1953 Scott et al. 1963(a) Lencka 1990 
summary of literature data ebulliometry comparative ebulliometry ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–11.1 133.3 64.363 10660 79.794 19920 18.49 1015 
12.6 666.6 69.916 13459 85.853 25007 22.09 1264 
24.4 1333 76.836 17758 91.942 31160 24.58 1463 
37.4 2666 82.362 21954 98.074 38547 26.74 1657 
51.2 5333 88.566 27600 104.252 47359 30.60 2062 
59.9 7999 93.617 33044 110.472 57803 33.71 2446 
71.4 13332 101.283 42906 116.736 70109 40.03 3414 
89.0 26664 108.594 54434 123.038 84525 48.69 5258 
108.4 53329 114.552 65581 129.387 101325 57.60 7942 
128.8 101325 117.647 72020 135.773 120798 71.51 14375 
122.132 82297 142.207 143268 80.35 20380 
mp/°C –70.0 126.992 91140 148.683 169052 87.31 26426 
125.664 94663 155.201 198530 94.31 33920 
127.828 96885 161.761 232087 101.18 42854 
128.591 99021 168.356 270110 104.03 47076 
129.290 100985 109.24 55653 
129.608 101879 bp/°C 129.39 113.01 62604 
130.037 103095 Antoine eq. 115.31 67182 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3357 
TABLE 16.1.7.4.1 (Continued) 
Stull 1947 Herington & Martin 1953 Scott et al. 1963(a) Lencka 1990 
summary of literature data ebulliometry comparative ebulliometry ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
eq. 2 P/mmHg 119.20 75535 
bp/°C 129.408 A 7.03202 122.93 84296 
.HV/(kJ mol–1) = 37.76 B 1415.494 125.77 92024 
eq. 2 P/mmHg C 211.598 129.88 102813 
A 7.03450 
B 1417.578 Antoine eq. 
C 211.874 eq. 3 P/kPa 
A 14.1560 
B 3249.15 
C 61.383 
FIGURE 16.1.7.4.1 Logarithm of vapor pressure versus reciprocal temperature for 2-methylpyridine. 
2-Methylpyridine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 
1/(T/K) 
P( gol 
S 
) aP 
/ 
Herington & Martin 1953 
Scott et al. 1963a 
Lencka 1990 
Stull 1947 
b.p. = 129.38 °C 
© 2006 by Taylor & Francis Group, LLC

3358 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.5 3-Methylpyridine 
Common Name: 3-Methylpyridine 
Synonym: .-picoline, 3-picoline 
Chemical Name: 3-methylpyridine, .-picoline 
CAS Registry No: 108-99-6 
Molecular Formula: C5H4NCH3 
Molecular Weight: 93.127 
Melting Point (°C): 
–18.14 (Lide 2003) 
Boiling Point (°C): 
144.14 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9443 (Weast 1982–83) 
0.9566 (Riddick et al. 1986) 
Molar Volume (cm3/mol): 
97.35 (20°C, calculated-density) 
115.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
5.67, 5.703 (Perrin 1972) 
5.68 (pKa, 20°C, Weast 1982–83; pKa, protonated cation + 1, Dean 1985) 
5.75 (pKBH 
+ , Riddick et al. 1986) 
5.65 (pKa, Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
45.233, 37.323 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
14.18 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Andon & Cox 1952; Andon et al. 1954; Yaws et al. 1990) 
miscible (Riddick et al. 1986; Howard 1993) 
miscible (Stephenson 1993a) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
150.7, 594.6 (0, 20°C, static method-tensimeter, Brown & Barbaras 1947) 
794* (ebulliometry, extrapolated-Antoine eq., Herington & Martin 1953) 
log (P/mmHg) = 7.03247 – 1469.894/(209.907 + t/°C); temp range 81.2–145.1°C (ebulliometric measurements, 
Antoine eq., Herington & Martin 1953) 
794 (calculated-Antoine eq., Andon et al. 1954) 
9582* (74.036.C, comparative ebulliometry, measured range 74.036–184.568.C, Scott et al. 1963b) 
log (P/mmHg) = 7.05375 – 1484.208/(t/°C + 211.532), temp range 79.8–168°C (ebulliometric measurements, 
Antoine eq., Scott et al. 1963b) 
811 (ebulliometry, calculated-Antoine eq., Osborn & Douslin 1968) 
log (P/mmHg) = 7.30275 – 1506.877/(t/°C + 210.995), temp range: 74–185°C, (ebulliometric measurements, 
Antoine eq., Osborn & Douslin 1968) 
log [(P/atm) = [1 – 417.287 ± (T/K)] . 10^{0.854256 – 6.02835 . 10–4 ± (T/K) + 5.00169 . 10–7 ± (T/K)2}, 
temp range: 74–185°C (ebulliometric method, Cox eq., Osborn & Douslin 1968) 
806 (calculated-Cox eq., Chao et al. 1983) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3359 
log (P/atm) = [1– 417.217/(T/K)] . 10^{0.865977 – 6.48542 . 10–4 ± (T/K) + 5.41256 . 10–7 ± (T/K)2}; temp 
range: 255.0–645.0 K (Cox eq., Chao et al. 1983) 
796, 800 (extrapolated-Antoine equations, Boublik et al. 1984) 
log (P/kPa) = 6.16152 – 1472.639/(210.214 + t/°C); temp range 81.3–145.1°C (Antoine eq. from reported exptl. 
data of Herington & Martin 1953, Boublik et al. 1984) 
log (P/kPa) = 6.17577 – 1482.229/(211.305 + t/°C); temp range 74.03–184.6°C (Antoine eq. from reported exptl. 
data of Scott et al. 1963, Boublik et al. 1984) 
800 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.05021 – 1481.78/(211.25 + t/°C); temp range 74–185°C (Antoine eq., Dean l985, 1992) 
1333 (Riddick et al. 1986) 
log (P/kPa) = 6.15737 – 1469.894/(209.907 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
802 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PS/kPa) = 11.245 – 3246.9/(T/K); temp range 225–255 K (Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.17593 – 1482.943/(–61.705 + T/K); temp range 347–458 K (Antoine eq.-II, Stephenson & Malanowski 
1987) 
log (PL/kPa) = 6.17791 – 1484.285/(–61.554 + T/K); temp range 347–458 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.18988 – 1491.897/(–60.745 + T/K); temp range 347–381 K (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.16648 – 1476.25/(–62.502 + T/K); temp range 374–458 K (Antoine eq.-V, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.38586 – 1659.184/(–38.176 + T/K); temp range 450–570 K (Antoine eq.-VI, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.57549 – 3151.52/(161.352 + T/K); temp range 561–645 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 35.2679 – 3.4364 . 103/(T/K) – 9.3555·log (T/K) – 1.3286 . 10–10·(T/K) + 2.0461 . 10–6·(T/K)2; 
temp range 255–645 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.788 (volatility ratio-transpiration method, Andon et al. 1954) 
0.784; 0.637; 0.749 (exptl.; calculated-group contribution; calculated-bond contribution, Hine & Mookerjee 1975) 
1.836 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 
12.69 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = –0.826 – 348/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
1.20 (HPLC-RT correlation, Mirrlees et al. 1976) 
1.20 ± 0.02 (shake flask at pH 7, Unger et al. 1978) 
1.19 (HPLC-RT correlation, Lewis et al. 1983) 
1.18 ± 0.01 (HPLC-RV correlation-ALPM, Garst 1984; Garst & Wilson 1984) 
1.20 (shake flask, Log P Database, Hansch & Leo 1985, 1987) 
1.20 (recommended, Sangster 1989, 1993) 
1.20 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
0.699 (calculated-KOW, Lyman et al. 1982; quoted, Howard 1993) 
Sorption Partition Coefficient, log KOC: 
2.029 (soil, calculated-KOW, Lyman et al. 1982; quoted, Howard 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: estimated photooxidation rate constant k = 1.43 . 10–12 cm3 molecule–1 s–1 for the vapor-phase reaction 
with 5 . 105 hydroxyl radicals/cm3 in air at 25°C which corresponds to an atmospheric half-life of 11 d 
(Atkinson 1987; quoted, Howard 1993). 
© 2006 by Taylor & Francis Group, LLC

3360 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: atmospheric t. = 11 d from estimated photooxidation rate constant k = 1.43 . 10–12 cm3 ± molecule–1 s–1 for the 
vapor-phase reaction with 5 . 105 hydroxyl radicals/cm3 in air at 25°C (Atkinson 1987; quoted, Howard 1993). 
Surface water: estimated t. = 1.0 d for methylpyridine in Rhine River in case of a first order reduction process 
(Zoeteman et al. 1980) 
TABLE 16.1.7.5.1 
Reported vapor pressures of 3-methylpyridine at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Herington & Martin 1953 Scott et al. 1963(b) 
ebulliometry comparative ebulliometry 
t/°C P/Pa t/°C P/Pa 
81.282 12871 74.036 9582 
85.275 15061 77.115 10884 
92.059 19478 80.202 12335 
97.519 23773 85.303 13949 
103.922 29747 86.403 15740 
109.006 35349 89.524 17725 
115.583 43796 92.658 19920 
121.932 53445 98.946 25007 
129.368 66822 105.270 31160 
132.163 72471 111.640 38547 
137.714 84938 118.052 47359 
140.871 92693 124.508 57803 
142.132 95948 131.008 70109 
142.639 97265 137.551 84525 
143.293 99017 144.135 101325 
143.577 99782 150.767 120798 
143.993 100927 157.441 143268 
144.320 101791 164.156 169052 
144.659 102725 170.918 198530 
145.101 103988 177.821 232087 
184.568 270110 
bp/°C 144.143 
.HV/(kJ mol–1) = 37.76 bp/°C 144.14 
eq. 2 P/mmHg 
A 7.03247 Antoine 
B 1469.894 eq. 2 P/mmHg 
C 209.907 A 7.05375 
B 1484.208 
C 211.532 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3361 
FIGURE 16.1.7.5.1 Logarithm of vapor pressure versus reciprocal temperature for 3-methylpyridine. 
3-Methylpyridine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 
1/(T/K) 
P( gol 
S 
) aP/ 
Herington & Martin 1953 
Scott et al. 1963b 
b.p. = 144.14 °C 
© 2006 by Taylor & Francis Group, LLC

3362 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.6 2,3-Dimethylpyridine 
Common Name: 2,3-Dimethylpyridine 
Synonym: 2,3-lutidine 
Chemical Name: 2,3-dimethylpyridine, 2,3-lutidine 
CAS Registry No: 583-61-9 
Molecular Formula: C7H9N, C5H3N(CH3)2 
Molecular Weight: 107.153 
Melting Point (°C): 
–15.5 (Stephenson & Malanowski 1987) 
Boiling Point (°C): 
161.12 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9461, 0.9421 (20°C, 25°C, Coulson et al. 1959) 
0.9319 (25°C, Weast 1982–83) 
Molar Volume (cm3/mol): 
115.0 (calculated-density, Stephenson & Malanowski 1987) 
135.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
6.70 (20°C, Perrin 1972) 
6.57 (pKa, Weast 1982–83) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
104000* (20°C, shake flask-GC, measured range 16–90°C, Stephenson 1993a) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
366.6, 922.6, 7119 (25, 40, 81.2°C, calculated-empirical method with bp and Antoine eq., Andon et al. 1954) 
346.4* (ebulliometry, extrapolated-Antoine eq., measured range 99.5–162.4°C, Coulson et al. 1959) 
log (P/mmHg) = 7.05075 – 1528.935/(205.499 + t/°C); temp range 99.5–162.4°C (Antoine eq., ebulliometry, 
Coulson et al. 1959) 
359.0 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 434.216/(T/K)] . 10^{0.881714 – 6.74484 . 10–4 ± (T/K) + 5.55055 . 10–7 ± (T/K)2}; temp 
range: 260.0–655.0 K (Cox eq., Chao et al. 1983) 
425.5 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.45509 – 1739.902/(229.887 + t/°C); temp range 155.3–162.4°C (Antoine eq. from reported exptl. 
data of Coulson et al. 1959, Boublik et al. 1984) 
352.2 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.18881 – 1538.772/(–66.477 + T/K); temp range; 372–476 K (Antoine eq., Stephenson & 
Malanowski 1987) 
457 (extrapolated-Antoine eq., Dean 1992) 
log (P/mmHg) = 7.447 – 1832.6/(240.1 + t/°C); temp range 155–162°C (Antoine eq., Dean. 1992) 
2000* (54.556°C, comparative ebulliometry, measured range 327.706–475.952 K, data fitted to Wagner 
eq., Steele et al. 1995) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 
0.725 (volatility ratio-transpiration method, Andon et al. 1954) 
0.732 (exptl., Hine & Mookerjee 1975) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3363 
0.859, 0.732 (calculated.-group contribution, bond contribution, Hine & Mookerjee 1975) 
21.01 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 0.039 – 617/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Surface water: estimated t. = 13.0 d for dimethylpyridine in Rhine River in case of a first order reduction process 
(Zoeteman et al. 1980) 
TABLE 16.1.7.6.1 
Reported aqueous solubilities and vapor pressures of 2,3-dimethylpyridine at 
various temperatures 
Aqueous solubility Vapor pressure 
Stephenson 1993a Coulson et al. 1959 Steele et al. 1995 
shake flask-GC/TC ebulliometry comparative ebulliometry 
t/°C S/g·m–3 t/°C P/Pa T/K P/Pa 
16.0 171500 99.543 14583 327.706 2000 
18.0 121500 107.822 19765 333.396 2666 
20.0 104000 116.337 26607 341.852 3999.9 
25.0 86000 122.909 33113 348.166 5333 
30.0 69100 128.606 39759 357.560 7998.9 
35.0 59900 133.429 46191 364.611 10666 
40.0 53700 137.704 52572 370.315 13332 
50.0 48200 141.757 59255 376.239 16665 
60.0 43700 145.829 66652 381.163 19933 
70.0 43000 148.764 72421 387.649 25023 
80.0 43300 152.203 79677 387.646 25023 
90.0 43500 155.326 86769 394.176 31177 
157.94 93067 400.749 38565 
158.603 94703 407.364 47375 
159.141 96085 414.025 57817 
160.125 98614 420.729 70120 
160.668 100030 427.477 84533 
161.199 101438 434.270 101325 
161.682 102701 441.106 120790 
162.077 103788 447.989 143250 
162.412 104696 454.913 169020 
461.885 198490 
mp/°C –15.22 468.897 232020 
bp/°C 161.157 475.982 270020 
.HV = 41.07 kJ/mol 
Antoine eq. Data fitted to Wagner eq. 
log P = A – B/(C + t/°C) 
P/mmHg 
A 7.05075 
B 1528.935 
C 205.499 
© 2006 by Taylor & Francis Group, LLC

3364 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.7.6.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 
2,3-dimethylpyridine. 
FIGURE 16.1.7.6.2 Logarithm of vapor pressure versus reciprocal temperature for 2,3-dimethylpyridine. 
2,3-Dimethylpyridine: solubility vs. 1/T 
-5.5 
-5.0 
-4.5 
-4.0 
-3.5 
-3.0 
-2.5 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x 
nl 
Stephenson 1993 
2,3-Dimethylpyridine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 
1/(T/K) 
P 
( gol 
S 
) aP 
/ 
Coulson et al. 1959 
Steele et al. 1995 
b.p. = 161.12 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3365 
16.1.7.7 Quinoline 
Common Name: Quinoline 
Synonym: benzo[b]-pyridine, 1-benzazine 
Chemical Name: quinoline 
CAS Registry No: 91-22-5 
Molecular Formula: C9H7N 
Molecular Weight: 129.159 
Melting Point (C): 
–14.78 (Lide 2003) 
Boiling Point (°C): 
237.16 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.0929 (Weast 1982–83) 
1.09771, 1.08579 (15, 30°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
118.1 (calculated-density, Rohrschneider 1973) 
144.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
4.90 (pKa, 20°C, Weast 1982–83; Zachara et al. 1987; Matzner et al. 1991) 
4.80 (pKa, protonated cation + 1, Dean 1985) 
4.94 (pKBH 
+ , Riddick et al. 1986) 
4.87 (pKa, Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
49.71 (at bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
10.79 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
6110 (Albersmeyer 1958) 
6840 (shake flask-HPLC/UV, Fu & Luthy 1985, 1986) 
6386* (20.35°C, equilibrium cell-GC, measured range 20.35–225°C, Leet et al. 1987) 
5426 (centrifuge-HPLC at pH 7 and pH 8, Matzner et al. 1991) 
8400, 6600 (20°C, 30°C, shake flask-GC, Stephenson 1993a) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated *, are compiled at the end of this section): 
15.51* (extrapolated-regression of tabulated data, temp range 59.7–237.7°C, Stull 1947) 
1.213 (extrapolated, Maczynski & Maczynska 1965) 
11.20* (25.16°C, gas saturation-IR, measured range 12.62–35.9°C, Van De Rostyne & Prausnitz 1980) 
ln (P/mmHg) = 20.96 – 6993.2/(T/K); temp range 12.62–35.9°C (gas saturation-IR, Van De Rostyne & Prausnitz 
1980) 
11.14 (calculated-bp, Mackay et al. 1982) 
12.83 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 510.552/(T/K)] . 10^{0.897177 – 6.73559 . 10–4 ± (T/K) + 4.69070 . 10–7 ± (T/K)2}; temp 
range: 290.0–780.0 K (Cox eq., Chao et al. 1983) 
11.04 (extrapolated-Antoine eq., Boublik et al. 1984) 
N 
© 2006 by Taylor & Francis Group, LLC

3366 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/kPa) = 5.94201 – 1668.355/(186.212 + t/°C), temp range 164.7–237.9°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
11.05 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 6.81759 – 1668.73/(186.26 + t/°C), temp range 164–238°C (Antoine eq., Dean 1985, 1992) 
1.216 (recommended, Neely & Blau 1985) 
12.8 (Howard et al. 1986) 
11.2 (Riddick et al. 1986) 
log (P/kPa) = 5.92679 – 1656.30/(184.78 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
42120* (472.85 K, vapor-liquid equilibrium, measured range 472.85–548.05 K, Klara et al. 1987) 
log (P/kPa) = 14.4961 – 4390.0/(65.19 + T/K); temp range 472.85–548.05 K (vapor-liquid equilibrium, Klara 
et al. 1987) 
log (PL/kPa) = 5.92679 – 1656.3/(–88.37 + T/K); temp range 433–511 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.15102 – 2846.253/(41.795 + T/K); temp range 463–794 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
6.145 (calculated-solvatochromic parameters, Banerjee et al. 1990) 
log (P/mmHg) = 76.5432 – 5.7748 . 103/(T/K) –24.619·log (T/K) + 8.4666 . 10–3·(T/K) + 3.5586 . 10–13·(T/K)2; 
temp range 258–782 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
0.0253 (calculated-P/C, Smith & Bomberger 1980) 
0.026 (calculated-P/C, Mackay 1985) 
0.168 (calculated-P/C, Meylan & Howard 1991) 
0.0697 (estimated-bond contribution, Meylan & Howard 1991) 
Octanol/Water Partition Coefficient, log KOW: 
2.03 (shake flask-UV, Iwasa et al. 1965) 
2.06 (shake flask-UV at pH 7.4, Rogers & Cammarata 1969) 
2.03 (Schultz et al. 1970) 
2.04 (HPLC-RT correlation, Mirrlees et al. 1976) 
2.04 ± 0.02 (shake flask at pH 7, Unger et al. 1978) 
2.02 (Hansch & Leo 1979) 
2.01 ± 0.02 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
1.88 (HPLC-k. correlation, Haky & Young 1984) 
2.20 (calculated-activity coeff. . from UNIFAC, Banerjee & Howard 1988) 
2.10 (shake flask-HPLC, De Voogt et al. 1988, 1990) 
2.09 (28°C, shake flask-UV at pH 7.4, Go & Ngiam 1988) 
2.03 (recommended, Sangster 1989, 1993) 
2.10, 2.15 (HPLC-RT correlation, shake flask-electrometric titration, Slater et al. 1994) 
2.03 (recommended, Hansch et al. 1995) 
2.17 ± 0.66, 2.33 ± 0.56 (HPLC-k. correlation: ODS–65 column, Diol–35 column, Helweg et al. 1997) 
1.91 (microemulsion electrokinetic chromatography-retention factor correlation, Jia et al. 2003) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
1.04 (Coyote Creek sediment with organic content of 1.9%, Smith et al. 1978) 
1.96, 2.10, 1.67, 1.72 (estimated-KOW, Karickhoff 1985) 
1.42, 1.62 (estimated-S, Karickhoff 1985) 
2.20 (best estimate, Karickhoff 1985) 
0.251 (estimated Anvil Points subsurface materials, Zachara et al. 1987) 
–1.516 (estimated Loring subsurface materials, Zachara et al. 1987) 
2.89; 3.05 (humic acid, HPLC-k. correlation; quoted lit., Nielsen et al. 1997) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3367 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 7000 h in stream, t. = 35000 h in eutrophic pond and t. = 28000 h in eutrophic lake and 
oligotrophic lake, based on transformation and transport of quinoline predicted by the one-compartment 
model (Smith et al. 1978). 
Photolysis: 
k = 7.8 . 10–7 s–1, assuming exposed to 12-h sunlight per day in June, photolysis t. = 1200 h in stream, 
t. = 3000 h in eutrophic lake and pond and t. = 600 h in oligotrophic lake, based on transformation and 
transport of quinoline predicted by the one-compartment model (Smith et al. 1978) 
k(aq.) = 3.6 . 10–7 s–1 for summer with t. = 535 h and k = 5.0 . 10–8 s–1 for winter with t. = 3851 h both 
at pH 6.9 and under sunlight at 40°N (Mill et al. 1981; quoted, Howard et al. 1991) 
photolytic t. = 550 h in aquatics (Haque et al. 1980) 
t. = 5–12 d for disappearance via direct photolysis in aqueous media (Harris 1982) 
Oxidation: 
k = 2.8 M–1 s–1 for the reaction with RO2 radical with t. > 104 h in stream, eutrophic pond and lake and 
oligotrophic lake, based on RO2 concentration of 10–9 M on transformation and transport of quinoline 
predicted by the one-compartment model (Smith et al. 1978) 
k(aq.) = 3.5 . 10–7 s–1 with t. = 548 h under natural sunlight conditions for midday, midsummer at a latitude 
of 40°N; k(aq.) = 2.8 M–1 s–1 with t. = 8 yr for free-radical oxidation in air-saturated water (NRCC 1983) 
photooxidation t. = 10–99 h in air, based on an estimated rate constant for vapor phase reaction with 
hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991) 
first-order photodegradation k = 8.0 . 10–6 s–1 at 313 nm of in organic-free water with t. = 24.0 h and 
k = 8.4 . 10–6 s–1 in lake water with t. = 23 h both saturated with air (Kochany & Maguire 1994) 
Hydrolysis: no hydrolyzable groups (Howard et al. 1991). 
Biodegradation: 
t. = 0.5 h in stream, eutrophic lake and pond and t. = 10000 h in oligotrophic lake, based on transformation 
and transport of quinoline predicted by the one-compartment model (Smith et al. 1978); 
Biodegradation k = 7.4 . 10–5 mL cell–1 d–1 in enrichment culture (Klecka 1985); 
t.(aq. aerobic) = 72–240 h, based on an acclimated fresh water grab sample data (Rogers et al. 1984; quoted, 
Howard et al. 1991); 
t.(aq. anaerobic) = 288–960 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 
1991) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 10 – 99 h, based on an estimated rate constant for vapor phase reaction with hydroxyl radicals in air 
(Atkinson 1987; selected, Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be 1 to 5 d (Kelly et al. 1994). 
Surface water: half-life for all processes, except for dilution: t. = 0.5 h in stream, eutrophic lake and pond and 
t. = 600 h in oligotrophic lake, based on transformation and transport of quinoline predicted by the onecompartment 
model (Smith et al. 1978); 
half-life for all processes, including for dilution: t. = 0.28 h in stream, t. = 0.5 h in eutrophic lake and pond 
and t. = 600 h in oligotrophic lake, based on transformation and transport of quinoline predicted by the 
one-compartment model (Smith et al. 1978); 
t. = 5 – 12 d for direct photolysis in aqueous media (Harris 1982); 
t. = 72 – 240 h, based on an acclimated fresh water grab sample data (Rogers et al. 1984; quoted, Howard 
et al. 1991); 
degrade readily in sunlight in near surface lake water at 40°N latitude in summer with a t. ~ 14 calendar-d 
while its t.(calc) ~ 123 calendar-d in winter (Kochany & Maguire 1994). 
Groundwater: t. = 144 – 480 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Sediment: 
Soil: t. = 72 – 240 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991) 
Complete mineralization within 7 – 10 d in batch experiments independent of pH (5.8 and 7.2) (Thomsen 
et al. 1999) 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3368 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.7.7.1 
Reported aqueous solubilities and vapor pressures of quinoline at various temperatures and the coefficients 
for the vapor pressure equations: 
Vapor pressure Aqueous solubility 
Stull 1947 Van De Rostyne & Prausnitz Klara et al. 1987 Leet et al. 1987 
summary of literate data gas saturation-IR (1980) vapor-liquid equilibrium equilibrium cell-GC 
t/°C P/Pa t/°C P/Pa T/K P/Pa t/°C S/g·m–3 
59.7 133.3 12.62 3.853 472.85 42120 20.35 6386 
89.6 666.6 16.71 5.963 504.95 90990 40.05 6458 
103.8 1333 21.35 8.159 514.35 112400 64.85 8252 
119.8 2666 22.42 9.56 534.35 170300 80.25 10620 
136.7 5333 25.16 11.20 548.05 222600 100.05 13920 
148.1 7999 28.25 14.80 120.65 20163 
163.2 13332 29.10 14.93 eq. 3 P/kPa 145.85 31285 
186.2 26664 35.90 24.26 log P = A – B/(C + T/K) 159.65 43555 
212.3 53329 A 14.4961 179.85 69602 
237.7 101325 eq. 1a P/mmHg B 4390.0 199.25 126288 
ln P = A – B/(T/K) C 65.19 209.05 171494 
mp/°C –15.0 A 20.96 220.25 324333 
B 6993.2 225.05 498697 
FIGURE 16.1.7.7.1 Logarithm of vapor pressure versus reciprocal temperature for quinoline. 
Quinoline: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Van De Rostyne & Prausnitz 1980 
Klara et al. 1987 
Stull 1947 
b.p. = 237.16 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3369 
16.1.7.8 Isoquinoline 
Common Name: Isoquinoline 
Synonym: leucoline 
Chemical Name: isoquinoline 
CAS Registry No: 119-65-3 
Molecular Formula: C9H7N 
Molecular Weight: 129.159 
Melting Point (°C): 
26.47 (Lide 2003) 
Boiling Point (°C): 
243.22 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.0986 (Weast 1982–83) 
1.0910 (Dean 1985) 
Molar Volume (cm3/mol): 
118.4 (30°C, Stephenson & Malanowski 1987) 
144.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
5.40 (pKa, Perrin 1972) 
5.42 (pKa, 20°C, Weast 1982–83) 
5.40 (pKa, protonated cation + 1, Dean 1985) 
5.38 (pKBH 
+ , Riddick et al. 1986) 
5.39 (pKa, Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
48.96 (bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
7.448 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.967 (mp at 26.47°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
4520 (Pearlman et al. 1984) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
11.8* (extrapolated-regression of tabulated data, temp range 63.5–240.5°C, Stull 1947) 
7.80 (extrapolated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 516.182/(T/K)] . 10^{0.91210 – 6.33889 . 10–4 ± (T/K) + 4.267359 . 10–7 ± (T/K)2}; temp 
range: 300.0–800.0 K (Cox eq., Chao et al. 1983) 
6.33 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.03709 – 1723.459/(184.268 + t/°C); temp range 166–244°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
6.35 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 6.9122 – 1723.4/(184.3 + t/°C); temp range 167–244°C (Antoine eq., Dean 1992) 
6.70 (Riddick et al. 1986) 
log (PL/kPa) = 6.03203 – 1719.5/(–89.12 + T/K); temp range 439–517 K (Antoine eq., Stephenson & Malanowski 
1987) 
log (P/mmHg) = 45.5737 – 4.4715 . 103/(T/K) –13.308·log (T/K) + 4.0186 . 10–3·(T/K) – 6.4589 . 10–14·(T/K)2; 
temp range 299–803 K (vapor pressure eq., Yaws 1994) 
N 
© 2006 by Taylor & Francis Group, LLC

3370 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
19.14 (calculated-P/C with selected values) 
Octanol/Water Partition Coefficient, log KOW: 
2.08 (shake flask-UV, Hansch & Anderson 1967) 
2.09 (HPLC-RT correlation, Mirrlees et al. 1976) 
2.08 (recommended, Sangster 1989, 1993) 
2.30 ± 0.15, 2.17 ± 0.53 (solvent generated liquid-liquid chromatography SGLLC-correlation, RP-HPLC-k. 
correlation, Cichna et al. 1995) 
2.08 (recommended, Hansch et al. 1995) 
2.21 ± 0.66, 2.2 6 ± 0.56 (HPLC-k. correlation: ODS-65 column, Diol-35 column, Helweg et al. 1997) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
3.09 (humic acid, HPLC-k. correlation, Nielsen et al. 1997) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 82.0 h–1, k2 = 34.2 h–1 (daphnia pulex, 21°C, Southworth et al. 1978) 
Half-Lives in the Environment: 
Biota: elimination t. = 1 min (daphnia pulex, Southworth et al. 1978). 
TABLE 16.1.7.8.1 
Reported vapor pressures of isoquinoline at 
various temperatures 
Stull 1947 
summary of literature data 
t/°C P/Pa 
63.5 133.3 
92.7 666.6 
107.8 1333 
123.7 2666 
141.6 5333 
152.0 7999 
167.6 13332 
190.0 26664 
214.5 53329 
240.5 101325 
mp/°C 24.5 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3371 
FIGURE 16.1.7.8.1 Logarithm of vapor pressure versus reciprocal temperature for isoquinoline. 
Isoquinoline: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Stull 1947 
b.p. = 243.22 °C m.p. = 26.47 °C 
© 2006 by Taylor & Francis Group, LLC

3372 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.9 Benzo[f]quinoline 
Common Name: Benzo[f]quinoline 
Synonym: 5,6-benzoquinoline, naphthopyridine 
Chemical Name: 5,6-benzoquinoline, benzo(f)quinoline 
CAS Registry No: 85-02-9 
Molecular Formula: C13H9N 
Molecular Weight: 179.217 
Melting Point (°C): 
94 (Lide 2003) 
Boiling Point (°C): 
352 (Lide 2003) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
196.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
5.15 (Sangster 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.210 (mp at 94°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
76.1 (shake flask-GC, Smith et al. 1978) 
77.1 (Mill et al. 1981) 
l76.0 (Steen & Karickhoff 1981) 
78.7 (average literature value, Pearlman et al. 1984) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
0.00747* (25.05°C, gas saturation, measured range 288.26–323.15 K, McEachern et al. 1975) 
log (P/mmHg) = 4339.977/(T/K) + 10.2555; temp range 288.26–323.15 K (Antoine eq., gas saturation, 
McEachern et al. 1975 
0.00670 (interpolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 9.37682 – 4338.411/(T/K); temp range 288–323 K (Antoine eq., Stephenson & Malanowski 1987) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0096 (calculated-P/C, Smith & Bomberger 1980) 
Octanol/Water Partition Coefficient, log KOW: 
3.20 (Steen & Karickhoff 1981) 
3.40 (TLC-RT correlation, De Voogt et al. 1988) 
3.25 (23°C, shake flask-HPLC, pH 7, De Voogt et al. 1990) 
3.25, 3.40 (lit. values; Sangster 1993) 
3.46 ± 0.64, 3.51 ± 0.53 (HPLC-k. correlation: ODS-65 column, Diol-35 column, Helweg et al. 1997) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.18 (mixed microbial populations, Steen & Karickhoff 1981) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3373 
Sorption Partition Coefficient, log KOC: 
3.11 (Coyote Creek sediment, Smith et al. 1978) 
4.64, 4.32 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
4.07 (humic acid, HPLC-k. correlation, Nielsen et al. 1997) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. > 10000 h in river, t. > 100000 h in eutrophic pond, eutrophic lake and oligotrophic 
lake by the one compartment model (Smith et al. 1978). 
Photolysis: 
k = (1.4 ± 0.7) . 10–4 s–1 for transformation and transport when exposed to 12 h sunlight in mid-June with 
estimated t. = 2.8 h in river, t. = 7.0 h in eutrophic pond and eutrophic lake and t. = 1.4 h in oligotrophic 
lake from average photolysis rates on a summer day at 40°N latitude by the one compartment model 
(Smith et al. 1978) 
photolytic t. = 0.52 h in aquatics (Haque et al. 1980) 
t. = 1 h for disappearance via direct photolysis in aqueous media (Harris 1982) 
Oxidation: 
laboratory studied k < 2.8 M–1 s–1 for the reaction with the RO2 radicals and estimated t. > 105 h in 
river, eutrophic pond, eutrophic lake and oligotrophic lake by the one compartment model (Smith 
et al. 1978) 
k(aq.) = 3.7 . 10–4 s–1 with t. = 0.5 h under natural sunlight conditions for midday, midsummer at a latitude of 
40°N; k(aq.) < 2.8 M–1 s–1 with t. > 8 yr for free-radical oxidation in air-saturated water (NRCC 1983) 
Hydrolysis: 
Biodegradation: estimated t. = 190 h in river, eutrophic pond, eutrophic lake and t. > 106 h in oligotrophic lake 
by the one compartment model (Smith et al. 1978). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: t. = 0.5 h in river water, t. = 6.9 h in pond water, t. = 7.0 h in eutrophic lake and t. = 1.4 h in 
oligotrophic lake predicted by one-compartment for all processes including dilution (Smith et al. 1978) 
t. = 1 h for disappearance via direct photolysis in aqueous media (Harris 1982). 
TABLE 16.1.7.9.1 
Reported vapor pressures of benzo[f]quinoline at 
various temperatures 
McEachern et al. 1975 
gas saturation 
T/K P/Pa 
288.26 0.00213 
293.10 0.00333 
298.20 0.00747 
303.13 0.0116 
308.23 0.0199 
313.17 0.0324 
318.24 0.0560 
323.15 0.0901 
P/mmHg 
log P = A – B/(T/K) 
A 10.2555 
B 4399.977 
.Hsubl/(kJ mol–1) = 83.094 
.Ssubl/(J mol–1 K–1) = 196.36 
© 2006 by Taylor & Francis Group, LLC

3374 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.7.9.1 Logarithm of vapor pressure versus reciprocal temperature for benzo[f]quinoline. 
Benzo[f ]quinoline: vapor pressure vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
McEachern et al. 1975 
m.p. = 94 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3375 
16.1.7.10 Carbazole 
Common Name: Carbazole 
Synonym: 9H-carbazole, dibenzopyrrole 
Chemical Name: carbazole 
CAS Registry No: 86-74-8 
Molecular Formula: C12H9N, C6H4NHC6H4 
Molecular Weight: 167.206 
Melting Point (°C): 
246.3 (Lide 2003) 
Boiling Point (°C): 
354.69 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.260 (25°C, Jimenez et al. 1990) 
Molar Volume (cm3/mol): 
192.9 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.00674 (mp at 246.3°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
1.03 ± 0.05 (20°C, shake flask-GC, Smith et al. 1978) 
1.037 (Mill et al. 1981) 
0.428 (20°C, shake flask-fluorophotometry, Hashimoto et al. 1982) 
1.67, 1.03, 0.908; 1.204 (quoted values; lit. average, Pearlman et al. 1984) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
7999* (248.2°C, summary of literature data, temp range: 248.2–354.8°C, Stull 1947) 
log (P/mmHg) = [–0.2185 . 15421.6/(T/K)] + 8.251923; temp range: 248.2–354.8°C (Antoine eq., Weast 
1972–73) 
0.0933 (20°C, Smith et al. 1978) 
log (P/atm) = [1 – 627.897/(T/K)] . 10^{0.924810 – 5.18974 . 10–4 ± (T/K) + 2.68415 . 10–7 ± (T/K)2}; temp 
range: 518.0–631.0 K (Cox eq., Chao et al. 1983) 
0.00424 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.20101 – 2169.73/(162.465 + t/°C); temp range 252.6–357.3°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
log (P/mmHg) = 7.0863 – 2179.4/(163.5 + t/°C); temp range 253–368°C (Antoine eq., Dean 1985, 1992) 
0.0012 (Antoine eq.-I, Stephenson & Malanowski 1987) 
0.0045 (liquid, extrapolated-Antoine eq.-II, Stephenson & Malanowski 1987) 
log (PS/kPa) = 10.1069 – 4780/(T/K); temp range not specified (solid, Antoine eq.-I, Stephenson & Malanowski 
1987) 
log (PL/kPa) = 6.21123 – 2179.424/(–109.636 + T/K); temp range 525–631 K (liquid, Antoine eq-II., Stephenson 
& Malanowski 1987) 
0.0002* (extrapolated-Antoine eq., Knudsen effusion, measured range 73.43–90.80°C, Jimenez et al. 1990) 
log (P/Pa) = 14.64– 5288.4/(T/K); temp range 73.43–90.80°C (Knudsen effusion, Jimenez et al. 1990) 
log (P/mmHg) = –119.857 – 3.2537 . 103/(T/K) + 52.568·log (T/K) – 4.6797 . 10–2·(T/K) + 1.4113 . 10–5·(T/K)2; 
temp range 518–899 K (vapor pressure eq., Yaws 1994) 
NH 
© 2006 by Taylor & Francis Group, LLC

3376 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
16.0 (calculated-P/C, Smith & Bomberger 1980) 
Octanol/Water Partition Coefficient, log KOW: 
3.29 (shake flask-UV at pH 7.4, Rogers 1969) 
3.01 (HPLC-k. correlation, Eadsforth 1986) 
3.50 (calculated, Eadsforth 1986) 
3.72 (recommended, Sangster 1989, 1993) 
3.59 (HPLC-RT correlation, Jenke et al. 1990) 
3.84 (shake flask-HPLC at pH 7, De Voogt et al. 1988) 
3.47 ± 0.63, 3.22 ± 0.53 (HPLC-k. correlation: ODS-65 column, Diol-35 column, Helweg et al. 1997) 
3.72 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
2.24 (Coyote Creek sediment, Smith et al. 1978) 
4.74 (humic acid, HPLC-k. correlation, Nielsen et al. 1997) 
3.80 (soil-pore water partition coeff., Askov soil - a Danish agricultural soil, Sverdrup et al. 2002) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. > 105 h in river, eutrophic pond, eutrophic lake and oligotrophic lake by the one 
compartment model (Smith et al. 1978). 
Photolysis: 
k = 6.6 . 10–5 s–1 for transformation and transport when exposed to midday sunlight in late January with 
estimated t. = 6.0 h in river, t. = 15.0 h in eutrophic pond and eutrophic lake and t. = 3.0 h in oligotrophic 
lake from average photolysis rates on a summer day at 40°N latitude by the one compartment model 
(Smith et al. 1978) 
photolytic t. = 1.0 h in aquatics (Haque et al. 1980) 
t. = 3 h for disappearance via direct photolysis in aquatic media (Harris 1982). 
Oxidation: 
laboratory investigated k = 29 M–1 s–1 for the reaction with RO2 radicals and estimated t. > 240 h in 
river, eutrophic pond, eutrophic lake and oligotrophic lake by the one compartment model (Smith 
et al. 1978) 
k(aq.) = 1.9 . 10–4 s–1 with t. = 1.0 h under natural sunlight conditions for midday, midsummer at a 
latitude of 40°N; k(aq.) = 29 M–1 s–1 with t. = 280 yr for free-radical oxidation in air-saturated water 
(NRCC 1983) 
Hydrolysis: 
Biodegradation: estimated half-lives of 14 h in river, eutrophic pond, eutrophic lake and > 103 h in oligotrophic 
lake by the one compartment model (Smith et al. 1978). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: estimated t. = 6.0 h in river, t. = 15.0 h in eutrophic pond and eutrophic lake and t. = 3.0 h in 
oligotrophic lake from average photolysis rates on a summer day at 40°N latitude by the one compartment 
model (Smith et al. 1978); 
photolytic t. = 1.0 h in aquatics (Haque et al. 1980); t. = 3 h for disappearance via direct photolysis in 
aquatic media (Harris 1982). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3377 
TABLE 16.1.7.10.1 
Reported vapor pressures of carbazole at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 Jimenez et al. 1990 
summary of literature data Knudsen effusion 
t/°C P/Pa t/°C P/Pa 
248.2 7999 73.43 0.0610 
265.0 13332 78.72 0.101 
292.5 26664 81.0 0.129 
323.0 53329 83.59 0.167 
354.8 101325 86.67 0.219 
87.13 0.227 
mp/°C 244.8 90.80 0.329 
. (at 25°C) 1.26 g/cm3 
eq. 1 P/Pa 
A 14.04 
B 5288.4 
enthalpy of sublimation: 
.Hsub/(kJ mol–1) = 103.3 
at 25°C 
FIGURE 16.1.7.10.1 Logarithm of vapor pressure versus reciprocal temperature for carbazole. 
Carbazole: vapor pressure vs. 1/T 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0
0.001 0.0014 0.0018 0.0022 0.0026 0.003 0.0034 
1/(T/K) 
log(PS 
/Pa) 
Jimenez et al. 1990 
Stull 1947 
m.p. = 246.3 °C b.p. = 354.7 °C 
© 2006 by Taylor & Francis Group, LLC

3378 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.11 Benzo[c,g]carbazole 
Common Name: Benzo[c,g]carbazole 
Synonym: 7H-dibenzo[c,g]carbazole 
Chemical Name: 7H-dibenzo[c,g]carbazole 
CAS Registry No: 194-59-2 
Molecular Formula: C20H13N, C10H6NHC10H6 
Molecular Weight: 267.324 
Melting Point (°C): 
158 (Lide 2003) 
Boiling Point (°C) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
296.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0496 (mp at 158°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
0.063 ± 0.003 (shake flask-GC, Smith et al. 1978) 
0.064 (Mill et al. 1981) 
0.064 (Pearlman et al. 1984) 
Vapor Pressure (Pa at 25°C): 
1.33 . 10–7 (estimated by comparison with benzo[a]pyrene, Smith et al. 1978) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.00048 (calculated-P/C, Smith & Bomberger 1980) 
Octanol/Water Partition Coefficient, log KOW: 
5.75 (calculated-S, Steen & Karickhoff 1981) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
4.93 (mixed microbial populations, Steen & Karickhoff 1981) 
Sorption Partition Coefficient, log KOC: 
4.31 (Coyote Creek sediment, Smith et al. 1978) 
6.03, 6.16 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 15000 h in river, t. = 37000 h in eutrophic pond, t. = 73000 h in eutrophic lake 
and oligotrophic lake by the one compartment model (Smith et al. 1978). 
Photolysis: rate constant 
k = 5.2 . 10–4 s–1 for transformation and transport when exposed to midday sunlight in mid-January with 
estimated t. = 1.0 h in river, t. = 1.5 h in eutrophic pond and eutrophic lake and t. = 0.5 h in oligotrophic 
lake assuming winter insulation by the one compartment model (Smith et al. 1978) 
photolytic t. = 0.35 h in aquatics (Haque et al. 1980). 
NH 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3379 
Oxidation: 
laboratory studied k = 830 M–1 s–1 for the reaction with the RO2 radicals and estimated t. > 700 h in river, 
eutrophic pond, eutrophic lake and oligotrophic lake by the one compartment model (Smith et al. 1978) 
k = 5.5 . 10–4 s–1 with t. = 0.4 d under natural sunlight conditions for midday, midsummer at a latitude of 
40°N; k = 830 M–1 s–1 with t. = 10 d for free-radical oxidation in air-saturated water (NRCC 1983) 
Hydrolysis: 
Biodegradation: estimated half-life to be very long in river, eutrophic pond, eutrophic lake and oligotrophic lake 
by the one compartment model with no acclimated cultures obtained during the screening studies (Smith 
et al. 1978). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: t. = 0.36 h in river water, t. = 1.5 h in pond water, t. = 1.5 h in eutrophic lake and t. = 0.5 h 
in oligotrophic lake for all processes predicted by one-compartment model (Smith et al. 1981); 
t. = 10 d for free-radical oxidation in air-saturation water (NRCC 1983). 
© 2006 by Taylor & Francis Group, LLC

3380 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.12 Acridine 
Common Name: Acridine 
Synonym: 2,3,5,6-dibenzopyridine 
Chemical Name: acridine, 2,3,5,6-dibenzopyridine 
CAS Registry No: 260-94-6 
Molecular Formula: C13H9N 
Molecular Weight: 179.217 
Melting Point (°C): 
110 (Lide 2003) 
Boiling Point (°C): 
344.86 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.005 (Weast 1982–83) 
Molar Volume (cm3/mol): 
196.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
5.60 (Albert 1966; Matzner et al. 1991; Matzner & Bales 1994) 
5.58 (20°C, Weast 1982–83) 
5.60 (protonated cation + 1, Dean 1985) 
10.65 (Sangster 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
18.58 ± 0.38 (McEachern et al. 1975) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.147 (mp at 110°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
57.4 (Albert 1966) 
38.4 (24°C, shake flask-LSC, Means et al. 1980) 
46.6 (literature average, Pearlman et al. 1984) 
54.8 (centrifuge-HPLC at pH 8, Matzner et al. 1991) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
133.3* (129.4°C, summary of literature data, temp range 129.4–346°C, Stull 1947) 
log (P/mmHg) = [–0.2185 . 15174.6/(T/K)] + 8.251980; temp range 129.4–346°C (Antoine eq., Weast 
1972–73) 
0.0065* (Langmuir free evaporation, measured range 7.96–50°C, McEachern et al. 1975) 
log (P/mmHg) = 27.076 – 11021.64/(T/K); measured range 281.2–323.3 K (Langmuir free evaporation, McEachern 
et al. 1975) 
0.0075 (extrapolated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1 – 618.827/(T/K)] . 10^{0.839996 – 4.19344 . 10–4 ± (T/K) + 3.63487 . 10–7 ± (T/K)2}; temp 
range: 402.6–619.2 K (Cox eq., Chao et al. 1983) 
0.2066 (static apparatus-extrapolated from Chebyshev polynomials, Sivaraman & Kobayashi 1983) 
0.0065 (Interpolated-Antoine eq.-I, Stephenson & Malanowski 1987; quoted, Ma et al. 1990) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3381 
log (PS/kPa) = 8.30838 – 3365.943/(–48.723 + T/K); temp range 293–367 K (solid, Antoine eq.-I, Stephenson 
& Malanowski 1987) 
log (PL/kPa) = 6.73664 – 2699.39/(–48.611 + T/K); temp range 402–619 K (liquid, Antoine eq.-II, Stephenson 
& Malanowski 1987) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.030 (calculated-P/C, Ma et al. 1990) 
Octanol/Water Partition Coefficient, log KOW: 
3.40 (shake flask-UV, Hansch & Fujita 1964) 
3.39 (HPLC-RT correlation, Mirrlees et al. 1976) 
3.39 (shake flask at pH 7.4, Unger et al. 1978) 
3.62 (shake flask-LSC, Means et al. 1980) 
3.29 (shake flask-AS at pH 7.4, Unger & Chiang 1981) 
3.31 ± 0.03 (HPLC-RV correlation-ALPM, Garst 1984) 
3.35 ± 0.02 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
3.32 (shake flask-GC at pH 7.0, Haky & Leja 1986) 
3.40 (recommended, Sangster 1989, 1993) 
3.40 (recommended, Hansch et al. 1995) 
3.18 ± 0.64, 3.27 ± 0.53 (HPLC-k. correlation: ODS-65 column, Diol-35 column, Helweg et al. 1997) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.40 (selected, Ma et al. 1990) 
Sorption Partition Coefficient, log KOC: 
4.69 (average of sediments and soil samples, equilibrium sorption isotherm, Means et al. 1980) 
3.32 (calculated, Means et al. 1980) 
–0.157 (estimated of Loring subsurface material, Zachara et al. 1987) 
0.610 (estimated of Anvil Points subsurface material, Zachara et al. 1987) 
3.09–3.41 (soil, calculated-KOW, model of Karickhoff et al. 1979, Sabljic 1987) 
3.16–3.33 (soil, calculated-KOW, model of Kenaga & Goring 1980, Sabljic 1987) 
2.36–2.52 (soil, calculated-KOW, model of Briggs 1981, Sabljic 1987) 
2.98–3.30 (soil, calculated-KOW, model of Means et al. 1982, Sabljic 1987) 
2.19–2.48 (soil, calculated-KOW, model of Chiou et al. 1983, Sabljic 1987) 
4.22, 4.26 (soil, quoted, calculated-MCI ., Sabljic 1987) 
4.11, 3.32 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
4.11, 4.31 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
4.00 (HPLC-k. correlation, Nielsen et al. 1997) 
4.79 (soil-pore water partition coeff., Askov soil - a Danish agricultural soil, Sverdrup et al. 2002) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 109 h–1, k2 = 3.68 h–1 (daphnia pulex, 21°C, Southworth et al. 1978) 
Half-Lives in the Environment: 
Biota: elimination t. = 11.3 min (daphnia pulex, Southworth et al. 1978). 
© 2006 by Taylor & Francis Group, LLC

3382 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.7.12.1 
Reported vapor pressures of acridine at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 McEachern et al. 1975 
summary of literature data Langmuir free evaporation 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
129.4 133.3 7.96 0.000653 eq. 1a P/mmHg 
165.8 666.6 12.02 0.001027 A 27.076 
184.0 1333 16.08 0.002413 B 11021.64 
203.5 2666 19.95 0.00329 temp range: 281.2–323.2 K 
224.2 5333 25.05 0.00652 enthalpy of fusion: 
238.7 7999 25.05 0.00656 .Hfus/(kJ mol–1) = 18.58 
256.0 13332 29.98 0.01145 enthalpy of sublimation: 
284.0 26664 35.08 0.0213 .Hsub/(kJ mol–1) = 121.75 
314.3 53329 40.02 0.0380 temp range: 281.2–323.3 K 
345.0 101325 45.09 0.0640 enthalpy of vaporization: 
50.0 0.1074 .HV/(kJ mol–1) = 72.59 
mp/°C 110.5 
FIGURE 16.1.7.12.1 Logarithm of vapor pressure versus reciprocal temperature for acridine. 
Acridine: vapor pressure vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
0.0014 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
McEachern et al. 1975 
Stull 1947 
b.p. = 344.86°C m.p. = 106 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3383 
16.1.8 SULFUR COMPOUNDS 
16.1.8.1 Carbon disulfide 
Common Name: Carbon disulfide 
Synonym: carbon disulphide 
Chemical Name: carbon disulfide 
CAS Registry No: 75-15-0 
Molecular Formula: CS2 
Molecular Weight: 76.141 
Melting Point (°C): 
–112.1 (Lide 2003) 
Boiling Point (°C): 
46 (Lide 2003) 
Density (g/cm3): 
1.2632 (20°C, Weast 19820–83) 
1.26311, 1.2555 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
66.0 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Vaporization, .HV (kJ/mol): 
27.522, 26.736 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Sublimation, .Hsubl (kJ/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
4.389 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
2100 (20°C, selected, Riddick et al. 1986) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
53329* (28°C, summary of literature data, temp range –73.8 to 46.5°C, Stull 1947) 
47359* (24.582°C, comparative ebulliometry, measured range 3.6–80°C, Waddington et al. 1962) 
log (P/mmHg) = 6.94194 – 1168.623/(241.534 + t/°C); temp range 3.6–80°C (Antoine eq., comparative ebulliometry, 
Waddington et al. 1962) 
49704* (25.931°C, temp range –17.76 to 45.142°C, Boublik & Aim 1972; quoted, Boublik et al 1984) 
log (P/kPa) = 6.86752 – 1169.022/(241.582 + t/°C), temp range 3.6–80°C (Antoine eq. derived from exptl. data 
of Waddington et al. 1949, Boublik et al. 1984) 
log (P/kPa) = 6.03385 – 1151.908/(239.748 + t/°C), temp range –17.76 to 45.14°C (Antoine eq. derived from 
exptl. data, Boublik et al. 1984) 
48210 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.06694 – 1168.623/(t/°C + 241.534) temp range not specified (Antoine eq., Riddick et al. 1986) 
log (PL/kPa) = 6.03694 – 1153.5/(–33.22 + T/K); temp range 256–319 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.07588 – 1174.112/(–30.896 + T/K); temp range 260–353 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6 19814– 1231.307/(–26.024 + T/K); temp range 338–408 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6 80466– 1278.903/(43.404 + T/K); temp range 388–497 K (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.58592 – 2639.181/(165.312 + T/K); temp range 490–533 K (Antoine eq.-V, Stephenson & 
Malanowski 1987) 
S S C 
© 2006 by Taylor & Francis Group, LLC

3384 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
39597 (20°C, Howard 1990) 
log (P/mmHg) = 25.1475 – 2.0349 . 103/(T/K) –6.7794·log (T/K) + 3.4828 . 10–3·(T/K) – 1.0105 . 10–14·(T/K)2; 
temp range 162–552 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 
142 (calculated-P/C, Howard 1990) 
1946 (calculated-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 
1577 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 3.485 – 1077/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
1.70–4.60 (Hansch & Leo 1985) 
2.14 (recommended, Sangster 1993) 
1.94 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
0.90 (calculated-solubility, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
1.80 (calculated-solubility, Howard 1990) 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Volatilization: t. = 2.6 h in a model river (Howard 1990) 
Photolysis: 
Oxidation: 
Hydrolysis: t. = 1.1 yr at pH 9 in alkaline solution (Howard 1990) 
Biodegradation: 
Biotransformation: 
Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 
Half-Lives in the Environment: 
Air: t.: = 9 d degraded by reacting with atomic oxygen and photochemically produced OH radicals (Howard 
1990) 
TABLE 16.1.8.1.1 
Reported vapor pressures of carbon disulfide at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 

log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 Waddington et al. 1962 Boublik & Aim 1972 
summary of literature data comparative ebulliometry in Boublik et a. 1984 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–73.8 133.3 3.588 19920 –17.76 6967 
–54.3 666.6 8.772 25007 ~12.358 9306 
–44.7 1333 13.999 31168 ~7.204 12046 
–34.3 2666 19.269 38547 ~3.286 14549 
–22.5 5333 24.582 47359 1.223 17921 
–15.3 7999 29.927 57803 5.076 21314 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3385 
TABLE 16.1.8.1.1 (Continued) 
Stull 1947 Waddington et al. 1962 Boublik & Aim 1972 
summary of literature data comparative ebulliometry in Boublik et a. 1984 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–5.1 13332 35.318 70109 9.448 25780 
10.4 26664 40.751 84525 12.981 29923 
28.0 53329 46.225 101325 17.168 35493 
46.5 101325 51.744 120798 21.087 41470 
57.295 143268 25.931 49704 
mp/°C –110.8 62.885 169052 31.522 61295 
68.531 198530 38.041 77125 
74.218 232087 45.142 97853 
79.927 270110 
bp/°C 46.217 
bp/°C 46.22 
Antoine eq. eq. 2 P/kPa 
eq. 2 P/mmHg A 6.03385 
A 6.94194 B 1151.908 
B 1168.623 C 239.748 
C 241.534 
data also fitted to Cox eq. 
see ref. 
FIGURE 16.1.8.1.1 Logarithm of vapor pressure versus reciprocal temperature for carbon disulfide. 
Carbon disulfide: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0028 0.0032 0.0036 0.004 0.0044 0.0048 0.0052 
1/(T/K) 
P ( g o l S ) a P / 
Waddington et al. 1962 
Boublik & Aim 1972 
Stull 1947 
b.p. = 46 °C 
© 2006 by Taylor & Francis Group, LLC

3386 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.8.2 Dimethyl sulfide 
Common Name: Dimethyl sulfide 
Synonym: DMS, methyl sulfide, thiobismethane, 2-thiapropane 
Chemical Name: dimethyl sulfide 
CAS Registry No: 75-18-3 
Molecular Formula: C2H6S, (CH3)2S 
Molecular Weight: 62.134 
Melting Point (°C): 
–98.24 (Lide 2003) 
Boiling Point (C): 
37.33 (Riddick et al. 1986; Lide 2003) 
Density (g/cm3 at 25°C): 
0.84825, 0.84230 (20°C, 25°C, Dreisbach 1961) 
0.8423 (Riddick et al. 1986) 
Molar Volume (cm3/mol): 
73.2 (Kamlet et al. 1986) 
73.8 (20°C, calculated-density) 
77.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKBH + : 
–6.99 (Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
27.49, 26.82 (25°C, bp, Dreisbach 1961) 
27.65, 27.0 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
7.99 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
15606 (Hine & Mookerjee 1975) 
6300 (Verschueren 1983) 
22000 (estimated-activity coefficient by headspace-GC, Przyjazny et al. 1983) 
20000 (Riddick et al. 1986) 
19600 (selected, Yaws et al. 1990) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
53174* (20.087°C, static method, measured range –22.547 to 20.087°C, Osborn et al. 1942) 
log (P/mmHg) = 16.51798 – 1876.370/(T/K) – 3.04727 ± log (T/K); temp range –22.547 to 20.087°C (static 
method, Osborn et al. 1942) 
53329* (18.7°C, summary of literature data, temp range –75.6 to 36°C, Stull 1947) 
64650 (calculated from determined data, Dreisbach 1961) 
log (P/mmHg) = 6.93138 – 1081.587/(229.746 + t/°C), temp range –50 to 130°C (Antoine eq. for liquid state, 
Dreisbach 1961) 
64501* (interpolated-Antoine eq., temp range –47.4 to 58.319°C, Zwolinski & Wilhoit 1971) 
log (P/mmHg) = 6.94879 – 1090.755/(230.799 + t/°C); temp range –47.4 to 58.319°C (liquid, Antoine eq., 
Zwolinski & Wilhoit 1971) 
70300 (Hine & Mookerjee 1975) 
log (P/mmHg) =[–0.2185 . 6742.3/(T/K)] + 7.589204; temp range –75 to 224.5°C (Antoine eq., Weast 1972–73) 
56000 (20°C, Verschueren 1983) 
64443 (calculated-Antoine eq. of Boublik et al. 1973, Przyjazny et al. 1983) 
64460 (extrapolated-Antoine eq., Boublik et al. 1984) 
S 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3387 
log (P/kPa) = 6.27843 – 1196.875/(242.81 + t/°C), temp range –22.55 to 20.09°C (Antoine eq. from reported 
exptl. data, Boublik et al. 1984) 
64470 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.1509 – 1195.58/(242.68 + t/°C); temp range –22 to 20°C (Antoine eq., Dean 1985, 1992) 
64650 (quoted, Riddick et al. 1986) 
log (P/kPa) = 6.07369 – 1090.755/(230.799 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
64520 (interpolated, Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.07043 – 1088.851/(–42.594 + T/K); temp range 268–319 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.13042 – 1124.998/(–37.961 + T/K); temp range 307–379 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.42655 – 1344.329/(–7.456 + T/K); temp range 372–453 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.36327 – 2293.043/(130.243 + T/K); temp range 447–503 K (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 37.2604 – 2.4251 . 103/(T/K) –11.384·log (T/K) + 5.8122 . 10–3·(T/K) + 8.5893 . 10–14·(T/K)2; 
temp range 175–503 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence. Additional data at 
other temperatures designated * are compiled at the end of this section): 
278.1 (1/KAW, exptl., Hine & Mookerjee 1975) 
298, 366.6 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
165 (20°C, headspace-GC, Vitenberg et al. 1975) 
180.4, 184.7, 173.5 (headspace-GC, concn. of 10, 1.0, 0.1 ppm by weight, Przyjazny et al. 1983) 
180.4, 184.7, 173.5 (headspace-GC, concn. of 10, 1.0 and 0.1 ppm by weight, measured range 25–70°C, data 
presented in graph, Przyjazny et al. 1983) 
log (1/KAW) = 1637.3/(T/K) – 4.354; temp range 25–70°C (headspace-GC, concn of 10 ppm by weight, Przyjazny 
et al. 1983) 
log (1/KAW) = 1635.6/(T/K) – 4.358; temp range 25–70°C (headspace-GC, concn of 1.0 ppm by weight, Przyjazny 
et al. 1983) 
log (1/KAW) = 1598.2/(T/K) – 4.205; temp range 25–70°C (headspace-GC, concn of 0.1 ppm by weight, Przyjazny 
et al. 1983) 
163.4 (quoted, Gaffney et al. 1987) 
184, 1271 (quoted, calculated-molecular structure, Russell et al. 1992) 
138 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996) 
233.0* (equilibrium headspace-GC, in seawater, measured range 18–44°C, Wong & Wang 1997) 
61.97 (equilibrium headspace-GC, Marin et al. 1999) 
155 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 3.556 – 1394/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression 
see reference: 
© 2006 by Taylor & Francis Group, LLC

3388 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
kOH* = (9.80 ± 1.2) . 10–12 cm3 molecule–1 s–1 at 299.9 K, measured range 299.9–426.5 K (flash photolysisresonance 
fluorescence, Atkinson et al. 1978) 
kOH* = (8.28 ± 0.87) . 10–12 cm3 molecule–1 s–1 at 297 K, measured range 273–400 K by flash photolysisresonance 
fluorescence, Kurylo 1978) 
kO(3P)* = 57 . 10–12 cm3 molecule–1 s–1 for gas-phase reaction with O(3P) atom at 296 K, measured range 
252–493 K (Slagle et al. 1978) 
kOH* = (4.26 ± 0.56) . 10–11 cm3 molecule–1 s–1 at 298 K, measured range 248–363 K (flash photolysisresonance 
fluorescence, Wine et al. 1981) 
kOH = (1.0 ± 0.1) . 10–11 cm3 molecule–1 s–1 with an estimated lifetime . ~ 30 h in the daytime, 
kNO3 = (5.4 ± 0.7) . 10–13 cm3 molecule–1 s–1 with an estimated . ~ 3 h in the nighttime hours at 296 ± 2 K 
(Atkinson et al 1984) 
kO3 < 8 . 10–19 cm3 molecule–1 s–1 with a loss rate of < 0.05 d–1, kOH = 9.80 . 10–12 cm3 ± molecule–1 s–1 with 
a loss rate of 0.8 d–1, and kNO3 = 9.7 . 10–13 cm3 molecule–1 s–1 with a loss rate of 20 d–1 at room temp. 
(review, Atkinson & Carter 1984) 
kO3 < 8 . 10–20 cm3 molecule–1 s–1 with a loss rate of < 0.004 d–1, kOH = 6.3 . 10–12 cm3 molecule–1 s–1 with 
a loss rate of 0.27 d–1, and kNO3 = 9.7 . 10–13 cm3 molecule–1 s–1 with a loss rate of 20 d–1 at room temp. 
(review, Atkinson 1985) 
kOH* = (4.09, 4.44) . 10–12 cm3 molecule–1 s–1 at 298 K, measured range 267–397 K (flash photolysisresonance 
fluorescence, Hynes et al. 1986) 
kOH* = (3.60 ± 0.2) . 10–12 cm3 molecule–1 s–1 at 297 K, measured range 297–440 K by flash photolysisresonance 
fluorescence; kOH = 9.36 . 10–12 cm3 molecule–1 s–1 relative rate to n-hexane, kOH = 5.36 . 10–12 
cm3 molecule–1 s–1 relative rate to cyclohexane at 296 K (Wallington et al. 1986a) 
kNO3* = (8.1 ± 1.3) . 10–13 cm3 molecule–1 s–1 at 298 K, measured range 280–350 K (flash photolysis-visible 
absorption, Wallington et al. 1986b) 
kOH* = (5.50 ± 1.0) . 10–12 cm3 molecule–1 s–1 at 298 K, measured range 260–393 K (discharge flowresonance 
fluorescence, Hsu et al. 1987) 
kOH = (8.0 ± 0.5) . 10–12 cm3 molecule–1 s–1 at 298 K (Relative rate method, Barnes et al. 1989) 
kOH = 3.60 . 10–12 cm3 molecule–1 s–1; k(soln) = 3.2 . 10–11 cm3 molecule–1 s–1 for reaction with OH radical 
in aqueous solution (Wallington et al. 1988) 
kNO3* = (10.6 ± 1.3) . 10–13 cm3 molecule–1 s–1 at room temp., measured range 256–376 K (flow tube-laser 
induced fluorescence, Dlugokencky & Howard 1988) 
kOH* = 4.56 . 10–12 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1989) 
kOH = 4.57 . 10–12 cm3 molecule–1 s–1, kNO3 = 9.77 . 10–13 cm3 molecule–1 s–1 (Sabljic & Gusten 1990; Muller 
& Klein 1991) 
kNO3* = 1.07 . 10–12 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1991) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: atmospheric lifetime . ~ 30 h due to reaction with OH radical in the daytime and . ~3 h due to reaction at 
night with NO3 radical (Atkinson et al. 1984); 
calculated lifetimes, . > 20 d due to reaction with O3 in 24-h, . = 28 h with OH radical during daytime and 
. = 120 min with NO3 radical during nighttime in “clean” atmosphere; . > 3 d due to reaction with O3 
in 24-h, . = 420 min with OH radical in daytime and . = 13 min with NO3 in nighttime in “moderately 
polluted” atmosphere (Winer et al. 1984) 
estimated tropospheric chemical lifetimes, . = 2 d, 2 d and > 15 d for reactions with OH, NO3 and O3, 
respectively, under typical remote tropospheric conditions (Falbe-Hansen et al. 2000) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3389 
TABLE 16.1.8.2.1 
Reported vapor pressures and Henry’s law constants of dimethyl sulfide at various temperatures 
Vapor pressure Henry’s law constant 
Osborn et al. 1942 Stull 1947 Zwolinski & Wilhoit 1971 Wong & Wang 1997 
static method-manometer summary of literature data selected values equilibrium headspace-GC 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C H/(Pa m3/mol) 
in seawater 
–22.547 6994 –75.6 –133.3 47.4 1333 18 164.6 
–10.028 13699 –58.0 666.6 –37.7 2666 25 233.0 
0.096 22437 –49.2 1333 –31.5 4000 35 381.7 
4.943 28042 –39.4 2666 –26.9 5333 44 556.4 
15.138 43512 –28.4 5333 –23.03 6666 
20.087 53174 –21.4 7999 –19.85 7999 log KAW = A – B/(T/K) 
–12.0 13332 –14.62 10666 KAW 
mp/K 174.855 2.60 26664 –10.39 13332 A 4.806 
bp/K 310.49 18.7 53329 –2.258 19998 B 1735 
36.0 101325 3.885 26664 
log P = A – B/(T/K) – C·log (T/K) 8.883 33331 
P/mmHg mp/°C –83.2 13.127 39997 
A 16.51798 20.138 53329 
B 1876.370 25.860 66661 
C 3.04727 30.733 79993 
35.000 93326 
.Hfus/(kJ mol–1) = 7.985 35.794 95992 
.HV/(kJ mol–1) = 27.98 36.572 98659 
at 291.06 K 37.333 101325 
25 64501 
Antoine eq. 
log P = A – B/(C + t/°C) 
P/mmHg 
A 6.94879 
B 1090.755 
C 230.799 
bp/°C 37.333 
.HV/(kJ mol–1) = 
at 25°C 27.65 
at bp 26.92 
© 2006 by Taylor & Francis Group, LLC

3390 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.8.2.1 Logarithm of vapor pressure versus reciprocal temperature for dimethyl sulfide. 
FIGURE 16.1.8.2.2 Logarithm of Henry’s law constant versus reciprocal temperature for dimethyl sulfide. 
Dimethyl sulfide: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0028 0.0032 0.0036 0.004 0.0044 0.0048 0.0052 
1/(T/K) 
P 
( gol 
S 
) aP/ 
Osborn et al. 1942 
Stull 1947 
Zwolinski & Wilhoit 1971 
b.p. = 37.33 °C 
Dimethyl sulfide: Henry's law constant vs. 1/T 
4.0 
5.0 
6.0 
7.0 
8.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
m. aP( / H nl 
3 
) l om/ 
Wong & Wang 1997 (in seawater) 
Hine & Mookerjee 1975 
Vitenberg et al. 1975 
Marin et al. 1999 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3391 
16.1.8.3 Dimethyl disulfide 
Common Name: Dimethyl disulfide 
Synonym: 2,3-dithiabutane 
Chemical Name: dimethyl didisulfide 
CAS Registry No: 624-92-0 
Molecular Formula: C2H6S2, CH3SSCH3 
Molecular Weight: 94.199 
Melting Point (°C): 
–84.67 (Lide 2003) 
Boiling Point (°C): 
109.74 (Lide 2003) 
Density (g/cm3): 
1.6025 (20°C, Weast 1982–83) 
Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
103.0 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Vaporization, .HV (kJ/mol): 
38.37, 33.68 (25, bp, Zwolinski & Wilhoit 1971) 
Enthalpy of Sublimation, .Hsubl (kJ/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
3400 (estimated-activity coefficient by headspace-GC, Przyjazny et al. 1983) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
3825* (static method, measured range 0–60°C, Scott et al. 1950) 
3813* (interpolated-Antoine eq., temp range 5.356–109.745°C, Zwolinski & Wilhoit 1971) 
log (P/mmHg) = 6.97792 – 1396.342/(218.863 + t/°C); temp range 5.356 –109.745°C (Antoine eq., Zwolinski 
& Wilhoit 1971) 
3850 (calculated-Antoine eq. of Boublik et al. 1973, Przyjazny et al. 1983) 
log (P/kPa) = 6.18000 – 1389.151/(223.184 + t/°C), temp range 0–60°C (Antoine eq. derived from Scott et al. 
1950 data, Boublik et al. 1984) 
log (P/kPa) = 6.08703 – 1336.665/(217.767 + t/°C), temp range 61.4–128,6°C (Antoine eq. derived from Scott 
et al. 1950 data, Boublik et al. 1984) 
log (PL/kPa) = 6.10018 – 1349.006/(–54.389 + T/K), temp range 297–402 K, (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 36.232 – 3.1241 . 103/(T/K) – 9.9328·log (T/K) + 2.2831 . 10–11·(T/K) + 3.1730 . 10–6·(T/K)2; 
temp range 125–499 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 
121 (20°C, headspace-GC, Vitenberg et al. 1975) 
112, 101 (headspace-GC, concn. of 10 and 1.0 ppm by weight, measured range 25–70°C, data presented in 
graph, Przyjazny et al. 1983) 
log (1/KAW) = 1657.1/(T/K) – 4.211; temp range 25–70°C (headspace-GC, concn of 10 ppm by weight, Przyjazny 
et al. 1983) 
log (1/KAW) = 1854.4/(T/K) – 4.828; temp range 25–70°C (headspace-GC, concn of 1.0 ppm by weight, Przyjazny 
et al. 1983) 
77.5 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001) 
S 
S 
© 2006 by Taylor & Francis Group, LLC

3392 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log KAW = 4.828 – 1384/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
1.77 (shake flask, Log P Database, Hansch & Leo 1987) 
1.77 (recommended, Sangster 1993) 
1.77 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, and Half-Lives, t., or Lifetimes, .: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = 2.40 . 10–10 cm3 molecule–1 s–1, at 297 K (relative rate method, Cox & Sheppard 1980) 
kOH* = (1.84 – 19.8) . 10–10 cm3 molecule–1 s–1, at 298 K, measured range 255–377 K (flask photolysisresonance 
fluorescence, Wine et al. 1984) 
kOH* = 2.05 . 10–10 cm3 molecule–1 s–1, at 298 K (tentative recommended, Atkinson 1985) 
kNO3* = 4.9 . 10–13 cm3 molecule–1 s–1 at 298 K, measured range 280–350 K (flash photolysis-optical 
absorption, Wallington et al. 1986) 
kNO3* = (7.3 ± 1.5) . 10–13 cm3 molecule–1 s–1 at room temp., measured range 334–382 K (flow tube-laser 
induced fluorescence, Dlugokencky & Howard 1988) 
kNO3 = 7.0 . 10–13 cm3 molecule–1 s–1, independent of temperature over the range ~300–380 K (recommended, 
Atkinson 1991) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 
Half-Lives in the Environment: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3393 
TABLE 16.1.8.3.1 
Reported vapor pressures of dimethyl disulfide at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Scott et al. 1950 Zwolinski & Wilhoit 1971 
static method-manometer ebulliometric method selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
0 904 61.411 19920 5.356 1333 106.905 93326 
15 2230 67.301 25007 18.299 2666 107.872 95992 
20 2936 73.234 31160 25.891 4000 108.819 98659 
25 3825 79.201 38547 31.579 5333 109.745 101325 
30 4930 85.218 47359 36.177 6666 25.0 3813 
35 6301 91.283 57803 40.060 7999 Antoine eq. 
40 7975 97.393 70109 46.435 10666 eq. 2 P/mmHg 
45 10007 103.54 84525 51.600 13332 A 6.97792 
50 12448 109.738 101325 61.518 19998 B 1396.342 
55 15359 115.984 120798 69.008 26664 C 218.863 
60 18813 122.273 143268 75.099 33331 bp/°C 109.745 
128.611 169052 80.271 39997 .HV/(kJ mol–1) = 
88.812 53329 at 25°C 38.37 
95.780 66661 at bp 33.68 
101.712 79993 
FIGURE 16.1.8.3.1 Logarithm of vapor pressure versus reciprocal temperature for dimethyl disulfide. 
Dimethyl disulfide: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 0.004 
1/(T/K) 
log 
(PS/Pa) 
Scott et al. 1950 
Zwolinski & Wilhoit 1971 
b.p. = 109.74 °C 
© 2006 by Taylor & Francis Group, LLC

3394 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.8.4 Dimethyl sulfoxide (DMSO) 
Common Name: Dimethyl sulfoxide 
Synonym: DMSO, sulfinylbismethane, methyl sulfoxide, methylsulfinylmethane, SQ 9453, DMS-70, DMS-90, Deltan, 
Demasorb, Demavet, Demeso, Dermasorb, Dolicur, Domoso, Dromisol, Gamasol 90, Hyadur, Rimso-50, Sclerosol, 
Somipront, Somtexan, Topsym 
Chemical Name: dimethyl sulfoxide 
CAS Registry No: 67-68-5 
Molecular Formula: C2H6OS, (CH3)2SO 
Molecular Weight: 78.133 
Melting Point (°C): 
17.89 (Lide 2003) 
Boiling Point (°C): 
189.0 (Stephenson & Malanowski 1987; Lide 2003) 
Density (g/cm3 at 25°C): 
1.1014 (Weast 1982–83) 
Molar Volume (cm3/mol): 
85.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
1.4 (Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
52.88, 43.14 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
14.368 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
253000 (Riddick et a. 1986) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
80.0* (gas saturation, measured range 20–50°C, Douglas 1948) 
log (P/mmHg) = 26.49588 – 3539.32/(T/K) – 6.000 ± ln (T/K); temp range 20–50°C (gas saturation, Douglas 
1948) 
460* (52.35°C, Hg manometer, measured range 325.5–442.1 K, Jakli & van Hook 1972) 
ln (P/mmHg) = 17.4922 – 4517.79/(T/K – 47.2583); temp range 291.7–463 K (Hg manometer, Antoine eq. with 
literature data, Jakli & van Hook 1972) 
56.0 (20°C, Verschueren 1983) 
80.9 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.64816 – 1922.32/(223.353 + t/°C); temp range 52.4–168.95°C (Antoine eq. from reported exptl. 
data of Jakli & von Hook 1972, Boublik et al. 1984) 
80.0 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.72161 – 1962.06/(225.892 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
79.5 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.72167 – 1962.05/(–47.258 + T/K); temp range 305–464 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 45.4653 – 4.0439 . 103/(T/K) – 13.21·log (T/K) + 1.0981 . 10–7·(T/K) + 6.4155 . 10–6·(T/K)2; 
temp range 292–465 K (vapor pressure eq., Yaws et al. 1994) 
Henry’s Law Constant (Pa·m3/mol): 
O
S 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3395 
Octanol/Water Partition Coefficient, log KOW: 
–1.35 (shake flask, Hansch & Leo 1979, 1987) 
–0.85 (calculated-UNIFAC activity coefficients, Banerjee & Howard 1988) 
–1.35 (recommended, Sangster 1989) 
–1.35 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
4.96 (head-space GC, Abraham et al. 2001) 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = (6.2 ± 2.2) . 10–11 cm3 molecule–1 s–1; kNO3 = (1.7 ± 0.3) . 10–13 cm3 molecule–1 s–1; kO3 < 5.0 . 10–19 
cm3 ± molecule–1 s–1 at room temp (Barnes et al. 1989) 
kOH = (62 ± 25) . 10–12 cm3 molecule–1 s–1 at 300 K (Atkinson 1989) 
kOH = (1.0 ± 0.3) . 10–12 cm3 molecule–1 s–1 at room temp (Hynes & Wine 1996) 
kOH = (8.7 ± 1.6) . 10–11 cm3 molecule–1 s–1 at room temp. (Urbanski et al. 1998) 
kOH = (5.9 ± 1.5) . 10–11 cm3 ± molecule–1 s–1 with tropospheric lifetime . = 5 h, kNO3 = (5.0 ± 3.8) . 10–13 
cm3 molecule–1 s–1 with tropospheric lifetime . = 3 d; kO3 < 1.0 . 10–19 cm3 ± molecule–1 s–1 with 
tropospheric lifetime . > 150 d and kCl = (7.4 ± 1.0) . 10–11 cm3 molecule–1 s–1 for reaction wit Cl atoms 
with tropospheric lifetime . = 62 d at room temp and 740 torr (Relative rate method, Falbe-Hansen et al. 
2000) 
Hydrolysis: k = 6.60 . 109 M–1 s–1 (Buxton et al. 1986) 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: estimated tropospheric chemical lifetimes, . = 5 h, 3 d and > 150 d for reactions with OH, NO3 and O3, 
respectively, under typical remote tropospheric conditions (Falbe-Hansen et al. 2000) 
© 2006 by Taylor & Francis Group, LLC

3396 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.8.4.1 
Reported vapor pressures of dimethyl sulfoxide at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) log P = A – B/(C + T/K) (3a) 
log P = A – B/(T/K) – C·log (T/K) (4) ln P = A – B/(T/K) – C·ln(T/K) (4a) 
Douglas 1948 Jakli & van Hook 1972 
gas saturation mercury manometer 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
20 55.6 52.35 460 140.15 22905 
25 80.0 56.25 573 148.05 29471 
30 113.7 61.45 767 162.15 47036 
35 159.3 66.15 993 168.95 56342 
40 220.8 74.85 1560 eq. 3 P/mmHg 
45 302.6 79.95 2000 A 17.4922 
50 409.3 85.65 2653 B 4517.79 
90.26 3293 C 47.2583 
eq. 4 P/mmHg 96.05 4226 
A 29.49558 100.45 5106 
B 3539.32 100.55 5133 
C 6.0000 104.95 6246 
111.95 8359 
bp/°C 192 117.95 10452 
.HV = 52.89 kJ/mol 127.45 14745 
FIGURE 16.1.8.4.1 Logarithm of vapor pressure versus reciprocal temperature for dimethyl sulfoxide. 
Dimethyl sulfoxide: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP 
/ 
Douglas 1948 
Jakli & van Hook 1972 
b.p. = 189 °C m.p. = 17.89 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3397 
16.1.8.5 Dimethyl sulfate 
Common Name: Dimethyl sulfate 
Synonym: sulfuric acid dimethyl ester, DMS 
Chemical Name: dimethyl sulfate 
CAS Registry No: 77-78-1 
Molecular Formula: C2H6O4S, CH3O-SO2-OCH3 
Molecular Weight: 126.132 
Melting Point (°C): 
–27 (Lide 2003) 
Boiling Point (°C): 
188 (decomposes, Lide 2003) 
Density (g/cm3 at 20°C): 
1.3322 (Dean 1985) 
Molar Volume (cm3/mol): 
95.0 (20°C, Stephenson & Malanowski 1987) 
109.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
28000 (hydrolyzes, Verschueren 1983; Dean 1985) 
28000 (18°C, Budavari 1989) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
< 133 (20°C, Verschueren 1983) 
128 (extrapolated, Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.28235 – 2437.54/(T/K), temp range 340–470 K, (Antoine eq., Stephenson & Malanowski 1987) 
log (P/mmHg) = 33.9406 – 3.853 . 103/(T/K) – 8.5921·log (T/K) – 1.1705 . 10–10·(T/K) + 8.226 . 10–7·(T/K)2; 
temp range 241–758 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: atmospheric photooxidation t. = of 36.5–365 h, based on estimated rate constant for the vapor-phase 
reaction with OH radical in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: first order hydrolysis rate constant k = 1.6 . 10–4 s–1 at pH 7 and 25°C with t. = 1.2 h (Mabey & 
Mill 1978; quoted, Howard et al. 1991). 
O 
S 
O 
O O 
© 2006 by Taylor & Francis Group, LLC

3398 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Biodegradation: aqueous aerobic biodegradation t. ~ 168–672 h and aqueous anaerobic biodegradation 
t. ~ 672–2688 h (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 36.5–365 h, based on photooxidation half-life in air from estimated rate constant for the vapor phase 
reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
atmospheric transformation lifetime (reaction with liquid water) estimated to be < 1 d (Kelly et al. 1994). 
Surface water: t. = 1.2–12 h, based on overall hydrolysis rate constant for pH 7 at 25°C (Mabey & Mill 1978; 
quoted, Howard et al. 1991) and for complete hydrolysis in neutral, slightly basic, and acidic aqueous 
solutions (Lee et al. 1980; quoted, Howard et al. 1991). 
Groundwater: t. = 1.2–12 h, based on overall hydrolysis rate constant for pH 7 at 25°C (Mabey & Mill 1978; 
quoted, Howard et al. 1991) and for complete hydrolysis in neutral, slightly basic, and acidic aqueous 
solutions (Lee et al. 1980; quoted, Howard et al. 1991). 
Sediment: 
Soil: t. = 1.2–12 h, based on overall hydrolysis rate constant for pH 7 at 25°C and for complete hydrolysis in 
neutral, slightly basic, and acidic aqueous solutions (Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3399 
16.1.8.6 Methanethiol 
Common Name: Methanethiol 
Synonym: methyl mercaptan 
Chemical Name: methanethiol 
CAS Registry No: 74-93-1 
Molecular Formula: CH4S, CH3SH 
Molecular Weight: 48.108 
Melting Point (°C): 
–123 (Weast 1982–83; Lide 2003) 
Boiling Point (°C): 
5.9 (Lide 2003) 
Density (g/cm3): 
0.8665 (20°C, Weast 1982–83) 
Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
55.3 (20°C, Stephenson & Malanowski 1987) 
55.2 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Vaporization, .HV (kJ/mol): 
23.8, 24.57 (25, bp, Zwolinski & Wilhoit 1971) 
Enthalpy of Sublimation, .Hsubl (kJ/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
39000 (estimated-activity coefficient by headspace-GC/FID, Przyjazny et al. 1983) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
101410* (5.977°C, static method-Hg manometer, measured range –51.3 to 5.977°C, Russell et al. 1942) 
log (P/mmHg) = 18.27429 – 1769.05/(T/K) – 3.70248 ± log (T/K); temp range 221.88–279.137 K (static method, 
Russell, et al. 1942) 
101325* (8.7°C, summary of literature data, temp range –90.7 to 7.8°C, Stull 1947) 
202117* (extrapolated, summary of literature data, temp range –70.3 to 5.956°C, Zwolinski & Wilhoit 
1971) 
log (P/mmHg) = 7.03163 – 1015.547/(238.706 + t/°C); temp range –70.3 to 24.694°C (Antoine eq., Zwolinski 
& Wilhoit 1971) 
202346 (calculated-Antoine eq. of Boublik et al. 1973, Przyjazny et al. 1983) 
log (P/kPa) = 6.18991 – 1030.496/(248.330 + t/°C), temp range –51.28 to 5.977°C, (Antoine eq. derived from 
Russell et al. 1942 data, Boublik et al. 1984) 
log (PL/kPa) = 6.19283 – 1031.216/(–32.916 + T/K), temp range 221–283 K, (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.19219 – 1030.918/(–32.845 + T/K), temp range 222–279 K, (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.13699 – 1006.199/(–35.529 + T/K), temp range 267–359 K, (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.53487 – 1278.361/(5.318 + T/K), temp range 345–424 K, (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
H 
H 
H 
SH 
© 2006 by Taylor & Francis Group, LLC

3400 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 
247 (distilled water, headspace-GC/FID, measured range 25–70°C, data in graph, Przyjazny et al. 1983) 
Log (1/KAW) = 1347.1/(T/K) – 3.537; temp range 25–70°C (headspace-GC, Przyjazny et al. 1983) 
187 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996) 
300 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 3.249 – 1219/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH* = 3.39 . 10–11 cm3 molecule–1 s–1 at 299.8 K, measured range 300–423 K (flash photolysis-resonance 
fluorescence, Atkinson et al. 1977) 
kOH* = 3.37 . 10–11 cm3 molecule–1 s–1 at 298 K, measured range 244–366 K (flash photolysis-resonance 
fluorescence, Wine et al. 1981) 
kOH = 9.7 . 10–11 cm3 molecule–1 s–1 at 297 K (relative rate method, Cox & Sheppard 1980) 
kOH = 2.01 . 10–11 cm3 molecule–1 s–1 at 293 K (discharge flow-EPR, Mac Leod et al. 1983) 
kOH = 2.56 . 10–11 cm3 molecule–1 s–1 at 296 K (discharge flow-RF, Lee & Tang 1983) 
kOH* = (3.04 – 32.5) . 10–11 cm3 molecule–1 s–1 at 298 K, measured range 254–430 K ((flash photolysisresonance 
fluorescence, Wine et al. 1984) 
kOH* = 3.31 . 10–11 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1985) 
kNO3 = 9.2 . 10–13 cm3 ± molecule–1 s–1, independent of temperature over the range 250–370 K (IUPAC 
recommended, Atkinson et al. 1989) 
kNO3 = 9.3 . 10–13 cm3 ± molecule–1 s–1, independent of temperature over the range 254–367 K (Atkinson 
1991) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 
Half-Lives in the Environment: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3401 
TABLE 16.1.8.6.1 
Reported vapor pressures of methanethiol at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Russell et al. 1942 Stull 1947 Zwolinski & Wilhoit 1971 
static-Hg manometer summary of literature data selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–53.28 5484 –90.7 133.3 –70.3 1333 3.869 93326 
–23.872 26859 –75.3 666.6 –61.5 2666 4.580 95992 
–9.474 53235 –67.5 1333 –55.9 4000 5.275 98659 
0.029 79913 –58.8 2666 –51.7 5333 5.956 101325 
5.977 101410 –49.2 5333 –48.3 6666 25.0 202117 
–43.1 7999 –45.4 7999 eq. 2 P/mmHg 
bp/K 279.12 –34.8 13332 –40.7 10666 A 7.03163 
–22.1 26664 –36.87 13332 B 1015.547 
eq. 4 P/mmHg –7.80 53329 –29.55 19998 C 238.706 
A 18.27429 8.70 101325 –24.03 26664 bp/°C 5.956 
B 1769.05 –19.54 33331 .HV/(kJ mol–1) = 
C 3.70248 mp/°C – –15.73 39997 at 25°C 23.8 
–9.44 53329 at bp 24.57 
–4.31 66661 
0.051 79993 
FIGURE 16.1.8.6.1 Logarithm of vapor pressure versus reciprocal temperature for methanethiol. 
Methanethiol: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.003 0.0034 0.0038 0.0042 0.0046 0.005 0.0054 
1/(T/K) 
P( gol 
S 
) aP/ 
Russell et al. 1942 
Osborn & Scott 1980 
Stull 1947 
Zwolinski & Wilhoit 1971 
b.p. = 5.9 °C 
© 2006 by Taylor & Francis Group, LLC

3402 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.8.7 Ethanethiol 
Common Name: Ethanethiol 
Synonym: ethyl mercaptan, thioethyl alcohol, ethylhydrosulfide 
Chemical Name: ethanethiol 
CAS Registry No: 75-08-1 
Molecular Formula: C2H6S, C2H5SH 
Molecular Weight: 62.134 
Melting Point (C): 
–147.88 (Lide 2003) 
Boiling Point (°C): 
35.0 (Stull 1947; Dreisbach 1961; Weast 1982–83; Boublik et al. 1984; Dean 1985; Lide 2003) 
Density (g/cm3 at 20°C): 
0.83914, 0.83316 (20°C, 25°C, Dreisbach 1961) 
0.8391 (Weast 1982–83) 
0.8315 (25°C, Dean 1985) 
Molar Volume (cm3/mol): 
74.0 (20°C, calculated-density) 
77.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
27.30, 26.78 (25°C, bp, Dreisbach 1961) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
15600 (Hine & Mookerjee 1975) 
12000 (estimated-activity coefficient by headspace-GC/FID, Przyjazny et al. 1983) 
15000 (Verschueren 1983) 
6800 (Dean 1985) 
6760 (20°C, Budavari 1989) 
14800 (selected, Yaws et al. 1990) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
74630* (interpolated-regression of tabulated data, temp range –76.7 to 35°C, Stull 1947) 
70110* (24.933°C, ebulliometric method, measured range 0.405–66.14°C, McCullough et al. 1952) 
log (P/mmHg) = 6.95206 – 1084.531/(231.385 + t/°C); temp range 0.405–66.14°C (Antoine eq., ebulliometric 
method, McCullough et al. 1952) 
70300 (calculated from determined data, Dreisbach 1961) 
log (P/mmHg) = 6.95206 – 1084.531/(231.385 + t/°C); temp range –40 to 100°C (Antoine eq. for liquid state, 
Dreisbach 1961) 
log (P/mmHg) = 6.95205 – 1084.531/(T/K + 231.385) (Antoine eq., Osborn & Douslin 1966) 
66660*, 70290 (23.613°C, interpolated-Antoine eq., Zwolinski & Wilhoit 1971) 
log (P/mmHg) = 6.95026 – 1084.531/(231.385 + t/°C); temp range –49.2 to 55.83°C (liquid, Antoine eq., 
Zwolinski & Wilhoit 1971) 
70320 (calculated-Antoine eq. of Boublik et al. 1973, Przyjazny et al. 1983) 
58660 (20°C, Verschueren 1983) 
70290 (interpolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.0768 – 1084.455/(231.374 + t/°C), temp range 0.405–66.115°C (Antoine eq. from reported exptl. 
data of McCullough et al. 1952, Boublik et al. 1984) 
70300 (calculated-Antoine eq., Dean 1985, 1992) 
SH 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3403 
log (P/mmHg) = 6.95206 – 1084.531/(231.39 + t/°C); temp range –49 to 56°C (Antoine eq., Dean 1985, 1992) 
log (PL/kPa) = 6.07243 – 1081.984/(–42.085 + T/K), temp range 273–340 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.08253 – 1086.982/(–41.517 + T/K), temp range 273–313 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.10279 – 1099.374/(–39.807 + T/K), temp range 303–375 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.42565 – 1328.598/(–6.231 + T/K), temp range 365–448 K (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.84948 – 2874.377/(200.657 + T/K), temp range 442–499 K (Antoine eq.-V, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 29.2763 – 2.2725 . 103/(T/K) – 7.7769·log (T/K) – 3.8954 . 10–11·(T/K) + 3.517 . 10–6·(T/K)2; 
temp range 125–499 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 
278.1 (exptl., Hine & Mookerjee 1975) 
298, 366.6 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
451 (20°C, headspace-GC, Vitenberg et al. 1975) 
360.3 (distilled water, headspace-GC/FID, measured range 25–70°C, data in graph, Przyjazny et al. 1983) 
log (1/KAW) = 1486.1/(T/K) – 4.147; temp range 25–70°C (headspace-GC, Przyjazny et al. 1983) 
292.4 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 
278, 96.44 (quoted, calculated-molecular structure, Russell et al. 1992) 
292.5 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001) 
log KAW = 4.147 – 1486/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and the Arrhenius expression 
see reference: 
kO(3P)* = 3.0 . 10–12 cm3 ± molecule–1 s–1 for gas-phase reaction with O(3P) atom at 298 K, measured range 
257–495 K (Slagle et al. 1978) 
kOH = 3.67 . 10–11 cm3 molecule–1 s–1 at 296 K (discharge flow-RF, Lee & Tang 1983) 
kOH = 2.70 . 10–11 cm3 molecule–1 s–1 at 293 K (discharge flow-EPR, Mac Leod et al. 1984) 
kOH* = 4.26 . 10–11 cm3 molecule–1 s–1 at 298 K, measured range 252–425 K (flash photolysis-resonance 
fluorescence, Wine et al. 1984) 
kOH* = 4.65 . 10–11 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1985) 
kOH = 4.65 . 10–11 cm3 molecule–1 s–1 at 300 K (relative rate method, Barnes et al. 1986) 
kOH* = 4.68 . 10–11 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1989) 
kNO3 = (1.21 ± 0.28) . 10–12 cm3 molecule–1 s–1 at 298K (relative rate method, Mac Leod et al. 1986; quoted, 
Atkinson 1991) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
© 2006 by Taylor & Francis Group, LLC

3404 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.8.7.1 
Reported vapor pressures of ethanethiol at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 McCullough et al. 1952 Zwolinski & Wilhoit 1971 
summary of literature data ebulliometry selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–76.7 133.3 0.405 25007 –49.2 1333 eq. 2 P/mmHg 
–59.1 666.6 5.236 31160 –39.5 2666 A 6.95206 
–50.2 1333 10.111 38547 –33.3 4000 B 1084.531 
–40.7 2666 15.017 47359 –28.7 5333 C 231.385 
–29.8 5333 19.954 57803 –24.9 6666 bp/°C 35.003 
–22.4 7999 24.933 70109 –21.77 7999 .HV/(kJ mol–1) = 
–13.0 13332 29.944 84525 –16.58 10666 at 25°C 27.30 
1.50 26664 35.000 101325 –12.38 13332 at bp 26.78 
17.7 53329 40.092 120798 –4.304 19998 
35.0 101325 45.221 142368 1.796 26664 
50.390 169052 6.758 33331 
mp/°C –121 55.604 198530 10.972 39997 
60.838 232087 17.932 53329 
66.115 270110 23.613 66661 
28.451 79993 
Antoine eq. 32.686 93326 
eq. 2 P/mmHg 33.475 95992 
A 6.95206 34.247 98659 
B 1084.531 35.003 101325 
C 231.385 25.0 70288 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3405 
FIGURE 16.1.8.7.1 Logarithm of vapor pressure versus reciprocal temperature for ethanethiol. 
Ethanethiol: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0028 0.0032 0.0036 0.004 0.0044 0.0048 0.0052 
1/(T/K) 
P( gol 
S 
) aP 
/ 
McCullough et al. 1952 
Stull 1947 
Zwolinski & Wilhoit 1971 
b.p. = 35 °C 
© 2006 by Taylor & Francis Group, LLC

3406 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.8.8 1-Propanethiol 
Common Name: 1-Propanethiol 
Synonym: n-propyl mercaptan, 1-mercaptopropane 
Chemical Name: 1-propanethiol 
CAS Registry No: 107-03-9 
Molecular Formula: C3H8S, CH3CH2CH2SH 
Molecular Weight: 76.171 
Melting Point (°C): 
–113.13 (Lide 2003) 
Boiling Point (°C): 
67.8 (Lide 2003) 
Density (g/cm3): 
0.8411 (20°C, Weast 1982–83) 
Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
99.6 (calculated-density, Stephenson & Malanowski 1987) 
Enthalpy of Vaporization, .HV (kJ/mol): 
31.88, 29.53 (25°C, bp, Zwolinski & Wilhoit 1971) 
Enthalpy of Sublimation, .Hsubl (kJ/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
3800 (estimated-activity coefficient by headspace-GC/FID, Przyjazny et al. 1983) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
13332* (15.3°C, summary of literature data, temp range –56.0 to 67.4°C, Stull 1947) 
19920* (24.275°C, ebulliometry, measured range 24.3–102.088°C, Pennington et al. 1956) 
log (P/mmHg) = 6.92846 – 1183.307/(T/K + 224.624); temp range 24.3–102.088°C (Antoine eq., ebulliometry, 
Pennington et al. 1956; Osborn & Douslin 1966) 
20558* (interpolated-Antoine eq., temp range –25 to 90.73°C, Zwolinski & Wilhoit 1971) 
log (P/mmHg) = 6.92846 – 1183.307/(224.624 + t/°C); temp range –25 to 90.73°C (Antoine eq., Zwolinski & 
Wilhoit 1971) 
20569 (calculated-Antoine eq. of Boublik et al. 1973, Przyjazny et al. 1983) 
log (P/kPa) = 6.05331 – 1183.265/(224.618 + t/°C), temp range 24.27–102.088°C (Antoine eq. derived from 
Pennington et al. 1956 data, Boublik et al. 1984) 
log (PL/kPa) = 6.05019 – 1181.703/(–48.687 + T/K), temp range 296–376 K, (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 6.92846 – 1183.307/(224.62 + t/°C), temp range –25 to 91°C (Antoine eq., Dean 1992) 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 
414 (distilled water, headspace-GC/FID, measured range 25–70°C, data in graph, Przyjazny et al. 1983) 
log (1/KAW) = 1552.2/(T/K) – 4.428; temp range 25–70°C (headspace-GC, Przyjazny et al. 1983) 
331 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 4.428 – 1552/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
1.81 (shake flask, Log P Database, Hansch & Leo 1987) 
1.81 (recommended, Sangster 1993) 
1.81 (recommended, Hansch et al. 1995) 
SH 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3407 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH* = (4.18–4.56) . 10–11 cm3 molecule–1 s–1 at 298 K, measured range 257–419 K (flash photolysisresonance 
fluorescence, Wine et al. 1984) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 
Half-Lives in the Environment: 
TABLE 16.1.8.8.1 
Reported vapor pressures of 1-propanethiol at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 Pennington et al. 1956 Zwolinski & Wilhoit 1971 
summary of literature data ebulliometry selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–56.0 133.3 24.275 18820 –25.0 1333 
–36.3 666.6 29.563 25007 –14.3 2666 
–26.3 1333 34.891 31160 –7.60 4000 
–15.4 2666 40.254 38547 –2.50 5333 
–3.20 5333 45.663 47359 1.65 6666 
4.60 7999 51.113 57803 5.13 7999 
15.3 13332 56.605 70109 10.84 10666 
31.5 26664 62.139 84525 15.47 13332 
49.2 53329 67.719 101325 24.369 19998 
67.4 101325 73.341 120798 31.092 26664 
79.004 143268 36.562 33331 
mp/°C –112 84.710 169052 41.208 39997 
90.464 198543 48.884 53329 
96.225 232087 55.151 66661 
102.088 270110 60.489 79993 
65.163 93326 
bp/°C 67.72 66.034 95992 
Antoine eq. 66.886 98659 
© 2006 by Taylor & Francis Group, LLC

3408 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.8.8.1 (Continued) 
Stull 1947 Pennington et al. 1956 Zwolinski & Wilhoit 1971 
summary of literature data ebulliometry selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
eq. 2 P/mmHg 67.720 101325 
A 6.92846 25.0 20558 
B 1183.307 
C 224.824 eq. 2 P/mmHg 
A 6.92846 
data also fitted to Cox eq. B 1193.307 
C 224.624 
bp/°C 67.72 
.HV/(kJ mol–1) = 
at 25°C 31.88 
at bp 29.53 
FIGURE 16.1.8.8.1 Logarithm of vapor pressure versus reciprocal temperature for 1-propanethiol. 
1-Propanethiol: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0026 0.003 0.0034 0.0038 0.0042 0.0046 
1/(T/K) 
P( gol 
S 
) aP/ 
Pennington et al. 1956 
Stull 1947 
Zwolinski & Wilhoit 1971 
b.p. = 76.8 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3409 
16.1.8.9 1-Butanethiol (Butyl mercaptan) 
Common Name: 1-Butanethiol 
Synonym: butyl mercaptan, n-butyl mercaptan 
Chemical Name: 1-butanethiol 
CAS Registry No: 109-79-5 
Molecular Formula: C4H10S, CH3(CH2)3SH 
Molecular Weight: 90.187 
Melting Point (°C): 
–115.7 (Weast 1982–83; Riddick et al. 1986; Stephenson & Malanowski 1987; Lide 2003) 
Boiling Point (°C): 
98.5 (Lide 2003) 
Density (g/cm3 at 25°C): 
0.8337 (20°C, Weast 1982–83) 
0.84159, 0.83674 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
107.8 (calculated-density, Stephenson & Malanowski 1987) 
121.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
36.53, 32.225 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
10.46 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
597 (Riddick et al. 1986) 
600 (selected, Yaws et al. 1990) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
19920* (51.409°C, ebulliometry, measured range 51.4–135.7°C, Scott et al. 1957) 
log (P/mmHg) = 6.92754 – 1281.018/(T/K + 218.100) (Antoine eq., Osborn & Douslin 1966) 
5330*, 6070 (22.4°C, interpolated-Antoine eq., Zwolinski & Wilhoit 1971) 
log (P/mmHg) = 6.92754 – 1281.018/(218.10 + t/°C); temp range –2.0 to 123.37°C (liquid, Antoine eq., 
Zwolinski & Wilhoit 1971) 
log (P/kPa) = 6.05296 – 1281.344/(218.139 + t/°C), temp range 51.409–135.7°C (Antoine eq. derived from Scott 
et al. 1957 data, Boublik et al. 1984) 
6070 (Riddick et al. 1986) 
log (P/kPa) = 6.05244 – 1281.018/(218.10 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
log (PL/kPa) = 6.05011 – 1279.95/(–55.132 + T/K), temp range 323–409 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 6.92754 – 1281.018/(218.10 + t/°C), temp range –2 to 123°C (Antoine eq., Dean 1992) 
log (P/mmHg) = 36.2672 – 3.0452 . 103/(T/K) –9.9743·log (T/K) – 9.1432 . 10–11·(T/K) + 3.2087 . 10–6·(T/K)2; 
temp range 157–569 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations): 
460.7 (distilled water, headspace-GC/FID, measured range 25–70°C, data in graph, Przyjazny et al. 1983) 
log (1/KAW) = 1655.9/(T/K) – 4.823; temp range 25–70°C (headspace-GC, Przyjazny et al. 1983) 
911.4 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 
363 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001) 
log KAW = 4.823 – 1656/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
SH 
© 2006 by Taylor & Francis Group, LLC

3410 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
2.28 (shake flask, Log P Database, Hansch & Leo 1987) 
2.28 (recommended, Sangster 1989) 
2.28 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = 4.21 . 10–11 cm3 molecule–1 s–1 and kOH = 4.55 . 10–11 cm3 molecule–1 s–1 at 298 K (flash photolysisresonance 
fluorescence, Wine et al. 1984) 
kOH = 5.82 . 10–11 cm3 molecule–1 s–1 at 300 K (relative rate method, Barnes et al. 1986) 
kOH = 5.11 . 10–11 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1989) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
TABLE 16.1.8.9.1 
Reported vapor pressures of 1-butanethiol at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Scott et al. 1957 Zwolinski & Wilhoit 1971 
ebulliometry selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
51.409 19920 –2.0 1333 95.687 93326 
57.130 25007 9.60 2666 96.630 95992 
62.897 31169 16.9 4000 97.553 98659 
68.710 38547 22.4 5333 98.456 101325 
74.567 47359 26.9 6666 25.0 7399 
80.472 57803 30.67 7999 eq. 2 P/mmHg 
86.418 70109 36.86 10666 A 6.92854 
92.414 84525 41.87 13332 B 1281.018 
98.454 101325 51.506 19998 C 218.100 
104.544 120798 58.786 26664 bp/°C 98.456 
110.682 143268 64.170 33331 .HV/(kJ mol–1) = 
116.863 169052 69.742 39997 at 25°C 36.53 
123.088 198530 78.056 53329 at bp 32.23 
129.362 232087 84.844 66661 
135.678 170110 90.625 79993 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3411 
FIGURE 16.1.8.9.1 Logarithm of vapor pressure versus reciprocal temperature for 1-butanethiol. 
1-Butanethiol: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 0.004 
1/(T/K) 
P 
( gol 
S 
) aP/ 
Scott et al. 1957 
Zwolinski & Wilhoit 1971 
b.p. = 98.5 °C 
© 2006 by Taylor & Francis Group, LLC

3412 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.8.10 Benzenethiol 
Common Name: Benzenethiol 
Synonym: thiophenol, phenyl mercaptan, mercaptobenzene 
Chemical Name: benzenethiol 
CAS Registry No: 108-98-5 
Molecular Formula: C6H6S, C6H5SH 
Molecular Weight: 110.177 
Melting Point (°C): 
–14.93 (Lide 2003) 
Boiling Point (°C): 
169.1 (Lide 2003) 
Density (g/cm3): 
1.0766 (20°C, Weast 1982–83) 
Dissociation Constant, pKa: 
6.615 (Riddick et al. 1986) 
Molar Volume (cm3/mol): 
102.7 (calculated-density, Stephenson & Malanowski 1987) 
106.8 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Vaporization, .HV (kJ/mol): 
45.35, 36.97 (25°C, bp, Riddick et al 1986) 
Enthalpy of Sublimation, .Hsubl (kJ/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
11.45 (calorimetry at triple pt 258.27 K, Scott et al. 1956) 
11.447 (Riddcik et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
133* (18.6°C, summary of literature data, temp range 18.6–168°C, Stull 1947) 
1333* (51.5°C, ebulliometry, measured range 51.5–167.0°C, Vonterres et al. 1955) 
19920* (114.543°C, ebulliometry, measured range 114.543–7212.160°C, Scott et al. 1956) 
log (P/mmHg) = 6.99019 – 1529.454/(230.048 + t/°C); temp range 114.5–212°C (comparative ebulliometry, data 
fitted to Antoine eq., Scott et al. 1956) 
log (P/mmHg) = A ± [1 – 442.298/(T/K)], where log A = 0.87370 – 6.4975 . 10–4 ± (T/K) + 5.2309 . 10–7 ± 
(T/K)2; measured range 114.5–212°C (data fitted to Cox eq., comparative ebulliometry, Scott et al. 1956) 
1333* (52.28°C, derived from compiled data, temp range 52.3–198°C, Zwolinski & Wilhoit 1971) 
log (P/mmHg) = 6.99019 – 1529.454/(230.048 + t/°C); temp range 52.3–198°C (Antoine eq., Zwolinski & 
Wilhoit 1971) 
log (P/kPa) = 6.11539 – 1529.668/(203.074 + t/°C), temp range 114.54–212.16°C (Antoine eq. derived from 
Scott et al. 1956 data, Boublik et al. 1984) 
397 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.11509 – 1529.46/(t/°C + 258.21); temp range not specified (Antoine eq., Riddick et al. 1986) 
log (PL/kPa) = 6.11531 – 1530.286/(–69.948 + T/K); temp range 385–486 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = –5.4919 – 2.8549 . 103/(T/K) + 8.1770·log (T/K) – 1.9494 . 10–2·(T/K) + 9.2817 . 10–6·(T/K)2; 
temp range 258–69 K (vapor pressure eq., Yaws et al. 1994) 
SH 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3413 
Henry’s Law Constant (Pa m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
2.52 (shake flask, Log P Database, Hansch & Leo 1987) 
2.52 (recommended, Sangster 1989) 
2.52 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Half-Lives in the Environment: 
TABLE 16.1.8.10.1 
Reported vapor pressures of benzenethiol at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 Vonterres et al. 1955 Scott et al. 1956 Zwolinski & Wilhoit 1971 
summary of literature data ebulliometry comparative ebulliometry selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
18.6 133.3 51.5 1333 114.543 19920 52.28 1333 
43.7 666.6 71.5 5333 121.191 25007 65.79 2666 
56.0 1333 87.8 6666 127.897 31160 74.38 4000 
69.7 2666 97.4 9999 134.649 38547 80.81 5333 
84.2 5333 105.5 13332 141.447 47359 86.01 6666 
93.9 7999 116.3 19998 148.294 57803 90.40 7999 
106.6 13332 124.5 26664 155.194 70109 97.61 10666 
125.8 26664 131.3 33330 162.140 84525 103.444 13332 
146.7 53329 136.5 39997 176.188 120789 114.655 19998 
168.0 101325 141.5 46663 183.278 143268 123.120 26664 
146.0 53329 190.426 169052 130.003 33331 
mp/°C - 149.7 59995 197.623 198530 135.847 39997 
153.0 66661 204.867 232087 145.496 53329 
156.0 73327 212.160 270110 153.367 66661 
159.0 79993 160.067 79993 
162.0 86659 mp/K 258.27 165.932 93326 
165.0 93325 .Hfus/(kJ mol–1) = 11.447 167.024 95992 
167.0 101325 bp/K 416.9 168.092 98659 
169.138 101325 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3414 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.8.10.1 (Continued) 
Stull 1947 Vonterres et al. 1955 Scott et al. 1956 Zwolinski & Wilhoit 1971 
summary of literature data ebulliometry comparative ebulliometry selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
eq. 2 P/mmHg 169.653 102658 
A 6.99019 170.163 103991 
B 1529.454 171.167 106658 
C 203.048 
temp range 114–212°C eq. 2 P/mmHg 
A 6.99019 
B 1529.454 
C 203.048 
bp/°C 
.HV/(kJ mol–1) = 40.6 
at normal bp 
FIGURE 16.1.8.10.1 Logarithm of vapor pressure versus reciprocal temperature for benzenethiol. 
Benzenethiol: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 
1/(T/K) 
P 
( gol 
S 
) aP/ 
Vonterres et al. 1955 
Scott et al. 1956 
Stull 1947 
Zwolinski & Wilhoit 1971 
b.p. = 169.1 °C m.p. = -14.93 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3415 
16.1.8.11 Thiophene 
Common Name: Thiophene 
Synonym: thiofuran 
Chemical Name: thiophene, thiofuran 
CAS Registry No: 110-02-1 
Molecular Formula: C4H4S 
Molecular Weight: 84.140 
Melting Point (°C): 
–38.21 (Lide 2003) 
Boiling Point (°C): 
84.0 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.06485, 1.05887 (20°C, 25°C, Dreisbach 1955) 
1.0649 (Weast 1982–83) 
1.06482, 1.05884 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
79.0 (20°C, calculated from density) 
88.10 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
34.6, 31.472 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
5.088 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
3015 (shake flask-GC, Price 1976) 
3900 (estimated-activity coefficient by headspace-GC, Przyjazny et al. 1983) 
3600 (18°C, Verschueren 1983) 
3020 (selected, Yaws et al. 1990) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
9670* (interpolated-regression of tabulated data, temp range –40.7 to 81.4°C, Stull 1947) 
7998 (20.1°C, Stull 1947) 
10622* (ebulliometry and manometry, measured range 0–84.155°C, Waddington et al. 1949) 
10620 (calculated from determined data, Dreisbach 1955) 
log (P/mmHg) = 6.95926 – 1246.038/(221.354 + t/°C), temp range 5–155°C (Antoine eq. for liquid state, 
Dreisbach 1955) 
482307* (148.89°C, static-Bourdon gauge, measured range 148.89–304.44°C, Kobe et al. 1956) 
44930* (60.3 °C, isoteniscope/manometry, measured range 60.3–100.3 °C, Eon et al. 1971) 
10670, 10660* (25.09°C, interpolated-Antoine eq., Zwolinski & Wilhoit 1971) 
log (P/mmHg) = 6.95926 – 1246.01/(221.35 + t/°C); temp range –12.3 to 108.1°C (Antoine eq., Zwolinski & 
Wilhoit 1971) 
log (P/mmHg) = [–0.2185 . 8748.3/(T/K)] + 8.273276; temp range –40.7 to 84.4°C (Antoine eq., Weast 
1972–73) 
2450 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1 – 394.395/(T/K)] . 10^{0.901276 – 10.3229 . 10–4 ± (T/K) + 21.9193 . 10–7 ± (T/K)2}; temp 
range: 278.35–443.60 K (Cox eq., Chao et al. 1983) 
S 
© 2006 by Taylor & Francis Group, LLC

3416 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
7998, 13330 (20°C, 30°C, quoted, Verschueren 1983) 
10622, 10620 (quoted exptl., calculated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.1336 – 1260.606/(222.787 + t/°C), temp range 0–40°C (Antoine eq. from reported exptl. data, 
Boublik et al. 1984) 
log (P/kPa) = 6.0723 – 1138.803/(220.477 + t/°C), temp range 39.9–119.79°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
10620 (calculated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 6.95926 – 1246.02/(221.35 + t/°C), temp range –12 to 108°C (Antoine eq., Dean l985, 1992) 
10620 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.08416 – 1246.02/(221.35 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
10600 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PS/kPa) = 9.84733 – 2447.236/(T/K), temp range 195–228 K (solid, Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.06132 – 1232.35/(–53.438 + T/K), temp range 311–393 K (liquid, Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 36.6016 – 2.9794 . 103/(T/K) – 10.104·log (T/K) + 1.1445 . 10–9·(T/K) + 3.2472 . 10–6·(T/K)2; 
temp range 235–579 K (vapor pressure eq., Yaws et al. 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 
224, 236, 230 (headspace-GC, concn. of 10, 1.0 and 0.1 ppm by weight, measured range 25–70°C, data presented 
in graph, Przyjazny et al. 1983) 
log (1/KAW) = 1563.6/(T/K) – 4.199; temp range 25–70°C (headspace-GC, concn of 10 ppm by weight, Przyjazny 
et al. 1983) 
log (1/KAW) = 1580.0/(T/K) – 4.277; temp range 25–70°C (headspace-GC, concn of 1.0 ppm by weight, Przyjazny 
et al. 1983) 
log (1/KAW) = 1661.9/(T/K) – 4.542; temp range 25–70°C (headspace-GC, concn of 0.1 ppm by weight, Przyjazny 
et al. 1983) 
223.3 (calculated-P/C with selected values) 
296 (computed-vapor-liquid equllibrium VLE data, Yaws et al. 1991) 
182 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001) 
log KAW = 4.542 – 1662/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
1.81 ± 0.01 (shake flask-UV, Iwasa et al. 1965) 
1.79 (calculated-f const., Rekker 1977) 
1.74 (HPLC-RV correlation, Garst 1984) 
1.82 (shake flask, Log P Database, Hansch & Leo 1987) 
1.81 (recommended, Sangster 1989, 1993) 
1.82 (shake flask-UV, Yamagami & Takao 1992) 
1.81 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and the Arrhenius expression 
see reference: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3417 
kOH = (9.58 ± 0.38) . 10–12 cm3 molecule–1 s–1 with calculated atmospheric lifetime . ~ 28 h; and 
kO3 < 6 . 10–20 cm3 molecule–1 s–1 at 298 ± 2 K and kO(3P) = 4.9 . 10–12 cm3 molecule–1 s–1 for reaction 
with O(3P) atom at room temp. (relative rate method, Atkinson et al 1983) 
kO3 < 6 . 10–20 cm3 molecule–1 s–1 with a loss rate of < 0.004 d–1, kOH = 9.6 . 10–12 cm3 molecule–1 s–1 with 
a loss rate of 0.8 d–1; kNO3 = 3.2 . 10–14 cm3 molecule–1 s–1 with a loss rate of 0.7 d–1 at room temp. 
(review, Atkinson & Carter 1984) 
kOH* = (9.37, 9.57) . 10–12 cm3 molecule–1 s–1 at 298 K, measured range 255–425 K (flash photolysisresonance 
fluorescence, Wine & Thompson 1984) 
kOH = 9.49 . 10–12 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1985) 
kO3 < 6 . 10–20 cm3 molecule–1 s–1 with a loss rate of < 0.004 d–1, kOH = 9.70 . 10–12 cm3 ± molecule–1 s–1 
with a loss rate of 0.4 d–1, and kNO3 = 3.2 . 10–14 cm3 molecule–1 s–1 with a loss rate of 0.7 d–1 at room 
temp. (review, Atkinson 1985) 
kNO3 = (3.2 ± 0.7) . 10–14 cm3 molecule–1 s–1 with a calculated lifetime of 36 h and a loss rate of 0.7 d–1 
assuming 2.4 . 108 NO3 radicals/cm3 in nighttime air at 295 ± 1 K in the atmosphere (relative rate 
technique, Atkinson et al. 1985) 
kO3 < 6 . 10–20 cm3 molecule–1 s–1 with a calculated tropospheric lifetime . > 270 d, kOH = 9.70 . 10–12 cm3 
molecule–1 s–1 with a calculated lifetime of 29 h during daytime hours, and kNO3 = 3.2 . 10–14 cm3 
molecule–1 s–1 with a calculated lifetime of 36 h at room temp. (review, Atkinson 1985) 
kOH* = 9.53 . 10–12 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1989) 
kNO3 = 3.93 . 10–14 cm3 molecule–1 s–1, independent of temperature over the range 272–296 K (recommended, 
Atkinson 1991) 
kOH(calc) = 14.81 . 10–12 cm3 molecule–1 s–1 at room temp. (molecular orbital calculations, (Klamt 1993) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: atmospheric lifetime of ~28 h due to reactions with OH radical (Atkinson et al. 1983); 
calculated gas-phase lifetime of 29 h for the reaction with OH radical during daytime hours, calculated 
lifetime of 36 h for reaction with NO3 radical and a calculated lifetime > 270 d for reaction with O3 at 
room temp. (Atkinson et al. 1985) 
TABLE 16.1.8.11.1 
Reported vapor pressures of thiophene at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 Waddington et al. 1949 Kobe et al. 1956 Zwolinski & Wilhoit 1971 
summary of literature data manometry and ebulliometry static-Bourdon gauge selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
static method 
–40.7 133 0 2858 148.89 482307 –12.3 1333 
–20.8 666.6 15 6497 154.44 585659 –1.10 2666 
–10.9 1333 20 8355 160.00 620109 5.94 4000 
0.0 2666 25 10627 165.56 730351 11.24 5333 
12.5 5333 30 13398 171.11 813032 15.52 6666 
20.1 7999 35 16733 176.67 895713 19.14 7999 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3418 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.8.11.1 (Continued) 
Stull 1947 Waddington et al. 1949 Kobe et al. 1956 Zwolinski & Wilhoit 1971 
summary of literature data manometry and ebulliometry static-Bourdon gauge selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
30.5 13332 40 20736 182.22 992174 25.09 10666 
46.5 26664 ebulliometric method 187.78 1088636 29.90 13332 
64.7 53329 39.061 19920 193.33 1198877 39.15 19998 
81.4 101325 44.560 25007 198.89 1316009 46.14 26664 
50.094 31160 204.44 1440031 51.82 33331 
mp/°C –38.3 55.663 38547 210.00 1584723 56.65 39997 
61.276 47359 215.56 1722525 64.62 53329 
66.931 57903 221.11 1874107 71.12 66661 
Eon et al. 1971 72.629 70109 226.67 2039470 76.66 79993 
isoteniscope-manometer 78.370 84525 232.22 2211722 81.51 93326 
t/°C P/Pa 84.155 101325 237.78 2397755 82.41 95992 
243.33 2590678 83.30 98659 
60.3 44930 mp/°C –38.1 248.89 2797381 84.16 101325 
70.3 64795 bp/°C 84.16 254.44 3010974 
80.3 91459 260.00 3238347 bp/°C 84.16 
90.3 126790 eq. 2 P/mmHg 265.56 3472610 
100.3 172519 A 6.95926 271.11 3727544 eq. 2 P/mmHg 
B 1246.038 276.67 3996258 A 6.95926 
.HV/(kJ mol–1) =34.77 C 221.354 282.22 4251192 B 1246.02 
287.78 4540576 C 221.35 
.HV/(kJ mol–1) = 293.33 4836850 
at 45.36°C 33.61 298.89 5146905 .HV/(kJ mol–1) = 
at 63.08°C 32.67 304.44 5463849 at 25°C 34.60 
at bp 31.47 at bp 31.47 
FIGURE 16.1.8.11.1 Logarithm of vapor pressure versus reciprocal temperature for thiophene. 
Thiophene: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0016 0.002 0.0024 0.0028 0.0032 0.0036 0.004 0.0044 
1/(T/K) 
P( gol 
S 
) aP/ 
Waddington et al. 1949 
Kobe et al. 1956 
Eon et al. 1971 
Stull 1947 
Zwolinski & Wilhoit 1971 
m.p. = -38.21 °C b.p. = 84 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3419 
16.1.8.12 Benzo[b]thiophene 
Common Name: Benzo[b]thiophene 
Synonym: thianaphthene, thionaphthene, 1-benzothiophene 
Chemical Name: 
CAS Registry No: 95-15-8 
Molecular Formula: C8H6S 
Molecular Weight: 134.199 
Melting Point (°C): 
32 (Lide 2003) 
Boiling Point (°C): 
221 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.1500 (Verschueren 1983) 
Molar Volume (cm3/mol): 
139.7 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.854 (mp at 32°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
130.0 (20°C, shake flask, Smith et al. 1978) 
130.2 (Mill et al. 1981) 
216* (59.05°C, equilibrium cell-GC, measured range 332.2–490.5 K, Leet et al. 1987) 
Vapor Pressure (Pa at 25°C or as indicated): 
26.7 (20°C, estimated from naphthalene, Smith et al. 1978) 
14.80 (calculated-bp, Mackay et al. 1982) 
log (P/mmHg) = –9.5352 – 2.6947 . 103/(T/K) + 8.8858·log (T/K) – 1.5478 . 10–2·(T/K) + 6.5159 . 10–6·(T/K)2; 
temp range 305–754 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
28.0 (calculated-P/C, Smith & Bomberger 1980) 
24.1 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
3.09 (shake flask-UV, pH 7.4, Rogers & Cammarata 1969) 
3.05 (HPLC-RT correlation, De Voogt et al. 1988) 
3.12 (recommended, Sangster 1989, 1993) 
3.26 (shake flask-HPLC, De Voogt et al. 1990) 
3.18 (HPLC-RT correlation, Ritter et al. 1994) 
3.17 (shake flask-dialysis tubing-HPLC/UV, both phases, Andersson & Schrader 1999) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.08 (mixed microbial populations, Steen & Karickhoff 1981) 
Sorption Partition Coefficient, log KOC: 
1.77 (Coyote Creek sediment, Smith et al. 1978) 
2.30 (lab. mixture of microorganisms, Smith et al. 1978) 
3.49, 3.0 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
S 
© 2006 by Taylor & Francis Group, LLC

3420 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 45 h in river, t. = 230 h in eutrophic pond, t. = 180 hours in eutrophic lake and 
oligotrophic lake by the one compartment model (Smith et al. 1978). 
Photolysis: rate constant of transformation and transport of (6.9 ± 0.7) . 10–7 s–1 exposed to 12 h sunlight per 
day in late May with estimated t. = 1200 h in river, t. = 2900 h in eutrophic pond, t. = 3500 h in eutrophic 
lake and t. = 600 h in oligotrophic lake by the one compartment model (Smith et al. 1978). 
Oxidation: 
laboratory investigated k = 83 M–1 s–1 for the reaction with RO2 radical and estimated t. = 105 h in river, 
eutrophic pond, eutrophic lake and oligotrophic lake by the one compartment model (Smith et al. 1978) 
k = 5.7 . 10–6 s–1 with t. = 34 h under natural sunlight conditions, k = 83 M–1 s–1 with t. = 96 d for freeradical 
oxidation in air-saturated water (NRCC 1983) 
Hydrolysis: 
Biodegradation: estimated t. > 20 h in river, t. < 20 h in eutrophic pond, t. = 20 h in eutrophic lake and very 
long half-life in oligotrophic lake, based on the biodegradation rate in the presence of alternative carbon 
sources will be one-half the biodegradation rate of quinoline when quinoline is the only carbon source by 
the one compartment model (Smith et al. 1978). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: estimated volatilization t. = 45 h in river, t. = 230 h in eutrophic pond, t. = 180 h in eutrophic 
lake and oligotrophic lake by the one compartment model (Smith et al. 1978); 
photolysis rate constant of transformation and transport of (6.9 ± 0.7) . 10–7 s–1 exposed to 12 h sunlight 
per day in late May with estimated photolysis t. = 1200 h in river, t. = 2900 h in eutrophic pond, 
t. = 3500 h in eutrophic lake and t. = 600 h in oligotrophic lake by the one compartment model (Smith 
et al. 1978). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3421 
16.1.8.13 Dibenzothiophene 
Common Name: Dibenzothiophene 
Synonym: 
Chemical Name: dibenzothiophene 
CAS Registry No: 132-65-0 
Molecular Formula: C12H8S 
Molecular Weight: 184.257 
Melting Point (°C): 
98.2 (Lide 2003) 
Boiling Point (°C): 
332.5 (Lide 2003) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
191.3 (calculated-Le Bas method at normal boiling point) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.191 (mp at 98.2°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1.11 ± 0.09 (28°C, measured, Smith et al. 1978) 
1.470 (24°C, shake flask-LSC, Means et al. 1980) 
1.106 (Mill et al. 1981) 
1.500 (Steen & Karickhoff 1981) 
1.032 (literature average, Pearlman et al. 1984) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.267 (20°C, estimated, Aubry et al. 1975) 
log (P/mmHg) = 22.90 – 10910/(T/K), temp range 60–00°C (solid, gas saturation, Edward & Prausnitz 1981) 
log (P/mmHg) = 21.10 – 8353/(T/K), temp range 100–130°C (liquid, gas saturation, Edward & Prausnitz 1981) 
0.263, 0.0083 (20°C, quoted, calculated-bp, Mackay et al. 1982) 
0.893 (static apparatus-extrapolated from Chebyshev polynomials, Sivaraman & Kobayashi 1982) 
0.586 (extrapolated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 605.160/(T/K)] . 10^{0.865373 – 5.51221 . 10–4 ± (T/K) + 6.05701 . 10–7 ± (T/K)2}; temp 
range: 424.81–607.53 K (Cox eq., Chao et al. 1983) 
log (PL/kPa) = 7.18577 – 3140.15/(T/K), temp range 385–574 K (Antoine eq., Stephenson & Malanowski 1987) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
44.3 (calculated-P/C, Smith & Bomberger 1980) 
Octanol/Water Partition Coefficient, log KOW: 
4.38 (shake flask-LSC, Means et al. 1980) 
4.33 (HPLC-RT correlation, De Voogt et al. 1988) 
4.38 (recommended, Sangster 1989, 1993) 
4.49 (shake flask-HPLC, De Voogt et al. 1990) 
4.38 (recommended, Hansch et al. 1995) 
4.41 ± 0.19, 4.43 ± 0.61 (HPLC-k. correlation: ODS-65 column, Diol-35 column, Helweg et al. 1997) 
4.36 (shake flask-dialysis tubing-HPLC/UV, both phases, Andersson & Schrader 1999) 
Octanol/Air Partition Coefficient, log KOA: 
S 
© 2006 by Taylor & Francis Group, LLC

3422 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioconcentration Factor, log BCF: 
3.20 (mixed microbial populations, Steen & Karickhoff 1981) 
Sorption Partition Coefficient, log KOC: 
3.14 (Coyote Creek sediment, Smith et al. 1978) 
4.05 (soil, Hassett et al. 1980) 
4.05 (average of 3 sediment/soil samples, equilibrium sorption isotherm, Means et al. 1980) 
4.00 (soil, calculated-MCI ., Sabljic 1987) 
4.00 (soil, calculated-MCI ., Sabljic 1987) 
4.17 (soil, calculated-KOW, model of Karickhoff et al. 1979, Sabljic 1987) 
3.75 (soil, calculated-KOW, model of Kenaga & Goring 1980, Sabljic 1987) 
2.92 (soil, calculated-KOW, model of Briggs 1981, Sabljic 1987) 
4.00 (soil, calculated-KOW, model of Means et al. 1982, Sabljic 1987) 
3.60 (soil, calculated-KOW, model of Chiou et al. 1983, Sabljic 1987) 
4.59 (humic acid, HPLC-k. correlation, Nielsen et al. 1997) 
3.87 (soil: organic carbon OC . 0.1%, average, Delle Site 2001) 
4.02, 4.04 (sediments: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
4.07 (Askov soil, a Danish agricultural soil, Sverdrup et al. 2002) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 140 h in river, t. = 720 h in eutrophic pond, t. = 580 h in eutrophic lake and 
oligotrophic lake by the one compartment model (Smith et al. 1978). 
Photolysis: solar photolysis k = 1.5 . 10–8 s–1 over 24-h day; rate constant of transformation and transport of 
(2.04 ± 0.08) . 10–6 s–1 exposed to 12 h sunlight per day in early March with estimated t. = 380 h in river, 
t. = 950 h in eutrophic pond and eutrophic lake and t. = 190 h in oligotrophic lake from average photolysis 
rates on a summer day at 40°N latitude by the one compartment model (Smith et al. 1978); t. = 4–8 h for 
disappearance via direct photolysis in aquatic media (Harris 1982). 
Oxidation: laboratory investigated k < 7.5 M–1 s–1 for the reaction with RO2 radical and estimated t. > 105 h in 
river, eutrophic pond, eutrophic lake and oligotrophic lake by the one compartment model (Smith et al. 1978). 
k = 1.5 . 10–6 s–1 with t. = 128 h under natural sunlight conditions, k < 7.5 M–1 s–1 with t. > 3.5 yr for 
free-radical oxidation in air-saturated water (NRCC 1983) 
Hydrolysis: 
Biodegradation: k = 5.3 . 10–7 mL cell–1 h–1 and the estimated t. = 13 h in river, eutrophic pond, and eutrophic 
lake and t. > 104 h in oligotrophic lake by the one compartment model (Smith et al. 1978) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: t. = 0.5 h from river water, t. = 13 h from pond water, t. = 13 h from eutrophic lake and t. = 140 h 
from oligotrophic lake predicted by one-compartment model for all processes; estimated volatilization 
t. = 140 h in river, t. = 720 h in eutrophic pond, t. = 580 h in eutrophic lake and oligotrophic lake; photolysis 
rate constant of transformation and transport k = (2.04 ± 0.08) . 10–6 s–1 exposed to 12 h sunlight per day 
in early March with estimated photolysis t. = 380 h in river, 950 h in eutrophic pond and eutrophic lake 
and t. = 190 h in oligotrophic lake; biodegradation t. = 13 h in river, eutrophic pond water and t. = 140 h 
in oligotrophic lake (Smith et al. 1978); 
t. = 4–8 h for disappearance via direct photolysis in aqueous media (Harris 1982). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3423 
16.1.8.14 Thiourea 
Common Name: Thiourea 
Synonym: thiocarbamide 
Chemical Name: thiourea 
CAS Registry No: 62-56-6 
Molecular Formula: CH4N2S, H2NCSNH2 
Molecular Weight: 76.121 
Melting Point (°C): 
178 (Lide 2003) 
Boiling Point (°C): 
decomposes (Verschueren 1983) 
Density (g/cm3 at 20°C): 
1.045 (Weast 1982–83; Verschueren 1983, Dean 1992) 
Dissociation Constant, pK: 
2.03 (pK1, Dean 1985) 
Molar Volume (cm3/mol): 
76.2 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
14.42 (Donnelly et al. 1990) 
12.55 (Kim et al. 1994) 
15.64, 14.92, 15.17 (differential scanning calorimetry in three types of crucibles, Gatta et al. 2000) 
Entropy of Fusion, .Sfus (J/mol K): 
35.2, 33.7, 34.1 (Gatta et al. 2000) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0315 (mp at 178°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
91000 (20–25°C, shake flask-gravimetric, Dehn 1917) 
91800 (13°C, Verschueren 1983) 
89800 (Windholz 1983) 
110000 (Budavari 1989) 
90000 (Dean 1985) 
Vapor Pressure (Pa at 25°C): 
Henry’s Law Constant (Pa m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
–1.02 (Leo et al. 1971) 
–0.95 (shake flask, Cornford 1982) 
–2.38, –0.95 (calculated, Verschueren 1983) 
–1.17 (shake flask, OECD 1981 Guidelines, Geyer et al. 1984) 
–1.08, –1.03 (pH 6.5, pH 12, shake flask-HPLC, Govers et al. 1986) 
–1.14, –1.02 (shake flask, Log P Database, Hansch & Loe 1987) 
–0.99 (recommended, Sangster 1993) 
–1.02 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.73 (alga chlorella fusca, wet wt. basis, Geyer et al. 1984) 
–0.699 (alga chlorella fusca, calculated-KOW, Geyer et al. 1984) 
S 
H2N NH2 
© 2006 by Taylor & Francis Group, LLC

3424 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: photooxidation t. = 1.6–16 h in air, based on rate constant for the vapor-phase reaction with OH 
radical and photooxidation t. = 2048–81927 h in water, based on estimated rate data for reaction with OH 
radical in aqueous solution (Howard et al. 1991). 
Hydrolysis: 
Biodegradation: aqueous aerobic biodegradation t. = 24–168 h, based on aqueous aerobic screening test data 
and aqueous anaerobic biodegradation t. = 96–672 h, based on aqueous aerobic degradation half-life (Howard 
et al. 1991). 
Biotransformation: 
Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environmental Compartments: 
Air: t. = 1.6–16 h, based on estimated photooxidation half-life in air (Howard et al. 1991). 
Surface water: t. = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Ground water: t. = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Sediment: 
Soil: t. = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991) 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3425 
16.1.8.15 Thioacetamide 
Common Name: Thioacetamide 
Synonym: ethanethioamide, acetothioamide 
Chemical Name: thioacetamide 
CAS Registry No: 62-55-5 
Molecular Formula: C2H5NS, CH3CSNH2 
Molecular Weight: 75.133 
Melting Point (°C): 
115.5 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
84.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.129 (mp at 115.5°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
163000 (Dean 1985) 
163000 (Budavari 1989) 
Vapor Pressure (Pa at 25°C): 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
–0.46, 0 36 (Verschueren 1983) 
–0.26 (shake flask, Log P Database, Hansch & Leo 1987) 
–0.26 (recommended, Sangster 1993) 
–0.26 (recommended, Hansch & Leo 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: atmospheric t. = 3.2–31.7 h, based on estimated rate data for OH radical in air (Howard et al. 1991). 
Hydrolysis: first-order rate constant k = 8.6 . 10–1 h–1 at pH 7 and 25°C (Ellington et al. 1987), corresponding 
to a t. = 8064 h (Howard et al. 1991); 
acid rate constant k = 6.0 . 10–2 M–1 ± h–1, corresponding to a t. = 333 d and base rate constant k = 1.4 
M–1 ± h–1, corresponding to a t. = 289 d (Howard et al. 1991). 
Biodegradation: aerobic biodegradation t. = 24–168 h, based on aqueous aerobic screening test data and anaerobic 
biodegradation t. = 96–672 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
S 
NH2 
© 2006 by Taylor & Francis Group, LLC

3426 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Half-Lives in the Environment: 
Air: t. = 3.2–31.7 h, based on estimated photooxidation half-life in air (Howard et al. 1991). 
Surface water: t. = 24–268 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Groundwater: t. = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Sediment: 
Soil: t. = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3427 
16.2 SUMMARY TABLES 
TABLE 16.2.1 
Summary of physical properties of nitrogen and sulfur containing compounds 
Compound CAS no. 
Molecular 
formula 
Molecular 
weight, MW 
g/mol 
m.p. 
°C 
b.p. 
°C 
Fugacity 
ratio, F 
at 25°C* 
Molar volume, VM 
cm3/mol 
pKa or 
pKb 
MW/ . 
at 20°C Le Bas 
Nitriles: 
Acetonitrile 75-05-8 CH3CN 41.052 –43.82 81.65 1 52.25 56.3 
Propionitrile 107-12-0 C2H5CN 55.079 –92.78 97.14 1 70.45 78.5 
Butyronitrile 109-74-0 C3H7CN 69.106 –111.9 117.6 1 87.35 100.7 
Acrylonitrile (2-Propenitrile) 107-13-1 C2H3CN 53.063 –83.48 77.3 1 65.83 71.1 
Benzonitrile 100-47-0 C6H5CN 103.122 –13.99 191.1 1 107.9 
Adiponitrile 111-69-3 CN(CH2)4CN 108.141 1 295 1 149.6 
Aliphatic amines: 
Methylamine 74-89-5 CH3NH2 31.058 –93.5 –6.32 1 43.8 
Dimethylamine 124-40-3 (CH3)2NH 45.084 –92.18 6.88 1 68.77 67.5 10.77 
Trimethylamine 75-50-3 (CH3)3N 59.110 –117.1 2.87 1 93.00 93.3 9.8 
Ethylamine 75-04-7 CH3CH2NH2 45.084 –80.5 16.5 1 66.02 66.0 10.63 
Diethylamine 109-89-7 (C2H5)2NH 73.137 –49.8 55.5 1 103.45 111.9 10.8 
Triethylamine 121-44-8 (C2H5)3N 101.910 –114.7 89 1 154.8 10.78 
n-Propylamine 107-10-8 C3H7NH2 59.110 –84.75 47.22 1 82.41 88.2 10.568 
Dipropylamine 142-84-7 (C3H7)2NH 101.190 –63 109.3 1 
Diisopropylamine 108-18-9 i(C3H7)2NH 101.190 –61 83.9 1 
Tripropylamine 102-69-2 (C3H7)3N 143.270 –93.5 156 1 10.66 
n-Butylamine 109-73-9 C4H9NH2 73.137 –49.1 77.0 1 98.94 110.4 10.64 
Isobutylamine 78-81-9 iC4H9NH2 73.137 –86.7 67.75 1 110.4 10.41 
tert-Butylamine 75-64-9 (CH3)3CNH2 73.137 –66.94 44.04 1 110.4 1.685 
Di-n-butylamine 111-92-2 (C4H9)2NH 129.244 –62 159.6 1 199.2 11.25 
Tributylamine 102-82-9 (C4H9)3N 185.349 –70 216.5 1 288 9.93 
Ethylenediamine 107-15-3 H2NCH2CH2NH2 60.098 11.14 117 1 
Ethanolamine 141-43-5 HOCH2CH2NH2 61.098 10.5 171 1 60.21 73.4 9.48 
Diethanolamine 111-42-2 (HOCH2CH2)2NH 105.136 28 268.8 0.934 95.87 126.7 8.88 
Triethanolamine 102-71-6 (HOCH2CH2)3N 149.188 20.5 335.4 1 132.71 182.1 7.76 
Cyclohexylamine 108-91-8 C6H12NH 99.174 –17.8 134 1 117.4 10.66 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3428 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.2.1 (Continued) 
Compound CAS no. 
Molecular 
formula 
Molecular 
weight, MW 
g/mol 
m.p. 
°C 
b.p. 
°C 
Fugacity 
ratio, F 
at 25°C* 
Molar volume, VM 
cm3/mol 
pKa or 
pKb 
MW/ . 
at 20°C Le Bas 
Aromatic amines: 
Aniline 62-53-3 C6H5NH2 93.127 –6.02 184.17 1 91.15 110.2 4.596 
2-Chloroaniline 95-51-2 Cl(C6H4)NH2 127.572 –1.9 208.8 1 105.21 131.1 2.661 
3-Chloroaniline 108-42-9 Cl(C6H4)NH2 127.572 –10.28 230.5 1 104.91 131.1 3.5 
4-Chloroaniline 106-47-8 Cl(C6H4)NH2 127.572 70.5 232 0.358 131.1 3.982 
3,4-Dichloroaniline 95-76-1 Cl2C6H3NH2 162.017 72 272 0.346 152.0 
2,4,6-Trichloroaniline 634-93-5 C6H4Cl3N 196.462 78.5 262 0.299 172.9 
o-Toluidine 95-53-4 CH3C6H4NH2 107.153 –14.41 200.3 1 107.32 132.4 4.45 
m-Toluidine 108-44-1 CH3C6H4NH2 107.153 –31.3 203.3 1 108.36 132.4 4.71 
p-Toluidine 106-49-0 CH3C6H4NH2 107.153 43.6 200.4 0.657 111.40 132.4 5.08 
N,N.-Dimethylaniline 121-69-7 C6H5N(CH3)2 121.180 2.42 194.15 1 126.80 154.6 5.15 
2,4-Xylidine 95-68-1 (CH3)2C6H3NH2 121.180 –14.3 214 1 154.6 4.89 
2,5-Xylidine 95-78-3 (CH3)2C6H3NH2 121.180 15.5 214 1 154.6 4.54 
2,6-Xylidine 87-62-7 (CH3)2C6H3NH2 121.180 11.2 215 1 123.12 154.6 3.95 
2-Ethylaniline 578-54-1 C2H5C6H4NH2 121.180 –43 209.5 1 139.6 4.42 
3-Ethylaniline 587-02-0 C2H5C6H4NH2 121.180 –64 214 1 139.6 4.70 
4-Ethylaniline 589-16-2 C2H5C6H4NH2 121.180 –2.4 217.5 1 139.6 5.00 
N,N.-Diethylaniline 91-66-7 C6H5N(C2H5)2 149.233 –38.8 216.3 1 199.0 6.56 
Diphenylamine 122-39-4 (C6H5)2NH 169.222 53.2 302 0.529 145.88 200.3 0.90 
4-Aminobiphenyl 92-67-1 C6H5C6H4NH2 169.222 53.5 302 0.525 168.8 4.27 
Benzidine 92-87-5 NH2(C6H4)2NH2 184.236 120 401 0.117 213.0 4.66 
3,3.-Dichlorobenzidine 91-94-1 C12H10Cl2N2 253.126 132.5 0.0882 254.8 11.7 
.-Naphthylamine 134-32-7 C10H7NH2 143.185 49.2 300.7 0.579 161.8 3.92 
.-Naphthylamine 91-59-8 C10H7NH2 143.185 113 306.2 0.137 161.8 4.15 
N,N.-Bianiline 122-66-7 (C6H5)2(NH)2 184.236 131 0.0912 213.0 13.2 
2-Nitroaniline 88-74-4 C6H6N2O2 138.124 71.0 284 0.354 138.7 –0.28 
3-Nitroaniline 99-09-2 C6H6N2O2 138.124 113.4 306 dec 0.136 138.7 2.46 
4-Nitroaniline 100-01-6 C6H6N2O2 138.124 147.5 332 0.0628 97.00 138.7 1.01 
2,4-Dinitroaniline 97-02-9 (O2N)2C6H3NH2 183.122 180.0 0.0301 167.2 –4.25 
2,6-Dinitroaniline 606-22-4 (O2N)2C6H3NH2 183.122 141 0.0728 167.2 –5.23 
3,5-Dinitroaniline 618-87-1 (O2N)2C6H3NH2 183.122 163 0.0443 167.2 0.229 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3429 
Nitroaromatic compounds: 
Nitrobenzene 98-95-3 C6H5NO2 123.110 5.7 210.8 1 102.28 112.0 
1,2-Dinitrobenzene 528-29-0 C6H4(NO2)2 168.107 116.5 318 0.127 149.4 
1,3-Dinitrobenzene 99-65-0 C6H4(NO2)2 168.107 90.3 291 0.229 149.4 
1,4-Dinitrobenzene 100-25-4 C6H4(NO2)2 168.107 173.5 297 0.0349 149.4 
2-Nitrotoluene 88-72-2 CH3C6H4NO2 137.137 –10.4 222 1 117.93 153.0 
3-Nitrotoluene 99-08-1 CH3C6H4NO2 137.137 15.5 232 1 153.0 
4-Nitrotoluene 99-99-0 CH3C6H4NO2 137.137 51.63 238.3 0.548 153.0 
2,4-Dinitrotoluene (DNT) 121-14-2 CH3C6H3(NO2)2 182.134 70.5 300 dec 0.358 175.2 
2,6-Dinitrotoluene 606-20-2 CH3C6H3(NO2)2 182.134 66.0 285 0.396 175.2 
2,4,6-Trinitrotoluene (TNT) 118-96-7 CH3C6H2(NO2)3 227.131 80.5 240 exp 0.285 137.32 203.7 
1-Nitronaphthalene 86-57-7 C10H7NO2 173.169 61 304 0.443 176.1 
2-Nitronaphthalene 581-89-5 C10H7NO2 173.169 79 314 0.295 176.1 
4-Nitrobiphenyl 92-93-3 C12H9NO2 199.205 114 340 0.134 211.3 
5-Nitro-acenaphthene 602-87-9 C12H9NO2 199.205 103 0.172 211.3 
Amide and ureas: 
Acetamide 60–35-5 CH3CONH2 59.067 80.16 222 0.288 66.9 7.62 
Acrylamide 79-06-1 H2C=CHCONH2 71.078 84.5 192.5 0.261 80.8 
Benzamide 55-21-0 C6H5CONH2 121.137 127.3 290 0.0992 132.4 
Urea 57-13-6 H2NCONH2 60.055 133 dec 0.0872 45.39 58.0 
Nitrosoamines: 
N-Nitrosodimethylamine 62-75-9 (CH3)2NNO 74.081 152 87.7 
N-Nitrosodiethylamine 55-18-5 (C2H5)2NNO 120.134 176.9 130.6 
Di-n-propyl nitrosamine 621-64-7 (C3H7)2NNO 130.187 206 176.5 
Diphenylnitrosamine 86-30-6 (C6H5)2NNO 198.219 66.5 152 0.392 220.5 
Heterocyclic compounds: 
1H-Pyrrole 109-97-7 C4H5N 67.090 –23.39 129.79 1 69.18 78.2 
1-Methylpyrrole 96-54-8 C5H7N 81.117 –56.32 112.81 1 104.0 
Pyrrolidine 123-75-1 C4H8NH 71.121 –57.79 86.56 1 96.6 4.453 
Imidazole 288-32-4 C3H4N2 68.077 89.5 257 0.233 78.9 11.305 
Indazole 271-44-3 C7H6N2 118.136 148 269 0.0621 130.5 
Indole 120-72-9 C8H7N 117.149 52.5 253.6 0.537 133.4 
Indoline 496-15-1 C8H9N 119.164 229 140.8 
Pyridine 110-86-1 C5H5N 79.101 –41.70 115.23 1 80.56 93.0 5.17 
2-Methylpyridine 109-06-8 C6H7N 93.127 –66.68 129.38 1 98.61 115.2 5.96 
3-Methylpyridine 108-99-6 C6H7N 93.127 –18.14 144.14 1 97.35 115.2 5.68 
4-Methylpyridine 108-89-4 C6H7N 93.127 3.67 145.36 1 115.2 6.00 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3430 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.2.1 (Continued) 
Compound CAS no. 
Molecular 
formula 
Molecular 
weight, MW 
g/mol 
m.p. 
°C 
b.p. 
°C 
Fugacity 
ratio, F 
at 25°C* 
Molar volume, 
VM cm3/mol 
pKa or 
pKb 
MW/ . 
at 20°C Le Bas 
2,3-Dimethylpyridine 583-61-9 C7H9N 107.153 –15.5 161.12 1 135.9 6.6 
2,4-Dimethylpyridine 108-47-4 C6H9N 107.153 –64 158.38 1 135.9 
2,6-Dimethylpyridine 108-48-5 C7H9N 107.153 –6.1 144.01 1 135.9 6.72 
2,4,6-Trimethylpyridine 108-75-8 C8H11N 121.180 -46 170.6 1 158.1 7.43 
Quinolines: 
Quinoline 91-22-5 C9H7N 129.159 –14.78 237.16 1 144.7 4.90 
Isoquinoline 119-65-3 C9H7N 129.159 26.47 243.22 0.967 144.7 5.4 
3-Methyl-isoquinoline 1125-80-0 C10H9N 143.185 68 249 0.379 166.9 
2,7-Dimethylquinoline 93-37-8 C11H11N 157.212 61 264.5 0.443 189.1 
Benzo[f]quinoline 85-02-9 C13H9N 179.217 94 352 0.210 196.3 
Benzo(h)quinoline 230-27-3 C13H9N 179.217 52 339 0.543 196.3 
9H-Carbazole 86-74-8 C6H4NHC6H4 167.206 246.3 354.69 0.00674 192.9 
7H-Dibenzo[c,g]carbazole 194-59-2 (C10H6)2NH 267.324 158 0.0496 296.1 
Acridine 260-94-6 C13H9N 179.217 110 344.86 0.147 196.3 5.60 
Benz[a]acridine 225-11-6 C17H11N 229.276 244.8 
Benz[c]acridine 225-51-4 C17H11N 229.276 132 0.0892 244.8 
Dibenz[a,h]acridine 53–70–3 C22H14 278.346 269.5 524 0.00399 300.0 
Sulfur compounds: 
Carbon disulfide 75-15-0 CS2 76.141 –112.1 46 1 60.28 66.0 
Dimethyl sulfate 77-78-1 (CH3O)2SO2 126.132 –27 188 dec 1 109.7 
Diethyl sulfate 64-67-5 (C2H5O)2SO2 154.185 –24 208 1 138.4 
Dimethyl sulfite 616-42-2 (CH3O)2SO 110.132 126 100.5 
Dimethyl sulfoxide (DMSO) 67-68-5 (CH3)2SO 78.133 17.89 189 1 85.7 
Dimethyl sulfone 67-71-0 (CH3)2SO2 94.133 108.9 238 0.150 94.0 
Dimethyl sulfide 75-18-3 (CH3)2S 62.134 –98.24 37.33 1 73.77 77.4 
Dimethyl disulfide 624-92-0 C2H6S2 94.199 –84.67 109.74 1 58.78 103.0 
Diethyl sulfide 352-93-2 C4H10S 90.187 –103.91 92.1 1 128.1 
Diethyl disulfide 110-81-6 C4H10S2 122.252 –101.5 154.0 1 147.4 
Thiols: 
Methanethiol 74-93-1 CH3SH 48.108 –123 5.9 1 55.52 55.2 10.7 
Ethanethiol 75-08-1 C2H5SH 62.134 –147.88 35.0 1 74.05 77.4 10.61 
Propanethiol 107-03-9 C3H7SH 76.161 –113.13 67.8 1 90.55 99.6 
1-Butanethiol (Butyl mercaptan) 109-79-5 CH3(CH2)3SH 90.187 –115.7 98.5 1 107.16 121.8 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3431 
2-Butanethiol 513-53-1 C4H7SH 90.187 –165 85.0 1 121.8 
Benzenethiol 108-98-5 C6H5SH 110.177 -14.93 169.1 1 102.34 106.8 6.5 
2-Methylbenzenethiol 137-06-4 C7H8S 124.204 15 195 1 129.0 
3-Methylbenzenethiol 108-40-7 C7H8S 124.204 –20 195 1 129.0 
4-Methylbenzenethiol 106-45-6 C7H8S 124.204 43 195 0.666 129.0 
Thiophenes: 
Thioazole 288-47-1 C3H3NS 85.128 –33.62 118 1 85.2 
Thiophene 110-02-1 C4H4S 84.140 –38.21 84.0 1 79.02 88.1 
2-Methylthiophene 554-14-3 C5H6S 98.167 –63.4 112.6 1 110.3 
3-Methylthiophene 616-44-4 C5H6S 98.167 –69 115.5 1 110.3 
Benzo[b]thiophene 95-15-8 C8H6S 134.199 32 221 0.854 139.7 
Dibenzothiophene 132-65-0 C12H8S 184.257 98.2 332.5 0.191 191.3 
Thianthrene 92-85-3 (C6H4)2S2 216.322 159.3 365 0.0481 210.9 
Thiobenzamide 2227-79-4 C6H5CSNH2 137.203 117 0.125 135.8 
Thiourea 62-56-6 H2NCSNH2 76.121 178 0.0315 72.84 76.2 2.03 
Thioacetamide 62-55-5 CH3CSNH2 75.133 115.5 0.129 84.2 
* Assuming .Sfus = 56 J/mol K 
© 2006 by Taylor & Francis Group, LLC

3432 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.2.2 
Summary of selected physical-chemical properties of nitrogen and sulfur containing compounds at 25°C. 
Compound 
Selected properties Henry’s law constant 
Vapor pressure Solubility H/(Pa·m3/mol) 
PS/Pa PL/Pa S/(g/m3) CS/(mol/m3) CL/(mol/m3) log KOW calcd P/C exptl 
Nitriles: 
Acetonitrile 11840 11840 miscible –0.34 2.75 
Propionitrile 5950 5950 103000 1870.0 1870.0 0.16 3.182 3.8 
Butyronitrile 2546 2546 33000 477.5 477.5 5.263 
Benzonitrile 100 100 2000 19.39 19.39 1.55 5.156 
Acrylonitrile (2-Propenitrile) 11000 11000 75500 1423 1423 0.25 7.731 11.14 
Adiponitrile 0.3066 0.3066 8000 73.96 73.96 –0.32 0.0041 
Aliphatic amines: 
Methylamine 357300 357300 miscible –0.57 1.125 
Dimethylamine 206200 206200 miscible –0.38 1.8 
Trimethylamine 219300 219300 miscible 0.27 6.67 
Ethylamine 141650 141650 miscible –0.13 1.012 
Diethylamine 31490 31490 miscible 0.43 2.60 
Triethylamine 7610 7610 55000 540 540 1.64 14.099 
n-Propylamine 40740 40740 miscible 0.48 1.274 
Dipropylamine 53000 520 520 
Diisopropylamine 12390 122 
Tripropylamine 220 1.536 1.54 2.79 
n-Butylamine 13650 13650 miscible 0.97 1.526 
Isobutylamine 18760 18760 miscible 0.73 
t-Butylamine 48260 48260 miscible 0.4 
Di-n-butylamine 304 304 4700 36.37 36.37 2.83 8.359 
Tributylamine 5330 5330 40 0.216 0.216 2.47 . 104 
Ethanolamine 34.66 34.66 miscible –1.31 
Diethanolamine 0.0373 0.0399 miscible –1.43 
Triethanolamine 4.79 . 10–4 4.79 . 10–4 miscible –1.59 
Cyclohexylamine 1173 1173 miscible 1.49 
Diphenylamine 0.0612 0.115 300 1.773 3.338 3.45 0.035 
.-Naphthylamine 0.254 0.45 2.23 
.-Naphthylamine 0.035 0.248 6.4 0.045 0.317 2.34 
4-Aminobiphenyl 2.83 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3433 
Aromatic amines: 
Aniline 65.19 65.19 36070 387.4 387.35 0.90 0.168 12.16 
2-Chloroaniline 22.66 22.66 3800 29.79 29.79 1.90 0.761 
3-Chloroaniline 9.53 9.530 5440 42.64 42.64 1.88 0.223 
4-Chloroaniline 2.33 6.873 3000 23.52 69.37 1.83 0.099 
3,4-Dichloroaniline 1.3 3.746 92.05 0.568 1.637 2.67 2.289 
2,4,6-Trichloroaniline 0.00626 0.021 3.694 
o-Toluidine 13.3 13.30 15000 139.98 139.98 0.095 
m-Toluidine 36 36.0 15030 140.26 140.26 1.44 0.257 
p-Toluidine 45 61.48 7350 68.59 93.70 1.4 0.656 
N,N.-Dimethylaniline 107 107.0 1105 9.119 9.119 2.31 11.734 
2,4-Xylidine 20.5 20.50 5900 48.69 48.69 0.421 
2,5-Xylidine 5000 41.26 41.26 
2,6-Xylidine 670 670.0 4700 38.79 38.79 1.94 17.275 
2-Ethylaniline 7500 61.89 61.89 1.93 
4-Ethylaniline 13.5 13.50 5100 42.09 42.09 1.96 0.321 
N,N.-Diethylaniline 9.7 9.70 670 4.49 4.49 2.161 
Benzidine 1.0 . 10–6 1.06 . 10–5 400 2.17 23.1 1.81 4.61 . 10–7 
3,3.-Dichlorobenzidine 5.6 . 10–5 6.41 . 10–4 3.1 0.0122 0.140 3.51 0.005 
N,N.-Bianiline 0.0035 0.252 0.0014 0.0154 3.82 3.45 . 10–4 
2-Nitroaniline 0.62 1.851 1200 8.687 25.93 1.78 
4-Nitroaniline 0.035 0.589 800 5.792 97.50 1.31 
2,4-Dinitroaniline 4.1 
Nitroaromatic compounds: 
Nitrobenzene 20 20.0 1900 15.43 15.43 1.85 1.296 
1,2-Dinitrobenzene 0.0052 0.0433 
1,3-Dinitrobenzene 0.0081 0.0348 546 3.25 13.94 1.49 0.002 
1,4-Dinitrobenzene 13.3 386.63 442 2.63 76.43 2.37 5.059 
2-Nitrotoluene 17.9 17.90 651.42 4.75 4.75 2.30 3.768 
3-Nitrotoluene 27.2 27.20 499.19 3.64 3.64 2.45 7.473 
4-Nitrotoluene 0.653 1.2004 254.4 1.86 3.41 2.37 0.352 
2,4-Dinitrotoluene (DNT) 0.133 0.3705 270 1.48 4.13 2.01 0.090 
2,6-Dinitrotoluene 0.0767 0.1952 200 1.72 0.070 
2,4,6-Trinitrotoluene (TNT) 0.00107 0.0038 210 0.925 3.29 
1-Nitronaphthalene 0.702 0.0312 0.072 9.82 0.057 0.132 3.19 3.50 
2-Nitronaphthalene 9.24 0.053 0.183 
4-Nitrobiphenyl 1.231 6.18 . 10–3 0.045 3.78 
5-Nitro-acenaphthene 0.91 4.57 . 10–3 0.026 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3434 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.2.2 (Continued) 
Compound 
Selected properties Henry’s law constant 
Vapor pressure Solubility H/(Pa·m3/mol) 
PS/Pa PL/Pa S/(g/m3) CS/(mol/m3) CL/(mol/m3) log KOW 
calcd P/C exptl 
Amides: RCONH2 
Acetamide (ethanamide) 2.44 8.3562 408000 6907.1 23650 –1.26 3.53 . 10–4 
Acrylamide 0.415 1.5900 2050000 2884 11050 –0.9 1.44 . 10–4 
Benzamide 0.00522 0.0544 14000 1692 17630 0.64 4.52 . 10–5 
Urea: (NH2)2C=O 
Urea 0.0016 0.0186 1000000 16650 1.93x105 –2.11 9.61 . 10–8 
Nitrosoamines: 
N-Nitrosodimethylamine miscible –0.57 3.343 
Di-n-propyl nitrosamine 27 9900 76.04 1.31 0.355 
Diphenyl nitrosamine 13.33 34.27 35.10 0.116 0.299 3.13 114.6 
Heterocyclic compounds: 
1H-Pyrrole 1100 1100 45000 670.7 670.7 0.75 1.640 
1-Methylpyrrole 3312 
Indazole 827 7.00 100.43 
Indole 2.24 4.187 1874 16.00 29.90 2 0.140 
Indoline 10800 90.63 
Pyridine 2775 2775 miscible 0.65 0.895 
2-Methylpyridine 1496 1496 miscible 1.11 1.01 
3-Picoline 1333 1333 miscible 1.2–1.24 0.788 
4-Picoline 757 757 miscible 1.22 0.601 
2,3-Dimethylpyridine 426 104000 970.6 0.725 
2,4-Dimethylpyridine 456 456 miscible 0.678 
2,6-Dimethylpyridine 746 746 miscible 1.06 
2,4,6-Trimethylpyridine 5170 5170 35700 294.6 294.6 17.549 
Quinolines: 
Quinoline 1.21 1.21 6110 47.31 47.31 2.06 0.026 
Isoquinoline 670 693 4521 35.00 36.20 2.08 19.141 
2,7-Dimethylquinoline 1795 11.42 24.77 
Benzo[f]quinoline 0.0067 76.1 0.42 2.02 3.20 0.0096 
Benzo[h]quinoline 0.03 0.0555 
9H-Carbazole 0.0933 14.976 1.03 0.006 0.989 3.80 15.146 
7H-Dibenzo[c,g]carbazole 1.3 . 10–7 2.5 . 10–6 0.063 0.236 4.532 5.75 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3435 
Acridine 0.0065 0.0451 38.5 0.215 1.492 3.4 0.030 
Benz[a]acridine 4.45 
Sulfur compounds: 
Carbon disulfide 48210 48210 2100 27.584 27.584 1747.75 
Dimethyl sulfate 128 128 
Diethyl sulfate 49.1 49.1 
Dimethyl sulfoxide (DMSO) 80.0 80.0 253000 354.8 354.8 –1.35 0.225 
Dimethyl sulfone 5.16 34.17 –1.41 200.83 
Dimethyl sulfide 64650 64650 20000 321.9 7.72 
Dimethyl disulfide 4000 4000 6300 66.88 66.88 59.81 
Diethyl sulfide 7782 7782 1.95 
Diethyl disulfide 689 689 
Thiols: 
Methanethiol 201980 201980 
Ethanethiol 70000 15000 289.94 
Propanethiol 20635 20635 1.81 
1-Butanethiol 6070 6070 597 6.62 6.62 2.28 916.94 
2-Butanethiol 10790 10790 
Benzenethiol 397 397 2.52 
2-Methylbenzenethiol 87.4 87.4 
3-Methylbenzenethiol 76.6 76.60 
4-Methylbenzenethiol 85.2 128.3 
Thiophenes: 
Thioazole 2287 
Thiophene 10620 8000 3015 35.833 35.833 1.81 223.3 224 
2-Methylthiophene 3318 
3-Methylthiophene 2953 
Benzo[b]thiophene 26.66 26.7 130 0.969 1.107 3.12 24.1 
Dibenzothiophene 0.267 1.11 0.006 4.38 44.3 
Thiourea 90000 1182 36833 –0.99 
Thioacetamide 163000 2170 15722 –0.26 
© 2006 by Taylor & Francis Group, LLC

3436 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.2.3 
Suggested half-life classes for nitrogen and sulfur containing compounds in various 
environmental compartments at 25oC 
Compound 
Air 
class 
Water 
class 
Soil 
class 
Sediment 
class 
Acetonitrile 6 5 5 6 
Propionitrile 6 5 5 6 
Acrylonitrile (2-Propenitrile) 3 4 4 5 
Dimethylamine 1 3 4 5 
Ethylamine 2 3 4 5 
Eiethylamine 1 2 2 3 
n-Butylamine 2 3 3 4 
Ethanolamine 1 3 3 4 
Diethanolamine 1 4 4 5 
Cyclohexylamine 1 3 3 4 
Aniline 1 4 4 6 
2-Chloroaniline 3 4 5 6 
4-Chloroaniline 1 4 4 5 
o-Toluidine 1 3 3 4 
N,N'-Dimethylaniline 1 4 5 6 
2,6-Xylidine 1 4 5 6 
Diphenylamine 1 4 5 6 
Benzidine 1 4 4 5 
3,3'-Dichlorobenzidine 1 1 5 6 
N,N'-Bianiline 1 3 3 4 
.-Naphthylamine 1 4 4 6 
.-Naphthylamine 1 4 4 6 
Nitrobenzene 1 6 6 7 
2-Nitrotoluene 2 3 6 7 
4-Nitrotoluene 2 3 6 7 
2,4-Dinitrotoluene (DNT) 2 3 6 7 
2,4,6-Trinitrotoluene (TNT) 1 2 6 7 
Acetamide 2 4 4 5 
Benzamide 2 4 4 5 
n-Nitrosodimethylamine 1 2 6 7 
n-Nitrosodiethylamine 1 2 6 7 
Di-n-propyl nitrosoamine 1 2 6 7 
Diphenyl nitrosoamine 1 2 6 7 
Pyridine 5 5 6 7 
3-Methylpyridine 5 5 6 7 
4-Methylpyridine 5 5 6 7 
Quinoline 3 4 5 6 
Dimethyl sulfate 4 2 2 3 
Diethyl sulfate 2 2 3 4 
Thiophene 3 3 6 7 
Benzo[b]thiophene 4 5 6 7 
Thiourea 1 4 4 5 
Thioacetamide 2 4 4 5 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3437 
TABLE 16.2.3 (Continued) 
where, 
Class Mean half-life (hours) Range (hours) 
1 5 < 10 
2 17 (~ 1 day) 10–30 
3 55 (~ 2 days) 30–100 
4 170 (~ 1 week) 100–300 
5 550 (~ 3 weeks) 300–1,000 
6 1700 (~ 2 months) 1,000–3,000 
7 5500 (~ 8 months) 3,000–10,000 
8 17000 (~ 2 years) 10,000–30,000 
9 ~ 5 years > 30,000 
© 2006 by Taylor & Francis Group, LLC

3438 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.3 REFERENCES 
Abraham, M.H. (1984) Thermodynamics of solution of homologous series of solutes in water. J. Chem. Soc., Farad. Trans. 1 80, 
153–181. 
Abraham, M.H., Le J., Acree, Jr., W.E., Carr, P.W., Dallas, A.J. (2001) The solubility of gases and vapours in dry octan-1-ol at 298 
K. Chemosphere 44, 855–863. 
Aim, K. (1994) Saturated vapor pressure measurements on isomeric mononitrotoluenes at temperatures between 380 and 460 K. 
J. Chem. Eng. Data 39, 591–594. 
Albersmeyer, W. (1958) Quantitative determination of aromatic hydrocarbons in aqueous solutions. Gas-U. Wasserfach 99, 269. 
Albert, A. (1966) The Acridines. Edward Arnold, London. 
Alcorn, C.J., Simpson, R.J., Leahy, D.E., Peters, T.J. (1993) Partition and distribution coefficients of solutes and drugs in brush border 
membrane vesicles. Biochem. Pharm. 45, 1775–1782. 
Alexander, M., Lustigman, B.K. (1966) Effects of chemical structure on microbial degradation of substituted benzenes. J. Agric. 
Food Chem. 14, 410–413. 
Altschuh, J., Bruggemann, Santl, H., Eichinger, G., Piringer, O.G.(1999) Henry’s law constants for a diverse set of organic chemicals: 
Experimental determination and comparison of estimation methods. Chemosphere 39, 1871–1887. 
Ambrose, D. Gundry, H.A. (1980) The vapour pressure of p-nitrotoluene. J. Chem. Thermodyn. 12, 559–561. 
Anbar, M., Meyerstein, D., Neta, P. (1966) The reactivity of aromatic compounds toward hydroxyl radicals. J. Phys. Chem. 70, 
2661–2662. 
Anbar, M., Neta, P. (1967) A compilation of specific bimolecular rate and hydroxyl radical with inorganic and organic compounds 
in aqueous solution. Int. J. Appl. Radiation Isotopes 18, 493–523. 
Anderson, T.A., Beauchamp, J.J., Walton, B.T. (1991) Organic chemicals in the environment. J. Environ. Qual. 20, 420–424. 
Andersson, J.T., Schrader, W. (1999) A method for measuring 1-octanol-water partition coefficients. Anal. Chem. 71, 3610–3614. 
Andon, R.J.L., Cox, J.D. (1952) Phase relationships in pyridine series. Part I. The miscibility of some pyridine homologues with 
water. J. Chem. Soc. 4601–4606. 
Andon, R.J.L., Cox, J.D., Herington, E.F.G. (1954) Phase relationships in the pyridine series. Part V. The thermo-dynamic properties 
of dilute solutions of pyridine bases in water at 25°C and 40°C. J. Chem. Soc. 3188–3196. 
Appleton, H., Banerjee, S., Pack, E., Sikka, H. (1978) Fate of 3,3’-dichlorobenzidine in aquatic environment. In: Pergamon Series 
in Environmental Science 1, 473–474. 
Appleton, H., Sikka, H. (1980) Accumulation, elimination and metabolism of dichlorobenzidine in bluegill sunfish. Environ. Sci. 
Technol. 14, 50–54. 
Arbuckle, W.B. (1983) Estimating activity coefficients for use in calculating environmental parameters. Environ. Sci. Technol. 17, 
537–542. 
Arey, J., Atkinson, R., Aschmann, S.M., Schuetzle, D. (1990) Experimental investigation of the atmospheric chemistry of 2-methyl- 
1-nitronaphthalene and a comparison of predicted nitroarene concentrations with ambient air data. In: Polycyclic Aromatic 
Compounds. Vol. 1(1–2), pp. 33–50. Gordon and Breach Science Publishers, United Kingdom. 
Armbrust, K.L. (2000) Pesticide hydroxyl radical rate constants: measurements and estimates of their importance in aquatic environments. 
Environ. Toxicol. Chem. 19, 2175–2180. 
Ashton, J.G., Eidimoff,. M.L., Forster, W.S. (1939) The heat capacity and entropy, heats of fusion and vaporization and the vapor 
pressure of dimethylamine. J. Am. Chem. Soc. 61, 1539–1543. 
Aston, J.G., Sagenkahn, M.L., Szasz, G.J., Moessen, G.W., Zuhr, H.F. (1944) The heat capacity and entropy, heats of fusion and 
vaporization and the vapor pressure of trimethylamine. The entropy from spectroscopic and molecular data. J. Am. Chem. 
Soc. 66, 1171–1177. 
Atkinson, R. (1985) Kinetics and mechanisms of the gas-phase reactions of hydroxyl radicals with organic compounds under 
atmospheric conditions. Chem. Rev. 85, 69–201. 
Atkinson, R. (1987) A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals 
with organic compounds. Int. J. Chem. Kinetics 19, 799–828. 
Atkinson, R. (1989) Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. 
Chem. Ref. Data, Monograph No. 1, 1–246. 
Atkinson, R. (1991) Kinetics and mechanisms of the gas-phase reactions of NO3 radical with organic compounds. J. Phys. Chem. 
Ref. Data 20(3), 459–507. 
Atkinson, R., Aschmann, S.M., Arey, J., Zielinska, B. (1989) Gas-phase atmospheric chemistry of 1- and 2-nitronaphthalene and 
1,4-naphthoquinone. Atmos. Environ. 23(12), 2679–2690. 
Atkinson, R., Aschmann, S.M., Fitz, D.R., Winer, A.M., Pitts, Jr., J.N. (1982) Rate constants for the gas-phase reactions of O3 with 
selected organics at 296 K. Int. J. Chem. Kinet. 14, 13–18. 
Atkinson, R., Aschmann, S.M., Carter, W.P.L. (1983) Kinetics of the reactions of ozone and hydroxyl radicals with furan and thiophene 
at 298 ± 2 K. Int. J. Chem. Kinetics 15, 51–61. 
Atkinson, R., Aschmann, S.M., Winer, A.M., Carter, W.P.L. (1985) Rate constants for the gas-phase reactions of the NO3 radicals 
with furan, thiophene, and pyrrole at 295 ± 1 K and atmospheric pressure. Environ. Sci. Technol. 19, 87–90 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3439 
Atkinson, R., Baulch, D.L., Cox, R.A., Hampson Jr., R.F., Kerr, J.A., Troe, J. (1992) Evaluated kinetic and photochemical data for 
atmospheric chemistry supplement IV. J. Phys. Chem. Ref. Data 21, 1125–1568. 
Atkinson, R., Carter, W.P.L. (1984) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under 
atmospheric conditions. Chem. Rev. 84, 437–470. 
Atkinson, R., Perry, R.A., Pitts, J.N., Jr. (1977) Rate constants for the reaction of the OH radical with CH3SH and CH3NH2 over the 
temperature range 299–426 K. J. Chem. Phys. 66, 1578–1581. 
Atkinson, R., Perry, R.A., Pitts, J.N., Jr. (1978a) Rate constants for the reaction of OH radicals with COS, CS2, and CH3SCH3 over 
the temperature range 299–430 K. Chem. Phys. Lett. 54, 14–18. 
Atkinson, R., Perry, R.A., Pitts, J.N., Jr. (1978b) Rate constants for the reactions of hydroxyl radical with dimethylamine, trimethylamine, 
and ethylamine over the temperature range 298–426 K. J. Chem. Phys. 68, 1850–1853. 
Atkinson, R., Pitts, Jr., J.N., Aschmann, S.M. (1984) Tropospheric reactions of dimethyl sulfide with NO3 and OH radicals. J. Phys. 
Chem. 88, 1584–1587. 
Atkinson, R., Tuazon, E.C., Wallington, T.J., Aschmann, S.M., Arey, J., Winer, A.M., Pitts, J.N., Jr. (1987) Atmospheric chemistry 
of aniline, N,N-dimethylaniline, Pyridine, 1,3,5-triazine, and nitrobenzene. Environ. Sci. Technol. 21, 64–72. 
Aubry, M., Mayoral, M.N., Villardry, P. (1975) Determination of the vapor pressure of low volatility compounds by gas chromatography. 
Application to dibenzothiophene. Boll. Soc. Chim. Fr. 3–4 of Pt.1, 500–502. 
Bailey, G.W., White, J.L., Rothberg T. (1968) Adsorption of organic herbicides by montmorillonite: Role of pH and chemical character 
of adsorbate. Soil Sci. Am. Proc. 32, 222–234. 
Baird, R., Caroma, L., Jenkins, R.L. (1977) Behavior of benzidine and other aromatic amines in aerobic waste water treatment. 
J. Water Pollut. Control Fed. 49, 1606–1615. 
Banerjee, S., Howard, P.H. (1988) Improved estimation of solubility and partitioning through correction of UNIFAC-derived activity 
coefficients. Environ. Sci. Technol. 22, 839–841. 
Banerjee, S., Howard, P.H., Lande, S.S. (1990) General structure-vapor pressure relationships for organics. Chemosphere 21, 
1173–1180. 
Banerjee, S., Sikka, H.C., Gray, D.A., Kelly, C.M. (1978) Photodegradation of 3,3.-dichlorobenzidine. Environ. Sci. Technol. 12, 
1425–1427. 
Banerjee, S., Yalkowsky, S.H., Valvani, S.C. (1980) Water solubility and octanol/water partition coefficients of organics. Limitations 
of the solubility-partition coefficient correlations. Environ. Sci. Technol. 14, 1227–1229. 
Barnes, I., Bastian, V., Becker, K.H., Martin, D. (1989) Fourier transform IR studies of the reactions of dimethyl sulfoxide with OH, 
NO3 and Cl radicals. In: Biogenic Sulfur in the Environment. Salzmann, E.S., Cooper, W.J., Eds. ACS Symposium Series 
393, pp. 476–488 
Barrows, M.E. et al. (1978) Am. Chem. Soc. Div. Environ. Chem. 18, 345–346. 
Basu, D.K., Hsu, R.S., Neal, M.W., Santodonato, J., Sugatt, R.H., Bayard, S., Bayliss, D.L., Hiremath, C.B., Vaughn-Dellarco, V. 
(1983) Health Assessment Document for Acrylonitrile. Final Report. EPA-600/8–82–007F, U.S. E.P.A., Research Triangle 
Park, N.C., PB84–149152. U.S. Department of Commerce, NTIS. 
Bebahani, Gh.R.R., Hogan, P., Waghorne, W.E. (2002) Ostwald concentration coefficients of acetonitrile in aqueous mixed solvents: 
A new rapid method for measuring the solubility of volatile solutes. J. Chem. Eng. Data 47, 1290–1292. 
Bechalany, A., Rothlisberger, T., El Tayler, N., Testa, B. (1989) Comparison of various non-polar stationary phases used for assessing 
lipophilicity. J. Chromatog. 473, 115–124. 
Becker, K.H., Biehl, H.M., Bruckmann, P., Fink, E.H., Fuhr, F., Klopffer, W., Zellner, R., Zetzsch, C. (1984) Hydroxyl radical reaction 
rate constants and tropospheric lifetimes of selected environmental chemicals. Kernforschungsanlage. Julich, GmbH. November 
1984, ISSN 0343–7639. 
Benes M., Dohnal, V. (1999) Limiting activity coefficients of some aromatic and aliphatic nitro compounds in water. J. Chem. Eng. 
Data 44, 1097–1102. 
Benkelberg, H.-J., Hamm, S., Warneck, P. (1995) Henry’s law coefficients for aqueous solutions of acetone, acetaldehyde and 
acetonitrile, and equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite. J. Atmos. 
Chem. 20, 17–34. 
Berliner, J.F.T., May, O.E. (1925) Studies in vapor pressure. I. The nitro-anilines. J. Am. Chem. Soc. 47, 2350–2356. 
Berthod, A., Han, Y.I., Armstrong, D.W. (1988) Centrifugal partition chromatography. V. Octanol-water partition coefficients, direct 
and indirect determination. J. Liq. Chromatogr. 11(7), 1441–1456. 
Bintein, S., Devillers, J., Karcher, W. (1993) Nonlinear dependence of fish bioconcentration on n-octanol/water partition coefficient. 
SAR and QSAR in Environ. Res. 1, 29–39. 
Bittrich, H.J., et al. (1962) J. Prakt. Chem. 17, 250.-reference in Boublik et al. 1984. 
Bittrich, H.J., Kauer, E. (1962) Z. Phys. Chem. 219, 224.-reference in Boublik et al. 1984. 
Bocek, K. (1976) Relations among activity coefficients, partition coefficients and solubilities. Experientia Suppl. 23, 231–240. 
Boethling, R.S., Alexander, M. (1979) Microbial degradation of organic compounds at trace levels. Environ. Sci. Technol. 13, 989–991. 
Bollag, J.M., Blattmann, P., Lannio, T. (1978) Adsorption and transformation of four substituted anilines in soil. J. Agric. Food Chem. 
26, 1302–1306. 
Booth, H.S., Everson, H.E. (1948) Hydrotropic solubilities. Solubilities in 40 per cent sodium xylenesulfonate. Ind. Eng. Chem. 
40(8), 1491–1493. 
© 2006 by Taylor & Francis Group, LLC

3440 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bornick, H., Eppinger, P., Grischek, T., Worch, E. (2001) Simulation of biological degradation of aromatic amines in river bed 
sediments. Water Res. 35, 619–624. 
Boublik, T., Aim, K.I. (1972) Collection Czech. Chem. Comm. 37, 3513.—reference from Boublik et al. 1984. 
Boublik, T., Fried, V., Hala, E. (1973) The Vapour Pressures of Pure Substances. Elsevier, Amsterdam, The Netherlands. 
Boublik, T., Fried, V., Hala, E. (1984) The Vapour Pressures of Pure Substances. Second Edition, Elsevier, Amsterdam, The 
Netherlands. 
Boyd, S.A., Kao, C.W., Suflita, J. (1984) Fate of 3,3.-dichlorobenzidine in soil: Persistence and binding. Environ. Toxicol. Chem. 3, 
201–208. 
Bridie, A.L., Wolff, C.J.M., Winter, M. (1979) BOD and COD of some petrochemicals. Water Res. 13, 627–630. 
Briggs, G.G. (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water 
solubilities, bioconcentration factors and Parachor. J. Agric. Food Chem. 29, 1050–1059. 
Brooke, D.N., Nielsen, I., De Bruijn, Hermens, J. (1990) An interlaboratory evaluation of the stir-flask method for the determination 
of octanol-water partition coefficients (LOG POW). Chemosphere 21, 119–133. 
Brown, H.C., Barbaras, G.K. (1947) Dissociation of the compounds of trimethylboron with pyridine and the picolines; evidence for 
the steric nature of the ortho effect. J. Am. Chem. Soc. 69, 1137–1144. 
Brown, I. (1952) Liquid-vapour equilibria. III. The systems benzene-heptane, hexane-chlorobenzene, and cyclohexane-nitrobenzene. 
Austral. J. Sci. Res. 5A, 530–540.—reference from Boublik et al. 1984 
Budavari, S., Editor (1989) The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals. 11th Edition, Merck & Co. 
Rahway, NJ. 
Butler, J.A.V., Ramchandani, C.N. (1935) The solubility of non-electrolytes. Part II. The influence of the polar group on the free 
energy of hydration of aliphatic compounds. J. Chem. Soc. 952–955. 
Buttery, R.G., Ling, J.C., Guadagni, D.G. (1969) Food volatiles. Volatilities of aldehydes, ketones, and esters in dilute water solution. 
J. Agric. Food Chem. 17, 385–389. 
Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B. (1986) Critical review of rate constants for reactions of hydrated electrons, 
hydrogen atoms and hydroxyl radicals (-OH/-O–) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–817. 
Bysshe, S.E. (1982) Bioconcentration factor in aquatic organisms. In: Handbook of Chemical Property Estimation Methods: Environmental 
Behavior of Organic Compounds. Lyman et al. Editors, Chapter 5, pp. 5–1 to 5–30, McGraw-Hill Book Company, 
New York. 
Cabani, S., Conti, G., Lepori, L. (1971) Thermodynamic study on aqueous dilute solutions of organic compounds: Part 1. Cyclic 
amines. Trans. Farad. Soc. 67, 1933–1942. 
Calamari, D., Da Gasso, R., Galassi, S., Provine, A., Vighi, M. (1980) Biodegradation and toxicity of selected amines on aquatic 
organisms. Chemosphere 9, 753–762. 
Callahan, M.A., Slimak, M.W., Gabel, N.W., May, I.P., Fowler, C.F., Freed, J.R., Jennings, P., Durfee, R.L., Whitemore, F.C., Maestri, 
B., Mabey, W.R., Holt, B.R., Gould, C. (1979) Water Related Environmental Fate of 129 Priority Pollutants. EPA-440-4- 
79-029a,b. Versar, Inc., Springfield, VA. 
Campbell, J.R., Luthy, R.G. (1985) Prediction of aromatic solute partition coefficient using the UNIFAC group contribution model. 
Environ. Sci. Technol. 19, 980–985. 
Canton, J.H., Sloof, W., Kool, H.J., Struys, J., Pouw, T.J.M., Wegman, R.C.C., Piet, G.J. (1985) Toxicity, biodegradability and 
accumulation of a number of chlorine/nitrogen containing compounds for classification and establishing water quality criteria. 
Regulat. Toxicol. Pharmacol. 5, 123–131. 
Capel, P.D., Larson, S.J. (1995) A chemodynamic approach for estimating losses of target organic chemicals from water during 
sample holding time. Chemosphere 30, 1097–1107 
Carlier, P., Hannachi, H., Mouvier, G. (1986) The chemistry of carbonyl compounds in the atmosphere - A review. Atmos. Environ. 
20, 2079–2099. 
Carlson, R.M., Carlson, R., Kopperman, H.L. (1975) Determination of partition coefficients by liquid chromatography. J. Chromatogr. 
107, 219–223. 
Chao, J., Lin, C.T., Chung, T.H. (1983) Vapor pressure of coal chemicals. J. Phys. Chem. Ref. Data 12, 1033–1063. 
Chao, J., Gadalla, N.A.M., Gammon, B.E., Marsh, K.N., Rodgers, A.S., Somayajulu, G.R., Wilhoit, R.C. (1990) Thermodynamic 
and thermophysical properties of organic nitrogen compounds. Part I. Methanamine, ethanamine, 1-and 2-propanamine, 
benzenamine, 2-,3-, and 4-methylbenzenamine. J. Phys. Chem. Ref. Data 19(6), 1547–1615. 
Chessells, M., Hawker, D.W., Connell, D.W. (1992) Influence of solubility in lipid on bioconcentration of hydrophobic compounds. 
Ecotoxicol. Environ. Saf. 23, 260–273. 
Chiou, C.T. (1981) Partition coefficient and water solubility in environmental chemistry. In: Hazard Assessment of Chemicals, Current 
Developments. Volume I, pp. 117–153. Academic Press, New York. 
Chiou, C.T. (1985) Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration 
factors. Environ. Sci. Technol. 19, 57–62. 
Chiou, C.T., Schmedding, D.W. (1981) Measurement and interrelation of octanol-water partition coefficient and water solubility of 
organic chemicals. In: Test Protocols for Environmental Fate and Movement of Toxicants. J. Assoc. Anal. Chem., Arlington, VA. 
Chiou, C.T., Schmedding, D.W., Manes, M. (1982) Partitioning of organic compounds in octanol-water system. Environ. Sci. Technol. 
16, 4–10. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3441 
Cichna, M., Markl, P., Huber, J.F.K. (1995) Determination of true octanol-water partition coefficients by means of solvent generated 
liquid-liquid chromatography. J. Pharmaceu. Biomed. Anal. 11, 339–351. 
Ciusa, R. (1922) Doebner’s reaction. Gazz. Chim. Ital. 52(II), 43–48. 
Clarke, F.H. (1984) Ionization constants by curve-fitting: Application to the determination of partition coefficients. J. Pharm. Sci. 
73, 226–230. 
Clarke, F.H., Cahoon, N.M. (1987) Ionization constants by curve-fitting: Application to the determination of partition and distribution 
coefficients of acids and bases and their ions. J. Pharm. Sci. 76(8), 611–620. 
Collander, R. (1951) Partition of organic compounds between higher alcohols and water. Acta. Chem. Scand. 5, 774–780. 
Collet, A.R., Johnson, J. (1926) Solubility relations of isomeric organic compounds VI. Solubility of the nitroanilines in various 
liquids. J. Phys. Chem. 30, 70–82. 
Conder, J.M., La Point, T.W., Bowen, A.T. (2004) Preliminary kinetics and metabolism of 2,4,6-trinitrotoluene and its reduced 
metabolites in an aquatic oligochaete. Aqua. Toxicol. 69, 199–213. 
Cornford, E.M., (1982) Correlation between liquid partition coefficients and surface permeation in Schistosoma japonicum. J. Membr. 
Biol. 64, 217–224. 
Coulson, E.A., Cox, J.D., Herington, E.F.G., Martin, J.F. (1959) The preparation and physical properties of the pure lutidines. J. Chem. 
Soc. (London) 1934–1940. 
Cox, R.A., Sheppard, D. (1980) Nature 284, 330. 
D’Amboise, M., Hanai, T. (1982) Hydrophobicity and retention in reversed phase liquid chromatography. J. Liq. Chromatogr. 5(2), 
229–244. 
Darnall, K.R., Lloyd, A.C., Winer, A.M., Pitts, Jr., J.N. (1976) Reactivity scale for atmospheric hydrocarbons based on reaction with 
hydroxyl radical. Environ. Sci. Technol. 10, 692–696. 
Daubert, T.E., Danner, R.P. (1985) Data Compilation of Properties of Pure Compounds. pp. 450. American Institute of Chemical 
Engineers. 
Dauble, D.D., Carlile, D.W., Hanf, Jr., R.W. (1986) Bioaccumulation of fossil fuel components during single-compound and complexmixture 
exposures of daphnia magna. Bull. Environ. Contam. Toxicol. 37, 125–132. 
Davis, E.M., Murray, H.E., Leihr, J.G., Powers, E.L. (1981) Basic microbial degradation rates and chemical byproducts of selected 
organic compounds. Water Res. 15, 1125–1127. 
Dean, J.D., Editor (1985) Lange’s Handbook of Chemistry. 13th ed. McGraw-Hill, New York. 
Dean, J.D., Ed. (1992) Lange's Handbook of Chemistry. 14th ed. McGraw-Hill, Inc., New York. 
Debnath, A.K., Hansch, C. (1992) Structure-activity relationship of genotoxic polycyclic aromatic nitro compounds. Further 
evidence for the importance of hydrophobicity and molecular orbital energies in genetic toxicity. Environ. Mol. Mutagen. 
20, 140–144. 
De Bruijn, J., Busser, F., Seipnen, W., Hermens, J. (1989) Determination of octanol/water partition coefficients for hydrophobic 
organic chemicals with the “slow-stirring” method. Environ. Toxicol. Chem. 8, 499–512. 
Dehn, W.M. (1917) Comparative solubilities in water, in pyridine and in aqueous pyridine. J. Am. Chem. Soc. 29, 1399–1404. 
Delle Site, A. (1997) The vapor pressure of environmentally significant organic chemicals: A review of methods and data at ambient 
temperature. J. Phys. Chem. Ref. Data 26, 157–193. 
Delle Site, A. (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for 
selected pollutants. A review. J. Phys. Chem. Ref. Data 30, 187–439. 
DePablo, R.S. (1976) Determination of saturated vapor pressure in range 10–1–10–4 torr by effusion method. J. Chem. Eng. Data 21, 
141–143. 
De Voogt, P., Van Zijl, G.A., Govers, H., Brinkman, U.A.T. (1990) Reversed-phase TLC and structure-activity relationships of 
polycyclic (hetero) aromatic hydrocarbons. J. Planar Chromatogr. - Mod. TLC, 3(1–2), 24–33. 
De Voogt, P., Wegener, J.W.M., Klamer, J.C., Van Zijl, G.A., Govers, H. (1988) Prediction of environmental fate and effects of 
heteroatomic polycyclic aromatics by QSARs: The position of n-octanol/water partition coefficients. Biomed. Environ. Sci. 
1(2), 194–209. 
Deneer, J.W., Sinnige, T.L., Seinen, W., Hermens, J.L.M. (1987) Quantitative structure-activity relationships for the toxicity and 
bioconcentration factor of nitrobenzene derivatives towards guppy (Poecilia reticulata). Aqua. Toxicol. 10, 115–129. 
Deno, N.C., Berkheimer, H.E. (1960) Part I. Phase equilibria molecular transport thermodynamics. J. Chem. Eng. Data 5(1), 1–5. 
Digeronimo, M.J., Boethling, R.S., Alexander, M. (1979) Effect of chemical structure and concentration on microbial degradation 
in model ecosystems. In: Microbial Degradation of Pollutants in Marine Environments. EPA-600/9–79–012. U.S. Environmental 
Protection Agency, Gulf Breeze, FL. 
Dilling, W.L., Gonsior, S.J., Boggs, G.U., Mendoza, C.G. (1988) Organic photochemistry. 20. A method for estimating gasphase 
rate constants for reactions of hydroxyl radicals with organic compounds from their relative rates of reaction 
with hydrogen peroxide under photolysis in 1,1,2-trichlorotrifluoroethane solution. Environ. Sci. Technol. 22, 
1447–1453. 
Dlugokencky, E. J., Howard, C.J. (1988) Laboratory studies of NO3 radical reactions with some sulfur compounds. J. Phys. Chem. 
92, 1188–1193. 
Dojcanske, J., Heinrich, J. (1974) Chem. Zvesti 28, 157. - reference from Boublik et al. 1984 
© 2006 by Taylor & Francis Group, LLC

3442 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Dojlido, J.R. (1979) Investigation of Biodegradability and Toxicity of Organic Compounds. Final Report 1975–79. U.S. EPA 
600/2–79–163. Municipal Environmental Research Lab., Cincinnati, OH. 
Donahue, D.J., Bartell, F.E. (1952) The boundary tension at water-organic liquid interfaces. J. Phys. Chem. 56, 480–484. 
Donberg, P.A., Odelson, D.A., Klecka, G.M., Markham, D.A. (1992) Biodegradation of acrylonitrile in soil. Environ. Toxicol. Chem. 
11, 1583–1594. 
Dorfman, L.M., Adams, G.E. (1973) Reactivity of the Hydroxyl Radical in Aqueous Solution. NSRD-NDB-46. NTIS COM-73–50623. 
National Bureau of Standards, Washington, D.C. 
Douglas, T.B. (1948) Vapor pressure of methyl sulfoxide from 20 to 50°C. Calculation of the heat of vaporization. J. Am. Chem. 
Soc. 70, 2001–2002. 
Dreisbach, R.R. (1955) Physical Properties of Chemical Compounds. No. 15, Am. Chem. Soc. Adv. Chem. Series. American Chemical 
Society, Washington D.C. 
Dreisbach, R.R. (1961) Physical Properties of Chemical Compounds-III. No. 29 of the Adv. Chem. Series. American Chemical 
Society, Washington D.C. 
Dreisbach, R.R., Martin, R.A. (1949) Physical data on some organic compounds. Ind. Eng. Chem. 41, 2875–2878. 
Dreisbach, R.R., Shrader, S.A. (1949) Vapor pressure-temperature data on some organic compounds. Ind. Eng. Chem. 41, 2879–2880. 
Dunlap, K.L. (1981) In: Kirk-Othmer Encyclopedia of Chemical Technology. Vol.15, 3rd. Edition, John Wiley & Sons, New York. 
pp. 925–926, 930–931. 
Eadsforth, C.V. (1986) Application of reverse-phase HPLC for the determination of partition coefficients. Pestic. Sci. 17, 311–325. 
Eadsforth, C.V., Moser, P. (1983) Assessment of reverse-phase chromatographic methods for determining partition coefficients. 
Chemosphere 12, 1459–1475. 
Edney, E. et al. (1983) Atmospheric Chemistry of Several Toxic Compounds. US EPA-600/53–82–092. 
Edwards, G. (1950) The vapour pressure of 2:4:6-trinitrotoluene. Trans. Farad. Soc. 46, 423-427. 
Edwards, D.R., Prausnitz, J. M. (1981) Vapor pressures of some sulfur-containing, coal-related compounds. J. Chem. Eng. Data 26, 
121–124. 
Ellington, J.J., Stancil, F.E., Payne, W.D. (1987) Measurement of Hydrolysis Rate Constants for Evaluation of Hazardous Waste Land 
Disposal. Vol. 1, Data on 32 Chemicals. U.S. EPA-600/3–86–043. NTIS PB87–140 349/GAR. 
Elovitz, M.S., Weber, E.J. (1999) Sediment-mediated reduction of 2,4,6-trinitrotoluene and fate of the resulting aromatic (poly)amines. 
Environ. Sci. Technol. 33, 2617–2625. 
El Tayar, N., Tsai, R.-S., Vallat, P., Altomare, C., Testa, B. (1991) Measurement of partition coefficient by various centrifugal partition 
chromatographic techniques. A comprehensive evaluation. J. Chromatogr. 556, 181–194. 
El Tayar, N., van de Waterbeemd, H., Grylaki, M., Testa, B., Trager, W.F. (1984) The lipophilicity of deuterium atoms. A comparison 
of shake-flask and HPLC (high performance liquid chromatography) methods. Int. J. Pharm. 19, 271–281. 
Eon, C., Pommier, C., Guiochon, G. (1971) Vapor pressures and second virial coefficients of some five-membered heterocyclic 
derivatives. J. Chem. Eng. Data 16, 408–410. 
Ewing, M.B., Sanchez Ochoa, J.C. (2004) Vapor pressure of acetonitrile determined by comparative ebulliometry. J. Chem. Eng. 
Data 49, 486–491. 
Ezumi, K., Kubota, T. (1980) Simultaneous determination of acid dissociation constants and true partition coefficients by analyses 
of the apparent partition coefficient. Chem. Pharm. Bull. 28, 85–91. 
Falbe-Hansen, H., Sorenson, S., Jensen, N.R., Pedersen, T., Hjorth, J. (2000) Atmospheric gas-phase reactions of dimethylsulphoxide 
and dimethyl sulphone with OH and NO3 radicals, Cl atoms and ozone. Atmos, Environ. 1543–1451. 
Fochtman, E.G., Eisenberg, W. (1979) Treatability of Carcinogenic and Other Hazardous Organic Compounds. U.S. EPA- 
600/S2–79–097. U.S. Environmental Protection Agency, Cincinnati, OH. 
Foote, C.S. (1976) Free Radicals in Biology. Pryor, W.A., Editor, Academic Press, Inc., New York. 
Fournier, J.C., Salle, J. (1974) Microbial degradation of 2,6-dichlorobenzamide in laboratory models. I. Degradation of 2,6-dichlorobenzamide 
in soil, comparison with the evolution of other benzamides with different substituents. Research of metabolic 
products. Chemosphere 3, 77–82. 
Freitag, D., Geyer, H., Kraus, A., Viswanathan, R., Kotzias, D., Klein, W., Korte, F. (1982) Ecotoxicological profile analysis. VII. 
Screening chemicals for their environmental behavior by comparative evaluation. Ecotoxicol. Environ. Saf. 6, 60–81. 
Freitag, D., Scheunert, I., Klein, W., Korte, F. (1982) Long-term fate of 4-chloroaniline-14C in soil and plants under outdoor conditions. 
A contribution to terrestrial ecotoxicology of chemicals. Ecotoxicol. Environ. Saf. 6, 60–81. 
Freitag, D., Scheunert, I., Klein, W., Korte, F. (1984) Long-term fate of 4-chloroaniline 14C in soil and plants under outdoor conditions. 
A contribution to terrestrial ecotoxicology of chemicals. J. Agric. Food Chem. 32, 203–207. 
Freitag, D., Ballhorn, L., Geyer, H., Korte, F. (1985) Environmental hazard profile of organic chemicals. An experimental method 
for assessment of the behavior of organic chemicals in the ecosphere by means of simple laboratory tests with 14C labelled 
chemicals. Chemosphere 14, 1589–1616. 
Fu, J.-K., Luthy, R.G. (1985) Pollutant Sorption to Soils and Sediments in Organic/Aqueous Solvent Systems. EPA/600/3–85/050. 
Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA. 
Fu, J.-K., Luthy, R.G. (1986) Aromatic compound solubility in solvent/water mixtures. J. Chem. Eng. 112, 328–345. 
Fujita, T., Iwasa, J., Hansch, C. (1964) A new substituent constant derived from partition coefficients. J. Am. Chem. Soc. 86(23), 
5175–5180. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3443 
Fujisawa, S., Masuhara, E. (1980) Binding of methyl methacrylate to bovine albumin. J. Dent. Res. 59, 2056–2061. 
Fujisawa, S., Masuhara, E. (1981) Determination of partition coefficients of acrylates, methacrylates, and vinyl monomers using high 
performance liquid chromatography (HPLC). J. Biomed. Mat. Res. 15, 787–793. 
Gaffney, J.S., Streit, W.D., Hall, J.H. (1987) Beyond acid rain. Do soluble oxidants and organic toxins interact with SO2 and NO2 to 
increase ecosystem effects? Environ. Sci. Technol. 21(6), 519–524. 
Garst, J.E. (1984) Accurate, wide range, automated, high-performance liquid chromatographic method for the estimation of 
octanol/water partition coefficients. II: Equilibrium in partition coefficient measurements, additivity of substituent constants, 
and correlation of biological data. J. Pharm. Sci. 73, 1623–1629. 
Garst, J.E., Wilson, W.C. (1984) Accurate, wide range, automated, high-performance liquid chromatographic method for the estimation 
of octanol/water partition coefficients. I: Effect of chromatographic conditions and procedure variables on accuracy and 
reproducibility of the method. J. Pharm. Sci. 73, 1616–1623. 
Gatta, G.D., Jozwiak, M., Brunetti, B., Abate, L. (2000) Enthalpies and entropies of fusion and of sublimation at the temperature 
298.15 K of thiourea and seven N-alkylthioureas. J. Chem. Thermodyn. 32, 979–997. 
Gawlik, B.M., Feicht, E.A., Karcher, W., Kettrup, A., Muntau, H. (1998) Application of the European soil set (Eurosoils) to a HPLCscreening 
method for the estimation of soil adsorption coefficients of organic compounds. Chemosphere 36, 2903–2919. 
Gawlik, B.M., Kettrup, A., Muntau, H. (1999) Characterisation of a second generation of European reference soils for sorption studies 
in the framework of chemical testing - Part II: soil adsorption behaviour of organic chemicals. Sci. Total Environ. 229, 
109–120. 
Gawlik, B.M., Kettrup, A., Muntau, H. (2000) Estimation of soil adsorption coefficients of organic compounds by HPLC screening 
using the second generation of the European reference soil set. Chemosphere 41, 1337–1347. 
Ge, J., Liu, W., Dong, S. (1987) Determination of partition coefficient with chemically bonded omega-hydroxysilica as HPLC column 
packing. Sepu 5(3), 182–185. 
Gehring, P.J., Torkelson, T.R., Oyen, F. (1967) A comparison of the lethality of chlorinated pyridines and a study of the acute toxicity 
of 2-chloropyridine. Toxicol. Appl. Pharmacol. 11, 361–371. 
GEMS (1986) Graphical Exposure Modeling System. FAP. Fate of Atmospheric Pollutants. 
GEMS (1987) Graphical Exposure Modeling System. FAP. Fate of Atmospheric Pollutants. 
Gerike, P., Fischer, W.K. (1979) A correlation study of biodegradability determinations with various chemicals in various tests. 
Ecotoxicol. Environ. Safety 3, 159–73. 
Gerstl, Z., Helling, C.S. (1987) Evaluation of molecular connectivity as a predictive method for the adsorption of pesticides in soil. 
J. Environ. Sci. Health B22, 55–69. 
Geyer, H., Politzki, G., Freitag, D. (1984) Prediction of ecotoxicological behaviour of chemicals: Relationship between n-octanol/water 
partition coefficient and bioaccumulation of organic chemicals by Alga Chlorella. Chemosphere 13, 269–284. 
Gluck, S.J., Martin, E.J. (1990) Extended octanol-water partition coefficient determination by dual-mode centrifugal partition 
chromatography. J. Liq. Chromatogr. 13, 3559–3570. 
Go, M.L., Ngiam, T.L. (1988) Hydrophobicity change on N-oxidation of some 4-aminoquinolines. Chem. Pharm. Bull. 36(4), 
1393–1398. 
Going, J., Kuykendahl, P., Long, S., Onstol, J., Thomas, K. (1979) Environmental Monitoring Near Industrial Sites. Acrylonitrile. 
U.S. EPA 560/6–79–003. U.S. Environmental Protection Agency, Washington, DC. 
Govers, H., Ruepert, C., Stevens, T.J., van Leeuwen, C.J. (1986) Experimental determination and prediction of partition coefficients 
of thioureas and their toxicity to photobacterium phosphoreum. Chemosphere 15, 383–393. 
Graveel, J.G., Sommers, L.E., Nelson, D.W. (1986) Decomposition of benzidine, .-naphthalamine, and p-toluidine in soils. J. Environ. 
Qual. 15(1), 53–59. 
Greene, S., Alexander, M., Leggett, D. (1981) Formation of N-nitrosodimethylamine during treatment of municipal waste water by 
simulated land application. J. Environ. Qual. 10, 416–421. 
Gross, P. M., Saylor, J.H., Gorman, A. (1933) Solubilities studies. IV. The solubilities of certain slightly soluble organic compounds 
in water. J. Am. Chem. Soc. 55, 650. 
Gudkov, A.N., Fermor, N.A., Smirnov, N.I. (1964) Zh. Prikl. Kh. 37, 2204.- ref see Boublik et al. 1984. 
Guesten, H., Filby, W.G., Schoop, S. (1981) Prediction of hydroxyl radical reaction rates with organic compounds in the gas phase. 
Atmos. Environ. 15, 1763–1765. 
Gunther, F.A., Westlake, W.E., Jaglan, P.S. (1968) Reported solubilities of 738 pesticide chemicals in water. Residue Rev. 20, 1–148. 
Hakuta, T., Negishi, A., Goto, T., Ishizaka, S. (1977) Vapor-liquid equilibriums of some pollutants in aqueous and saline solutions. 
Part I. Experimental results. Desalination 21, 11–21. 
Haky, J.E., Leja, B. (1986) Evaluation of octanol-water partition coefficients using capillary gas chromatography with cold on-column 
injection. Anal. Lett. 19, 123–134. 
Haky, J.E., Young, A.M. (1984) Evaluation of a simple HPLC correlation method for the estimation of the octanol-water partition 
coefficients of organic compounds. J. Chromatogr. 7, 675–689. 
Hale, V.Q., Stanford, T.B., Taft, L.G. (1979) Evaluation of the environmental fate of munition compound in soil. Final Report ADA082874, 
US Army Medical Research and Development Command, Fort Detrick, Frederick, MD. 1979. 
Hammers, W.E., Meurs, G.J., De Ligny, C.L. (1982) Correlations between liquid chromatographic capacity ratio data on Lichrosorb 
RP-18 and partition coefficients in the octanol-water system. J. Chromatogr. 247, 1–13. 
© 2006 by Taylor & Francis Group, LLC

3444 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Hanai, T., Hubert, J. (1982) Hydrophobicity and chromatographic behaviour of aromatic acids found in urine. J. Chromatogr. 239, 
527–536. 
Hansch, C., Fujita, T. (1964) .-.- . Analysis: Method for the correlation of biological activity and chemical structure. J. Am. Chem. 
Soc. 86, 1616–1626. 
Hansch, C., Anderson, S. (1967) The effect of intermolecular hydrophobic bonding on partition coefficients. J. Org. Chem. 32, 2583. 
Hansch, C., Leo, A. (1979) Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley, New York. 
Hansch, C., Leo, A. (1983) Medchem Project. Pomona College, Claremont, CA. 
Hansch, C., Leo, A. (1985) Medchem Project. Pomona College, Claremont, CA. 
Hansch, C., Leo, A. (1987) Medchem Project. Pomona College, Claremont, CA. 
Hansch. C., Leo, A.J., Hoekman, D. (1995) Exploring QSAR, Hydrophobic, Electronic, and Steric Constants. ACS Professional 
Reference Book, American Chemical Society, Washington, DC. 
Hansch, C., Quinlan, J.E., Lawrence, G.L. (1968) The linear free-energy relationship between partition coefficients and the aqueous 
solubility of organic liquids. J. Org. Chem. 33, 347–350. 
Hanst, P.L., Spence, J.W., Miller, M. (1977) Atmospheric chemistry of N-nitrosodimethylamine. Environ. Sci. Technol. 11, 403–405. 
Haque, R., Falco, J., Cohen, S., Riordan, C. (1980) Role of transport and fate studies in the exposure, assessment and screening of 
toxic chemicals. pp. 47–67. In: Dynamics, Exposure and Hazard Assessment of Toxic Chemicals. Haque, R., Editor, Ann 
Arbor Science Publishers Inc., Ann Arbor, MI. 
Harnish, M., Mockel, H.J., Schulze, G. (1983) Relationship between log POW shake flask values and capacity factors derived from 
reversed phase HPLC for n-alkylbenzenes and some OECD reference substances. J. Chromatogr. 282, 315–332. 
Harris, J.C. (1982) Rate of aqueous photolysis. In: Handbook of Chemical Property Estimation Methods. Environmental Behavior 
of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Eds., Chapter 8, McGraw-Hill Book Co., New York. 
Harris, G.W., Kleindienst, T.E., Pitts, J.N., Jr. (1981) Rate constants for the reaction of OH radicals with CH3CN, C2H5CN and 
CH2=CH-CN in the temperature range 298–424 K. Chem. Phys. Lett. 80, 479–483. 
Hasegawa, K., Murase, M., Kuboshita, M., Saida, H., Shinoda, M., Miyamoto, M., Shimasaki, C., Yoshimura, T., Tsukurimichi, E., 
Takeuchi, S. (1993) Photooxidation of naphthaleneamines adsorbed on particles under simulated atmospheric conditions. 
Environ. Sci. Technol. 27, 1819–1825. 
Hashimoto, Y., Tokura, K., Kishi, H., Strachan, W.M.J. (1984) Prediction of seawater solubility of aromatic compounds. Chemosphere 
13, 881–888. 
Hashimoto, Y., Tokura, K., Ozaki, K., Strachan, W.M.J. (1982) A comparison of water solubilities by the flask and micro-column 
methods. Chemosphere 11, 991–1001. 
Hatton, W.E., Hildenbrand, D.L., Sinke, G.C., Stull, D.R. (1962) Chemical thermodynamic properties of aniline. J. Chem. Eng. Data 
7, 229–231. 
Hawthorne, S.B., Sievers, R.E., Barkley, R.M. (1985) Organic emissions from shale oil wastewaters and their implications for air 
quality. Environ. Sci. Technol. 19, 992–997. 
Helweg, C., Nielsen, T., Hansen, P.E. (1997) Determination of octanol-water partition coefficients of polar polycyclic aromatic 
compounds (N-PAC) by high performance liquid chromatography. Chemosphere 34, 1673–1684. 
Hendry, D.G., Mill, T., Piszkiewicz, L., Howard, J.A., Eigenmann, H. K. (1974) Critical review of hydrogen-atom transfer in the 
liquid phase. Chlorine atom, alkyltrichloromethyl, alkoxy, and alkyl peroxy radicals. J. Phys. Chem. Ref. Data 3, 937–978. 
Herington, E.F.G., Martin, J.F. (1953) Vapour pressures of pyridine and its homologues. Trans. Faraday Soc. 49, 154–162. 
Hill, A.E., Macy, R.J. (1924) Ternary system. II. Silver perchlorate, aniline and water. J. Am. Chem. Soc. 46, 1132. 
Hine, J., Haworth, H.W., Ramsay, O.B. (1963) Polar effects on rates and equilibria. VI. The effect of solvent on the transmission of 
polar effects, J. Am. Chem. Soc. 85, 1473–1476. 
Hine, J., Mookerjee, P.K. (1975) The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural 
contributions. J. Org. Chem. 40, 292–298. 
Hodson, J., Williams, N.A. (1988) The estimation of the adsorption coefficient (Koc) for soils by high performance liquid chromatography. 
Chemosphere 17, 67–77. 
Hoigne, J., Bader, H. (1983) Rate constants of reactions of ozone with organic compounds in water-I. Non-dissociating organic 
compounds. Water Res. 17, 173–183. 
Holmes, H.L., Lough, C.E. (1976) Effect of Intramolecular Hydrogen Bonding on Partition Coefficients. Suffield Tech. Note No. 
DRES-TN-365. Defence Res. Establishment Suffield/Information Canada. U.S. NTIS Report No. AD-A030683. 
Hong, H., Wang, L., Han, S. (1996) Prediction adsorption coefficients (KOC) for aromatic compounds by HPLC retention factors 
(K’). Chemosphere 32, 343–351. 
Hopke, E.R., Sears, G.W. (1951) Vapor pressures below 1 mm Hg of several aromatic compounds. J. Chem. Phys. 19(11), 1345–1351. 
Howard, J.A. (1972) Absolute rate constants for reactions of oxy radicals. Adv. Free Radical Chem. 4, 49–173. 
Howard, P.H., Editor (1989) Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. I, Large Production 
and Priority Pollutants. Lewis Publishers, Chelsea, MI. 
Howard, P.H., Editor (1990) Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. II, Solvents. Lewis 
Publishers, Chelsea, MI. 
Howard, P.H., Editor (1993) Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. IV, Solvents 2. Lewis 
Publishers, Chelsea, MI. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3445 
Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., Michalenko, E.M. (1991) Handbook of Environmental Degradation Rates. 
Lewis Publishers, Chelsea, MI. 
Howard, P.H., Hueber, A.E., Mulesky, B.C., Crisman, J.S., Meylan, W., Crosby, E., Gray, D.A., Sage, G.W., Howard, K.P., LaMacchia, 
A., Boethling, R.S., Troast, R. (1986) BIOLOG, BIODEG, and FATE/EXPOS: New files on microbial degradation and 
toxicity as well as environmental fate/exposure of chemicals. Environ. Toxicol. Chem. 5, 977–988. 
Hoy, K.L. (1970) New values of the solubility parameters from vapor pressure data. J. Paint Technol. 42(541), 76–118. 
Hoyer, Von H., Peperle, W. (1958) Dampfdruckmessungen an organischen substanzen und ihre sublimationswarmen. Zeit. fur 
Elcktrochemie 62(1), 61–66. 
Hsu, Y.-C., Chem., D.-S., Lee, Y.-P. (1987) Rate constant for the reaction of OH radicals with dimethyl sulfide. Int. J. Chem. Kinet. 
19, 1073–1082. 
Huang, J.-D. (1990) Comparative drug adsorption in the perfused rat intestine. J. Pharm. Pharmacol. 42, 167–170. 
Hwang, H.M., Hodson, R.E., Lee, R.F. (1987) Degradation of aniline and chloroanilines by sunlight and microbes in estuarine water. 
Water Res. 21, 309–316. 
Hynes, A.J. Wine, P.H., Semmes, D.H. (1986) Kinetics and mechanism of OH reactions with organic sulfides. J. Phys. Chem. 90, 
4148–4156. 
Hynes, A.J., Wine, P.H. (1996) The atmospheric chemistry of dimethylsulfoxide (DMSO) kinetics and mechanism of the OH + 
DMSO reaction. J. Atmos. Chem. 24, 23–37. 
IARC (1975) IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man. Vol. 8, Some Aromatic Azo Compounds. 
Internal Agency for Research on Cancer, Lyon, France. 357p. 
Ichikawa, Y., Yamano, T., Fujishima, H. (1969) Relationships between the interconversion of cytochrome P540 and its activities in 
hydroxylations and demethylations by P450 oxidase systems. Biochem. Biophys. Acta 171, 32–46. 
Ingerslev, F., Nyholm, N. (2000) Shake-flask test for determination of biodegradation rates of C-14-labeled chemicals at low 
concentrations in surface water systems. Ecotoxicol. Environ. Saf. 45, 274–283. 
Isnard, P., Lambert, S. (1988) Estimation bioconcentration factors from octanol-water partition coefficient and aqueous solubility. 
Chemosphere 17, 21–34. 
Isnard, P., Lambert, S. (1989) Aqueous solubility/n-octanol water partition coefficient correlations. Chemosphere 18, 1837–1853. 
Iwasa, J., Fujita, T., Hansch, C. (1965) Substituent constants for aliphatic functions obtained from partition coefficients. J. Med. 
Chem. 8, 150–153. 
Jackel, H., Klein, W. (1991) Prediction of mammalian toxicity by quantitative-structure-activity relationships: Aliphatic amines and 
anilines. Quant.-Strut.-Act. Relat. 10, 198–204. 
Jakli, G., Van Hook, W.A. (1972) The vapor pressures of dimethyl sulfoxide and hexadeuterodimethyl sulfoxide from about 313 to 
453 K. J. Chem. Thermodyn. 4, 857–864. 
Jaworska, J.S., Schultz, T.W. (1993) Quantitative relationships of structure-activity and volume fraction for selected nonpolar and 
polar narcotic chemicals. SAR and QSAR in Environ. Res. 1, 3–19. 
Jenke, D.R., Hayward, D.S., Kenley, R.A. (1990) Liquid chromatographic measurement of solute/solvent partition coefficients: 
Application to solute/container interactions. J. Chromatogr. Sci. 28(12), 609–612. 
Jia, Z., Mei, L., Lin, F., Huang, S., Killion, R.B. (2003) Screening of octanol-water partition coefficients for pharmaceuticals by 
pressure-assisted microemulsion electrokinetic chromatography. J. Chromatog. A, 1007, 203–208. 
Jimenez, P., Moux, M.V., Turrion, C. (1990) Thermochemical properties of N-heterocyclic compounds. III. Enthalpies of combustion, 
vapour pressures and enthalpies of sublimation, and enthalpies of formation of 9H-carbazole, 9-methylcarbazole, and 9- 
ethylcarbazole. J. Chem. Thermodyn. 22, 721–726. 
Johnson, C.A., Westall, J.C. (1990) Effect of pH and KCl concentration on octanol-water distribution of methylanilines. Environ. 
Sci. Technol. 24(12), 1869–1875. 
Jori, A., Calamari, D., Cattabeni, F., Domenico, A.D., Galli, C.L., Galli, E., Silano, V. (1983) Ecotoxicological profile of pyridine. 
Ecotoxicol. Environ. Saf. 7, 251–275. 
Kahlbaum, G.W.A. (1898) Studien uber dampfspannkraftmessungen. II. Z. Phys. Chem. 26, 577–658. 
Kakinuma, H. (1941) The solubility of urea in water. J. Phys. Chem. 45, 1045–1046. 
Kalsch, W., Nagel, R., Urich, K. (1991) Uptake, elimination, and bioconcentration of ten anilines in zebrafish (Brachydanio rerio). 
Chemosphere 22, 351–363. 
Kamlet, M.J., Doherty, R,M., Abboud, J.-L.M., Abraham, M.H., Taft, R.W. (1986) Linear solvation energy relationships: 36. Molecular 
properties governing solubilities of organic nonelectrolytes in water. J. Pharm. Sci. 75(4), 338–349. 
Kamlet, M.J., Doherty, R.M., Abraham, M.H., Carr, P.W., Doherty, R.F., Taft, R.W. (1987) Linear solvation energy relationships: 41. 
Important differences between aqueous solubility relationships for aliphatic and aromatic solutes. J. Phys. Chem. 91, 
1996–2004. 
Kamlet, M.J., Doherty, R.M., Taft, R.W., Abraham, M.H., Veith, G.D., Abraham, D.J. (1987) Solubility properties in polymers and 
biological media. 8. An analysis of the factors that influence toxicities of organic nonelectrolytes to the golden orfe fish 
(leuciscus idus melanotus). Environ. Sci. Technol. 21(2), 149–155. 
Karickhoff, S.W. (1985) Chapter 3, Pollutant sorption in environmental systems. In: Environmental Exposure from Chemicals. Vol. I, 
Neely, W.B., Blau, G.E., Editors, CRC Press, Boca Raton, FL. pp. 49–64. 
© 2006 by Taylor & Francis Group, LLC

3446 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Karickhoff, S.W., Brown, D.S., Scott, T.A. (1979) Sorption of hydrophilic organic pollutants on natural sediments. Water Res. 13, 
241–248. 
Kawasaki, M. (1980) Experiences with test scheme under the chemical control law of Japan: An approach to structure-activity 
correlations. Ecotoxicol. Environ. Saf. 4, 444–454. 
Kelly, T.J., Mukund, R., Spicer, C.W., Pollack, A.J. (1994) Concentrations and transformations of hazardous air pollutants. Environ. 
Sci. Technol. 28, 378A-387A. 
Kenaga, E.E. (1980) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol. 
Environ. Saf. 4, 26–38. 
Kenaga, E.E., Goring, C.A.I. (1980) In: Aquatic Toxicology. Eaton, J.G., Parrish, P.R., Hendricks, A.C., Editors, ASTM STP 707, 
pp. 78–115, Am. Soc. for Testing and Materials, Philadelphia, PA. 
Killian, H., Bittrich, H.J. (1965) Z. Phys. Chem. 230, 3831.-reference in Boublik et al. 1984. 
Kim, K.-J., Lee, C.-H., Ryu, S.-K. (1994) Solubility of thiourea in C1 to C6 1-alcohol. J. Chem. Eng. Data 39, 228–230. 
Kilzer, L., Scheunert, I., Geyer, H., Klein, W., Korte, F. (1979) Laboratory screening of the volatilization rates of organic chemicals 
from water and soil. Chemosphere 8, 751–761. 
Kincannon, D.F., Lin, Y.S. (1985) Microbial degradation of hazardous wastes by land treatment. Proc. Ind. Waste Conference 40, 607–619. 
Klamt, A. (1993) Estimation of gas-phase hydroxyl radical rate constants of organic compounds from molecular orbital calculations. 
Chemosphere 26(7), 1273–1289. 
Klara, C.M., Mohamed, R.S., Dempsey, D.M., Holder G.D. (1987) Vapor-liquid equilibria for the binary systems of benzene/toluene, 
diphenylmethane/toluene, m-cresol/1,2,3,4-tetrahydronaphthalene and quinoline/benzene. J. Chem. Eng. Data 32, 143–147. 
Klecka, G.M. (1985) Biodegradation. In: Environmental Exposure from Chemicals. Vol I. Neely, W.B., Blau, G.E., Eds., pp. 110–155, 
CRC Press Inc., Boca Raton, FL. 
Klein, E., Weaver, J.W., Weber, B.G. (1957) Solubility of acrylonitrile in aqueous bases and alkali salts. Chem. Eng. Data Ser. 2, 72–75. 
Klusen, J., Trober, S.P., Haderlein, S.B. Schwarzenbach, R.P. (1995) Reduction of substituted nitrobenzenes by Fe(II) in aqueous 
mineral suspensions. Environ. Sci. Technol. 29, 2396–2404. 
Kobe, K.A., Okabe, T.S., Ramstad, M.T., Huemmer, P.M. (1941) p-Cymene studies. VI. Vapor pressure of p-cymene, some of its 
derivatives and related compounds. J. Am. Chem. Soc. 63, 3251–3252. 
Kobe, K.A., Ravicz, A.E., Vohra, S.P. (1956) Critical properties and vapor pressures of some ethers and heterocyclic compounds. 
Ind. Eng. Chem. 1, 50–56. 
Kochany, J., Maguire, R.J. (1994) Photodegradation of quinoline in water. Chemosphere 28(6), 1097–1110. 
Kollig, H.P., Ed. (1993) Environmental Fate Constants for Organic Chemicals under Consideration of EPA’s Hazardous Waste 
Identification Projects. EPA Report EPA/600/R-93/132, U.S. Environmental Research Lab., Athens GA. 
Konemann, H., Zelle, R., Busser, F., Hammers, W.E. (1979) Determination of log POCT values of chloro-substituted benzenes, toluenes 
and anilines by high-performance liquid chromatography on ODS-silica. J. Chromatogr. 178, 559–565. 
Kordel, W., Stutte, J., Kotthoff, G. (1993) HPLC-screening method for the determination of the adsorption-coefficient on soilcomparison 
of different stationary phases. Chemosphere 27, 2341–2352. 
Korenman, I.M. (1971) Extraction of homologous compounds. Russ. J. Phys. Chem. 45(6), 795–797. 
Korenman, I.M., Gurevich, Yu. N., Kulagina, T.G. (1973) Extraction of some n-alkylamines from aqueous solutions. Zh. Prikl. Khim. 
(Leningrad) 46(3), 683–684. 
Korenman, Ya.I., Polumestnaya, E.I. (1982) Principles of interfacial distribution of certain substituted naphthalenes. J. Appl. Chem. 
USSR (English translation) 55(2), 364–367. 
Korte, F., Freitag, D., Geyer, H., Klein, W., Kraus, A.G., Lahaniatis, E. (1978) Ecotoxicologic profile analysis-a concept for establishing 
ecotoxicologic priority lists for chemicals. Chemosphere 1, 79–102. 
Kramer, C.R., Henze, U. (1990) Partitioning properties of benzene derivatives. I. Temperature dependence of the partitioning of 
monosubstituted benzenes and nitrobenzenes in the n-octanol/water system. Z. Phys. Chem. (Leipzig) 271(3), 503–513. 
Kuhne, R., Ebert, R.-U., Kleint, F., Schmidt, G., Schuurmann, G. (1995) Group contribution methods to estimate water solubility of 
organic chemicals. Chemosphere 30, 2061–2077. 
Kurylo, M.J. (1978) Flash photolysis resonance fluorescence investigation of the reaction of OH radicals with dimethyl radicals. 
Chem. Phys. Lett. 37, 323. 
Kurylo, M.J., Knable, G.L. (1984) A kinetic investigation of the gas-phase reactions of atomic chlorine (2P) and hydroxyl (X2) with 
acetonitrile: Atmospheric significance and evidence of decreased reactivity between strong electrophiles. J. Phys. Chem. 88, 
3305–3308. 
Leahy, D.E. (1986) Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationships: Octanolwater 
partition coefficients and aqueous solubilities. J. Pharm. Sci. 75(7), 629–636. 
Leahy, D.E., De Meere, A.L.J., Wait, A.R., Taylor, P.J., Tomenson, J.A. (1989) A general description of water -oil partitioning ratios 
using the rotating diffusion cell. Int. J. Pharm. 50, 117–132. 
Lee, B.I., Erbar, J.H., Edmister, W.C. (1972) Thermodynamic properties at low temperatures. Chem. Eng. Prog. 68(9), 83–84. 
Lee, J.H., Tang, I.N. (1983) Absolute rate constants for the hydroxyl radical reactions with CH3SH and C2H5SH at room temperature. 
J. Chem. Phys. 78, 6646–6649. 
Lee, M.L., Later, D.W., Rollins, D.K., Eatough, D.J., Hansen, L.D. (1980) Dimethyl and monomethyl sulfate: Presence in coal fly 
ash and airborne particulate matter. Science 207, 186–188. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3447 
Leet, W.A., Lin, H.-M., Chao, K.-C. (1987) Mutual solubilities in six binary mixtures of water + a heavy hydrocarbon or a derivative. 
J. Chem. Eng. Data 32, 37–40. 
Leggett, D.C., Jenkins, T.F., Miyares, P.H. (1990) Salting-put solvent extraction for preconcentration of neutral organic solutes form 
water. Anal. Chem. 62, 1355–1356. 
Leggett, D.C., Miyares, P.H., Jenkins, T.F. (1992) Apparent donor-acceptor interaction between nitroaromatics and acetonitrile. J. Sol. 
Chem. 21, 105–108. 
Lenchitz, C., Velicky, R.W. (1970) Vapor pressure and heat of sublimation of three nitrotoluenes. J. Chem. Eng. Data 15(3), 401–403. 
Lencka, M. (1990) Measurements of vapour pressures of pyridine, 2-methyl pyridine, 2,4-dimethylpyridine, 2,6-dimethylpyridine, 
and 2,4,6-trimethylpyridine from 0.1 kPa to atmospheric pressure using a modified -wietos-awski ebulliometer. J. Chem. 
Thermodyn. 22, 473–480. 
Leo, A., Hansch, C., Elkins, D. (1971) Partition coefficients and their uses. Chem. Rev. 71, 525–616. 
Leo, A., Hansch, C., Church, C. (1969) Comparison of parameters currently used in the study of structure-activity relationships. 
J. Med. Chem. 12, 766–771. 
Lewis, S.J., Mirrlees, M.S., Taylor, P.J. (1983) Rationalizations among heterocyclic partition coefficients. Part 2. The azines. Quant. 
Struct.-Act. Relat. Pharmacol. Chem. Biol. 2, 100–111. 
Li, H., Lee, L.S., Fabrega, J.R., Jafvert, C.T. (2001) Role of pH in partitioning and cation exchange of aromatic amines on water 
saturated soils. Chemosphere 44, 627-635. 
Lide, D.R., Editor (2003) Handbook of Chemistry and Physics. 84th Edition, CRC Press, LLC. Boca Raton, FL. 
Liu, D.H.W. et al. (1983) Aquatic Toxicology Hazard Assessment. ASTM Spec. Tech. Publication 802. pp. 135–150. 
Loekke, H. (1985) Degradation of 4-nitrophenol in two Danish Soils. Environ. Pollut. Ser. A. 38, 171–181. 
Lu, P.Y., Metcalf, R.L. (1975) Environmental fate and biodegradability of benzene derivatives as studies in a model aquatic ecosystem. 
Environ. Health Prospect. 10, 269–284. 
Lu, P.Y., Metcalf, R.L., Plummer, N., Mandel, D. (1977) The environmental fate of three carcinogens: benzo(a)pyrene, benzidine, 
and vinyl chloride evaluated in laboratory model ecosystems. Arch. Environ. Contam. Toxicol. 6, 129–142. 
Lu, P.Y., Walton, B.T., Lewis, E.B., Kine, B.W., Scott, J.H., Groover, G.E. (1986) Chemical Information Profile of Selected Resource 
Conservation and Recovery Act Chemicals. ORNL Internal Report to Robert S. Kerr Res. Lab., U.S. Environmental Protection 
Agency, Oak Ridge, TN. 
Ludzack, F.J., Schaffer, R.B., Bloomhuff, R.N., Ettinger, M.B. (1958) Biochemical oxidation of some commercially important organic 
cyanides. I. River oxidation. In: Proc. 13th Industrial Waste Conference Eng. Bull. Purdue Univ. Eng. Ext. Ser. pp. 297–312. 
Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors (1982) Handbook on Chemical Property Estimation Methods. Environmental 
Behavior of Organic Compounds. McGraw-Hill, New York. 
Lynch, E.J., Wilke, C.R. (1960) Vapor pressure of liquid nitrobenzene at low temperature. J. Chem. Eng. Data 5, 300. 
Lynch, J.C., Myer, K.F., Brannon, J.M., Delfino, J.J. (2001) Effects of pH and temperature on the aqueous solubility and dissolution 
rate of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7- 
tetrazocine (HMX). J. Chem. Eng. Data 46, 1549–1555. 
Lyons, C.D., Katz, S., Bartha, R. (1984) Mechanisms and pathways of aniline elimination from aquatic environments. Appl. Environ. 
Microbiol. 48(3), 491–496. 
Ma, K.C., Shiu, W.Y., Mackay, D. (1990) A Critically Reviewed Compilation of Physical and Chemical and Persistence Data for 
110 Selected EMPPL Substances. A report prepared for the Ontario Ministry of Environment, Water Resources Branch, 
Toronto, ON. 
Mabey, W.R., Mill, T. (1978) Critical review of hydrolysis of organic compounds in water under environmental conditions. J. Phys. 
Chem. Ref. Data 7, 383–415. 
Mabey, W.R., Smith, J.H., Podoll, R.T., Johnson, H.L., Mill, T., Chou, T.-W., Cates, J., Waight Partridge, I., Jaber, H., Vandenberg, 
D. (1982) Aquatic Fate Process Data for Organic Priority Pollutants. EPA Report No. 440/4–81–014, U.S. EPA, Office of 
Water Regulations and Standards, Washington D.C. 
Mabey, W.R., Tse, D., Baraze, A., Mill, T. (1983) Photolysis of nitroaromatics in aquatic systems. I. 2,4,6-Trinitrotoluene. Chemosphere 
12, 3–16. 
Mackay, D. (1982) Correlation of bioconcentration factors. Environ. Sci. Technol. 16, 274–278. 
Mackay, D. (1984) Air/water exchange coefficients. In: Environmental Exposure from Chemicals, Vol. 1, Neely, W.B., Blau, G.E., 
Eds., pp. 92–108. CRC Press, Boca Raton, FL. 
Mackay, D., Bobra, A., Chan, D.W., Shiu, W.Y. (1982) Vapor pressure correlations for low-volatility environmental chemicals. 
Environ. Sci. Technol. 16(10), 645–649. 
Mackay, D., Leinonen, P.J. (1975) Rate of evaporation of low-solubility contaminants from water to atmosphere. Environ. Sci. Technol. 
7, 1178–1180. 
Mac Leod, H., Jourdain, J.L., Poulet, G, Le Bras, G. (1983b) Absolute rate constant for the reaction of OH with thiophene between 
293 and 473 K. Chem. Phys. Lett. 98, 381–385. 
Mac Leod, H., Jourdain, J.L., Poulet, G., Le Bras, G. (1984) Kinetic study of reactions of some organic sulfur compounds with OH 
radicals. Atmos. Environ. 18, 2621–2626. 
Mac Leod, H., Poulet, G., Le Bras, G. (1983a) Etude cinetique des reactions du radical OH avec CH3SCH3, CH3SH et C2H5SH. 
J. Chim. Phys. 80, 287–292. 
© 2006 by Taylor & Francis Group, LLC

3448 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Maczynski, A., Maczynska, Z. (1965) Vapor-liquid equilibrium in binary system quinoline-water. Bull. Acad. Pol. Sci. 13, 299–302. 
Makovskaya, V., Dean, J.R., Tomlinson, W.R., Comber, M. (1995) Determination of octanol-water partition coefficients using gradient 
liquid chromatography. Anal. Chim. Acta 315, 183–192. 
Malaney, G.W. (1960) Oxidative abilities of aniline-acclimated activated sludge. J. Water Pollut. Control Fed. 32, 1300–1311. 
Malaney, G.W., Gerhold, R.W. (1962) Structural determinants in the oxidative breakdown of aliphatic compounds by domestic 
activated sludge. In: Proc. 17th Indust. Waste Conf. Purdue Univ. Ext. Ser. 112, 249–257. 
Malaney, G.W., Gerhold, R.W. (1969) Structural determinants in the oxidation of aliphatic compounds by activated sludge J. Water 
Pollut. Control Fed. 41, R18–R33. 
Mallik, M.A.B., Tesfai, K. (1981) Transformation of nitrosoamines in soil and in vitro by soil organisms. Bull. Environ. Contam. 
Toxicol. 27, 115–121. 
Marin, M., Baek, I., Taylor, A.J. (1999) Volatile release from aqueous solutions under dynamic headspace dilution conditions. 
J. Agric. Food Chem. 47, 4750–4755. 
Martin-Villodre, A., Pla-Delfina, J.M., Moreno, J., Perez-Buendia, M.D., Miralles, J., Collado, E.F., Sanchez-Moyano, E., Del Pozo, 
A. (1986) Studies on the reliability of a bihyperbolic functional absorption model. I. Ring-substituted anilines. J. Pharmacokinet. 
Biopharm. 14, 615–633. 
Matthews, J.B., Sumner, J.F., Moelwyn-Huges, E.A. (1950) The vapor pressure of certain liquid. Trans. Farad. Soc. 46, 797–803. 
Matzner, R.A., Bales, R.C. (1994) Transport of acridine in saturated porous media. Chemosphere 29, 1755–1773. 
Matzner, R.A., Hunter, D.R., Bales, R.C. (1991) The effects of pH and anions on the solubility and sorption behavior of acridine. 
In: Organic Substances and Sediments in Water. Vol. 2, Processes and Analytical Methods. Baker, R.A., Editor, Lewis 
Publishers, Chelsea, MI. 
McCall, J.M. (1975) Liquid-liquid partition coefficients by high-performance liquid chromatography. J. Med. Chem. 18(6), 549–552. 
McCullough, J.P., Douslin, D.R., Messerly, J.F., Hossenlopp, I.A., Kincheloe, T.C., Waddington, G. (1957) Pyridine: Experimental 
and calculated chemical thermodynamic properties between 0 and 1500 K; a revised vibrational assignment. J. Am. Chem. 
Soc. 79, 4289–4295. 
McCullough, J.P., Scott, D.W., Finke, H.L., Gross, M.E., Williamson, K.D., Pennington, R.E., Waddington, G., Huffman, H.M. (1952) 
Ethanethiol (ethyl mercaptan): Thermodynamic properties in the solid, liquid and vapor states. Thermodynamic functions 
to 1000 K. J. Am. Chem. Soc. 74, 2801–2804. 
McDonald, R.A., Shrader, S.A., Stull, D.R. (1959) Vapor pressures and freezing points of 30 organics. J. Chem. Eng. Data 4, 311–313. 
McDuffie, B. (1981) Estimation of octanol/water partition coefficients for organic pollutants using reversed-phase HPLC. Chemosphere 
10, 73–83. 
McEachern, D.M., Iniguez, J.C., Ornelas (1975) Enthalpies of combustion and sublimation and vapor pressures of three benzoquinolines. 
J. Chem. Eng. Data 20, 226–228. 
McEachern, D.M., Sandoval, O., Iniguez, J.C. (1975) The vapor pressures, derived enthalpies of sublimation, enthalpies of fusion, 
and resonance energies of acridine and phenazine. J. Chem. Thermodyn. 7, 299–306. 
McGowan, J.C., Atkinson, P.N., Ruddle, L.H. (1966) The physical toxicity of chemicals. V. Interaction terms for solubilities and 
partition coefficients. J. Appl. Chem. 16, 99–102. 
McLeese, D.W., Zitko, V., Peterson, M.R. (1979) Structure lethality relationships for phenols, anilines and other aromatic compounds 
in shrimp and clams. Chemosphere 2, 53–57. 
Means, J.C. (1983) Am. Chem. Soc. 186th Nat.l. Meeting Preprints Div. Environ. Chem. 23, 250–251. Washington, D.C. 
Means, J.C., Hassett, J.J., Wood, S.G., Banwart, W.L., Ali, S., Khan, A. (1980) Sorption properties of polynuclear aromatic 
hydrocarbons and sediments: Heterocyclic and substituted compounds. In: Polynuclear Hydrocarbons: Chemistry and 
Biological Effects. Bjorseth, A., Dennis, A.J., Editors, pp. 395–404, Ann Arbor Sci. Publishers, Ann Arbor, MI. 
Means, J.C., Wood, S.G., Hassett, J.J., Banwart, W.L. (1982) Sorption of amino- and carboxy-substituted polynuclear aromatic 
hydrocarbons by sediments and soils. Environ. Sci. Technol. 16, 93–98. 
Medvedev, V.A., Davidov, V.D. (1981) The transformation of various coke industry products in Chernozem soil. In: Decomposition of 
Toxic and Nontoxic Compounds in Soil. Overcash, M.R., Editor, pp. 245–254., Ann Arbor Science Publishers, Ann Arbor, MI. 
Meyer, E.F., Hotz, C.A. (1976) Cohesive energies in polar organic liquids. 3. Cyclic ketones. J. Chem. Eng. Data 21, 274–279. 
Meyer, E.F., Renner, T.A., Stee, K.S. (1971) Cohesive energies in polar organic liquids. II. The n-alkyl nitriles and the 1-chloroalkanes. 
J. Phys. Chem. 75, 642–649. 
Meylan, W.M., Howard, P.H. (1991) Bond contribution method for estimating Henry’s law constants. Environ. Toxicol. Chem. 10, 
1283–1291. 
Meylan, W.M., Howard, P.H., Boethling, R.S. (1992) Molecular topology/fragment contribution method for predicting soil sorption 
coefficients. Environ. Sci. Technol. 26(8), 1560–1567. 
Milazzo, G. (1956) Annali Di Chemica 46, 1105.—reference from Boublik et al. 1984 
Mill, T. (1979) Structure Reactivity Correlations for Environmental Reactions. EPA Final Report, EPA 560/11–79–012. 
Mill, T. (1982) Hydrolysis and oxidation processes in the environment. Environ. Toxicol. Chem. 1, 135–141. 
Mill, T., Mabey, W.R. (1985) Photochemical transformations. Environ. Exposure Chem. 1, 175–216. 
Mill, T., Hendry, D.G., Richardson, H. (1980) Free-radical oxidants in natural waters. Science 207, 886–887. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3449 
Mill, T., Mabey, W.R., Lan, B.Y., Baraze, A. (1981) Photolysis of polycyclic aromatic hydrocarbons in water. Chemosphere 10, 
1281–1290. 
Mills, W.B., Dean, J.D., Porcella, D.B., Gherini, S.A., Hudson, R.J.M., Frick, W.E., Rupp, G.L., Bowie, G.L. (1982) Water Quality 
Assessment: A Screening Procedure for Toxic and Conventional Pollutants. Part 1, EPA Report No. EPA-600/6–82–004a, 
Environmental Research Lab., US EPA, Athens, GA. 
Minero, C., Pelizzetti, E., Piccinini, P., Vincenti, M. (1994) Photocatalyzed transformation of nitrobenzene on TiO2 and ZnO. 
Chemosphere 28(6), 1229–1244. 
Minick, D.J., Frenz, J.H., Patrick, M.A., Brent, D.A. (1988) A comprehensive method for determining hydrophobicity constants by 
reversed-phase high-performance liquid chromatography. J. Med. Chem. 31, 1923–1933. 
Mirrlees, M.S., Moulton, J.J., Murphy, C.T., Taylor, P.J. (1976) Direct measurement of octanol-water partition coefficients by highpressure 
liquid chromatography. J. Med. Chem. 19, 615–619. 
Mirvish, S.S., Issenberg, P., Sornson, H.C. (1976) Air-water and ether-water distribution of N-nitroso compounds: Implications for 
laboratory safety, analytic methodology, and carcinogenicity for the rat esophagus, nose, and liver. J. Nat’l. Cancer Inst. 
56(6), 1125–1129. 
Miyake, K., Kitaura, F., Mizuno, N., Terada, H. (1987) Determination of partition coefficient and acid dissociation constant by highperformance 
liquid chromatography on porous polymer gel as stationary phase. Chem. Pharm. Bull. 35(1), 377–388. 
Miyake, K., Mizuno, N., Terada, H. (1986) Method for determination of partition coefficient by high-performance liquid chromatography 
on an octadecylsilane column. Examination of its applicability. Chem. Pharm. Bull. 34(11), 4787–4796. 
Miyake, K., Tereda, H. (1982) Determination of partition coefficients of very hydrophobic compounds by high-performance liquid 
chromatography on glyceryl-coated controlled-pore glass. J. Chromatogr. 240, 9–20. 
Moreale, A., Van Bladel, R. (1976) Influence of soil properties on adsorption of pesticide-derived aniline and p-chloroaniline. J. Soil 
Sci. 27, 48–57. 
Mousa, A.H.N. (1981) Vapour pressure and saturated-vapour volume of acetonitrile. J. Chem. Thermodyn. 13, 201–202. 
Muller, M., Klein, W. (1991) Estimating atmosphere degradation processes by SARs. Sci. Total Environ. 109/110, 261–273. 
Muller, M., Klein, W. (1992) Comparative evaluation of methods predicting water solubility for organic compounds. Chemosphere 
25, 769–782. 
Muller, M., Kordel, W. (1996) Comparison of screening methods for the estimation of adsorption coefficients on soil. Chemosphere 
32, 2493–2504. 
Nakagawa, Y., Izumi, K., Oikawa, N., Sotomatsu, T., Shigemura, M., Fujita, T. (1992) Analysis and prediction of hydrophobicity 
parameters of substituted acetanilides, benzamides, and related aromatic compounds. Environ. Toxicol. Chem. 11, 901–916. 
Naik, M.N., Jackson, R.B., Stokes, J., Swaby, R.J. (1972) Microbial degradation and phytotoxicity of picloram and other substituted 
pyridines. Soil Biol. Biochem. 4, 13–23. 
Neely, W.B., Blau, G.E. (1985) Chapter 1, Introduction to environmental exposure from chemicals. In: Environmental Exposure from 
Chemicals. Volume I., Neely, W.B., Blau, G.E., Editors, CRC Press Inc., Boca Raton, FL. pp. 1–11. 
Neely, W.B., Branson, D.R., Blau, G.E. (1974) Partition coefficient to measure bioconcentration potential of chemicals in fish. Environ. 
Sci. Technol. 8, 1113–1115. 
Neish, W.J.P. (1948) Solubilization of aromatic amines by purines. Rec. Trav. Chim. Pays-Bas 67, 361–373. 
Nielsen, T., Silgur, K., Helweg, C., Jorgensen, O., Hansen, P.E., Kirso, U. (1997) Sorption of polycyclic aromatic compounds to 
humic acid as studied by High-Performance Liquid Chromatography. Environ. Sci. Technol. 31, 1102–1108. 
Nipper, M., Qian, Y., Carr, R.S., Miller, K. (2004) Degradation of picric acid and 2,6-DNT in marine sediments and waters: the role 
of microbial activity and ultra-violet exposure. Chemosphere 56, 519–530. 
Norrington, F.E., Hyde, R.M., Williams, S.G., Wootton, R. (1975) Physicochemical-activity relations in practice. 1. A rational and 
self-consistent data bank. J. Med. Chem. 18, 604–607. 
NRCC (1983) Polycyclic aromatic hydrocarbons in the aquatic environment: Formation, sources, fate and effects on aquatic biota. 
NRCC/CNRC, Ottawa, Canada. 
OECD (1981) OECD Guidelines for Testing of Chemicals. Section 1: Physical-Chemical Properties. Organization for Economic 
Co-operation and Development. OECD, Paris. 
Oliver, J.E. (1981) Pesticide-derived nitrosoamines. Occurrence and environmental fate. Agric. Symp. Ser. 74, 349–362. 
Oliver, J.E., Kearney, P.C., Kontson, A. (1979) Degradation of herbicide-related nitrosoamines in aerobic soils. J. Agric. Food Chem. 
27, 887–891. 
Osborn, A.G, Douslin, D.R. (1966) Vapor pressure relations of 36 sulfur compounds present in petroleum. J. Chem. Eng. Data 11, 
502–509. 
Osborn, A.G., Douslin, D.R. (1968) Vapor pressure relations of 13 nitrogen compounds related to petroleum. J. Chem. Eng. Data 
13(4), 534–537. 
Osborn, A.G., Scott, D.W. (1980) Vapor pressures of 17 miscellaneous organic compounds. J. Chem. Thermodyn. 12, 429–438. 
Osborn, D.W., Doescher, R.N., Yost, D.M. (1942) The heat capacity, heats of fusion and vaporization, vapor pressure and entropy 
of dimethyl sulfide. J. Am. Chem. Soc. 64, 169–172. 
Paris, D.F., Wolfe, N.L. (1987) Relationship between properties of a series of anilines and their transformation by bacteria. Appl. 
Environ. Microbiol. 53, 911–916. 
© 2006 by Taylor & Francis Group, LLC

3450 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Pearlman, R.S., Yalkowsky, S.H., Banerjee, S. (1984) Water solubilities of polynuclear aromatic and heteroaromatic compounds. 
J. Phys. Chem. Ref. Data 13, 555–562. 
Peijnendburg, W.J.G.M., de Beer, K.G.M., den Hollander, H.A., Stegeman, M.H.L., Verboom, H. (1993) Kinetics, products, mechanisms 
and QSARs for the hydrolytic transformation of aromatic nitriles in anaerobic sediment slurries. Environ. Toxicol. 
Chem. 12, 1149–1161. 
Pella, P.A. (1977) Measurement of the vapor pressures of TNT, 2,4-DNT, 2,6-DNT, and EGDN. J. Chem. Thermodyn. 9, 301–305. 
Pennington, R.E., Scott, D.W., Finke, H.L., McCullough, J.P., Messerly, J.F., Hossen-Lopp, I.A., Waddington, G. (1956) The chemical 
thermodynamic properties and rotational tautomerism of 1-propanethiol. J. Am. Chem. Soc. 78, 3266–3272. 
Perrin, D.D. (1965) Dissociation Constants of Organic Bases in Aqueous Solutions. Butterworth, London. 
Perrin, D.D. (1972) Dissociation Constants of Organic Bases in Aqueous Solutions. IUPAC Chemical Data Series; Supplement. 
Butterworth, London. 
Phelan, J.M., Barnett, J.L. (2001) Solubility of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene in water. J. Chem. Eng. Data 46, 373–376. 
Philpot, J.P., Rhodes, E.C., Davies, C.W. (1940) The determination of mobilities and dissociation constants by means of conductivity 
titrations. J. Chem. Soc. 84–87. 
Piacente, V., Scardala, P., Gigli, R. (1985) Vaporization study of o-, m-, and p-chloroaniline by torsion-weighing effusion vapor 
pressure measurements. J. Chem. Eng. Data 30, 372–376. 
Pinck, L.A., Kelly, M.A. (1925) The solubility of urea in water. J. Am. Chem. Soc. 47, 2170–21772. 
Pillai, P., Helling, C.S., Dragun, J. (1982) Soil catalyzed oxidation of aniline. Chemosphere 11, 299, 317. 
Pinck, L.A., Kelly, M.A. (1925) The solubility of urea in water. J. Am. Chem. Soc. 47, 2170–2172. 
Poole, S.K., Durham, D., Kibbey, C. (2000) Rapid method for estimation the octanol-water partition coefficient (log POW) by 
microemulsion electrokinetic chromatography. J. Chromatog. B, 745, 117–126. 
Poulet, G., Laverdet, G., Jourdain, J.L., Le Bras, G. (1984) Kinetic study of the reactions of acetonitrile with Cl and OH radicals. 
J. Phys. Chem. 88, 6259–6263. 
Pratesi, P., Villa, L., Ferri, V., de Micheli, C., Grana, E., Grieco, C., Silipo, C., Victtoria, A. (1979) On the additive-constitutive 
properties of substituent hydrophobic parameters in a set of muscarinic agents. Il Farmaco Ed. Sci. 34(7), 579–587. 
Price, L.C. (1976) Aqueous solubility of petroleum as applied to its origin and primary migration. Am. Assoc. Petrol. Geol. Bull. 60, 
213–244. 
Przyjazny, A., Janicki, W., Chrzanowski, W., Staszewski, R. (1983) Headspace gas chromatographic determination of distribution 
coefficients of selected organosulphur compounds and their dependence on some parameters. J. Chromatogr. 280, 249–260. 
Puck, T.T., Wise, H. (1946) Studies in vapor-liquid equilibria. I. A new dynamic method for the determination of vapor pressures of 
liquids. J. Phys. Chem. 50, 329–339. 
Putnam, W.E., McEachern, Jr., D.M., Kilpatrick, J.E. (1965) Entropy and related thermodynamic properties of acetonitrile (methyl 
cyanide). J. Chem. Phys. 42, 740–755. 
Radchenko, L.G., Kitiagorodskii, A.I. (1974) The vapour pressures and heats of sublimation of naphthalene, biphenyl, octafluoronaphthalene, 
decafluorobiphenyl, acenaphthene and .-nitronaphthalene. Russian J. Phys. Chem. 48(11), 1595–1597. 
Radding, S.B., Liu, D.H., Johnson, H.L., Mill, T. (1977) Review of the Environmental Fate of Selected Chemicals. EPA 560/5–77–003. 
US. Environmental Protection Agency, Office of Toxic Substance, Washington, D.C. pp. 147. 
Rao, P.S.C., Davidson, J.M. (1982) Retention and Transformation of Selected Pesticides and Phosphorus in Soil-Water System. A 
Critical Review. EPA-600/S3–82–060. 
Rekker, R.F. (1977) The Hydrophobic Fragmental Constant. Its Derivation and Application. A Means of Characterizing Membrane 
Systems. Vol. 1, Pharmacochemistry Library, Nauta, W.T., Rekker, R.F., Editors. Elsevier Scientific Publishing Company, 
Oxford, U.K. 
Rekker, R.F., De Kort, H.M. (1979) The hydrophobic fragment constant: An extension to a 1000 data point set. Eur. J. Med. Chem. 
14, 479–488. 
Riddick, J.A., Bunger, W.B., Sakano, T.K. (1986) Organic Solvents. 4th Edition. John Wiley and Sons, New York. 
Rinke, M., Zetzsch, C. (1984) Rate constants for the reactions of hydroxyl radicals with aromatics: benzene, phenol, aniline, and 
1,2,4-trichlorobenzene. Ber. Bunsen-Ges. Phys. Chem. 88, 55–62. 
Ritter, S., Hauthal, W.H., Maurer, G. (1994) Partition coefficients of some environmentally important organic compounds between 
1-octanol and water from reversed-phase high-performance liquid chromatography. J. Chem. Eng. Data 39, 414–417. 
Ro., K.S., Venugopal, A., Adrian, D.D., Constant., D., Qaisi, K., Valsaraj, K., Thbodeaux, L.J., Roy, D. (1996) Solubility of 2,4,6- 
trinitrotoluene (TNT) in water. J. Chem. Eng. Data 41, 758–761. 
Roberts, M.S., Kowaluk, E.A., Polack, A.E. (1991) Prediction of solute sorption by polyvinylchloride plastic infusion bags. J. Pharm. 
Sci. 80, 449–455. 
Rogers, J.E., Li, S.W., Felice, L.J. (1984) Microbial Transformation Kinetics of Xenobiotics in Aquatic Environment. EPA- 
600/3–84–043. (NTIS-PB84–162866). Battelle Pacific West Labs., Richland, WA. 
Rogers, K.S. (1969) Rabbit erythrocyte hemolysis by lipophile aryl molecules. Proc. Soc. Exp. Biol. Med. 130(4), 1140–1142. 
Rogers, K.S., Cammarata, A. (1969) Superdelocalizability and charge density. A correlation with partition coefficients. J. Med. Chem. 
12, 692–693. 
Rohrschneider, L. (1973) Solvent characterization by gas-liquid partition coefficients of selected solutes. Anal. Chem. 45(7), 
1241–1247. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3451 
Rott, B., Viswanathan, R., Freitag, D., Korte, F. (1982) Vergleichende untersuchung der anwendbrakeit von umweltchemikalien. 
Chemosphere 11, 531–538. 
Ruppert, G., Bauer, R., Heisler, G., Novalic, S. (1993) Mineralization of cyclic organic water contaminants by the photo-Fenton 
reaction-Influence of structure and substituents. Chemosphere 27(8), 1339–1347. 
Russell, C.J., Dixon, S.L., Jurs, P.C. (1992) Computer-assisted study of the relationship between molecular structure and Henry’s 
law constant. Anal. Chem. 64, 1350–1355. 
Russell, Jr., H., Osborne, D.W., Yost, D.M. (1942) The heat capacity, entropy, heats of fusion, transition, and vaporization and vapor 
pressures of methyl mercaptan. J. Am. Chem. Soc. 64, 165–169. 
Ryan, J.A., Bell, R.M., Davidson, J.M., O’Connor, G.A. (1988) Plant uptake of non-ionic organic chemicals from soils. Chemosphere 
17(12), 2299–2323. 
Sabljic, A. (1987) On the prediction of soil sorption coefficients of organic pollutants from molecular structure: Application of 
molecular topology model. Environ. Sci. Technol. 21, 358–366. 
Sabljic, A., Gusten, H. (1990) Predicting the night-time NO3 radical reactivity in the troposphere. Atmos. Environ. 24A(1), 73–78. 
Sabjic, A., Gusten, H., Verhaar, H., Hermens, J. (1995) QSAR modelling of soil sorption. Improvements and systematics of log KOC 
vs. log KOW correlations. Chemosphere 31, 4489–4514. 
Sandell, K.B. (1962) Distribution of aliphatic amines between water and mixture of organic solvents. Naturwissenschaften 49, 12–13. 
Sangster, J. (1989) Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data 18(3), 1111–1230. 
Sangster, J. (1993) LOGKOW Database, Sangster Research Lab., Montreal, Canada. 
Sasaki, S. (1978) The scientific aspects of the chemical substance control law in Japan. In: Aquatic Pollutants: Transformation and 
Biological Effects. Hutzinger, O. et al., Editors, Pergamon Press, Oxford, U.K. pp. 283–298. 
Schauerte, W., Lay, J.P., Klein, W., Korte, F. (1982) Long-term fate xenobiotics in aquatic ecosystems. Ecotoxicol. Environ. Safety 
6, 560–569. 
Schmidt-Bleek, F., Haberland, W., Klein, A.W., Caroli, S. (1982) Steps towards environmental hazard assessment of new chemicals. 
Chemosphere 11(4), 383–415. 
Schnell, S., Bak, F., Pfennig, N. (1989) Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing 
bacteria and description of Desulfobacterium anilini. Arch. Microbiol. 152, 556–563. 
Schultz, Q.E., Jung, C., Moller, K.E. (1970) Schatzung des verteilungkoeffizienten mit hilfe quantenchemischer molekulgro.en. Z. 
Naturforsch. 25B, 1024–1026. 
Schultz, T.W., Moulton, B.A. (1985) Structure-activity relationships for nitrogen-containing aromatic molecules. Environ. Toxicol. 
Chem. 4, 353–359. 
Scott, D.W., Berg. W.T., Hossenlopp, I.A., Hubbard, W.N., Messerly, J.F., Todd, S.S., Douslin, D.R., McCullough, J.P., Waddington, 
G. (1967) Pyrrole: Chemical thermodynamic properties. J. Phys. Chem. 71, 2263–2270. 
Scott, D.W., Finke, H.L., Gross, M.E., Guthrie, G.B., Huffman, H.M. (1950) 2,3-Dithiabutane: low temperature heat capacity, heat 
of fusion, heat of vaporization, vapor pressure, entropy and thermodynamic functions. J. Am. Chem. Soc. 72, 2424–2430. 
Scott, D.W., Finke, H.L., McCullough, J.P., Messerly, J.F., Pennington, R.E., Hossenlopp, I.A., Waddington, G. (1957) 1-Butanethiol 
and 2-thiapentane. Experimental thermodynamic studies between 12 and 500 K: thermodynamic functions by a refine method 
of increments. J. Am. Chem. Soc. 79, 1062. 
Scott, D.W., McCullough, J.P., Hubbard, W.N., Messerly, J.F., Hossenlopp, I.A., Frow, F.R., Waddington, G. (1956) Benzenethiol: 
Thermodynamic properties in the solid, liquid, and vapor states; internal rotation of the thiol group. J. Am. Chem. Soc. 78, 
5457–5463. 
Scott, D.W., Hubbard, W.N., Messerly, J.F., Todd, S.S., Hossenlopp, I.A., Good, W.D., Douslin, D.R., McCullough, J.P. (1963a) 
Chemical thermodynamic properties and internal rotation of methylpyridines. I. 2-Methylpyridine. J. Phys. Chem. 67, 
680–685. 
Scott, D.W., Good, W.D., Gurthrie, G.B., Todd, S.S., Hossenlopp, IA., Douslin, D.R., McCullough, J.P. (1963b) Chemical thermodynamic 
properties and internal rotation of methylpyrines. II. 3-Methylpyridine. J. Phys. Chem. 67, 685–689. 
Scow, K.M. (1982) Chapter 9, Rate of biodegradation. In: Handbook of Chemical Property Estimation Methods. Environmental 
Behavior of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, pp. 9–1 to 9–85, McGraw-Hill Book 
Co., New York. 
Seidell, A. (1941) Solubilities of Organic Compounds. Van Nostrand Co., New York. 
Seidell, A. (1952) Solubilities of Organic Compounds. Van Nostrand Co., New York. 
Seip, H.M., Alstad, J., Carlberg, G.E., Martinsen, K., Skaane, P. (1986) Measurements of mobility of organic compounds in soils. 
Sci. Total Environ. 50, 87–101. 
Shnidman, L., Sunier, A.A. (1932) The solubility of urea in water. J. Phys. Chem. 35, 1232–1240 
Shriner, C.D. et al. (1978) Reviews of the Environmental Effects of Pollutants. II. Benzidine. U.S. EPA-600/1–78–024. 
Sikka, H.C., Appleton, H.T., Banerjee, S. (1978) Fate of 3,3.-Dichlorobenzidine in Aquatic Environment. EPA-600/3–78–068. Syracuse 
Research Corp., Syracuse, NY. 
Simmons, M.S., Zepp, R.G. (1986) Influence of humic substances on photolysis of nitroaromatic compounds in aquatic systems. 
Water Res. 20, 899–904. 
Sims, G.K., O’Loughlin, E.J. (1989) Degradation of pyridines in the environment. Critical Rev. Environ. Control. 19, 309–340. 
Sims, G.K., Sommers, L.E. (1985) Degradation of pyridine derivatives in soil. J. Environ. Qual. 14, 580–584. 
© 2006 by Taylor & Francis Group, LLC

3452 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Singer, G.M., Taylor, H.W., Lijinsky, W. (1977) Lipophilicity as an aspect of nitrosamine carcinogenicity: quantitative correlations 
and qualitative observation, Chem.-Biol. Interact. 19, 133–142. 
Sivaraman, A., Kobayashi, R. (1982) Investigation of vapor pressures and heats of vaporization of condensed aromatic compounds 
at elevated temperatures. J. Chem. Eng. Data 27, 264–269. 
Sivaraman, A., Kobayashi, R. (1983) Vapor pressures and enthalpies of vaporization of thianthrene, acridine, and 9-methylanthracene 
at elevated temperatures. J. Chem. Thermodyn. 15, 1127–1135. 
Slagle, I.R., Balocchi, F., Gutman, D. (1978) Study of the reactions of oxygen atoms with hydrogen sulfide, methanethiol, ethanethiol 
and methyl sulfide. J. Phys. Chem. 82(12), 1333–1336. 
Slater, B., McCormack, A., Avdeef, A., Comer, J.E.A. (1994) pH-metric log P. 4. Comparison of partition coefficients determined 
by HPLC and potentiometric methods to literature values. J. Pharm. Sci. 83, 1280–1283. 
Smith, J.H., Bomberger, D.C. (1980) Prediction of volatilization rate of chemicals in water. In: Hydrocarbons and Halogenated 
Hydrocarbons in the Environment, Afghan, B.K., Mackay, D., Eds., pp. 445–451, Plenum Press, New York. 
Smith, J.H., Bomberger, D.C., Jr., Haynes, D.L. (1981) Volatilization rates of intermediate and low volatility chemicals from water. 
Chemosphere 10(5), 281–289. 
Smith, J.H., Mabey, W.R., Bahonos, N. Holt, B.R., Lee, S.S., Chou, T.W., Venberger, D.C., Mill, T. (1978) Envirnmental Pathways 
of Selected Chemicals in Fresh Water Systems: Part II. Laboratory Studies. Interagency Energy-Environment Research 
Program Report. EPA-600/7–78–074. Environmental Research Laboratory Office of Research and Development. U.S. 
Environment Protection Agency, Athens, GA. 
Smith, J.H., Mackay, D., Ng, C.W.K. (1983) Volatilization of pesticides from water. Residue Rev. 85, 73–88. 
Snider, J.R., Dawson, G.A. (1985) Tropospheric light alcohols, carbonyls, and acetonitrile: concentrations in the southwestern United 
States and Henry’s law data. J. Geophys. Res. 90(D2), 3797–3805. 
SOGC (1987) Dinitrotoluenes: BUA Substance Report 12. The Advisory Board for Environmentally Significant Hazardous Waste 
(BUA) of the Society of German Chemists, Editors. Weinheim, Fed. Republic of Germany: VCH Verlagsgesellschaft p.2. 
Son, H.-S., Lee, S.-J., Cho, I.-H., Zoh, K.-D. (2004) Kinetics and mechanism of TNT degradation in TiO2 photocatalysis. Chemosphere 
57, 309–317. 
Sonnefeld, W.J., Zoller, W.H., May, W.E. (1983) Dynamic coupled-column liquid chromatographic determination of ambient temperature 
vapor pressures of polynuclear aromatic hydrocarbons. Anal. Chem. 55, 275–280. 
Sotomatsu, T., Nakagawa, N., Fujita, T. (1987) Quantitative structure-activity studies of benzoylphenylurea larvicides. IV. Benzoyl 
ortho substituent effects and molecular conformation. Pestic. Biochem. Physiol. 27, 156–164. 
Southworth, G.R., Beauchamp, J.J., Schmieder, P.K. (1978) Bioaccumulation potential and acute toxicity of synthetic fuels in 
freshwater biota: azarenes. Environ. Sci. Technol. 12, 1062–1066. 
Spanggord, R.J., Mabey, W.R., Mill, T., Chou, T.W., Smith, J.H. (1981) Environmental Fate Studies on Certain Munitions Wastewater 
Constituents. Part 1. Model Validation. NTIS AD-A129 373/7. SRI International, Menlo Park, CA. 79 pp. 
Spanggord, R.J., Mill, T., Chou, T.W., Mabey, W.R., Smith, J.H., Lee, S. (1980) Environmental Fate Studies on Certain Munitions 
Wastewater Constituents. Final Report. Phase I-Literature Review. SRI Project No. LSU-7934. Contract No. DAMD 17–78- 
C-8081. US. Army Medical Research and Development Command, Fort Detrick, MD. 
Spanggord, R.J., Mabey, W.R., Mill, T., Chou, T.W., Smith, J.H., Lee, S., Robert, D. (1983) Environmental Fate Studies on Certain 
Munitions Wastewater Constituents. LSU-7934, AD-A138550; SRI International: Menlo Park, CA. 
Speyers, (1902) Am. J. Sci. 14, 293. 
Staudinger, J., Roberts, P.V. (1996) A critical review of Henry’s law constant for environmental applications. Crit. Rev. Environ. Sci. 
Technol. 26, 205–297. 
Staudinger, J., Roberts, P.V. (2001) A critical compilation of Henry’s law constant temperature dependence relations for organic 
compounds in dilute aqueous solutions. Chemosphere 44, 561–576 
Steele, W.V., Chirico, R.D., Nguyen, A., Knipmeyer, S.E. (1995) Vapor pressure, high-temperature heat capacities, critical properties, 
derived thermodynamic functions, and barriers to methyl-group rotation, for the six dimethylpyridines. J. Chem. Thermodyn. 
27, 311–334. 
Steen, W.C. (1991) Microbial Transformation Rate Constants of Structurally Diverse Man-made Chemicals. EPA 600/3–91/016. 
PB91–181958. Environmental Research Lab., Office of Research and Development, US Environmental Protection Agency, 
Athens, GA. 
Steen, W.C., Karickhoff, S.W. (1981) Biosorption of hydrophobic organic pollutants by mixed microbial populations. Chemosphere 
10, 27–32. 
Stegeman, M.H.L., Peijnenburg, W.J.G.M., Verboom, H. (1993) A quantitative structure-activity relationship for the direct photohydrolysis 
of meta-substituted halobenzene directives in water. Chemosphere 26(5), 837–849. 
Stephen, H., Stephen, Y. (1963) Solubilities of Inorganic and Organic Compounds. Vol. 1 and 2, Pergamon Press, Oxford, U.K. 
Stephenson, R.M. (1993a) Mutual solubility of water and pyridine derivatives. J. Chem. Eng. Data 38, 428–431. 
Stephenson, R.M. (1993b) Mutual solubility of water and aliphatic amines. J. Chem. Eng. Data 38, 625–629. 
Stephenson, R.M. (1993c) Mutual solubilities: water + cyclic amines, water + alkanolamines, and water + polyamines. J. Chem. Eng. 
Data 38, 634–637. 
Stephenson, R.M. (1994) Mutual solubility of water and nitriles. J. Chem. Eng. Data 39, 255–227. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3453 
Stephenson, R.M., Malanowski, S. (1987) Handbook of Thermodynamics of Organic Compounds. Elsevier Science Publishing Co. 
Inc., New York. 
Stull, D.R. (1947) Vapor pressure of pure substances: Organic compounds. Ind. Eng. Chem. 39(4), 517–560. 
Subba-Rao, R.V., Rubbin, H.E., Alexander, M. (1982) Kinetics and extent of mineralization of organic chemicals in trace levels in 
freshwater and sewage. Appl. Environ. Microbiol. 43, 1139–1150. 
Sverdrup, L.E., Jensen, J., Kelley, A.E., Krogh, P.J., Stenersen, J. (2002) Effects of eight polycyclic aromatic compounds on the 
survival and reproduction on Enchytraeus crypticus (Oligochaeta, Clitellata). Environ. Toxicol. Chem. 21, 109–114. 
Swan, T.H., Mack, Jr., E. (1925) Vapor pressures of organic crystals by an effusion method. J. Am. Chem. Soc. 47, 2112–2116. 
Swift, Jr., E., Hochanadel, H.P. (1945) The vapor pressure of trimethylamine from 0 to 40°C. J. Am. Chem. Soc. 67, 880–881. 
Szabo, G., Guczi, J., Bulman, R.A. (1995) Examination of silica-salicylic acid and silica-8-hydroxyquinoline HPLC stationary phases 
for estimation of the adsorption coefficient of soil for some aromatic hydrocarbons. Chemosphere 30, 1717–1727. 
Szabo, G., Guczi, J., Kordel, W., Zsolnay, A., Major, V., Keresztes, P. (1999) Comparison of different HPLC stationary phases for 
determination of soil-water distribution coefficient, KOC values of organic chemicals in RP-HPLC system. Chemosphere 39, 
431–442. 
Tabak, H.H., Govind, R. (1993) Prediction of biodegradation kinetics using a nonlinear group contribution method. Environ. Toxicol. 
Chem. 12, 251–260. 
Taft, R.W., Abraham, M.H., Famini, G.R., Doherty, R.M., Abboud, J.-L.M., Kamlet, M.J. (1985) Solubility properties in polymers 
and biological media. 5: An analysis of the physicochemical properties which influence octanol-water partition coefficients 
of aliphatic and aromatic solutes. J. Pharm. Sci. 74(8), 807–814. 
Takagishi, T., Katayama, A., Konishi, K., Kuroki, N. (1968) The solubilities of azobenzene derivatives in water. Kolloid-Zeitschrift 
Zeit. Polym. 232(1), 693–699. 
Takahashi, K., Tamagawa, S., Katagi, T., Rytting, J.H., Mishibata, T., Mizuno, N. (1993) Percutaneous permeation of basic compounds 
through shed snakeskin as model membrane. J. Phar. Pharmacol. 45, 882–886. 
Takayama, C., Akamatsu, M., Fujita, T. (1985) Effects of structure on 1-octanol/water partitioning behaviour of aliphatic amines and 
ammonium ions. Quant. Struct.-Act. Relat. 4, 149–160. 
Tanii, H., Hashimoto, K. (1984) Studies on the mechanism of acute toxicity of nitriles in mice. Arch. Toxicol. 55, 47–54. 
Tate, R.L., III, Alexander, M. (1975) Stability of nitrosoamines in samples of lake water, soil and sewage. J. Nat.l Cancer Inst. 54(2), 
327–330. 
Tate, R.L., III, Alexander, M. (1976) Microbial formation and degradation of dimethylamine. Appl. Environ. Microbiol. 31, 399–403. 
Taylor, C.A., Rinkenbach, W.H. (1923) The solubility of trinitrotoluene in organic solvents. J. Am. Chem. Soc. 45, 44–49. 
Tewari, Y.B., Miller, M.M., Wasik, S.P., Martire, D.E. (1982) Aqueous solubility and octanol/water partition coefficient of organic 
compounds at 25°C. J. Chem. Eng. Data 27, 451–454. 
Thomsen, A.B., Henriksen, K., Gron, C., Moldrup, P. (1999) Sorption, transport, and degradation of quinoline in unsaturated soil. 
Environ. Sci. Technol. 33. 2891–2898. 
Torang, L., Reuschenbach, P., Muller, B., Nyholm, N. (2002) Laboratory shake flask batch test can predict field biodegradation of 
aniline in the Rhine. Chemosphere 49, 1257–1265. 
Tsai, R.S., El Tayar, N., Testa, B. (1991) Toroidal coil centrifugal partition chromatography, a method for measuring partition 
coefficients. J. Chromatogr. 538(1), 119–123. 
Tsonopoulos, C., Prausnitz, J.M. (1971) Activity coefficients of aromatic solutes in dilute aqueous solutions. Ind. Eng. Chem. Fundam. 
10, 593–600. Supplement Materials. 
Tsuda, T., Aoki, M., Kojima, M., Fujita, T. (1993) Accumulation and excretion of chloroanilines by carp. Chemosphere 26, 2301–2306. 
Tuazon, E.C., Winer, A.M., Pitts, J.N., Jr. (1978) Fourier transform infrared detection of nitroamines in irradiated amine-NOx systems. 
Environ. Sci. Technol. 12, 954–958. 
Tuazon, E.C., Carter, W.P.L., Atkinson, R., Winer, A.M., Pitts, Jr., J.N. (1984) Atmospheric reactions of N-nitrosodimethylamine and 
dimethylnitramine. Environ. Sci. Technol. 18, 49–54. 
Umeyama, H., Nagai, T., Nogami, H. (1971) Mechanism of adsorption of phenols by carbon black from aqueous solution. Chem. 
Pharm. Bull. 19(8), 1714–1721. 
Unger, S.H., Chiang, G.H. (1981) Octanol-physiological buffer distribution coefficients of lipophilic amines by reversed-phase highperformance 
liquid chromatography and their correlation with biological activity. J. Med. Chem. 24(3), 262–270. 
Unger, S.H., Cook, J.R., Hollenberg, J.S. (1978) Simple procedure for determining octanol-aqueous partition, distribution, and 
ionization coefficients by reversed-phase high-pressure liquid chromatography. J. Pharm. Sci. 67(10), 1664–1667. 
Urano, K., Kato, Z. (1986) Evaluation of biodegradation ranks of priority organic compounds. J. Haz. Mat. 13, 135–145. 
Urbanski, S.P., Stickel, R.E., Wine, P.H. (1998) Mechanistic and kinetic study of the gas-phase reaction of hydroxyl radical with 
dimethyl sulfoxide. J. Phys. Chem. A, 102, 10,522–10,529. 
USEPA (1979) Status Assessment of Toxic Chemicals: Benzidine. U.S. EPA-600/2–79–210. 
USEPA (1980) Ambient Water Quality Criteria for Benzidine. pp. B1 to B6. 
USEPA (1986) EXAMS II Computer Modeling System. 
USEPA (1987) EXAMS II Computer Modeling System. 
Vallat, P., El Tayar, N., Testa, B., Slacanin, I., Marston, A., Hostettmann., K. (1990) Centrifugal counter-current chromatography, a 
promising means of measuring partition coefficients. J. Chromatogr. 504, 411–419. 
© 2006 by Taylor & Francis Group, LLC

3454 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Valvani, S.C., Yalkowsky, S.H., Roseman, T.J. (1981) Solubility and partitioning. IV. Aqueous solubility and octanol-water partition 
coefficient of liquid nonelectrolytes. J. Pharm. Sci. 70, 502–507. 
Van Bladel, R., Moreale, A. (1977) Adsorption of herbicide-derived p-chloroaniline residues in soils: A predictive equation. J. Soil 
Sci. 28, 93–102. 
Van De Rostyne, C., Prausnitz, J.M. (1980) Vapor pressure of some nitrogen-containing, coal-derived liquids. J. Chem. Eng. Data 
25, 1–3. 
Veith, G.D., Austin, N.M., Morris, R.T. (1979a) A rapid method for estimating log p for organic chemicals. Water Res. 13, 43–47. 
Veith, G.D., DeFoe, D.L., Bergstedt, B.V. (1979b) Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish 
Res. Board Can. 36, 1040–1048. 
Veith, G.D., Macek, K.J., Petrocelli, S.R., Carroll, J. (1980) An evaluation of using partition coefficients and water solubility to 
estimate bioconcentration factors for organic chemicals in fish. In: Aquatic Toxicology. ASTM STP 707, American Society 
for Testing and Materials. Eaton, J.G., Parrish, P., Hendricks, A.C., Editors. pp. 116–129. 
Vera, A., Montes, M., Usero, J.L., Casado, J. (1992) Quantitative structure-activity relationship study of the biophysicochemical 
behavior of nitrosamine. J. Pharm. Sci. 61, 791–796. 
Vermillion, H.E., Werbel, B., Saylor, J.H., Gross, P.M. (1941) Solubility studies. VI. The solubility of nitrobenzene in deuterium 
water and in ordinary water. J. Am. Chem. Soc. 63, 1345–1347. 
Verschueren, K. (1977) Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold, New York, NY. 
Verschueren, K. (1983) Handbook of Environmental Data on Organic Chemicals. 2nd. Edition, Van Nostrand Reinhold, New York, NY. 
Vitenberg, A.G., Ioffe, B.V., St. Dimitrova, Z., Butaeva, I.L. (1975) Determination of gas-liquid partition coefficients by means of 
gas chromatographic analysis. J. Chromatogr. 112, 319–327. 
von Oepen, B., Kordel, W., Klein, W. (1991) Sorption of nonpolar and polar compounds in soils: Processes, measurements and 
experience with the applicability of the modified OECD-guideline 106. Chemosphere 22, 285–304. 
Vonterres, E., et al. (1955) Brennstoff. Chem. 36, 272.-reference in Boublik et al. 1984. 
Waddington, G., Smith, J.C., Williamson, K.D., Scott, D.W. (1962) Carbon disulfide as a reference substance for vapor-flow 
calorimetry; the chemical thermodynamic properties. J. Am. Chem. Soc. 66, 1074–1077. 
Wahner, A., Zetzsch, C. (1983) Rate constants for the addition of hydroxyl radicals to aromatics (benzene, p-chloroaniline, and 
o-, m- and p-dichlorobenzene) and the unimolecular decay of the adduct. Kinetics into a quasi-equilibrium. J. Phys. Chem. 
87, 4945–4951. 
Wakita, K., Yoshimoto, M., Miyamoto, S. (1986) A method for calculation of the aqueous solubility of organic compounds by using 
new fragment solubility constants. Chem. Pharm. Bull. 34, 4663–4681. 
Waddington, G., Knowlton, J.W., Scott, D.W., Oliver, G.D., Todd, S.S., Jubbar, W.M., Smith, J.C., Juffman, H.M. (1949) Thermodynamic 
properties of thiophene. J. Am. Chem. Soc. 71, 797–808. 
Wallington, T.J. (1986) Kinetics of the gas phase reaction of OH radicals with pyrrole and thiophene. Int. J. Chem. Kinet. 18, 487–496. 
Wallington, T.J., Atkinson, R., Tuazon, E.C., Aschmann, S.M. (1986a) The reaction of OH radicals with dimethyl sulfide. Int. 
J. Chem. Kinet. 18, 837–846. 
Wallington, T.J., Atkinson, R., Winer, A.M., Pitts, Jr., J.N. (1986b) Absolute rate constants for the gas-phase reactions of the NO3 
radical with CH3SH, CH3SCH3, CH3SSCH3, H2S, SO2 and CH3OCH3 over the temperature range 280–350 K. J. Phys. Chem. 
90, 5393–5396. 
Wallington, T.J., Dagaut, P., Kurylo, M.J. (1988) Correlation between gas-phase and solution-phase reactivities of hydroxyl radicals 
toward saturated organic compounds. J. Phys. Chem. 92, 5024–5028. 
Walton, B.T., Hendricks, M.S., Anderson, T.A., Griest, W.H., Merriweather, R., Beauchamp, J.J., Francis, C.W. (1992) Soil sorption 
of volatile and semivolatile organic compounds in a mixture. J. Environ. Quality 21, 552–558. 
Wang, L., Xu, L., Xu, O., Tian, L., Zhang, Z. (1989) Determination of partition coefficients of organic acids and bases and the 
correlation of partition coefficients in different systems. Huanjing Kexue Xuebao 9(4), 418–424. 
Wang, S., Arnold, W.A. (2003) Abiotic reduction of dinitroaniline herbicides. Water Res. 37, 4191–4201. 
Wang, X., Harada, S., Watanabe, M., Koshikawa, H., Geyer, P.R. (1996) Modelling the bioconcentration of hydrophobic organic 
organisms. Chemosphere 32, 1783–1793. 
Wasik, S.P., Tewari, Y.B., Miller, M.M., Martire, D.E. (1981) Octanol/Water Partition Coefficients and Water Solubilities of Organic 
Compounds. NBSIR No.81–2406. U.S. Dept. of Commerce, Washington, D.C. 
Weast, R.C., Ed. (1972–73) Handbook of Chemistry and Physics. 53rd Edition, CRC Press, Cleveland, OH. 
Weast, R.C., Editor (1982–83) Handbook of Chemistry and Physics. 63rd edition, CRC Press, Boca Raton, FL. 
Wilson, J.T., Enfield, C.G., Dunlap, W.J. (1981) Transport and fate of selected organic pollutants in a sandy soil. J. Environ. Qual. 
10, 501–506. 
Windholz, M., Editor (1976) The Merck Index. Volume 9, Merck & Co., Rahway, NJ. 
Windholz, M., Editor (1983) The Merck Index. Volume 10, Merck & Co., Rahway, NJ. 
Wine, P.H., Kreutter, N.M., Gump, C.A., Ravishankara, A.R. (1981) Kinetics of OH reactions with the atmospheric sulfur compounds 
H2S, CH3SH, CH3SCH3, and CH3SSCH3. J. Phys. Chem. 85, 2660–2665. 
Wine, P.H., Thompson, R.J. (1984) Kinetics of OH reactions with furan, thiophene, and tetrahydrothiophene. Int. J. Chem. Kinet. 
16, 867–878. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3455 
Winer, A.M., Atkinson, R., Pitts, Jr., J.N. (1984) Gaseous nitrate radical: possible nighttime atmospheric sink for biogenic organic 
compounds. Science 224, 156–158. 
Witte, F., Urbanik, E., Zetzsch, C. (1986) Temperature dependence of the rate constants for the addition of hydroxyl radical to benzene 
and to some monosubstituted aromatics (aniline, bromobenzene, and nitrobenzene) and the unimolecular decay of the adducts. 
Part 2. Kinetics into a quasi-equilibrium. J. Phys. Chem. 90, 3251–3259. 
Wolfenden, R.V. (1978) Interaction of the peptide bond with solvent water: A vapor phase analysis. Biochemistry 17(1), 201–204. 
Wolff, C.J.M., Crossland, N.O. (1985) Fate and effects of 3,4-dichloroaniline in the laboratory and in outdoor ponds. 1. Fate. Environ. 
Toxicol. Chem. 4, 481–487. 
Wong, P.K., Wang, Y.H. (1997) Determination of the Henry’s law constant for dimethyl sulfide in seawater. Chemosphere 35, 535–544. 
Yaguzhinskii, L.S., Smirnova, E.G., Ratnikova, L.A., Kolesova, G.M., Krasinskaya, I.P. (1973) Hydrophobic sites of the mitochondrial 
electron transfer system. J. Bioenerg. 5(3), 163–174. 
Yalkowsky, S.H., Morozowich, W. (1980) Chapter 3, A physical chemical basis for the design of orally active prodrugs. In: Drug 
Design. Vol. IX. Academic Press, Inc., New York. 
Yalkowsky, S.H., Valvani, S.C. (1980) Solubility and partitioning I: Solubility of nonelectrolytes in water. J. Pharm. Sci. 69(8), 
912–922. 
Yalkowsky, S.H., Valvani, S.C., Kun, W.-Y., Dannenfelser, R.M., Editors (1987) Arizona Database of Aqueous Solubility for Organic 
Compounds. College of Pharmacy, University of Arizona, Tucson, AZ. 
Yamagami, C., Takao, N. (1992) Hydrophobicity parameters determined by reversed-phase liquid chromatography. V. Relationship 
between capacity factor and the octanol-water partition coefficient for simple heteroaromatic compounds and their ester 
derivatives. Chem. Pharm. Bull. 40(4), 925–929. 
Yamagami, C., Takao, N., Fujita, T. (1990) Hydrophobicity parameter of diazines. 1. Analysis and prediction of partition coefficients 
of monosubstituted diazines. Quant. Struct.-Act. Relat. 9(4), 313–320. 
Yaws, C.L. (1994) Handbook of Vapor Pressure, Vol. 1 C1 to C4 Compounds, Vol. 2. C5 to C7 Compounds, Vol. 3, C8 to C28 Compounds. 
Gulf Publishing Co., Houston, TX. 
Yao, C.C.D., Haag, W.R. (1991) Rate constants for direct reactions of ozone with several drinking water contaminants. Water Res. 
25, 761–773. 
Yaws, C.L., Yang, H.-C., Hopper, J.R., Hansen, K.C. (1990) Organic chemicals: water solubility data. Chem. Eng. July, 115–118. 
Yaws, C., Yang, H.C., Pan, X. (1991) Henry’s law constants for 362 organic compounds in water. Chem. Eng. 98(11), 179–185. 
Yeh, K.C., Higuchi, W.I. (1976) Oil-water distribution of p-alkylpyridines. J. Pharm. Sci. 65, 80–86. 
Yoshida, K., Shigeoka, T., Yamauchi, F. (1983) Non-steady state equilibrium model for the preliminary prediction of the fate of 
chemicals in the environment. Ecotoxicol. Environ. Saf. 7, 179–190. 
Yu, G., Xu, X. (1992) Investigation of aqueous solubilities of nitro-PAH by dynamic couple-column HPLC. Chemosphere 24(12), 
1699–1705. 
Zachara, J.M., Ainsworth, C.C., Cowan, C.E., Thomas, B.L. (1987) Sorption of binary mixtures of aromatic nitrogen heterocyclic 
compounds on subsurface materials. Environ. Sci. Technol. 21, 397–402. 
Zepp, R.G., Schlotzhauer, P.F., Simmons, M.F., Miller, G.C., Baughman, G.L., Wolfe, N.L. (1984) Dynamics of pollutant photoreactions 
in the hydrosphere. Fresenius Z. Anal. Chem. 319, 119–125. 
Zepp, R.G., Baughman, G.L., Schlotzhauer, P.F. (1981) Comparison of photochemical behavior of various humic substances in water: 
I. Sunlight induced reactions of aquatic pollutants photosensitized by humic substances. Chemosphere 109-118. 
Zetzsch, C. (1982) Predicting the rate of OH-addition to aromatics using .+-electrophilic substituent constants for mono- and 
polysubstituted benzene. 15th Informal Conference on Photochemistry, June 27-July 1, 1982, Stanford, CA. 
Zoeteman, B.C.F., Harmsen, K.M., Linders, J.B.H.J., Morra, C.F.H., Slooff, W. (1980) Persistent organic pollutants in river water 
and groundwater of the Netherlands. Chemosphere 9, 231–249. 
Zok, S., Gorge, G., Kalsch, W., Nagel, R. (1991) Bioconcentration, metabolism and toxicity of substituted anilines in the zebrafish 
(Brachydanio rerio). Sci. Total Environ. 109/110, 411–421. 
Zwolinski, B.J., Wilhoit, R.C. (1971) Handbook of Vapor Pressures and Heats of Vaporization of Hydrocarbons and Related 
Compounds. API 44, TRC Publication No. 101, Texas A & M University, College Station, TX. 
© 2006 by Taylor & Francis Group, LLC

3457 
17 Herbicides 
CONTENTS 
17.1 List of Chemicals and Data Compilations (in Alphabetical Order) . . . . . . . . . . . . . . . 3461 
17.1.1 Herbicides . 3461 
17.1.1.1 Alachlor . . . . . . . . . . . 3461 
17.1.1.2 Ametryn . . . . . . . . . . . 3466 
17.1.1.3 Amitrole . . . . . . . . . . . 3469 
17.1.1.4 Atrazine . . . . . . . . . . . 3471 
17.1.1.5 Barban . . . . . . . . . . . . 3480 
17.1.1.6 Benefin . . . . . . . . . . . . 3482 
17.1.1.7 Bifenox . . . . . . . . . . . . 3484 
17.1.1.8 Bromacil . . . . . . . . . . . 3486 
17.1.1.9 Bromoxynil . . . . . . . . 3489 
17.1.1.10 sec-Bumeton . . . . . . . . 3491 
17.1.1.11 Butachlor . . . . . . . . . . 3493 
17.1.1.12 Butralin . . . . . . . . . . . 3495 
17.1.1.13 Butylate . . . . . . . . . . . 3497 
17.1.1.14 Chloramben . . . . . . . . 3499 
17.1.1.15 Chlorazine . . . . . . . . . 3501 
17.1.1.16 Chlorbromuron . . . . . . 3502 
17.1.1.17 Chlorpropham . . . . . . 3504 
17.1.1.18 Chlorsulfuron . . . . . . . 3507 
17.1.1.19 Chlorotoluron . . . . . . . 3510 
17.1.1.20 Cyanazine . . . . . . . . . . 3513 
17.1.1.21 2,4-D . . . . . . . . . . . . . 3517 
17.1.1.22 Dalapon . . . . . . . . . . . 3522 
17.1.1.23 2,4-DB . . . . . . . . . . . . 3525 
17.1.1.24 Diallate . . . . . . . . . . . . 3527 
17.1.1.25 Dicamba . . . . . . . . . . . 3530 
17.1.1.26 Dichlobenil . . . . . . . . . 3534 
17.1.1.27 Dichlorprop . . . . . . . . 3537 
17.1.1.28 Diclofop-methyl . . . . . 3539 
17.1.1.29 Dinitramine . . . . . . . . 3542 
17.1.1.30 Dinoseb . . . . . . . . . . . 3544 
17.1.1.31 Diphenamid . . . . . . . . 3547 
17.1.1.32 Diquat . . . . . . . . . . . . . 3549 
17.1.1.33 Diuron . . . . . . . . . . . . 3551 
17.1.1.34 EPTC . . . . . . . . . . . . . 3555 
17.1.1.35 Ethalfluralin . . . . . . . . 3558 
17.1.1.36 Fenoprop . . . . . . . . . . 3560 
17.1.1.37 Fenuron . . . . . . . . . . . 3562 
17.1.1.38 Fluchloralin . . . . . . . . 3564 
17.1.1.39 Fluometuron . . . . . . . . 3566 
© 2006 by Taylor & Francis Group, LLC

3458 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.40 Fluorodifen . . . . . . . . . 3568 
17.1.1.41 Fluridone . . . . . . . . . . 3569 
17.1.1.42 Glyphosate . . . . . . . . . 3572 
17.1.1.43 Isopropalin . . . . . . . . . 3575 
17.1.1.44 Isoproturon . . . . . . . . . 3577 
17.1.1.45 Linuron . . . . . . . . . . . . 3580 
17.1.1.46 MCPA . . . . . . . . . . . . . 3584 
17.1.1.47 MCPB . . . . . . . . . . . . 3587 
17.1.1.48 Mecoprop . . . . . . . . . . 3589 
17.1.1.49 Metolachlor . . . . . . . . 3591 
17.1.1.50 Metribuzin . . . . . . . . . 3595 
17.1.1.51 Molinate . . . . . . . . . . . 3597 
17.1.1.52 Monolinuron . . . . . . . 3600 
17.1.1.53 Monuron . . . . . . . . . . . 3602 
17.1.1.54 Napropamide . . . . . . . 3606 
17.1.1.55 Neburon . . . . . . . . . . . 3608 
17.1.1.56 Nitralin . . . . . . . . . . . . 3610 
17.1.1.57 Nitrofen . . . . . . . . . . . 3612 
17.1.1.58 Norflurazon . . . . . . . . 3614 
17.1.1.59 Oryzalin . . . . . . . . . . . 3616 
17.1.1.60 Pebulate . . . . . . . . . . . 3618 
17.1.1.61 Pendimethalin . . . . . . 3620 
17.1.1.62 Picloram . . . . . . . . . . . 3622 
17.1.1.63 Profluralin . . . . . . . . . 3626 
17.1.1.64 Prometon . . . . . . . . . . 3628 
17.1.1.65 Prometryn . . . . . . . . . . 3631 
17.1.1.66 Pronamide . . . . . . . . . 3634 
17.1.1.67 Propachlor . . . . . . . . . 3636 
17.1.1.68 Propanil . . . . . . . . . . . 3639 
17.1.1.69 Propazine . . . . . . . . . . 3642 
17.1.1.70 Propham . . . . . . . . . . . 3645 
17.1.1.71 Pyrazon . . . . . . . . . . . . 3647 
17.1.1.72 Simazine . . . . . . . . . . . 3649 
17.1.1.73 2,4,5-T . . . . . . . . . . . . 3653 
17.1.1.74 Terbacil . . . . . . . . . . . . 3657 
17.1.1.75 Terbutryn . . . . . . . . . . 3659 
17.1.1.76 Thiobencarb . . . . . . . . 3662 
17.1.1.77 Triallate . . . . . . . . . . . 3664 
17.1.1.78 Triclopyr . . . . . . . . . . . 3668 
17.1.1.79 Trifluralin . . . . . . . . . . 3670 
17.1.1.80 Vernolate . . . . . . . . . . 3677 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3459 
17.1 List of Chemicals and Data Compilations (by Functional Group) . . . . . . . . . . . . . . . . 3461 
Aliphatic acids: 
Dalapon . . . . . . . 3522 
Aromatic Acids: 
Chloramben . . . 3499 
Dicamba . . . . . . 3530 
Picloram . . . . . . 3622 
Amides: 
Alachlor . . . . . . 3461 
Butachlor . . . . . 3493 
Diphenamid . . . 3547 
Metolachlor . . . . 3591 
Napropamide . . 3606 
Pronamide . . . . . 3634 
Propachlor . . . . . 3636 
Propanil . . . . . . . 3639 
Benzonitriles: 
Bromoxynil . . . . 3489 
Dichlobenil . . . 3534 
Carbamates: 
Barban . . . . . . . . 3480 
Chlorpropham . . 3504 
Propham . . . . . . 3645 
Dinitroanilines: 
Benefin . . . . . . . 3482 
Butralin . . . . . . 3495 
Dinitramine . . . . 3542 
Fluchloralin . . . . 3564 
Isopropalin . . . . 3575 
Nitralin . . . . . . . 3610 
Oryzalin . . . . . . 3616 
Pendimethalin . . 3620 
Profluralin . . . . . 3626 
Trifluralin . . . . 3670 
Diphenylethers: 
Bifenox . . . . . . . 3484 
Fluorodifen . . . . 3568 
Nitrofen . . . . . . . 3612 
Phenols: 
Dinoseb . . . . . . . 3544 
PCP (Pentachlorophenol) (See Chapter 14. Phenolic Compounds and Chapter 18. Insecticides) 
Phenoxyalkanoic acids: 
2,4-D . . . . . . . . . 3517 
2,4-DB . . . . . . . 3525 
Dichlorprop . . . . 3537 
Fenoprop . . . . . 3560 
MCPA . . . . . . . . 3584 
MCPB . . . . . . . . 3587 
Mecoprop . . . . . 3589 
2,4,5-T . . . . . . . 3653 
Thiocarbamates: 
Butylate . . . . . . . 3497 
Diallate . . . . . . . 3527 
EPTC . . . . . . . . 3555 
Molinate . . . . . . 3597 
© 2006 by Taylor & Francis Group, LLC

3460 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Pebulate . . . . . . 3618 
Thiobencarb . . . 3662 
Triallate . . . . . . . 3664 
Vernolate . . . . . 3677 
Triazines: 
Ametryn . . . . . . 3466 
Atrazine . . . . . . 3471 
sec-Bumeton . . 3491 
Chlorazine . . . . . 3501 
Cyanazine . . . . . 3513 
Metribuzin . . . . 3595 
Prometon . . . . . . 3628 
Prometryn . . . . 3631 
Propazine . . . . . 3642 
Simazine . . . . . 3649 
Terbutryn . . . . . 3659 
Uracils: 
Bromacil . . . . . . 3486 
Terbacil . . . . . . . 3657 
Ureas: 
Chlorbromuron 3502 
Chlorsulfuron . . 3507 
Chlorotoluron . . 3510 
Diuron . . . . . . . 3551 
Fenuron . . . . . . 3562 
Fluometuron . . . 3566 
Isoproturon . . . . 3577 
Linuron . . . . . . . 3580 
Monolinuron . . 3600 
Monuron . . . . . . 3602 
Neburon . . . . . . 3608 
Miscellaneous: 
Amitrole (Triazole) . . . . . . . . . . . . . . . 3469 
Diclofop-methyl (Chlorophenoxy acid ester) . . . . . . . . . . . 3539 
Diquat (Bipyridyl) . . . . . . . . . . . . . . . 3549 
Ethalfluralin (trifluoroorg-nitro compound) . . . . . . . . . . . . 3558 
Fluridone (Fluoro-phenyl pyridinone) 3569 
Glyphosate (Phosphate) . . . . . . . . . . . 3572 
Norflurazon . . . . 3614 
Pyrazon (Pyridazinone) . . . . . . . . . . . 3647 
Triclopyr (pyridine, organochlorine) . 3668 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3461 
17.1 LIST OF CHEMICALS AND DATA COMPILATIONS (By Functional Group) 
17.1.1 HERBICIDES 
17.1.1.1 Alachlor 
Common Name: Alachlor 
Synonym: alachlore, alochlor, Alanex, Bronco, Bullet, Cannon, Lasso, Lazo, metachlor, Pillarzo 
Chemical Name: 2-chloro-2,6-diethyl-N-methoxymethylacetanilide; 2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)
acetamide 
Uses: pre-emergence, early post-emergence or soil-incorporated herbicide to control most annual grasses and many 
annual broadleaf weeds in beans, corn, cotton, milo, peanuts, peas, soybeans, sunflower, and certain woody 
ornamentals. 
CAS Registry No: 15972-60-8 
Molecular Formula: C14H20ClNO2 
Molecular Weight: 269.768 
Melting Point (°C): 
40 (Lide 2003) 
Boiling Point (°C): 
100 (at 0.02 mmHg, Ashton & Crafts 1981; Herbicide Handbook 1989; Worthing & Hance 1991; 
Montgomery 1993; Tomlin 1994; Milne 1995) 
135 (at 0.30 mmHg, Herbicide Handbook 1989; Milne 1995) 
Density (g/cm3 at 20°C): 
1.133 (25°C, Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
240.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
29.288 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.713 (mp at 40°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
242 (20°C, Weber 1972; Weber et al. 1980) 
200 (Bailey & White 1965) 
242 (Herbicide Handbook 1974, 1978, 1983, 1989; Martin & Worthing 1977) 
240 (Hartley & Graham-Bryce 1980; Beste & Humburg 1983) 
148 (Khan 1980) 
242 (Ashton & Crafts 1981; Worthing & Walker 1987, Worthing & Hance 1991) 
242 (Hartley & Kidd 1983, 1987; Tomlin 1994) 
130 (20°C, selected, Suntio et al. 1988; quoted, Majewski & Capel 1995) 
148, 242 (literature data variability, Heller et al. 1989) 
140 (23°C, Budavari 1989) 
240 (Wauchope 1989) 
240 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
23.5 (calculated-group contribution fragmentation method, Kuhne et al. 1995) 
140 (23°C, Milne 1995) 
512 (predicted-AQUAFAC, Lee et al. 1996) 
532, 785 (supercooled liquid SL: literature derived value LDV, final adjust value FAV, Muir et al. 2004) 
N 
O 
Cl 
O 
© 2006 by Taylor & Francis Group, LLC

3462 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Vapor Pressure (Pa at 25°C or as indicated): 
0.00293 (20°C, Weber 1972; Worthing & Walker 1987, Worthing & Hance 1991) 
0.00293 (Herbicide Handbook 1974, 1983, 1989) 
0.00293 (20–25°C, Weber et al. 1980) 
0.00293 (Ashton & Crafts 1981; Schnoor & McAvoy 1981; Schnoor 1992) 
0.00290 (Beste & Humburg 1983) 
0.00290 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
0.00300 (20°C, selected, Suntio et al. 1988; quoted, Majewski & Capel 1995) 
0.00187 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.00413 (Montgomery 1993) 
0.0064. 0.0044 (supercooled liquid PL: literature derived value LDV, final adjust value FAV, Muir et al. 
2004) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
6.20 . 10–3 (20°C, calculated-P/C, Suntio et al. 1988) 
8.43 . 10–4 (wetted-wall-GC/ECD, Fendinger & Glotfelty 1988) 
3.26 . 10–3 (calculated-P/C, Taylor & Glotfelty 1988) 
1.12 . 10–3 (fog chamber-GC/ECD, Fendinger et al. 1989) 
8.38 . 10–4 (23°C, known LWAPC of Fendinger et al. 1989, Meylan & Howard 1991) 
1.21 . 10–5 (bond-estimated LWAPC, Meylan & Howard 1991) 
3.26 . 10–3 (20°C, calculated-P/C, Muir 1991) 
6.20 . 10–3 (calculated-P/C, Montgomery 1993) 
3.22 . 10–3 (Gish et al. 1995) 
7.24 . 10–3* (Gas stripping-GC/MS, measured range 10–25°C, Gautier et al. 2003) 
ln [H./(M atm–1)] = –20.946 + 9200/(T/K); temp range 2830298 K (gas stripping-GC/MS, Gautier et al. 2003) 
0.00101. 1.49 (literature derived value LDV, final adjust value FAV, Muir et al. 2004) 
Octanol/Water Partition Coefficient, log KOW: 
2.92 (Leo et al. 1971) 
2.30 (Kenaga 1980) 
2.64 (Rao & Davidson 1980) 
3.087 (shake flask, Dubelman & Bremer 1983) 
3.52 (shake flask, Log P Database, Hansch & Leo 1987) 
3.27 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
3.52 (recommended, Sangster 1993) 
3.52 (recommended, Hansch et al. 1995) 
3.27 (RP-HPLC-RT correlation, Finizio et al. 1997) 
3.09 (literature derived value LDV, Muir et al. 2004) 
Octanol/Air Partition Coefficient, log KOA: 
9.31 (final adjust value FAV, Muir et al. 2004) 
Bioconcentration Factor, log BCF: 
1.45 (calculated-solubility, Kenaga 1980) 
0.954 (calculated-KOC, Kenaga 1980) 
1.88 (Schnoor & McAvoy 1981, Schnoor 1992) 
0.778 (freshwater fish, Call et al. 1984) 
1.70 (Pait et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.28 (soil, Beestman & Demming 1976) 
2.32 (soil, calculated, Kenaga & Goring 1980) 
2.30 (soil, Kenaga 1980) 
1.70 (sediment/water, Schnoor & McAvoy 1981) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3463 
1.91 (soil, average for soils 2–7, Weber & Peter 1982) 
2.08 (soil, screening model calculations, Jury et al. 1987b) 
2.28 (Carsel 1989) 
2.18, 2.23, 2.28, 2.53 (soil, lit. values, Bottoni & Funari 1992) 
2.23 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.63–2.28 (quoted values, Montgomery 1993) 
2.21 (selected, Wienhold & Gish 1994) 
2.28 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.28; 2.53 (soil, quoted exptl.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
2.22, 2.22, 2.20 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: k(measured) = 9000 d–1 and k(estimated) = 49000 d–1 (Glotfelty et al. 1989); 
estimated t. = 2444 d from 1-m depth of water at 20°C (Muir 1991) 
Volatilization rate k = 4.4 . 10–4 d–1, 2.8 . 10–3 d–1, 4.3 . 10–3 d–1 at 15, 25, 35°C, respectively, for commercial 
formulation; k = 5.8 . 10–5 d–1, 8.7 . 10–3 d–1, 1.4 . 10–2 d–1 at 15, 25, 35°C, respectively, for starch 
encapsulated formulation after application (Weinhold et al. 1993) 
Photolysis: t. = 2.25 h in distilled water (Tanaka et al. 1981; quoted, Cessna & Muir 1991); 640 ppb contaminated 
water in the presence of TiO2 and H2O2 photodegraded to 3.5 ppb by 15 h solar irradiation with complete 
degradation after 75 h (Muszkat et al. 1992). 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
k(aq.) = (3.8 ± 0.4) M–1 s–1 for direct reaction with ozone in water at pH 2–6.0 and 21°C, with a half-life 
of 2.4 h at pH 7 (Yao & Haag 1991). 
k(calc) = 7 . 109 M–1 s–1 for the reaction with hydroxyl radical in aqueous solutions at 24 ± 1°C (Haag & Yao 
1992) kOH = 2.3 . 10–11 cm3·molecule–1 s–1 with calculated tropospheric lifetime about 0.5 d at 298 K 
assuming an average OH concn of 1 . 106 molecule/cm3 (Gautier et al. 2003) 
Hydrolysis: alkaline chemical hydrolysis t. > 365 d (Schnoor & McAvoy 1981; quoted, Schnoor 1992). 
Biodegradation: t. < 6 months for 0.07 µg/mL to biodegrade in ground water, t. > 15 months for 10.0 µg/mL 
to biodegrade in groundwater both at 25°C and t. < 12 wk for 3.2 µg/mL to biodegrade in soil-water 
suspension at 35°C (Weidner 1974; quoted, Muir 1991); 
t. = 23 d for 0.244 µg/mL to biodegrade in river water at 23°C with biodegradation rate k = 0.030 d–1 
(Schnoor et al. 1982; quoted, Muir 1991); 
t. = 18 d from screening model calculations (Jury et al. 1987b); 
t. > 6 wk for 0.01–1.0 µg/mL to biodegrade in sewage effluent lake water at 28°C (Novick & Alexander 
1985; quoted, Muir 1991); 
overall degradation rate constant k = 0.0403 h–1 with t. = 17.2 h in sewage sludge and rate constant 
k = 0.1601 d–1 with t. = 4.3 d in garden soil (Muller & Buser 1995). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: tropospheric lifetime of 0.5 d for gas phase reaction with OH radicals; wet deposition lifetime estimated to 
be 2.8 d in the atmosphere by rainfall (Gautier et al. 2003) 
Surface water: t. = 23 d for 0.244 µg/mL to biodegrade in river water at 23°C with biodegradation rate k = 0.030 d–1 
(Schnoor et al. 1982; quoted, Muir 1991); 
t. > 6 wk for 0.01–1.0 µg/ml to biodegrade in sewage effluent lake water at 28°C (Novick & Alexander 
1985; quoted, Muir 1991); 
k(measured) = (3.8 ± 0.4) M–1 s–1 for direct reaction with ozone in water at pH 2–6 and 21°C, with t. = 2.4 h 
at pH 7 (Yao & Haag 1991). 
Ground water: t. < 6 months for 0.07 µg/mL to biodegrade in groundwater, and t. > 15 months for 10.0 µg/mL 
to biodegrade in groundwater both at 25°C (Weidner 1974; quoted, Muir 1991) reported t. = 7, 4–21 and 
38 d (Bottoni & Funari 1992) 
Sediment: 
© 2006 by Taylor & Francis Group, LLC

3464 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Soil: dissipation t. = 7.8 d in soil (Beestman & Demming 1974); measured dissipation rate k = 0.077 d–1 (Zimdahl 
& Clark 1982); 
t. = 23 and 5.7 d in soil containing 6 and 15% moisture, respectively (Walker & Brown 1985); 
t. = 18 d from screening model calculations (Jury et al. 1987b); 
estimated dissipation rate k = 0.020 and 0.036 d–1 (Nash 1988); 
field t. < 1.5 wk by using field lysimeters (Bowman 1990); 
degradation rate constant k = (4.52 ± 0.192) . 10–2 d–1 with t. = 15.3 d in control soil and k = (7.27 ± 0.772 . 
10–2 d–1 with t. = 9.53 d in pretreated soil in the field; k = (2.77 ± 0.226) . 10–2 d–1 with t. = 25 d in 
control soil and k = (14.1 ± 1.75) . 10–2 d–1 with t. = 4.93 d in pretreated soil once only in the laboratory 
(Walker & Welch 1991); 
selected field t. = 15 d (Wauchope et al. 1992; Hornsby et al. 1996; quoted, Richards & Baker 1993); 
soil t. = 30 d (quoted, Pait et al. 1992); 
reported t. = 7, 4–21 and 38 d (Bottoni & Funari 1992); 
soil t. = 14–28 d (Di Guardo et al. 1994); 

dissipation t. = 42 d from soil surface (Gish et al. 1995); 
degradation t. = 4.3 d in garden soil (Muller & Buser 1995); 
t. = 15 d (selected, Halfon et al. 1996); 
dissipation t.(calc) = 5 and 5.3 d in soil in model ecosystem, t. = 3.3 and 3.4 d in water in model ecosystem 
(Ramesh & Maheswari 2004). 
Biota: biochemical t. = 18 d from screening model calculations (Jury et al. 1987b). 
TABLE 17.1.1.1.1 
Reported Henry’s law constants of alachlor at various temperatures 
Gautier et al. 2003 
gas stripping-GC/MS 
t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) 
10 1.097.10.3 23 3.46.10.3 
10 1.26.10.3 25 6.33.10.3 
10 1.30.10.3 25 8.44.10.3 
11 9.76.10.4 25.0 7.24.10.3 
12 2.115.10.3 
15 1.68.10.3 Arrhenius expression: 
17 2.58.10.3 ln H’/(M atm.1) = –A + B/(T/K) 
18 3.13.10.3 A 20.946 
20 4.24.10.3 B 9200 
23 3.07.10.3 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3465 
FIGURE 17.1.1.1.1 Logarithm of Henry’s law constant versus reciprocal temperature for alachlor. 
Alachlor: Henry's law constant vs. 1/T 
-8.0 
-7.0 
-6.0 
-5.0 
-4.0 
-3.0 
0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
m . a P ( / H n l 
3 
) l o m / 
Gautier et al. 2003 
Fendinger & Glotfelty 1988 
Fendinger et al. 1989 
© 2006 by Taylor & Francis Group, LLC

3466 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.2 Ametryn 
Common Name: Ametryn 
Synonym: Amephyt, Ametrex, Evik, Gesapax 
Chemical Name: 6-methylthio-2-(ethylamino)-4-(isopropylamino)-1,3,5-triazine; N-ethyl-N.-(1-methylethyl)- 
6-(methyl-thio)-1,3,5-triazine-2,4-diamine 
Uses: herbicide to control broadleaf and grass weeds in corn, sugarcane, some citrus fruits, and in noncropland; also 
used as pre-harvest and post-harvest dessicant in potatoes to control crop and weeds. 
CAS Registry No: 834-12-8 
Molecular Formula: C9H17N5S 
Molecular Weight: 227.330 
Melting Point (°C): 
88 (Lide 2003) 
Boiling Point (°C): 328.78 (Rordorf 1989) 
Density (g/cm3 at 20°C): 
1.19 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
277.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
4.00 (pKa, Weber 1970; quoted, Bintein & Devillers 1994) 
4.10 (pKa, Worthing & Hance 1991; Montgomery 1993) 
10.07 (pKb, Wauchope et al. 1992; Hornsby et al. 1996) 
9.90 (pKb, Tomlin 1994) 
Enthalpy of Vaporization, .HV (kJ/mol): 
91.96 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
19.8 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
55 (Rordorf 1989) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.241 (mp at 88°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
700 (Woodford & Evans 1963) 
405, 195, 192 (26°C, shake flask-UV at pH 3.0, 7.0, 10.0, Ward & Weber 1968) 
185 (Martin & Worthing 1977; Herbicide Handbook 1978) 
185 (20°C, Khan 1980; Ashton & Crafts 1981; Verschueren 1983) 
194 (Weber et al. 1980) 
185 (20°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & Hance 1991; Montgomery 
1993; Milne 1995) 
185 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
200 (Tomlin 1994) 
134 (calculated-group contribution fragmentation method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
1.12 . 10–4 (20°C, extrapolated-Antoine eq. from gas saturation-GC measurements, measured range 50–130°C, 
Friedrich & Stammbach 1964) (See figure at the end of this section.) 
log (P/mmHg) = 11.911 – 4933/(T/K), temp range 50–130°C (gas saturation-GC, data presented in Antoine eq., 
Friedrich & Stammbach 1964) (See figure at the end of this section.) 
N 
N 
N 
HN 
NH 
S 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3467 
1.12 . 10–4 (20°C, Khan 1980; Ashton & Crafts 1981; Verschueren 1983) 
1.12 . 10–4 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993) 
log (PS/kPa) = 11.036 – 5270/(T/K), temp range 323–403 K, (solid, Antoine eq., Stephenson & Malanowski 1987) 
1.00 . 10–4 (20°C, selected, Suntio et al. 1988) 
1.12 . 10–4, 4.40 . 10–4 (20°C, 30°C, Herbicide Handbook 1989) 
3.74 . 10–4, 1.40 . 10–2, 0.30, 4.40, 46 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 16.85 – 6048.6/(T/K); measured range 49.5–85°C (gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.396 – 4803.6/(T/K); measured range 49.5–140°C (gas saturation-GC, Rordorf 1989) 
3.65 . 10–4 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
3.65 . 10–4 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.20 . 10–4 (20°C, calculated, Suntio et al. 1988) 
1.38 . 10–4 (calculated-P/C, Montgomery 1993) 
1.23 . 10–4 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.69 (Kenaga & Goring 1980) 
2.58 (Gerstl & Helling 1987) 
2.98 (shake flask, Log P Database, Hansch & Leo 1987) 
2.82 (Worthing & Hance 1991) 
2.98 (shake flask, Biagi et al. 1991) 
3.07 (RP-HPLC-RT correlation, Finizio et al. 1991) 
2.88 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
2.98 (recommended, Sangster 1993) 
2.63 (Tomlin 1994) 
2.61 (shake flask-UV, Liu & Qian 1995) 
2.58 (calculated-RP-HPLC-k. correlation, Liu & Qian 1995) 
2.83 (Milne 1995) 
2.98 (recommended, Hansch et al. 1995) 
2.88 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.52 (calculated-S, Kenaga 1980) 
1.32 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.59 (soil, Hamaker & Thompson 1972;) 
2.40 (soil, calculated, Kenaga & Goring 1980) 
2.59 (soil, Kenaga & Goring 1980) 
2.59 (Rao & Davidson 1980) 
2.59, 2.86 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
2.59, 2.51 (reported as log KOM, estimated as log KOM, Magee 1991) 
2.40–2.59, 2.58 (soil, quoted values, Bottoni & Funari 1992) 
2.48 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.23–2.44 (Montgomery 1993) 
2.48 (Tomlin 1994) 
2.42 (calculated-KOW, Liu & Qian 1995) 
2.59 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.70, 2.59 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, Gramatica 
et al. 2000) 
2.52, 2.63, 2.60, 2.35 (soils with organic carbon OC . 0.5% at: pH 4.5–9.0, pH 4.5–5.4, pH 5.5–6.0, pH-6.1, 
average, Delle Site 2001) 
1.84, 2.23 (Kishon river sediments, sorption isotherm, Chefetz et al. 2004) 
© 2006 by Taylor & Francis Group, LLC

3468 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 10 h for 10 µg mL–1 to degrade in distilled water under > 290 nm light and t. = 3.3 h in 1% 
acetone solution (Burkhard & Guth 1976; quoted, Cessna & Muir 1991); 
t. = 2.25 h for 17% of 33 µg mL–1 to degrade in 0.2% aqueous solutions of the surfactant Triton X-100 
and for 8% of 33 µg/mL to degrade in distilled water both under 300 nm light (Tanaka et al. 1981; 
quoted, Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: t. = 32 d at pH 1 and t. > 200 d at pH 13 (Montgomery 1993). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: 
Groundwater: reported half-lives or persistence, t. = 7–120 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 6.0 months at 15°C and t. = 4.5 months at 30°C in soils (Freed & Haque 1973); 
t. = 70–120 d (Bottoni & Funari 1992); 
selected t. = 60 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 70–129 d in soil (Tomlin 1994). 
Biota: 
FIGURE 17.1.1.2.1 Logarithm of vapor pressure versus reciprocal temperature for ametryn. 
Ametryn: vapor pressure vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Friedrich & Stammbach 1964 (50 to 130 °C) 
Friedrich & Stammbach 1964 (extrapolated) 
m.p. = 88 °C 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3469 
17.1.1.3 Amitrole 
Common Name: Amitrole 
Synonym: Amazole, Amitrol, Amizole, aminotriazole, Azolan, Azole, cytrol, Diurol 
Chemical Name: 3-amino-1,2,4-triazole; 3-amino-s-triazole; 1H-1,2,4-triazol-3-amine 
Uses: nonselective, foliage-applied herbicide in uncropped land and orchards to control perennial weeds in certain 
grasses. 
CAS Registry No: 61-82-5 
Molecular Formula: C2H4N4 
Molecular Weight: 84.080 
Melting Point (°C): 
159 (Khan 1980; Herbicide Handbook 1989; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.138 (Hartley & Kidd 1987; Herbicide Handbook 1989; Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
85.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
9.83 (pKb, Wauchope et al. 1992; Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
24.69 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0484 (mp at 159°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
252000 (Freed & Burschel 1957) 
280000 (Martin 1961; Spencer 1981) 
280000 (Bailey & White 1965; Khan 1980; Weber et al. 1980; Ashton & Crafts 1981; Willis & McDowell 
1982) 
soluble (Wauchope 1978) 
280000 (Worthing 1983, Worthing & Hance 1991) 
280000 (Hartley & Kidd 1987; Herbicide Handbook 1989; Reinert 1989) 
360000 (20–25°C, selected, Wauchope et al. 1992; Lohninger 1994; Hornsby et al. 1996) 
280000 (20°C at pH 7, quoted, Montgomery 1993) 
280000 (23°C, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 0.001 (Agrochemicals Handbook 1983; quoted, Howard 1991) 
< 0.001 (Hartley & Kidd 1987) 
5.50 . 10–8 (20°C, Worthing & Hance 1991; Tomlin 1994) 
5.87 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
5.51 . 10–7 (20°C, quoted, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
< 3.04 . 10–7 (calculated-P/C, Howard 1991) 
1.650 . 10–10 (20°C, calculated-P/C, Montgomery 1993) 
1.650 . 10–10 (calculated-P/C, this work) 
N
NH 
N
NH2 
© 2006 by Taylor & Francis Group, LLC

3470 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
–0.85 (shake flask, pH 7, Lichtner 1983) 
0.52 (selected, Dao et al. 1983; Gerstl & Helling 1987) 
–0.15 (Reinert 1989; quoted, Howard 1991; Montgomery 1993) 
–0.87, –0.84 (pH 7) (Hansch et al. 1995) 
–0.87 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
–0.301 (estimated-S, Lyman et al. 1982; quoted, Howard 1991) 
–0.347 (estimated-log KOW, Lyman et al. 1982; quoted, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
2.04 (soil, estimated-molecular topology & QSAR, Sabljic 1984) 
0.23 (calculated-MCI ., Gerstl & & Helling 1987) 
1.26 (Reinert 1989) 
2.00 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.73–2.31 (quoted, Montgomery 1993) 
2.00 (estimated-chemical structure, Lohninger 1994) 
1.25 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: photooxidation t. = 3.2–32 h in air, based on estimated rate constant for the vapor-phase reaction 
with hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: 
Biodegradation: aqueous aerobic t. = 672–4032 h, based on reported half-lives in soil and water (Freed & Haque 
1973; Reinert & Rogers 1987; quoted, Howard et al. 1991); aqueous anaerobic t. = 2688–16128 h, based 
on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 3.8 d, based on a theoretical calculation for the vapor-phase reaction with hydroxyl radicals in the 
atmosphere at 25°C (GEMS 1986; quoted, Howard 1989); 
t. = 3.2–32 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl radicals in air 
(Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 672–4320 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
Groundwater: t. = 1344–8640 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 
1991).‘ 
Sediment: 
Soil: t. = 1.4, 1.6, 1.3, 92, 36, and 56 d with disappearance rates: k = 0.495, 0.433, 0.533, 0.0075, 0.0193, and 
0.124 d–1 at pH 6.0, 7.0, 8.0, 5.3, 6.5, and 7.5 (Hamaker 1972; quoted, Nash 1988); 
t. = 1.5 month at 15°C and t. = 1.0 month at 30°C in soils (Freed & Haque 1973); 
persistence of one month in soil (Wauchope 1978); 
persistence in soil for ca. 2–4 wk (Herbicide Handbook 1989; Tomlin 1994); 
t. = 672–4320 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991); 
selected field t. = 14 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3471 
17.1.1.4 Atrazine 
Common Name: Atrazine 
Synonym: Aatrex, Akikon, Aktikon, Aktinit, Atratol, Atred, Atrex, Candex, Fenamine, Gesaprim, Hungazin, Inakor, 
Primatol, Primaze, Radazine, Strazine, Triazine A, Vectal, Weedex A, Wonuk, Zeazine 
Chemical Name: 2-chloro-4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine; 6-chloro-N-ethyl-N.-(1-methylethyl)-1,3,5- 
triazine-diamine 
Uses: pre-emergence and post-emergence herbicide to control some annual grasses and broadleaf weeds in corn, fallow 
land, rangeland, sorghum, noncropland, certain tropical plantations, evergreen nurseries, fruit crops, and lawns. 
CAS Registry No: 1912-24-9 
Molecular Formula: C8H14ClN5 
Molecular Weight: 215.684 
Melting Point (°C): 
173 (Lide 2003) 
Boiling Point (C): 
Density (g/cm3 at 20°C): 
1.187 (Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
250.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
1.68 (pKa, Weber 1970; Somasundaram et al. 1991; Bintein & Devillers 1994) 
1.70 (pKa, Weber et al. 1980; Willis & McDowell 1982; Worthing & Hance 1991; Francioso et al. 1992; 
Montgomery 1993; Tomlin 1994) 
1.60 (pKa, Yao & Haag 1991; Haag & Yao 1992) 
12.32 (pKb, Wauchope et al. 1992; Hornsby et al. 1996) 
1.62 (pKa, 20°C, Montgomery 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
40.585 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 20°C (assuming .Sfus = 56 J/mol K), 
F: 0.0353 (mp at 173°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
70.0 (26°C, Bailey & White 1965) 
50.0 (Gunther et al. 1968) 
31.1, 34.9, 36.8 (26°C, shake flask-UV at pH 3.0, 7.0. 10.0, Ward & Weber 1968) 
98.0 (50°C, Getzen & Ward 1971) 
33.0 (shake flask-GC, Hormann & Eberle 1972) 
29.9 (shake flask-UV, Hurle & Freed 1972) 
30.0 (20°C, Weber 1972; Worthing & Walker 1987; Worthing & Hance 1991; Burkhard & Guth 1981) 
33.0 (27°C, Ashton & Crafts 1973, 1981; Khan 1980; Herbicide Handbook 1989; Pait et al. 1992) 
32.0 (Freed 1976; Beste & Humburg 1983; Jury et al. 1983) 
31.5 (Spencer 1976) 
33.0 (Wauchope 1978; Kenaga 1980; Kenaga & Goring 1980) 
35.0 (Weber et al. 1980) 
30.0 (shake flask-HPLC, Ellgehausen et al. 1981) 
24.0 (Thomas 1982) 
70.0 (Windholz 1983) 
N 
N 
N 
HN 
NH 
Cl 
© 2006 by Taylor & Francis Group, LLC

3472 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
28.0 (20°C, Hartley & Kidd 1987) 
29.9, 33, 70 (literature data variability, Heller et al. 1989) 
33.0 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
28.0, 33.0 (20°C, 27°C, Montgomery 1993) 
33.0 (20°C, Tomlin 1994) 
28.0 (Milne 1995) 
4012, 4012 (supercooled liquid SL: literature derived value LDV, final adjust value FAV, Muir et al. 2004) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
44.0 . 10–5* (20°C, extrapolated-Antoine eq. from gas saturation-GC measurements, measured range 50–130°C, 
Friedrich & Stammbach 1964) 
log (P/mmHg) = 13.766 – 5945/(T/K), temp range 50–130°C (gas saturation-GC, data presented in graph and 
Antoine eq., Friedrich & Stammbach 1964) 
4.00 . 10–5 (20°C, Weber 1972; Worthing 1979; Worthing & Walker 1987, Worthing & Hance 1991; quoted, 
Khan 1980; Dobbs et al. 1984; Muir 1991) 
3.99 . 10–5 (20°C, gas saturation, extrapolated from Friedrich & Stammbach 1964, Spencer 1976) 
4.00 . 10–5 (20°C, Hartley & Graham-Bryce 1980; Beste & Humburg 1983) 
4.00 . 10–5 (20–25°C, Weber et al. 1980) 
4.00 . 10–5 (20°C, Ashton & Crafts 1981) 
1.33 . 10–4 (selected, Schnoor & McAvoy 1981) 
3.70 . 10–5* (20°C, extrapolated from gas saturation measurement, Grayson & Fosbracey 1982) 
ln (P/Pa) = 36.8 – 13778/(T/K), for temp range 51–81.5°C, (Antoine eq., gas saturation, Grayson & Fosbracey 
1982) 
1.13 . 10–4 (Thomas 1982) 
4.00 . 10–5 (20°C, Hartley & Kidd 1987) 
log (PS/kPa) = 12.8909 – 5945/(/K), temp range 323–403 K, (solid, Antoine eq., Stephenson & Malanowski 1987) 
8.70 . 10–5 (selected, Nash 1989) 
3.99 . 10–5, 18.6 . 10–5 (20°C, 30°C, Herbicide Handbook 1989) 
3.90 . 10–5* (gas saturation-GC, measured range 40.5–125°C, Rordorf 1989) 
log (PS/Pa) = 13.27071 – 6558.5/(T/K); measured range 40.5–125°C (gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.396 – 4803.6/(T/K); measured range not specified (gas saturation-GC, Rordorf 1989) 
4.05 . 10–5 (Riederer 1990) 
3.85 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
4.00 . 10–5 (20°C, Montgomery 1993) 
2.00 . 10–5 (selected, Sieber et al. 1994) 
3.90 . 10–5 (Tomlin 1994; quoted, Halfon et al. 1996) 
6.70 . 10–4* (40°C, Knudsen effusion method, measured range 40–80°C, Goodman 1997) 
log (P/Pa) = 16.08 – 6040/(T/K); temp range 40–80°C, Goodman 1997) 
0.0096, 0.0096 (supercooled liquid PL: literature derived value LDV, final adjust value FAV, Muir et al. 
2004) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
6.20 . 10–4 (calculated-P/C, Jury et al. 1983, 1984, 1987a; Jury & Ghodrati 1989) 
2.90 . 10–4 (20°C, calculated-P/C, Suntio et al. 1988) 
6.19 . 10–4 (calculated-P/C, Taylor & Glotfelty 1988) 
5.70 . 10–4 (calculated-P/C, Nash 1989) 
3.04 . 10–4 (Riederer 1990) 
2.66 . 10–4 (calculated-P/C, Howard 1991) 
2.89 . 10–4 (20°C, calculated-P/C, Muir 1991) 
3.08 . 10–4 (20°C, calculated-P/C, Montgomery 1993) 
1.00 . 10–3 (calculated-P/C, Sieber et al. 1994) 
6.20 . 10–4 (Gish et al. 1995) 
2.88 . 10–4 (calculated-P/C, this work) 
0.518 (final adjust value FAV, Muir et al. 2004) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3473 
Octanol/Water Partition Coefficient, log KOW: 
2.75 (shake flask-GC, Erkell & Walum 1979) 
2.63 (HPLC-RT correlation, Veith et al. 1979, 1980; Veith & Kosian 1982) 
2.35 (Rao & Davidson 1980) 
2.71 (shake flask-both phases analyzed by GC and UV spec., Brown & Flagg 1981) 
2.40, 2.21 (HPLC-k. correlation, McDuffie 1981) 
2.75 (shake flask, Ellgehausen et al. 1981) 
2.80 (Elgar 1983) 
2.05 (RP-HPLC-k. correlation, Braumann et al. 1983) 
2.64 (shake flask-GC, Geyer et al. 1984) 
2.75 (Hansch & Leo 1985) 
2.64 (OECD method 1981, Kerler & Schonherr 1988) 
2.68 (Lopez-Avila et al. 1989) 
2.61, 2.61 (RP-HPLC-RT correlation, calculated, Finizio et al. 1991) 
2.34 (Worthing & Hance 1991; Milne 1995) 
2.10 (shake flask, pH 7, Baker et al. 1992) 
2.33–2.80 (quoted values, Montgomery 1993) 
2.75 (recommended, Sangster 1993) 
2.42 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
2.50 (Tomlin 1994) 
2.27 (shake flask-UV, Liu & Qian 1995) 
2.61 (selected, Hansch et al. 1995) 
2.43 (RP-HPLC-RT correlation, Finizio et al. 1997) 
2.00 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
2.63 ± 0.07, 2.47 ± 0.15, 2.46 ± 0.09 (shake flask, isocratic RP-HPLC-k. correlation, gradient RP-HPLC-k. 
correlation, Paschke et al. 2004) 
2.40 (literature derived value LDV, Muir et al. 2004) 
Octanol/Air Partition Coefficient, log KOA: 
9.08 (final adjust value FAV, Muir et al. 2004) 
Bioconcentration Factor, log BCF: 
–2.00 (vegetation, correlated-KOW, Beynon et al. 1972; quoted, Travis & Arms 1988) 
1.04 (Metcalf & Sanborn 1975; quoted, Kenaga & Goring 1980; Isensee 1991) 
1.00 (Isensee 1976) 
0.50 (whitefish, Burkhard & Guth 1976) 
0.90 (fathead minnow, Veith et al. 1979) 
0.30 (catfish, Ellgehausen et al. 1980; quoted, Howard 1991) 
0.26 (Daphnia magna, wet wt. basis, Ellgehausen et al. 1980) 
0.48 (Corygonus fera. at 12°C, Gunkel & Streit 1980) 
1.93, 0.845 (calculated-S, KOC, Kenaga 1980) 
< 0.90 (Veith et al. 1980) 
1.90 (selected, Schnoor & McAvoy 1981) 
1.93, 1.77 (estimated-S, estimated-KOW, Bysshe 1982) 
0.90 (fathead minnow, Veith & Kosian 1982) 
2.00 (mottled sculpin, Lynch et al. 1982) 
1.60 (activated sludge, Freitag et al. 1984) 
1.00 (golden ide, Freitag et al. 1985) 
0.477, 0.954, 0.845, 0.778 (zebrafish: egg, embryo, yolk sac fry, juvenile; Gorge & Nagel 1990) 
0.78 (Brachydanio rerio, Gorge & Nagel 1990) 
0.983 (Hydrilla, Hinman & Klaine 1992) 
1.98, 0.748, 0.230 (algae Scenedesmus acutus, catfish Ictalurus melas, Daphnia magna, wet wt basis, Wang 
et al. 1996) 
© 2006 by Taylor & Francis Group, LLC

3474 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioaccumulation Factor, log BAF: 
1.710 (algae, Ellgehausen et al. 1980;) 
0.329 (catfish, Ellgehausen et al. 1980) 
0.261 (daphnids, Ellgehausen et al. 1980) 
1.72, 0.477, 1.60 (algae, fish, sludge, Klein et al. 1984) 
1.70, < 1.00, 1.60 (algae, fish, sludge, Freitag et al. 1985) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
2.17 (soil, Hamaker & Thompson 1972) 
2.09 (average of 4 soils, Rao & Davidson 1979; Davidson et al. 1980) 
2.81 (calculated, Kenaga & Goring 1980; Kenaga 1980) 
2.20 (average of soils/sediments, Rao & Davidson 1980) 
2.21 (average of 56 soils from lit. review, Rao & Davidson 1980) 
2.33 (a Georgia pond sediment, sorption isotherms by shake flask-GC/ECD, Brown & Flagg 1981) 
1.59 (a Swiss soil, Burkhard & Guth 1981) 
3.11, 2.31; 1.94, 2.42 (estimated-S, calculated-S and mp; estimated-KOW, Karickhoff 1981) 
0.7–1.48 (selected, sediment/water, Schnoor & McAvoy 1981) 
2.18 (soil, Thomas 1982) 
2.29–3.18 (Wolf & Jackson 1982) 
3.23–4.13 (Means & Wijayaratne 1982) 
2.21 (soil average, Jury et al. 1983) 
1.63–3.29 (Wauchope & Myers 1985; 1991) 
2.46 (calculated-MCI ., Gerstl & Helling 1987) 
2.20 (soil, screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
1.92 (RP-HPLC-k. correlation, cyanopropyl column, Hodson & Williams 1988) 
2.21 (estimated as log KOM, Magee 1991) 
2.0, 2.18, 2.17–2.81, 2.26 (soil, literature values, Bottoni & Funari 1992) 
2.27, 2.41, 2.59, 2.16 (soils, no. 1, 2, 3, 4; Francioso et al. 1992) 
1.81 (soil, HPLC-screening method, mean value from different stationary and mobile phases, Kordel 
et al. 1993, 1995a,b) 
2.00 (soil, 20–25°C, selected, Wauchope et al. 1992; quoted, Dowd et al. 1993; Richards & Baker 1993; 
Wienhold & Gish 1994; Hornsby et al. 1996) 
1.95–2.71 (quoted values, Montgomery 1993) 
2,60 (soil with 9.23% organic carbon, Donati et al. 1994) 
2.04 (agricultural soil, Dousset et al. 1994) 
2.40 (estimated-chemical structure, Lohninger 1994) 
2.05 (soil with low organic carbon 0.18%, Roy & Krapac 1994) 
1.95–2.19 (Tomlin 1994) 
2.23 (calculated-KOW, Liu & Qian 1995) 
2.24 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.81; 2.36 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
1.00 (sediment/water, Chung et al. 1996) 
2.64 (Levy wetland soil, sorption equilibrium technique, 24°C, Mersie & Seybold 1996) 
2.14–2.21; 2.03–2.12 (Teufelsweiher pond sediment: field measurement; exptl laboratory data, Gao et al. 1997) 
2.19 (sediment from Teufelsweiher pond, batch equilibrium isotherm, Gao et al. 1998) 
1.93, 1.80–1.85, 1.81 (soil, liquid sewage sludge amended soil, sludge, pH 7.2, batch equilibrium-sorption 
isotherm, Celis et al. 1998) 
1.93, 1.83, 1.79 (soil + CaCl2 at pH 7.2, soil + liquid sewage sludge and dissolved organic matter at pH 7.5, 
soil + liquid sewage sludge at pH 7.2, batch equilibrium-sorption isotherm, Celis et al. 1998) 
2.566, 1.72, 1.75, 1.505, 2.40 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-
HPLC/UV, Gawlik et al. 1998, 1999) 
2.24, 2.45; 2.82., 1.81, 2.81, 1.98, 1.99 (quoted lit., calculated-KOW; HPLC-screening method with different LCcolumns, 
Szabo et al. 1999) 
2.154, 1.97, 1.77, 1.61, 2.496 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1999) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3475 
1.69 (sandy loam soil, column equilibrium method, 20°C, Xu et al. 1999) 
2.154, 1.969, 1.769, 1,610, 2.486 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
2.24; 2.27, 2.47 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
2.59, 2.16 (average values for sediments, soils, Delle Site 2001) 
2.31, 2.17, 2.56 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, and pH 3.2–8.2, average, Delle 
Site 2001) 
2.34, 2.24, 2.06, 2.59 (soils with organic carbon OC . 0.5% at: pH 3.2–5.0, pH 5.1–5.9, pH-6.0, pH 4.4–7.7, 
average, Delle Site 2001) 
1.77, 2.10 (Kishon river sediments, sorption isotherm, Chefetz et al. 2004) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: initial rate constant k = 6.4 . 10–4 h–1 and predicted rate constant k = 4.2 . 10–4 h–1 from soil with 
t. = 1650 h (Thomas 1982); 
t. = 97 d (Jury et al. 1983; quoted, Grover 1991); 
rate constants k(measured) = 1100 d–1 and k(est.) = 6000 d–1 (Glotfelty et al. 1989); 
Half-lives from soil surfaces: t. = 655 to > 1000 d in peat soil and t. = 143–939 d in sandy soil; half-lives 
from plant surfaces: t. = 25.6 d in bean, t. = 24.3 d in turnips and t. = 14.6 d in oats at 20 ± 1°C (Dorfler 
et al. 1991) 
Volatilization rate k = 1.4 . 10–4 d–1, 2.6 . 10–3 d–1, 4.4 . 10–3 d–1 at 15, 25, 35°C, respectively, for commercial 
formulation; k = 1.2 . 10–5 d–1, 4.8 . 10–4 d–1, 8.1 . 10–4 d–1 at 15, 25, 35°C, respectively, for starchencapsulated 
formulation after application (Weinhold et al. 1993) 
Photolysis: t. = (19 ± 9) h under summer sunlight of 9.1 h d–1 exposure and t. = 61 ± 29 h under spring sunlight 
of 3.7 h d–1 exposure in 10 ppm aqueous solutions: (Burkhard et al. 1975); 
t. = 4.9 h for 10 µg/mL to degrade in 1% acetone solution and t. = 25 h for 10 µg/mL to degrade in distilled 
water both under > 290 nm light (Burkhard & Guth 1976); 
nearsurface direct sunlight photolysis rate constant k = 9 . 10–6 d–1 with t. = 81,000 d (Schnoor & McAvoy 
1981; quoted, Schnoor 1992); 
t. = 2.25 h for 17–27% of 100 µg/mL to degrade in distilled water under 300 nm light (Tanaka et al. 1981; 
quoted, Cessna & Muir 1991); 
rate of photolytic degradation was slightly higher in water (t. = 3–12 d) than in sediments (t. = 1–4 wk) 
(Jones et al. 1982; quoted, Montgomery 1993); 
40 ppb contaminated water in presence of TiO2 and H2O2 degraded to 4 ppb after 15 h by solar irradiation 
with complete degradation after 75 h (Muszkat et al. 1992) 
t.(aq.) = 335 d at pH 7 under natural light; t. = 17.5 h at pH 7 using mercury lamp in aqueous solution; 
soil photolysis t.= 12 d under natural light, t. = 5 d using mercury lamp and t. = 45 d using xenon lamp 
(Solomon et al. 1996); 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = 147.2 . 10–12 cm3 molecule–1 s–1 with n half-life of 2.6 h at 25°C for the vapor-phase reaction with 
hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
k(aq.) = 5.9 . 109 M–1 s–1 for the reaction (photo-Fenton with reference to acetophenone) with OH radical 
in aqueous solutions at pH 3.6 and 24 ± 1°C (Buxton et al. 1988; quoted, Faust & Hoigne 1990; Haag & 
Yao 1992) 
k(aq.) = (24 ± 4) M–1 s–1 for direct reaction with ozone at pH 4 and 26°C; k = (13 ± 1) M–1 s–1 at pH 4.2 
and 21°C and k = (24 ± 4) M–1 s–1 at pH 4.1 and 19°C in water, with a half-life of 1.5 h at pH 7 (Yao & 
Haag 1991) 
k(aq.) = (2.6 ± 0.4) . 109 M–1 s–1 for the reaction (photo-Fenton with reference to acetophenone) with 
hydroxyl radical in aqueous solutions at pH 3.6 and 24 ± 1°C (Haag & Yao 1992) 
k(aq.) = 0.82 . 109 M–1 s–1 for reaction with hydroxyl radical in irradiated field water (Mabury & Crosby 
1996) 
© 2006 by Taylor & Francis Group, LLC

3476 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Hydrolysis: t. ~ 70 d at pH 3.1 of citrate buffer; t. ~ 75 d at pH 11.1 of carbonate buffer and t. ~ 2 d at 3.9 of 
phosphate buffer + sterile lake sediment in aqueous solutions at 25°C (Armstrong et al. 1967; quoted, Muir 
1991) 
Over all rate constant k = 7.6 . 10–5 s–1 with t. = 2.5 h at 25°C and pH 7 (Mabey & Mill 1978) 
t. = 3.3, 14, 58, 240, 100, 12.5, and 1.5 d at pH 1, 2, 3, 4, 11, 12, and 13, respectively, in aqueous buffered 
solutions in soil at 25°C (Armstrong et al. 1967; quoted, Montgomery 1993); 
t. = 244 d without humic materials, t. = 1.37 d with the presence of 2% humic acid at pH 4 and 25°C 
(Li & Felbeck 1972; quoted, Howard 1991; Montgomery 1993) 
k = 3.9 . 10–5 M–1 s–1 and k = 7.6 . 10–5 M–1 s–1 with t. = 66 and 81 d in aqueous solutions of pH 3.1 and 
11.1, respectively (Wolfe et al. 1976; quoted, Muir 1991) 
k(aq.) = 19.9 d–1 at pH 2.9, k = 3.99 d–1 at pH 4.5, k = 1.74 d–1 at pH 6.0, and k = 0.934 d–1 at pH 7.0 with 
corresponding t. = 34.8, 174, 398, and 742 d all at 25°C in 0.5 mg mL–1 concn. of aqueous fulvic acid 
(Khan 1978; quoted, Howard 1991; Montgomery 1993) 
k(aq.) = 28.4 d–1 at pH 2.8, k = 12.6 d–1 at pH 4.5, k = 3.16 d–1 at pH 6.0, and k = 1.23 d–1 at pH 7.0 with 
corresponding t. = 24.4, 55.0, 219, and 563 d all at 25°C in 1.0 mg mL–1 concn. of aqueous fulvic acid 
(Khan 1978) 
k(aq.) = 151 d–1 at pH 2.4, k = 43.7 d–1 at pH 4.5, k = 13.2 d–1 at pH 6.0, and k = 7.93 d–1 at pH 7.0 with 
corresponding t. = 4.60, 15.9, 52.5 and 87.3 d all at 25°C in 5.0 mg mL–1 concn. of aqueous fulvic acid 
(Khan 1978) 
k(aq.) = 9.30 . 10–6 s–1 with t. = 86 d at 20°C in a buffer at pH 5 (Burkhard & Guth 1981; quoted, Muir 
1991) 
t. > 3 months (in sterile buffer solution at pH 7.2) and t. > 14 d (in sterile mineral salt solution at pH 7.2) 
for 20 µg mL–1 to hydrolyze at 23°C (Geller 1980; quoted, Muir 1991) 
k(alkaline) = 1 . 10–16 M–1 s–1 with t. = 742 d (Schnoor & McAvoy 1981; quoted, Schnoor 1992) 
t. = 1771 yr at pH 7 and 25°C (Montgomery 1993) 
Biodegradation: 
t. = 64 d in soil (Armstrong et al. 1967; Dao et al. 1979; quoted, Means et al. 1983) 
t. = 3.21 d in aqueous solution from river die-away tests (Furmidge & Osgerby 1967; quoted, Scow 1982) 
t.(aerobic) > 90 d for 10–20 µg mL–1 to degrade in soil-water suspension (Goswami & Green 1971; quoted, 
Muir 1991) 
k(aq.) = 0.019 d–1 by soil incubation die-away studies (Rao & Davidson 1980; quoted, Scow 1982); 
t.(aerobic) > 35 d for 0.1–1.0 µg mL–1 to slowly biodegrade in sediment/water at 25°C (Wolf & Jackson 
1982; quoted, Muir 1991) 
t. = 36 and 110 d in soil (Jones et al. 1982; quoted, Means et al. 1983) 
t. = 71 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Jury et al. 1983, 1984, 1987a; 
Jury & Ghodrati 1989; quoted, Grover 1991) 
k = 0.22 d–1 of aerobic degradation rate observed in incubations of river water samples (Lyman et al. 1990; 
quoted, Hemond & Fechner 1994) 
t. = 201 d with 12 mM methanol, for aqueous atrazine using first-order decay rate, t. = 289 d with 6 mM 
sodium acetate, t. = 164 d with 6 mM acetic acid and t. = 200 d with 2 mM glucose; however t. = 224 d 
in the sample reactors without any organic amendments (Chung et al. 1996) 
degradation t. = 39 h and 43 h by soil micro Rhodococcus. sp. NI86/21 with atrazine concn 4 µg/mL and 
8 µg/mL respectively (Van Zwieten & Kennedy 1995) 
first order removal of atrazine from sediment organic carbon: k = –0.0054 d–1 with t. = 128 d in surface 
sediment 0–6 cm depth, k = –0.0016 d–1 with t. = 433 d in sub-surface sediment 24–34 cm depth from 
Blue Heron Pond; k = –0.007 d–1 with t. = 99 d in surface sediment 0–6 cm depth, k = –0.0022 d–1 with 
t. = 630 d in sub-surface sediment 24–34 cm depth rom Oyster Rake Pond; k = –0.0142 d–1 with t. = 49 d 
in surface sediment 0–6 cm depth, k = –0.0009 d–1 with t. = 770 d in sub-surface sediment 24–34 cm 
depth from Trumpet Creeper East Pond, and k = –0.0149 d–1 with t. = 47 d in surface sediment 0–6 cm 
depth, k = –0.0000 d–1 with t. = 70 d in sub-surface sediment 24–34 cm depth from Trumpet Creeper 
North, Kiawah island (Smalling & Aelion 2004) 
50–60% degradation in 35–100 d by anaerobic mixed culture microorganisms with atrazine as sole carbon 
source (Ghosh & Philip 2004) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3477 
k2 = 0.0248, 1.26 h–1 (algae, daphnids, Ellgehausen et al. 1980) 
k2 = 27.2 d–1 (catfish, Ellgehausen et al. 1980) 
k1 = 2.4, 30, 19.0 h–1 (zebrafish: egg, yolk sac fry, juvenile; Gorge & Nagel 1990) 
k1 = 227.0 h–1; k2 = 2.354 h–1 (algae Scenedesmus acutus, Wang et al. 1996) 
k1 = 0.412 h–1; k2 = 0.073 h–1 (catfish Ictalurus melas, Wang et al. 1996) 
k1 = 2.027 h–1; k2 = 1.161 h–1 (water flea Daphnia magna, Wang et al. 1996) 
Half-Lives in the Environment: 
Air: t. = 2.6 h, based on estimated rate constant k = 147.2 . 10–12 cm3 molecule–1 s–1 at 25°C for the vaporphase 
reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard 1991). 
Surface water: estimated t. ~ 3.21 d in aqueous solution from river die-away tests (Furmidge & Osgerby 1967; 
quoted, Scow 1982); 
t. = 1–4 wk in estuarine systems (Jones et al. 1982; quoted, Meakins et al. 1994); 
under laboratory conditions in distilled water and river water was completely degraded after 21.3 and 7.3 h, 
respectively (Mansour et al. 1989; quoted, Montgomery 1993); 
t. = 3.2 d to 7–8 months in aquatic environments (Eisler 1985; quoted, Day 1991); 
measured rate constant k = (24 ± 4) M–1 s–1 at pH 4.0, k = (13 ± 1) M–1 s–1 at pH 4.2, for direct reaction with 
ozone in water at 26 and 21°C, respectively, with t. = 1.5 h at pH 7 (Yao & Haag 1991);. 
t. = 35.6–168 h in surface water system of a small stream in Iowa by water quality analyses (Kolpin & 
Kalkhoff 1993); 
t. = 235 d at 6°C, t. = 164 d at 22°C in darkness, t. = 59 d under sunlight conditions for river water at 
pH 17.3; t. = 130 d at 22°C in darkness for filtered river water at pH 7.3 and t. = 200 d at 22°C in 
darkness, t. = 169 d under sunlight conditions for seawater, pH 8.1 (Lartiges & Garrigues 1995) 
Groundwater: t. = 6–15 months for 0.72–10 µg mL–1 to biodegrade slowly at 25°C (Weidener 1974; quoted, 
Muir 1991) 
reported half-lives or persistence, t. = 60–150, 71, 74, and 130 d (Bottoni & Funari 1992) 
Sediment: t. = 145 d in a Wisconsin Lake sediment (Armstrong et al. 1967; quoted, Jones et al. 1982; Means 
et al. 1983) and t. ~ 30 d for Chesapeake Bay sediment (Ballantine et al. 1978; quoted, Jones et al. 1982); 
t. = 7–28 d for 0.1 µg mL–1 to rapid degrade in both aerobic and low oxygen systems in estuarine 
sediment/water at 12–35°C (Jones et al. 1982, quoted, Muir 1991); 
t.(aerobic) > 35 d for 0.1–1.0 µg mL–1 to slowly biodegrade in sediment/water at 25°C (Wolf & Jackson 
1982; quoted, Muir 1991) 
t. = 60–120 d in surface sediment, t. = 60–223 d in subsurface sediment 
biodegradation t. = 47–128 d in the surface and t. = 70–770 in subsurface sediment (Smalling & Aelion 
2004) 
Soil: half-lives in aqueous buffered solutions in soil at 25°C and pH 1, 2, 3, 4, 11, 12, and 13 were reported to 
be 3.3, 14, 58, 240, 100, 12.5, and 1.5 d, respectively (Armstrong et al. 1967; quoted, Montgomery 1993); 
t. = 3–5 yr in agricultural soils (Armstrong et al. 1967; quoted, Jones et al. 1982); 
estimated persistence of 10 months in soil (Kearney et al. 1969; quoted, Jury et al. 1987a); 
t. = 1.73, and 244 d at 25°C and pH 4 with and without fulvic acid (2%) (Li & Felbeck 1972; quoted, 
Montgomery 1993); 
persistence of 10 months in soil (Edwards 1973; quoted, Morrill et al. 1982); 
t. = 6.0 months at 15°C and t. = 2.0 months at 30°C in soils (Freed & Haque 1973); 
persistence of 12 months (Wauchope 1978); 
correlated t. = 37 d at pH 5.1–7.0, and t. = 28 d at pH 7.7–8.2 (Boddington Barn soil, Hance 1979), 
t. ~ 30 d at pH 4.6–5.3 and t. = 40 d at pH 6.3–8.0 (Triangle soil, Hance 1979); 
t. = 37 d in agricultural soils (Dao et al. 1979; quoted, Jones et al. 1982); 
estimated first-order t. = 36.5 d from biodegradation rate constant k = 0.019 d–1 by soil incubation die-away 
studies (Rao & Davidson 1980; quoted, Scow 1982); 
t. = 53 and 113 d at pH 6.5 at 22°C in a Hatzenbuhl soil at pH 4.8 and Neuhofen soil, respectively (Burkhard 
& Guth 1981; quoted, Montgomery 1993); 
t. = 1–6 months (Jones et al. 1982; quoted, Meakins et al. 1994); 
moderately persistent in soils with t. = 20–100 d (Willis & McDowell 1982); 
biodegradation t. = 71 d from screening model calculations (Jury et al. 1984; 1987a,b; Jury & Ghodrati 
1989); 
© 2006 by Taylor & Francis Group, LLC

3478 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
t. ~ 6–10 wk (Hartley & Kidd 1987; quoted, Montgomery 1993); 
field t. = 4 wk by using lysimeters (Bowman 1990); 
half-lives from soil surfaces: t. = 655 to > 1000 d in peat soil and t. = 143–939 d in sandy soil at 20 ± 1°C 
(Dorfler et al. 1991); 
degradation rate constant k = (1.20 ± 0.097) . 10–2 d–1 with t. = 57.8 d in control soil and k = (1.01 ± 0.034) . 
10–2 d–1 with t. = 68.6 d in pretreated soil once only in the laboratory (Walker & Welch 1991); 
t. ~ 21 d based on extractable residues in microcosm studies, compared to t. = 14 d in surface field soil 
(Winkelmann & Klaine 1991); 
selected field t. = 60 d (Wauchope et al. 1992; quoted, Dowd et al. 1993; Richards & Baker 1993; Hornsby 
et al. 1996); 
soil t. = 130 d (quoted, Pait et al. 1992); 
field t. = 35–50 d in soil and water but may be longer under cold or dry conditions; t. = 105 to > 200 d 
under groundwater conditions, depending on test system (Wood et al. 1991; quoted, Tomlin 1994); 
reported t. = 60–150 d, 71 d, 74 d and 130 d (Bottoni & Funari 1992); 
first-order k = –0.017 to –0.003 d–1 with corresponding t. = 41 d in the 0- to 30-cm soil to t. = 231 d in 
the 90 to 120-cm soil in Ames, Iowa (Kruger et al. 1993); 
dissipation t. = 71 d from soil surface (Gish et al. 1995); 
t. = 60 d (selected, Halfon et al. 1996). 
t. = 60 d (Gao et al. 1997) 
Biota: t. = 0.03 h in algae, t. = 1.52 d in catfish and t. = 9.5 h in daphnids (Ellgehausen et al. 1980); 
biochemical t. = 64 d from screening model calculations (Jury et al. 1987b); 
t. = 25.6 d in bean, t. = 24.3 d in turnips and t. = 14.6 d in oats at 20 ± 1°C from plant surfaces (Dorfler 
et al. 1991). 
TABLE 17.1.1.4.1 
Reported vapor pressures of atrazine at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Friedrich & Stammbach 1964 Grayson & Fosbracey 1982 Rordorf 1989 Goodman 1997 
gas saturation-GC gas saturation-GC gas saturation-GC Knudsen effusion method 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
20 4.0 . 10–5 51.0 0.0040 25 3.9 . 10–5 40 6.7 . 10–4 
extrapolated 55.5 0.0048 50 1.9 . 10–3 50 2.2 . 10–3 
measured range 50–130°C 63.0 0.0095 75 0.056 60 9.5 . 10–3 
Antoine eq. 66.0 0.0337 100 1.0 70 0.030 
eq. 1 P/mmHg 66.7 0.023 125 13.0 80 0.098 
A 13.766 76.5 0.0713 
B 5945 81.5 0.117 eq. 1 PS/Pa eq. 1 P/Pa 
20 3.7 . 10–5 A 17.583 A 16.08 
B 6558.5 B 6040 
eq. 1a P/Pa for temp range 40–125°C 
A 36.80 
B 13.778 liquid 
eq. 1 PL/Pa 
A 13.2701 
B 4626.79 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3479 
FIGURE 17.1.1.4.1 Logarithm of vapor pressure versus reciprocal temperature for atrazine. 
Atrazine: vapor pressure vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Grayson & Fosbracey 1982 
Rordorf 1989 
Goodman 1997 
Friedrich & Stammbach 1964 (50 to 130 °C) 
Friedrich & Stammbach 1964 (extrapolated) 
m.p. = 173 °C 
© 2006 by Taylor & Francis Group, LLC

3480 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.5 Barban 
Common Name: Barban 
Synonym: Barbamate, Barbane, Carbine, Carbyne, CBN, Chlorinat 
Chemical Name: carbamic acid, (3-chlorophenyl)-, 4-chloro-2-butynyl ester; 4-chlorobut-2-ynyl 3-chloro-carbanilate; 
4-chloro-2-butynyl 3-chlorophenylcarbamate 
Uses: herbicide for post-emergence control of wild oats in wheat, barley, broad beans, field beans, soybeans, peas, sugar 
beet, flax, lucerne, lentils, mustard, oilseed rape, sunflowers, etc. 
CAS Registry No: 101-27-9 
Molecular Formula: C11H9Cl2NO2 
Molecular Weight: 258.101 
Melting Point (°C): 
75 (Khan 1980; Herbicide Handbook 1989; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.403 (25°C, Hartley & Kidd 1987) 
Molar Volume (cm3/mol): 
262.8 (calculated-Le Bas method at normal boiling point, this work) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
109.1 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
26.8 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.323 (mp at 75°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
15.0 (Swezey & Nex 1961) 
11.0 (20°C, Weber 1972; Worthing & Walker 1987) 
11.0 (Martin & Worthing 1977; Ashton & Crafts 1981; Hartley & Kidd 1987; Worthing & Walker 1987; 
Herbicide Handbook 1989, Budavari 1989; Milne 1995) 
11.0 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
1.33 . 10–3 (20°C, Weber 1972; Worthing & Walker 1987) 
5.00 . 10–5 (Hartley & Kidd 1987) 
1.60 . 10–4 (Worthing & Walker 1987) 
5.05 . 10–5 (Herbicide Handbook 1989) 
3.50 . 10–5, 1.0 . 10–3, 0.019, 0.240, 2.20 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 14.669 – 5703.8/(T/K); measured range 72–150°C (gas saturation-GC, Rordorf 1989) 
5.07 . 10–5 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.00117 (20°C, calculated-P/C, Muir 1991) 
1.17 (calculated-P/C as per Worthing & Walker 1987, Majewski & Capel 1995) 
0.00117 (calculated-P/C, this work) 
HN
O 
O 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3481 
Octanol/Water Partition Coefficient, log KOW: 
2.68 (selected, Gerstl & Helling 1987) 
Bioconcentration Factor, log BCF: 
2.20 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
3.06 (soil, calculated-S, Kenaga 1980) 
2.66 (calculated-MCI ., Gerstl & Helling 1987) 
3.00 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 6690 d from 1 m depth of water at 20°C (Muir 1991). 
Photolysis: t. = 2.25 h for 22–99% of 10 µg/ml to degrade in distilled water under 300 nm light (Tanaka et al. 
1981; quoted, Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: estimated persistence of 2 months (Kearney et al. 1969; quoted, Jury et al. 1987); 
persistence of 2 weeks in soil (Edwards 1973; quoted, Morrill et al. 1982); 
persistence of about 3 weeks in soil (Herbicide Handbook 1989); 
selected field t. = 5 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

3482 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.6 Benefin 
Common Name: Benefin 
Synonym: Balan, Bonalan, benfluralin 
Chemical Name: N-butyl-N-ethyl-.,.,.-trifluoro-2,6-dinitro-p-toluidine 
Uses: as pre-emergence herbicide for the control of annual grasses and broadleaf weeds in chicory, cucumbers, endive, 
groundnuts, lettuce, lucerne, and other foliage crops. 
CAS Registry No: 1861-40-1 
Molecular Formula: C13H16F3N3O4 
Molecular Weight: 335.279 
Melting Point (°C): 
66 (Lide 2003) 
Boiling Point (°C): 
121–122 (0.5 mmHg), 148–149 at 7 mmHg (Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.28 (tech., Tomlin 1994) 
Molar Volume (cm3/mol): 
295.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
38.70 (DSC method, Plato & Glasgow 1969) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.396 (mp at 66°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
< 1.0 (Ashton & Crafts 1973) 
0.50 (Weber et al. 1980) 
1.0 (20°C, selected, Suntio et al. 1988) 
0.10 (Herbicide Handbook 1983; Tomlin 1994) 
0.10 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.00519 (30°C, Ashton & Crafts 1973) 
0.0104 (Herbicide Handbook 1983) 
0.0040 (20°C, estimated, Suntio et al. 1988) 
0.0087 (Tomlin 1994) 
0.0088 (20–25°C, selected, Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.34 (20°C, calculated-P/C, Suntio et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
5.34 (selected, Magee 1991) 
5.29 (20°C, pH 7, Tomlin 1994) 
5.29 (pH 7, selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
3.36 (calculated-S per Kenaga 1980, this work) 
N 
NO2 O2N
F F 
F 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3483 
Sorption Partition Coefficient, log KOC: 
4.03 (quoted exptl., Sabljic 1987) 
4.03, 3.75 (quoted, estimated; Magee 1991) 
3.95 (soil, Hornsby et al. 1996) 
2.96 (2.59–3.33) (soil: organic carbon OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: atmospheric and aqueous photolysis half-lives were estimated to be 288–864 h (Howard et al. 1991). 
Oxidation: photooxidation t. ~ 0.782–7.82 h based on reaction with OH radicals in air (Howard et al. 1991). 
Hydrolysis: no hydrolyzable group (Howard et al. 1991). 
Biodegradation: aerobic t. ~ 504–2880 h in soil, and anaerobic soil t. = 144–480 h (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.782–7.82 h based on estimated reaction with OH radicals in the gas-phase (Howard et al. 1991). 
Surface water: t. = 288–864 h based on observed photolysis by sunlight (Howard et al. 1991). 
Groundwater: t. = 144–5760 h based on unacclimated aqueous aerobic and anaerobic biodegradation half-lives 
(Howard et al. 1991). 
Sediment: 
Soil: t. = 504–2880 h based on aerobic solid die-away test data (Howard et al. 1991); 
field t. = 40 d (Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3484 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.7 Bifenox 
Common Name: Bifenox 
Synonym: MC-4379, Modown 
Chemical Name: benzoic acid, 5-(2,4-dichlorophenoxy)-2-nitro-, methyl ester; methyl-5-(2,4-dichlorophenoxy)-2- 
nitrobenzoate 
Uses: selective pre-emergence and post-emergence herbicide to effectively control a wide variety of broadleaf weeds 
in corn, grain, sorghum, maize, rice, and soybeans. 
CAS Registry No: 42576-02-3 
Molecular Formula: C14H9Cl2NO5 
Molecular Weight: 342.131 
Melting Point (°C): 
85 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.155 (Ashton & Crafts 1981; Herbicide Handbook 1989; Montgomery 1993) 
Molar Volume (cm3/mol): 
305.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
90.5 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
26.4 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
74.0 (Rordorf 1989) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.258 (mp at 85°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.35 (20°C, Weber 1972; Worthing & Walker 1987) 
0.35 (Martin & Worthing 1977; Herbicide Handbook 1978) 
0.35 (Ashton & Crafts 1981; Herbicide Handbook 1989; Budavari 1989) 
0.35 (30°C, Worthing & Walker 1987) 
0.35 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
0.398 (20–25°C, selected, Wauchope et al. 1992; Lohninger 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00032 (20°C, Weber 1972; Worthing & Walker 1987) 
0.00032 (30°C, Ashton & Crafts 1981; Worthing & Hance 1991; Tomlin 1994) 
0.00032 (30°C, Hartley & KIdd 1987; Budavari 1989; Montgomery 1993) 
5.40 . 10–6, 2.0 . 10–4, 4.40 . 10–3, 0.064, 0.67 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 14.996 – 6040.4/(T/K); measured range 36.9–85.5°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.815 – 5582.5/(T/K); measured range 90.5–175°C (liquid, gas saturation-GC, Rordorf 1989) 
0.00032 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.321 (20°C, calculated-P/C, Muir 1991) 
0.011 (calculated-P/C, Montgomery 1993) 
0.313 (calculated-P/C, this work) 
O Cl 
Cl 
NO2 
O 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3485 
Octanol/Water Partition Coefficient, log KOW: 
5.63 (selected, Dao et al. 1983) 
4.50 (Worthing & Hance 1991) 
4.48 (Montgomery 1993; Tomlin 1994) 
4.48 (selected, Hansch et al. 1995) 
5.24 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
2.30 (static water, Metcalf & Sanborn 1975; quoted, Kenaga & Goring 1980; Isensee 1991) 
3.05 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
Sorption Partition Coefficient, log KOC: 
3.89 (soil, calculated per Kenaga & Goring, Kenaga 1980) 
4.0 (soil, 20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
2.24–4.39 (Montgomery 1993) 
4.0 (estimated-chemical structure, Lohninger 1994) 
2.70–4.36 (Tomlin 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 29.8 d from 1 m depth of water at 30°C (Muir 1991). 
Photolysis: with < 5% degradation by UV light of 290–400 nm in 48 h (Worthing & Hance 1991). 
Oxidation: 
Hydrolysis: stable in aqueous solution at pH 5.0–7.3 but rapidly hydrolyzed at pH 9.0 both at 22°C (Worthing 
& Hance 1991). 
Biodegradation: t. = 2–5 d for 10 µg/mL to biodegrade in flooded soil at 30°C (Ohyama & Kuwatsuka 1978; 
quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: t. = 2–5 d for 10 µg/ml to biodegrade in flooded soil at 30°C (Ohyama & Kuwatsuka 1978; quoted, Muir 
1991); 
average t. = 7–14 d in soils (Hartley & Kidd 1987; Herbicide Handbook 1989; quoted, Montgomery 1993); 
selected field t. = 7.0 d (Wauchope et al. 1992; Hornsby et al. 1996); 
average t. = 7–14 d (Herbicide Handbook 1989); 
t. ~ 5–7 d in soil (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

3486 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.8 Bromacil 
Common Name: Bromacil 
Synonym: Borea, Bromax, Bromazil, Cynogan, Hyvar, Hyvarex, Krovar I or II, Nalkil, Uragan, Urox B, Uron HX, 
Weed Blast 
Chemical Name: 5-bromo-3-sec-butyl-6-methyluracil; 5-bromo-6-methyl-3-(1-methylpropyl)-2,4-(1H,3H)pyrimidinedione 
Uses: Herbicide applied to soil to control annual and perennial grasses, broadleaf weeds, and general vegetation on 
uncropped land; also used for selective weed control in apple, asparagus, cane fruit, hops, and citrus crops. 
CAS Registry No: 314-40-9 
Molecular Formula: C9H13BrN2O2 
Molecular Weight: 261.115 
Melting Point (°C): 
158 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.55 (25°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & Hance 1991; Montgomery 
1993) 
1.59 (23°C, Tomlin 1994) 
1.55 (Milne 1995) 
Molar Volume (cm3/mol): 
193.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
9.10 (Wauchope et al. 1992; Hornsby et al. 1996) 
< 7.0 (Montgomery 1993) 
9.27 (Tomlin 1994) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0496 (mp at 158°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
815 (Bailey & White 1965; Khan 1980; Hartley & Kidd 1987; Montgomery 1993; Milne 1995) 
815 (Melnikov 1971; Spencer 1973; Herbicide Handbook 1978; Herbicide Handbook 1989) 
815 (20°C, Weber 1972; Worthing & Walker 1987, Worthing & Hance 1991) 
820 (Beste & Humburg 1983; Jury et al. 1983) 
1064 (shake flask-GC or LSC, Gerstl & Mingelgrin 1984; Gerstl & Helling 1987) 
626, 775, 1043 (4, 25, 40°C, shake flask-LSS, Madhun et al. 1986) 
700 (20–25°C, selected, Wauchope et al. 1992; Lohninger 1994; Hornsby et al. 1996) 
700, 807, 1287 (at pH 7, 5, 9, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
5 . 10–5 (20°C, Weber 1972; Worthing & Walker 1987) 
3 . 10–5 (estimated, USEPA 1975) 
0.107 (100°C, Khan 1980) 
2.9 . 10–5 (Jury et al. 1983) 
0.00033 (Hartley & Kidd 1987; Worthing & Hance 1991) 
4 . 10–5 (20–25°C, selected, Wauchope et al. 1992) 
3.3 . 10–5 (Montgomery 1993) 
NH 
N 
O 
O 
Br 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3487 
Henry’s Law Constant (Pa·m3/mol at 25°C at 25°C or as indicated): 
9.17 . 10–6 (Beste & Humburg 1983; Jury et al. 1983) 
9.17 . 10–5 (calculated-P/C, Jury et al. 1984, 1987a; Jury & Ghodrati 1989) 
0.0019 (20°C, selected, Suntio et al. 1988) 
1.06 . 10–5 (20°C, calculated-P/C, Muir 1991) 
1.06 . 10–5 (calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
2.02 (Rao & Davidson 1980) 
1.33 (selected, Dao et al. 1983) 
1.84 (shake flask-GC or LSC, Gerstl & Mingelgrin 1984) 
1.84, 1.87, 1.90 (4, 25, 40°C, shake flask-LSS, Madhun et al. 1986) 
1.85 (selected, Gerstl & Helling 1987) 
2.11 selected, Magee 1991; Devillers et al. 1996) 
1.84–2.04 (Montgomery 1993) 
2.11 (selected, Sangster 1993) 
1.87, 1.88, 1.63 (at pH 7, 5, 9, Tomlin 1994) 
2.11 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
0.505 (measured, Kenaga 1980) 
2.27 (calculated-S, Kenaga 1980) 
0.477 (calculated-KOC, Kenaga 1980) 
0.51 (Pimephales promelas, Call et al. 1987) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
1.86 (soil, Hamaker & Thompson 1972) 
3.13 (soil, calculated as per Kenaga & Goring 1980, Kenaga 1980) 
1.86 (Rao & Davidson 1980) 
2.33, 1.34, 1.63 (estimated-S, calculated-S and mp, calculated-KOW, Karickhoff 1981) 
1.61 (sediments average-Freundlich adsorption, Corwin & Farmer 1984) 
1.41–2.46 (California lake sediments, Corwin & Farmer 1984) 
1.98, 1.88 (4, 25°C, Semiahmoo soil, in µmol/kg OC, batch equilibrium method-LSS, Madhun et al. 1986) 
2.11, 1.88 (4, 25°C, Adkins soil, in µmol/kg OC, Madhun et al. 1986) 
1.90, 1.66, 1.75; 1.86, 1.89, 1.34 (estimated-KOW; S, Madhum et al. 1986) 
1.53, 2.73 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
1.86 (soil, screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989; Carsel 1989) 
2.56 (calculated-MCI ., Bahnick & Doucette 1988) 
1.86, 1.80 (reported, estimated as log KOM, Magee 1991) 
1.53, 1.86, 3.13 (soil, quoted values, Bottoni & Funari 1992) 
1.51 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.51 (Montgomery 1993) 
2.09 (estimated-chemical structure, Lohninger 1994) 
1.60 (quoted or calculated-QSAR MCI 1., Sabljic et al. 1995) 
1.43, 1.72 (average values for sediments, soils, Delle Site 2001) 
1.48, 1.46, 1.53 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, and pH 6.3–7.9, average, Delle 
Site 2001) 
1.80, 1.72 (soils: organic carbon OC . 0.1%, OC . 0.5%, and pH . 7.3 undissociated, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. ~ 10,000 d from 1 m depth of water at 20°C (Muir 1991). 
Photolysis: 115 ppb contaminated water in the presence of TiO2 and H2O2 photodegraded to 6 ppb by 15 h solar 
irradiation with complete degradation after 75 h (Muszkat et al. 1992). 
Oxidation: 
Hydrolysis: 
© 2006 by Taylor & Francis Group, LLC

3488 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Biodegradation: t. = 350 d for 100 d leaching and screening test in 0–10 cm depth of soil (Rao & Davidson 
1980; quoted, Jury et al. 1983, 1984, 1987a). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: reported t. = 150–158 and 350 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 7.0 months at 15°C and t. = 4.5 months at 30°C in soils (Freed & Haque 1973); 
rate constant k = 0.0038 d–1 with biodegradation t. = 350 d under field conditions (Rao & Davidson 1980; 
quoted, Jury et al. 1984); 
t. = 350 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989); 
t. > 100 d (Willis & McDowell 1982) 
t. ~ 5429–46200 d in loamy sand and peat at 25–35°C as follows (Madhum & Freed 1987): 
t. = 46200, 12391, and 5856 d at 25, 30, and 35°C, respectively, at herbicide concn at 5 µg/kg, while 
t. = 18851, 9925, and 7588 d at 25, 30, and 35°C, respectively, at herbicide concn at 100 µg/kg in an 
Adkins loamy sand; however, the half-lives in peat. t. = 5429, 6789, and 8044 d at 25, 30, and 35°C, 
respectively, at herbicide concn at 5 µg/kg while t. = 6293, 5986, and 6784 d at 25, 30, and 35°C, 
respectively, at herbicide concn at 100 µg/kg in a Semiahoo mucky peat (Madhun & Freed 1987) 
selected field t. = 60 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 150–180d and 350 d (Bottoni & Funari 1992). 
Biota: biochemical t. = 350 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3489 
17.1.1.9 Bromoxynil 
Common Name: Bromoxynil 
Synonym: Brittox, Brominal, Brominex, Brominil, Broxynil, Buctril, Chipco crab-kleen, ENT 20852, Nu-lawn weeder, 
Oxytril M, Partner 
Chemical Name: 3,5-dibromo-4-hydroxybenzonitrile; 4-cyano-2,6-dibromophenol 
Uses: herbicide for post-emergence control of annual broadleaf weeds and it is often used in combination with other 
herbicides to extend the spectrum of control. 
CAS Registry No: 1689-84-5 
Molecular Formula: C7H3Br2NO 
Molecular Weight: 276.913 
Melting Point (°C): 
190 (Khan 1980; Herbicide Handbook 1989; Montgomery 1993; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
176.7 (calculated-Le Bas method at normal boiling point, this work) 
Dissociation Constant pKa: 
4.20 (radiometer/pH meter, Cessna & Grover 1978) 
4.06 (Herbicide Handbook 1989; Montgomery 1993) 
4.06 (Budavari 1989; Worthing & Hance 1991) 
3.86 (Tomlin 1994) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
31.80 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0241 (mp at 190°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
130 (20–25°C, Spencer 1973) 
131 (Kenaga 1980) 
< 200 (Khan 1980) 
130 (20–25°C, Ashton & Crafts 1981) 
130 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994; Milne 1995) 
130 (Worthing & Walker 1987, Worthing & Hance 1991) 
130 (20–25°C, Herbicide Handbook 1989) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 0.0010 (20°C, Hartley & Kidd 1987; Tomlin 1994) 
0.00064 (Herbicide Handbook 1989) 
0.00064 (Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.14180 (20–25°C, calculated-P/C, Montgomery 1993) 
1.36 . 10–3 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.60 (selected, Dao et al. 1983) 
OH 
Br Br 
N 
© 2006 by Taylor & Francis Group, LLC

3490 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
< 2.00 (Herbicide Handbook 1989) 
< 2.00 (Montgomery 1993) 
Bioconcentration Factor, log BCF: 
1.60 (calculated, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.48 (soil, quoted from Kenaga 1980, Bottoni & Funari 1992) 
2.48 (calculated, Montgomery 1993) 
2.86, 3.06 (soil, quoted exptl.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k or Half-Lives, t.: 
Volatilization: 
Photolysis: rate constant of degradation in water, k = 1.04 . 10–3 s–1 at pH 8.3 and k = 1.08 . 10–3 s–1 at pH 11.6 
(Kochany 1992). 
Oxidation: 
Hydrolysis: 
Biodegradation: t. . 24 h for 0.03 µg/mL to biodegrade in runoff water at 20–25°C (Brown et al. 1984; quoted, 
Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. . 24 h for 0.03 µg mL–1 to biodegrade in runoff water at 20–25°C (Brown et al. 1984; quoted, 
Muir 1991). 
Ground water: reported t. = 10 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. ~ 10 d in soil (Hartley & Kidd 1987; Worthing & Hance 1991; quoted, Bottoni & Funari 1992; 
Montgomery 1993; Tomlin 1994);. 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3491 
17.1.1.10 sec-Bumeton 
Common Name: sec-Bumeton 
Synonym: etazine, GS14254, secbumeton 
Chemical Name: N-ethyl-6-methoxy-N.-(1-methylpropyl)-1,3,5-triazine-2,4-diamine 
CAS Registry No: 26259-45-0 
Uses: herbicide 
Molecular Formula: C10H19N5O 
Molecular Weight: 225.291 
Melting Point (°C): 
87 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.105 (Hartley & Kidd 1987; Worthing & Walker 1987) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
4.4 (Worthing 1987) 
4.4, 4.36 (Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.246 (mp at 87°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
620 (quoted, Kenaga & Goring 1980) 
620 (Ashton & Crafts 1981) 
600 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987) 
600 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
9.7 . 10–4 (20°C, Ashton & Crafts 1981; Worthing & Walker 1987) 
9.71 . 10–4 (20°C, Hartley & Kidd 1987) 
9.7 . 10–4 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
3.20 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.20 (fish, Kenaga 1980b) 
Sorption Partition Coefficient, log KOC: 
2.54 (soil, calculated, Kenaga & Goring 1980) 
2.11 (soil, calculated, Kenaga 1980b) 
2.18 (soil, pH 7, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
2.78; 2.29 (soil: quoted, calculated-MCI ., Meylan et al. 1992) 
2.78 (soil, calculated-MCI ., Sabljic et al. 1995) 
N 
N 
N 
NH 
O 
HN 
© 2006 by Taylor & Francis Group, LLC

3492 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.78; 2.78, 2.55 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, 
Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: on hydrolysis at 20°C, t. ~ 30 d at pH 1, t. = 75 d at pH 13 (Worthing & Walker 1987). 
Half-Lives in the Environment: 
Air: 
Surface water: on hydrolysis at 20°C, t. ~ 30 d at pH 1, t. = 75 d at pH 13 (Worthing & Walker 1987). 
Ground water: 
Sediment: 
Soil: field t. ~ 60 d (estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3493 
17.1.1.11 Butachlor 
Common Name: Butachlor 
Synonym: Butanex, Butanox, CP 53619, Lambast, Machete, Pillarsete 
Chemical Name: N-butoxymethyl-2-chloro-2.6.-diethylacetanilide; N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl)- 
acetamide 
Uses: herbicide for pre-emergence control of most annual grasses, some broadleaf weeds, and many aquatic weeds in 
both seeded and transplanted rice. 
CAS Registry No: 23184-66-9 
Molecular Formula: C17H26ClNO2 
Molecular Weight: 311.847 
Melting Point (°C): 
< –5.0 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995; Lide 2003) 
Boiling Point (°C): 
156 (at 0.5 mmHg, Ashton & Crafts 1981; Herbicide Handbook 1989; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
1.07 (25°C, Ashton & Crafts 1981; Hartley & Kidd 1987; Herbicide Handbook 1989; Tomlin 1994; 
Milne 1995) 
Molar Volume (cm3/mol): 
387.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
23 (20°C, Weber 1972; Worthing 1987) 
20 (Martin & Worthing 1977) 
23 (24°C, Ashton & Crafts 1981; Herbicide Handbook 1989) 
20 (20°C, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
23 (24°C, Worthing & Walker 1987, Worthing & Hance 1991) 
23 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0007 (20°C, Weber 1972; Worthing & Walker 1987) 
0.0006 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
0.0006 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
0.0006 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.00817 (20°C, calculated-P/C, Muir 1991) 
0.00814 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.50 (quoted and recommended, Hansch et al. 1995; quoted, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
2.06 (calculated-S, Kenaga 1980) 
1.03, 0.756 (18, 9 µg/L concn in water; carp, 3–5 d exposure, Wang et al. 1992) 
N 
O 
Cl 
O 
© 2006 by Taylor & Francis Group, LLC

3494 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.38, 0.845 (10, 1 µg/L concn in water; tilapia, 3–5 d exposure, Wang et al. 1992) 
0.447, 0.845 (10, 1 µg/L concn in water; loach, 3–5 d exposure, Wang et al. 1992) 
1.76, 2.02 (2.5, 1.25 µg/L concn in water; grass carp, 3–5 d exposure, Wang et al. 1992) 
1.71, 1.90 (5, 2.5 µg/L concn in water; eel, 3–5 d exposure, Wang et al. 1992) 
1.99, 2.34 (2.4, 0.4 µg/L concn in water; black silver carp, 3–5 d exposure, Wang et al. 1992) 
0.041, 0.778 (100, 10 µg/L concn in water; freshwater clam, 3–5 d exposure, Wang et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.92 (calculated-solubility, Kenaga 1980) 
2.85 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
2.86 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. ~ 1049 d from 1 m depth of water at 20°C (Muir 1991). 
Photolysis: t. = 0.8–5.4 h in distilled water (Chen et al. 1982; quoted, Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: t. > 2.5 months for 2 µg/mL to hydrolyze in phosphate buffer at pH 6 and borate buffer at pH 9 
both at 25°C (Chen & Chen 1979; quoted, Muir 1991). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: persists for 6–10 wk in soil (Hartley & Kidd 1987; Tomlin 1994); 
t. = 4 to 8 d depending upon soil type (Herbicide Handbook 1989); 
persists in soil 42–70 d (Worthing & Hance 1991); 
selected field t. = 12 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3495 
17.1.1.12 Butralin 
Common Name: Butralin 
Synonym: Amex, Butalin, Rutralin, Sector, Tamex 
Chemical Name: N-sec-butyl-4-tert-butyl-2,6-dinitroaniline; 4-(1,1-dimethylethyl)-N-(1-methylpropyl)-2,6-dinitrobenzenamine 
Uses: herbicide for pre-emergence control of annual broadleaf weeds and grasses in cotton, beans, barley, rice, soybeans, 
alliums, vines, ornamentals and orchards of fruit and nut trees; also to control suckers on tobacco. 
CAS Registry No: 33629-47-9e 
Molecular Formula: C14H21N3O4 
Molecular Weight: 295.335 
Melting Point (°C): 
60 (Lide 2003) 
Boiling Point (°C): 
134–136 (at 0.5 mmHg, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
313.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.454 (mp at 60°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1.0 (Herbicide Handbook 1978) 
1.0 (Khan 1980) 
10 (24°C, Ashton & Crafts 1981) 
1.0 (24°C, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
1.0 (24–26°C, Worthing & Walker 1987, Worthing & Hance 1991) 
1.0 (Budavari 1989) 
Vapor Pressure (Pa at 25°C): 
0.002 (Ashton & Crafts 1981) 
0.0017 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
0.0017 (Budavari 1989) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.502 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.54 (selected, Dao et al. 1983) 
5.16 (quoted LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
2.79 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
2.80 (calculated-KOC, Kenaga 1980) 
HN 
NO2 O2N 
© 2006 by Taylor & Francis Group, LLC

3496 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Sorption Partition Coefficient, log KOC: 
3.64 (calculated, Kenaga & Goring 1980; quoted, Kenaga 1980) 
3.91 (soil, Kenaga & Goring 1980; quoted, Sabljic 1987; Bahnick & Doucette 1988) 
3.75 (calculated-MCI ., Bahnick & Doucette 1988) 
3.98 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.98; 3.38 (soil, quoted exptl.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 8 h for 25% of 2000 µg/mL to degrade in methanol under sunlight (Plimmer & Klingebiel 1974; 
quoted, Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: 
Biodegradation: t. = 24 d for 0.5 µg/mL to biodegrade in soil at 20–42°C (Savage 1978; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: t. = 24 d for 0.5 µg/mL to biodegrade in soil at 20–42°C (Savage 1978; quoted, Muir 1991). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3497 
17.1.1.13 Butylate 
Common Name: Butylate 
Synonym: Butilate, diisocarb, Genate, R 1910, Sutan 
Chemical Name: S-ethyldiisobutylthiocarbamate; S-ethyl-bis(2-methylpropylcarbamothioate 
Uses: herbicide to control annual grass weeds in maize, by pre-plant soil incorporation; also to control some broadleaf 
weeds. 
CAS Registry No: 2008-41-5 
Molecular Formula: C11H23NOS 
Molecular Weight: 217.372 
Melting Point (°C): liquid 
Boiling Point (°C): 
137.5–138 (at 21 mmHg, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
71.0 (at 10 mmHg, Herbicide Handbook 1989) 
Density (g/cm3 at 20°C): 
0.9402 (25°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & Hance 1991; Tomlin 1994) 
0.9417 (Milne 1995) 
Molar Volume (cm3/mol): 
280.9 (calculated-Le Bas method at normal boiling point, Suntio et al. 1988) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
45.0 (Kenaga 1980; Weber et al. 1980) 
45.0 (22°C, Ashton & Crafts 1981; Hartley & Kidd 1987; Herbicide Handbook 1989) 
46.0 (20°C, Worthing & Walker 1987, Worthing & Hance 1991) 
44.0 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
36.0 (20°C, Tomlin 1994) 
45.0 (22°C, Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
1.73 (Ashton & Crafts 1973) 
0.096 (20°C, Hartley & Graham-Bryce 1980) 
1.733 (Herbicide Handbook 1983, 1989) 
0.287 (20°C, GC-RT correlation, Kim 1985) 
0.10 (20°C, selected, Suntio et al. 1988) 
0.17 (Worthing & Hance 1991) 
1.733 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.73 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.560 (20°C, calculated-P/C, Suntio et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
4.15 (Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
4.15 (recommended, Hansch et al. 1995) 
4.17, 4.01, 3.45 (RP-HPLC-RT correlation, CLOGP, calculated-S, Finizio et al. 1997) 
S N 
O 
© 2006 by Taylor & Francis Group, LLC

3498 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioconcentration Factor, log BCF: 
1.86 (calculated-S, Kenaga 1980) 
3.06 (calculated-KOW as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
2.73 (soil, Kenaga 1980) 
2.73, 4.09 (quoted values, Bottoni & Funari 1992) 
2.60 (soil, 20–25°C, selected, Wauchope et al. 1992) 
2.60 (estimated-chemical structure, Lohninger 1994) 
2.11 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.39, 2.13 (soil, estimated-class specific model, estimated-general model using molecular descriptors, Gramatica 
et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: reported half-lives or persistence, t. = 11–21 d (Bottoni & Funari 1992) 
Sediment: 
Soil: measured dissipation rate k = 3.6 d–1 (Nash 1983; quoted, Nash 1988); 
estimated dissipation rate k = 23 and 0.61 d–1 (Nash 1988); 
t. = 1.5–3.0 wk in several soils under crop growing conditions (Herbicide Handbook 1989); 
selected field t. = 13 d (Wauchope et al. 1992; quoted, Richards & Baker 1993; Hornsby et al. 1996) 
reported t. = 11–21 d (Bottoni & Funari 1992); 
soil t. = 12 d (quoted, Pait et al. 1992); 
t. = 1.5–10 wk in soil and water (Tomlin 1994); 
soil t. = 13 d (selected, Halfon et al. 1996). 
Biota: disappear from the stems and leaves of corn plants 7 to 14 d after application (Herbicide Handbook 1989). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3499 
17.1.1.14 Chloramben 
Common Name: Chloramben 
Synonym: ACP-M-728, Amiben, Amoben, Chlorambed, Chlorambene, M-728, NCI-C00055, Ornamental weeder, 
Vegaben, Vegiben 
Chemical Name: 3-amino-2,5-dichlorobenzoic acid 
Uses: pre-emergence or pre-plant herbicide used in many vegetable and field crops to control annual broadleaf weeds 
and grasses. 
CAS Registry No: 133-90-4 
Molecular Formula: C7H5Cl2NO2 
Molecular Weight: 206.027 
Melting Point (C): 
200 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
190.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
3.40 (Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
38.91 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0192 (mp at 200°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
700 (Spencer 1973; Ashton & Crafts 1981) 
700 (Martin & Worthing 1977; Herbicide Handbook 1978; 1989) 
700 (Hartley & Kidd 1987; Budavari 1989; Montgomery 1993; Milne 1995) 
700 (Worthing & Walker 1987, Worthing & Hance 1991; Tomlin 1994; Majewski & Capel 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.933 (100°C, Segal & Sutherland 1967; Spencer 1976) 
0.93 (100°C, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
52.7 (Worthing & Walker 1987) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.274 (calculated-P/C as per Worthing 1987) 
Octanol/Water Partition Coefficient, log KOW: 
1.11 (quoted, Rao & Davidson 1980) 
1.46 (selected, Dao et al. 1983) 
–2.64 (selected, Gerstl & Helling 1987) 
1.11 (Magee 1991) 
1.11 (Montgomery 1993) 
1.11 (Log P database of Hansch & Leo 1987, Sangster 1993) 
1.90 (CLOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
1.18 (calculated-S, Kenaga 1980) 
O OH
Cl 
NH2 Cl 
© 2006 by Taylor & Francis Group, LLC

3500 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
–0.097 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
1.32 (soil, Harris & Warren 1964; Farmer 1976) 
2.08 (soil, calculated as per Kenaga & Goring 1980, Kenaga 1980) 
1.78 (calculated-MCI ., Gerstl & Helling 1987) 
1.32 (reported as log KOM, Magee 1991) 
2.28 (Montgomery 1993) 
1.56 (selected, Lohninger 1994) 
1.48 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 6 h for 206 µg/mL to degrade in distilled water under sunlight (Sheets 1963; quoted, Cessna & 
Muir 1991); 
t. < 2 d for 16 µg/mL to degrade in distilled water under sunlight (Hahn et al. 1969; quoted, Cessna & 
Muir 1991). 
Oxidation: 
Hydrolysis: 
Biodegradation: t. > 70 d for 50 µg/mL to degrade in incubated soil with nutrient medium of 3 g/L (Schliebe 
et al. 1965; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: estimated persistence of 3 months (Kearney et al. 1969; quoted, Jury et al. 1987); 
t. = 36, 38, 41, and 20 d with disappearance rates: k = 0.0193, 0.0182, 0.0169 and 0.0347 d–1 at pH 4.3, 
5.3, 6.5 and 7.5 (Hamaker 1972; quoted, Nash 1988); 
persistence in soil is of 6–8 wk (Hartley & Kidd 1987; Herbicide Handbook 1989; quoted, Montgomery 
1993). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3501 
17.1.1.15 Chlorazine 
Common Name: Chlorazine 
Synonym: 
Chemical Name: 6-chloro-N,N,N.,N.-tetraethyl-1,3,5-triazine-2,4-diamine 
Uses: herbicide 
CAS Registry No: 580-48-3 
Molecular Formula: C11H20ClN5 
Molecular Weight: 257.764 
Melting Point (°C): 
27 (Howard 1991; Lide 2003) 
Boiling Point (°C): 
154–156/4.0 mmHg (Howard 1991) 
Density (g/cm3): 
Acid Dissociation Constants, pKa: 
1.74 (pKa of conjugate acid, Howard 1991) 
Molar Volume (cm3/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C, (assuming .Sfus = 56 J/mol K), F: 0.956 (mp at 27°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
23.7, 22.2, 21.4 (26°C, shake flask-UV at pH 3.0, 7.0, 10.0, Ward & Weber 1968) 
Vapor Pressure (Pa at 25°C): 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
3.236 (estimated, Howard 1991) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
2.033 (estimated-S, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
2.90 (calculated-S, Howard 1991) 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Hydrolysis: may be more important at low pH (Howard 1991). 
Half-Lives in the Environment: 
Air: t. = 2.5 h for the vapor phase reaction with OH radicals (estimated, Howard 1991). 
N 
N 
N 
N 
N Cl 
© 2006 by Taylor & Francis Group, LLC

3502 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.16 Chlorbromuron 
Common Name: Chlorbromuron 
Synonym: Maloran 
Chemical Name: 3-(4-bromo-3-chlorophenyl)-1-methoxy-1-methylurea 
Uses: herbicide 
CAS Registry No: 13360-45-7 
Molecular Formula: C9H10BrClN2O2 
Molecular Weight: 293.544 
Melting Point (°C): 
96 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3): 1.69 (Tomlin 1994) 
Acid Dissociation Constants, pKa: 
Molar Volume (cm3/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C, (assuming .Sfus = 56 J/mol K) F: 0.201 (mp at 96°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
50 (Kenaga & Goring 1980, Kenaga 1980a; Ashton & Crafts 1981 
35 (20°C, Spencer 1982; Worthing 1983; Hartley & Kidd 1987; Tomlin 1994) 
35; 27.4 (quoted; calculated-MCI ., Patil 1994) 
35 (selected, 20–25°C, Augustjin-Beckers 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
5.33 . 10–5 (20°C, Ashton & Crafts 1981) 
5.3 . 10–5 (Spencer 1982; Worthing 1983; Hartley & Kidd 1987; Tomlin 1994) 
5.33 . 10–5 (selected, 20–25°C, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
3.06 (quoted, Rao & Davidson 1980) 
3.09 (shake flask, Brigg 1981) 
3.09; 3.26 (quoted lit.; calculated-MCI ., Patil 1994) 
3.09 (recommended, Hansch et al. 1995) 
2.86, 2.99, 3.45 (RP-HPLC-RT correlation, CLOGP, HPLC-k. correlation, Finizio et al. 1997) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.83, 1.40 (quoted, calculated, Kenaga 1980b) 
Sorption Partition Coefficient, log KOC: 
2.66 (soil, Kenaga & Goring 1980) 
2.66, 2.71 (quoted, calculated-KOW, Kenaga 1980b) 
3.00 (mean value of 5 soils, Rao & Davidson 1980) 
2.34, 2.94 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
2.19–3.61 (range of reported data, Augustijn-Beckers et al. 1994) 
HN
N 
O 
O 
Cl 
Br 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3503 
2.70 (estimated and recommended, soil, Augustjin-Beckers et al. 1994; Hornsby et al. 1996) 
2.70 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.70, 2.97 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, 
Gramatica et al. 2000) 
2.54, 2.55 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Hydrolysis: slowly hydrolyzed in neutral, slightly acidic, and slightly alkaline media (Hartley & Kidd 1987; 
Tomlin 1994). 
Half-Lives in the Environment: 
Soil: persists in soil > 56 d (Worthing 1983); 
t. = 45 d (Hartley & Kidd 1987); 
t. = 45–120 d (Tomlin 1994); 
t. = 21–45 d and 40 d (range of reported values and recommended field half-life, Augustjin-Beckers et al. 
1994; Hornsby et al. 1996) 
© 2006 by Taylor & Francis Group, LLC

3504 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.17 Chlorpropham 
Common Name: Chlorpropham 
Synonym: Beet-Kleen, Bud-nip, Chlor-IFC, Chloro-IPC, CIPC, Ebanil, ENT 18060, Fasco Wy-hoe, Furloe, Nexoval, 
Prevenol, Preweed, Sprout-nip, Taterpex 
Chemical Name: isopropyl N-(3-chlorophenyl) carbamate; isopropyl 3-chlorocarbanilate 
Uses: pre-emergent and post-emergent herbicide used to regulate plant growth and control weeds in carrot, onion, garlic, 
and other crops. 
CAS Registry No: 101-21-3 
Molecular Formula: C10H12ClNO2 
Molecular Weight: 213.661 
Melting Point (°C): 
41 (Lide 2003) 
Boiling Point (°C): 
149 (at 2 mmHg, Budavari 1989) 
Density (g/cm3 at 20°C): 
1.180 (30°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & Hance 1991; Montgomery 
1993; Tomlin 1994) 
1.5388 (Budavari 1989) 
Molar Volume (cm3/mol): 
232.4 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Vaporization, .HV (kJ/mol): 
88.67 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
20.50 (DSC method, Plato & Glasgow 1969) 
16 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.697 (mp at 41°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.470 (Brust 1966) 
102.3 (shake flask-GC, Freed et al. 1967) 
108 (20°C, Gunther et al. 1968) 
89 (20°C, Weber 1972; Martin & Worthing 1977; Worthing & Walker 1987) 
2.0 (Spencer 1973; quoted, Shiu et al. 1990) 
88 (Martin & Worthing 1977; Herbicide Handbook 1978, 1989) 
0.70 (19°C, shake flask-GC, Bowman & Sans 1979) 
0.73 (20°C, shake flask-GC, Bowman & Sans 1983a,b) 
88 (Khan 1980; Ashton & Crafts 1981) 
80–102 (Weber et al. 1980) 
89 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
89 (selected, Gerstl & Helling 1987; Montgomery 1993; Lohninger 1994) 
2.0 (20°C, Worthing & Walker 1987) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00050 (20°C, Weber 1972; Worthing & Walker 1987) 

0.00133 (extrapolated, Spencer 1976) 
0.00133 (Khan 1980) 
0.00133 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
0.00100 (20°C, selected, Suntio et al. 1988) 
HN
O 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3505 
0.012, 0.30, 5.0, 56, 470 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 16.402 – 5467.7/(T/K); measured range 44.9–140°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.753 – 4631.9/(T/K); measured range 44.9–140°C (liquid, gas saturation-GC, Rordorf 1989) 
0.00130 (selected, Taylor & Spencer 1990) 
0.00107 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.00133 (estimated, Montgomery 1993) 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 
0.0021 (20°C, calculated-P/C, Suntio et al. 1988) 
0.0032 (20°C, calculated-P/C, Muir 1991) 
0.0021 (20–25°C, calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
3.06 (Rao & Davidson 1980; Karickhoff 1981) 
3.42 (selected, Dao et al. 1983; Gerstl & Helling 1987) 
3.51 (shake flask, Mitsutake et al. 1986) 
3.10 (selected, Suntio et al. 1988) 
3.51 (recommended, Sangster 1993) 
3.09 (calculated, Patil 1994) 
3.51 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.70 (calculated-S, Kenaga 1980) 
1.52 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.77 (soil, Hamaker & Thompson 1972) 
2.57 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.85, 2.80 (estimated-S, Karickhoff 1981) 
3.17, 3.08 (estimated-S and mp, Karickhoff 1981) 
2.67 (estimated-KOW, Karickhoff 1981) 
2.31 (calculated-MCI ., Gerstl & Helling 1987) 
2.32 (calculated-MCI . and fragment contribution method, Meylan et al. 1992) 
2.60 (soil, 20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
2.77, 2.91 (Montgomery 1993) 
2.60 (estimated-chemical structure, Lohninger 1994) 
2.53 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.40, 2.05 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, 
Gramatica et al. 2000) 
2.62 (2.37–2.87) (soil: organic carbon OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 2220 d from 1-m depth of water at 20°C (estimated, Muir 1991). 
Photolysis: t. = 130 h for 4 µg/mL to degrade in distilled water under > 280 nm light (Guzik 1978; quoted, 
Cessna & Muir 1991) 
direct photolysis t. = 121 d in distilled water pH 5–7 for a mid-summer day at latitude of 40° (Wolfe et al. 
1978) 
t.= 2.25 h for 21–76% of 80 µg/mL to degrade in distilled water under 300 nm light (Tanaka et al. 1981; 
quoted, Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: t. > 4 months for 4274 µg/mL to hydrolyze in phosphate buffer at pH 5–9 and 20°C (El-Dib & Aly 
1976; quoted, Muir 1991) 
k(alkaline) = 2.0 . 10–5 M–1 s–1 at 27°C, 1.9 . 10–4 M–1 s–1 at 50°C, 6.4 . 10–4 M–1 s–1 at 70°C; with 
t. > 1 . 104 d at pH 5, 7 and 9 (Wolfe et al. 1978) 
© 2006 by Taylor & Francis Group, LLC

3506 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
t. > 1 wk for 2.10 µg/mL to hydrolyze in natural waters at 67°C (Schnoor et al. 1982; quoted, Muir 1991). 
Biodegradation: 
t.(aerobic) = 10–75 d for 0.1–5.4 µg/mL to biodegrade in activated sludge (Schwartz 1967; quoted, Muir 
1991) 
k = (3.6–6.7) . 10–10 mL cell–1 d–1 of different river water samples (Paris et al. 1978; quoted, Scow 1982) 
t. = 120 d by fungi Aspergillus fumigatus and t. = 2.9 d by bacteria at 28°C (Wolfe et al. 1978) 
k = 2.5 . 10–4 L (mg M)–1 h–1 with t. = 120 d for 2–25 µg/mL fungus Aspergillus fumigatus; k = 0.1 L (mg 
M)–1 h–1 with t. = 2.9 d for bacteria Pseudomonas striata to biodegrade in stream water at pH 7 and 
28°C (Wolfe et al. 1978; quoted, Muir 1991) 
k = (1.6–1.8) . 10–8 mL cell–1 d–1 of different river water samples (Steen et al. 1979; quoted, Scow 1982) 
k = (2.6 ± 0.72) . 10–14 L cell–1 h–1 in North American waters (Paris et al. 1981; quoted, Battersby 1990) 
k = (1.3–4.9) . 10–4 L org–1 h–1 with t.(aerobic) = 190 h for 0.1–1.0 µg/mL to biodegrade in lake water at 
22°C (Schnoor et al. 1982; quoted, Muir 1991) 
k = (1.4–4.2) . 10–13 L org–1 h–1 for 75 µg/mL to biodegrade at 28°C in natural and sediment waters (Steen 
et al. 1982; quoted, Muir 1991); 
t.(aerobic) > 4 months for 6–7 µg/mL to biodegrade in river water at 25°C (Stepp et al. 1985; quoted, Muir 
1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: rate constant k = 3.6–6.7 . 10–10 mL cell–1 d–1 from measurements of different river water samples 
(Paris et al. 1978; quoted, Scow 1982); 
hydrolysis t. > 1 . 104 d based on neutral and alkaline hydrolysis assuming pseudo-first order kinetics; 
direct photolysis t. = 121 d assuming a quantum efficiency of 1 and for a mid-summer day at altitude 
40°, and biolysis t. = 120 d for 1mg/L of fungus and t. = 2.9 d for bacteria at 28°C (Wolfe et al. 1978); 
k = (1.6–1.8) . 10–8 mL cell–1 d–1 from measurements of different river water samples (Steen et al. 1979; 
quoted, Scow 1982); 
aerobic t. = 190 h for 0.1–1.0 µg/mL to biodegrade in lake water with biodegradation rate of 
(1.3–4.9) . 10–4 L org–1 h–1 at 22°C (Schnoor et al. 1982; quoted, Muir 1991); 
aerobic t. > 4 months for 6–7 µg mL–1 to biodegrade in river water at 25°C (Stepp et al. 1985; quoted, 
Muir 1991). 
Ground water: 
Sediment: aerobic half-life of 10–75 d for 0.1–5.4 µg/mL to biodegrade in activated sludge (Schwartz 1967; 
quoted, Muir 1991). 
Soil: t. = 65 and 30 d soil at 15 and 29°C, respectively (Hartley & Kidd 1987; Herbicide Handbook 1989; 
quoted, Montgomery 1993; Tomlin 1994); 
selected field t. = 30 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3507 
17.1.1.18 Chlorsulfuron 
Common Name: Chlorsulfuron 
Synonym: DPX 4189, Finesse, Glean, Telar 
Chemical Name: 2-chloro-N-(((4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino)-carbonyl)-benzenesulfonamide; 
1-(o-chlorophenyl)-3-(4-methoxy-6-methyl-s-triazin-2-yl)urea 
Uses: herbicide to control broadleaf weeds and some grass weeds. 
CAS Registry No: 64902-72-3 
Molecular Formula: C12H12ClN5O4S 
Molecular Weight: 357.773 
Melting Point (°C): 
176 (Lide 2003) 
Boiling Point (°C): 
192 (dec., Herbicide Handbook 1989; Montgomery 1993) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
3.6 (Herbicide Handbook 1989; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0330 (mp at 176°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
300 (at pH 5, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
27900 (at pH 7, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
28000 (at pH 7 with ionic strength 0.05, Herbicide Handbook 1989) 
7000 (20–25°C, at pH 7, selected, Wauchope et al. 1992; quoted, Majewski & Capel 1995) 
7000 (20–25°C, at pH 7, selected, Hornsby et al. 1996) 
60, 7000 (at pH 5, pH 7, Montgomery 1993) 
32000 (selected, Armbrust 2000) 
Vapor Pressure (Pa at 25°C or as indicated): 
6.10 . 10–4 (Hartley & Kidd 1987) 
6.13 . 10–4 (Herbicide Handbook 1989) 
3.00 . 10–9 (Worthing & Hance 1991; Tomlin 1994) 
1.98 . 10–2 (20–25°C, Wauchope et al. 1992) 
3.11 . 10–9 (Montgomery 1993) 
6.13 . 10–4 (20–25°C, selected, Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
3.60 . 10–11 (calculated-P/C, Montgomery 1993) 
1.98 . 10–5 (20–25°C, calculated-P/C as per Wauchope et al. 1992, Majewski & Capel 1995) 
6.79 . 10–6 (selected, Armbrust 2000) 
Octanol/Water Partition Coefficient, log KOW: 
–0.84, 0.17, 1.09 (pH 8.4, pH 7.1, pH 4.5, UV, Ribo 1988) 
–0.88, 1.05 (pH 8.4, pH 4.5, HPLC, Ribo 1988) 
–1.34, 0.74 (pH 7, pH 4.5, Hay 1990) 
N 
N 
N 
O 
NH 
NH 
O 
S 
O O Cl 
© 2006 by Taylor & Francis Group, LLC

3508 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.20 (Grayson & Kleier 1990) 
–1.0 (Montgomery 1993) 
–0.88, 1.05, –1.34, 0.74, 2.20 (reported values, Sangster 1993) 
–1.00 (at pH 7, Tomlin 1994) 
0.74, –1.34 (lit. values, Hansch et al. 1995) 
2.14 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
0.622 (calculated-S as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
1.02 (Flanagan silt loam, Montgomery 1993) 
1.60 (Tomlin 1994) 
2.19 (calculated-MCI 1., Sabljic et al. 1995) 
1.60 (at pH 7, selected, Hornsby et al. 1996) 
1.56 (selected, Armbrust 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: assuming first-order kinetics, calculated t. .186 h for 33 µg/mL to degrade in distilled water, t. = 31 h 
for creek water, t. = 136 h for silica gel and t. = 115 h for montmorillonit under sunlight (Herrmann et al. 
1985; quoted, Cessna & Muir 1991); 
under indoor conditions t. = 92 h in methanol, t. = 78 h in distilled water but t. = 18 h in natural creek 
water (Herrmann et al. 1985); 
reported t. = 18 h in distilled water at > 290 nm (Montgomery 1993) 
aqueous photolysis rate constant, k = 5.0 . 10–4 h–1 (Armbrust 2000). 
Oxidation: 
Hydrolysis: t. = 4–8 wk at 20°C and pH 5.7–7.0 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 
1993; Tomlin 1994); 
stable aqueous hydrolysis rates at pH 7, 9; measured hydroxy radical rate constant for chlorsulfuron 6.9 . 1012 M–1/h 
(Armbrust 2000). 
Biodegradation: aerobic rate constant, k = 1.44 . 10–3 h–1 (Armbrust 2000). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: hydrolysis rates will be increased by warm soil temperatures at low pH and in the presence of moisture 
with an average t. = 4–6 wk under growing conditions (Hartley & Kidd 1987; Herbicide Handbook 1989) 
t. = 4–6 wk for degradation in soil via hydrolysis followed by microbial degradation (Hartley & Kidd 1987; 
quoted, Montgomery 1993; Tomlin 1994); 
degradation rate constants: k = 0.033 d–1 at depth 0–20 cm with t. = 21 d, k = 0.0315 d–1 at depth 20–40 
cm with t. = 22 d and for depth 40–60 cm with t. > 150 d (Soakwaters soil, Walker et al. 1989); 
degradation k = 0.0116 d–1 at depth 0–20 cm with t. = 60 d, k = 0.0120 d–1 at depth 20–40 cm with t. = 58 d, 
and k = 0.0076 d–1 at depth 40–60 cm with t. = 91 d (Wharf ground soil, Walker et al. 1989); 
degradation k = 0.0126 d–1 at depth 0–20 cm with t. = 55 d, k = 0.0073 d–1 at depth 20–40 cm with t. = 95 d, 
and k = 0.0056 d–1 at depth 40–60 cm with t. = 124 d (Cottage Field soil, Walker et al. 1989); 
degradation k = 0.0147 d–1 at depth 0–20 cm with t. = 47 d, 0.0116 d–1 at depth 20–40 cm with t. = 60 d, 
and k = 0.0047 d–1 at depth 40–60 cm with t. = 147 d (Hunts Mill soil, Walker et al. 1989); 
degradation 0.0094 d–1 (depth 0–20 cm with t. = 74 d), 0.0096 d–1 (depth 20–40 cm with t. = 72 d) and 
0.0082 d–1 (depth 40–60 cm with t. = 85 d) (Bottom Barn soil, Walker et al. 1989); 
degradation k = 0.0141 d–1 at depth 0–20 cm with t. = 49 d, k = 0.0126 d–1 at depth 20–40 cm with t. = 55 d, 
and k = 0.0089 d–1 at depth 40–60 cm with t. = 78 d (Long Ashton soil, Walker et al. 1989); 
degradation k = 0.0144 d–1 at depth 0–20 cm with t. = 48 d, k = 0.0126 d–1 at depth 20–40 cm with t. = 55 d, 
and k = 0.0124 d–1 at depth 40–60 cm with t. = 56 d (Norfolk Agricultural Station soil, Walker et al. 1989) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3509 
degradation k = 0.0248 d–1 at depth 0–20 cm with t. = 28 d, k = 0.0289 d–1 at depth 20–40 cm with t. = 24 d, 
and k = 0.0347 d–1 at depth 40–60 cm with t. = 20 d (Norfolk Agricultural Station soil, Walker et al. 1989); 
selected field t. = 40 d (Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

3510 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.19 Chlorotoluron 
Common Name: Chlorotoluron 

Synonym: C 2242, Clortokem, Deltarol, Dicuran, Highuron, Higaluron, Tolurex 
Chemical Name: 3-(3-chloro-p-tolyl)-1,1-dimethylurea; N.-(3-chloro-4-methylphenyl)-N,N-dimethylurea 
Uses: herbicide to control pre- and post-emergent annual grasses and broadleaf weeds in winter cereals, particularly 
wheat and barley. 
CAS Registry No: 15545-48-9 
Molecular Formula: C10H13ClN2O 
Molecular Weight: 212.675 
Melting Point (°C): 
147 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.40 (Tomlin 1994) 
Molar Volume (cm3/mol): 
192 (modified Le Bas method at normal boiling point, Spurlock & Biggar 1994) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0635 (mp at 147°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
10.0 (20°C, Spencer 1973) 
70.0 (Martin & Worthing 1977) 
10.0 (20°C, Khan 1980) 
70.0 (20°C, Ashton & Crafts 1981) 
56.4, 80.6, 99.1 (4, 25, 40°C, shake flask-liquid scintillation spectrometer LSS, Madhun et al. 1986) 
70.0 (20°C, Hartley & Kidd 1987; Worthing & Walker 1991) 
90.0 (Spurlock 1992; Spurlock & Biggar 1994) 
10660 (calculated, Patil 1994) 
74.0 (Tomlin 1994) 
49.3 (predicted-AQUAFAC, Lee et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
4.8 . 10–6 (20°C, Khan 1980) 
1.7 . 10–5 (20°C, Ashton & Crafts 1981) 
1.7 . 10–5 (20°C, Hartley & Kidd 1987) 
1.7 . 10–5 (Tomlin 1994; selected, Halfon et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
5.17 . 10–5 (20°C, calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.41 (shake flask-UV, Briggs 1981) 
2.54 (Dao et al. 1983; Spurlock 1992; Spurlock & Biggar 1994) 
2.33, 2.34, 2.32 (4, 25, 40°C, shake flask-liquid scintillation spectrometer LSS, Madhun et al. 1986) 
2.41 (shake flask, Mitsutake et al. 1986) 
2.0 (shake flask, pH 7, Baker et al. 1992) 
HN
N 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3511 
2.241 (calculated, Evelyne et al. 1992) 
2.41 (recommended, Sangster 1993) 
2.25 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
0.26 (calculated, Patil 1994) 
2.50 (Tomlin 1994) 
2.41 (recommended, Hansch et al. 1995) 
2.38, 2.44 (shake flask-UV, calculated-RP-HPLC-k. correlation, Liu & Qian 1995) 
2.25, 2.49, 2.42 (RP-HPLC-RT correlation, ClOGP, calculated-S, Finizio et al. 1997) 
2.0 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
1.75 (calculated-S, Kenaga 1980) 
2.09, 2.16 (cuticle/water 24 h: tomato, pepper, Chaumat et al. 1991) 
2.01, 2.15 (cuticle/water 24 h: box tree, pear, Chaumat et al. 1991) 
1.30 (cuticle/water 24 h: vanilla, Chaumat et al. 1991) 
2.09, 2.16 (cuticle/water: tomato, pepper, Evelyne et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.62 (soil, calculated-S, Kenaga 1980) 
1.78 (reported as log KOM, Briggs 1981) 
2.75, 2.62 (4°C, 25°C, Semiahmoo soil, in µmol/kg OC, batch equilibrium-sorption isotherm-liquid scintillation 
spectrometer LSS, Madhun et al. 1986) 
2.57, 2.43 (4°C, 25°C, Adkins soil, in µmol/kg OC, batch equilibrium method-LSS, Madhun et al. 1986) 
2.48, 2.18; 2.54, 2.50 (estimated-KOW; solubility, Madhun et al. 1986) 
2.81, 2.58 (exptl., calculated-KOW, Liu & Qian 1995) 
2.02 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.02; 2.05, 2.15 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
2.00, 2.00 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
2.14, 2.36 (Kishon river sediments, sorption isotherm, Chefetz et al. 2004) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: calculated t. > 200 d at pH 5, 7, 9 and 30°C (Tomlin 1994). 
Biodegradation: Biological degradation rate followed a first order kinetics with t. = 21.6 d by raw water microflora 
from River Nile, t. = 13,8 d by raw water microflora + sewage (El-Dib & Abou-Waly 1998) 
Biotransformation: 4% of the selected 90 strains of micromycetes mostly isolated from soil-soil fungi, depleted 
50% of chlorotoluron (100 mg/L) in 5-d experiment. (Vroumsia et al. 1996) 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: Biological degradation t. = 21.6 d by raw water microflora from River Nile, t. = 13,8 d by raw 
water microflora + sewage (El-Dib & Abou-Waly 1998) 
Ground water: 
Sediment: 
Soil: t. = 4 wk in the moist silty loam at (25 ± 1)°C (Smith & Briggs 1978); 
t. ~ 200–4000 d in loamy sand and peat for 25–35°C as follows (Madhum & Freed 1987): 
t. = 4340, 904, and 381 d at 25, 30, and 35°C, respectively, at herbicide concn at 5 µg/kg, while t. = 1335, 
524, and 266 d at 25, 30, and 35°C, respectively, at herbicide concn at 100 µg/kg in an Adkins loamy 
sand; however, the half-lives in peat. t. = 2306, 1245, and 618 d at 25, 30, and 35°C, respectively, at 
herbicide concn at 5 µg/kg while t. = 1949, 1024, and 582 d at 25, 30, and 35°C, respectively, at herbicide 
concn at 100 µg/kg in a Semiahoo mucky peat (Madhun & Freed 1987) 
© 2006 by Taylor & Francis Group, LLC

3512 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
degradation by microorganism in biometer systems, t. = 93 d in silty sand standard metabolism experiments, 
t. = 140 d corrected standard conditions, t. = 110 d in simulated outdoor conditions; t. = 40 d in silty 
loam standard conditions, t. = 60 d corrected standard conditions, t. = 31 d in simulated outdoor 
conditions; at constant soil moisture and 20°C. Degradation by microorganism in small lysimeter systems: 
t. = 52 d outdoor fallow, t. = 14 d outdoor barley in silty sand, and t. = 49 d outdoor fallow, t. = 38 d 
outdoor barley in silty loam (Rudel et al. 1993) 
t. = 30–40 d in soil (Tomlin 1994); 
t. = 135 d (selected, Halfon et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3513 
17.1.1.20 Cyanazine 
Common Name: Cyanazine 
Synonym: Bladex, 90DF, DW 3418, Fortrok, Fortrol, Payze, SD 15418, WL 19805 
Chemical Name: 2-(4-chloro-6-ethylamino-1,3,5-triazin-2-ylamino)-2-methyl-propionitrile 
Uses: herbicide to control annual grasses and broadleaf weeds in cereals, cotton, maize, onions, peanuts, peas, potatoes, 
soybeans, sugar cane, and wheat fallow. 
CAS Registry No: 21725-46-2 
Molecular Formula: C9H13ClN6 
Molecular Weight: 240.692 
Melting Point (°C): 
168 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant: 
1.00 (pKa, Weber et al. 1980; Willis & McDowell 1982) 
12.9 (pKb, Wauchope et al. 1992; Hornsby et al. 1996) 
0.63, 1.1 (pKa, Montgomery 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0395 (mp at 168°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
171 (Melnikov 1971; Wauchope 1978; Weber et al. 1980; Ashton & Crafts 1981) 
171 (Martin & Worthing 1977; Herbicide Handbook 1978; Worthing & Walker 1987, Worthing & Hance 
1991; Majewski & Capel 1995) 
150 (selected, Schnoor & McAvoy 1981; Schnoor 1992) 
171 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
160 (23°C, Herbicide Handbook 1989) 
171 (Budavari 1989; Milne 1995) 
170 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
6046 (calculated, Patil 1994) 
45 (calculated-group contribution fragmentation method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the 
end of this section): 
2.13 . 10–7 (20°C, Ashton & Crafts 1973; 1981; Spencer 1982; Herbicide Handbook 1989) 
2.67 . 10–7 (20–25°C, Weber et al. 1980) 
5.33 . 10–7 (selected, Schnoor & McAvoy 1981; Schnoor 1992) 
1.00 . 10–5 (20°C, extrapolated from gas saturation measurement, Grayson & Fosbracey 1982) 
ln (P/Pa) = 25.7–10913/(T/K), temp range 65.7–92°C, (Antoine eq., gas saturation, Grayson & Fosbracey 1982) 
2.00 . 10–7 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Majewski & Capel 1995) 
5.21 . 10–6 (Worthing & Walker 1987) 
1.33 . 10–6 (30°C, Herbicide Handbook 1989) 
2.13 . 10–7 (20°C, Budavari 1989) 
2.13 . 10–7 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.13 . 10–7 (20°C, Montgomery 1993) 
N 
N 
N 
Cl 
NH 
NH
N 
© 2006 by Taylor & Francis Group, LLC

3514 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
2816 (20–25°C, calculated-P/C, Montgomery 1993) 
2.87 . 10–7 (calculated-P/C as per Worthing & Walker 1987, Majewski & Capel 1995) 
3.00 . 10–7 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.18 (Kenaga & Goring 1980) 
2.24 (shake flask-GC, Brown & Flagg 1981) 
1.80, 1.66 (RP-HPLC-RT correlation, calculated, Finizio et al. 1991) 
2.22 (selected, Magee 1991) 
1.80, 2.24 (Montgomery 1993) 
2.22 (recommended, Sangster 1993) 
0.79 (calculated, Patil 1994) 
2.10 (Tomlin 1994) 
2.22 (recommended, Hansch et al. 1995) 
2.04 (shake flask-UV, Liu & Qian 1995) 
1.64, 1.29, 3.02 (RP-HPLC-RT correlation, CLOGP, calculated-S, Finizio et al. 1997) 
1.70 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
1.53 (calculated-S, Kenaga 1980) 
1.00 (calculated-KOC, Kenaga 1980) 
1.48 (selected, Schnoor & McAvoy 1981; Schnoor 1992) 
Sorption Partition Coefficient, log KOC: 
2.30 (Kenaga 1980; Kenaga & Goring 1980; Karickhoff 1981; Sabljic 1987; Bahnick & Doucette 1988) 
2.41 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.26 (Georgia’s Hickory Hill pond sediment, Brown & Flagg 1981) 
2.71, 1.75, 1.85 (estimated-S, calculated-S and mp, calculated-KOW, Karickhoff 1981) 
0.48–1.48 (selected, sediment/water, Schnoor & McAvoy 1981; Schnoor 1992) 
2.57, 2.26 (soil, quoted, Madhun et al. 1986) 
2.36, 2.09; 2.33, 1.75 (estimated-reported KOWs; estimated-reported solubilities, Madhun et al. 1986) 
2.23 (soil, screening model calculations, Jury et al. 1987b) 
2.35 (calculated-MCI ., Bahnick & Doucette 1988) 
2.30, 2.16 (reported, estimated as log KOM, Magee 1991) 
2.23, 2.26, 2.30 (soil, quoted values, Bottoni & Funari 1992) 
2.28 (soil, 20–25°C, selected, Wauchope et al. 1992; quoted, Richards & Baker 1993; Hornsby et al. 1996) 
1.58–2.63 (Montgomery 1993) 
2.54 (selected, Lohninger 1994) 
2.05, 2.11 (exptl., calculated-KOW, Liu & Qian 1995) 
2.28 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.28; 2.33, 2.25 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
2.14, 2.19 (soils: organic carbon OC . 0.1%, OC . 0.5%, pH 5.6–8.0, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: alkaline chemical hydrolysis t. > 365 d (Schnoor & McAvoy 1981; quoted, Schnoor 1992). 
Biodegradation: aerobic t. = 14 d for 0.06 µg/mL to degrade in pond water and t. > 28 d in pond sediment both 
at 10–20°C (Roberts 1974; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3515 
Half-Lives in the Environment: 
Air: 
Surface water: aerobic t. = 14 d for 0.06 µg/mL to degrade in pond water at 10–20°C (Roberts 1974; quoted, 
Muir 1991). 
Ground water: reported half-lives or persistence, t. = 10–29, 14 and 108 d (Bottoni & Funari 1992) 
Sediment: aerobic t. > 28 d for 0.06 µg/mL to slowly degrade in pond sediment at 10–20°C (Roberts 1974; 
quoted, Muir 1991). 
Soil: t. ~ 2 wk in soil (Beynon et al. 1972; quoted, Tomlin 1994); 
persistence of 12 months in soil (Wauchope 1978); 
t. = 13.5 d from screening model calculations (Jury et al. 1987b); 
t. = 12–15 d in sandy loam soils and t. = 20–25 d in silt and clay loam soils (Herbicide Handbook 1989; 
quoted, Montgomery 1993); 
disappearance t. = 181 d from the upper 15 cm on a clay loam Ontario soil in 1987 and t. = 90 d in 1988 
with t.(calc) = 27 and 12 d, respectively (Frank et al. 1991); 
reported t. = 10–29 d, 13 d and 108 d (Bottoni & Funari 1992); 
selected field t. = 14 d (Wauchope et al. 1992; quoted, Richards & Baker 1993; Hornsby et al. 1996) 
soil t. = 19 d (Pait et al. 1992). 
Biota: biochemical t. = 13.5 d from screening model calculations (Jury et al. 1987b). 
TABLE 17.1.1.20.1 
Reported vapor pressures of cyanazine at various temperatures 
Grayson & Fosbracey 1982 
gas saturation-GC 
t/°C P/Pa 
65.7 0.0016 
70.0 0.0025 
77.5 0.0040 
85.8 0.0101 
87.8 0.0096 
92.0 0.0181 
20 1. . 10–5 
ln P = A – B/(T/K) 
P/Pa 
A 25.7 
B 10913 
© 2006 by Taylor & Francis Group, LLC

3516 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 17.1.1.20.1 Logarithm of vapor pressure versus reciprocal temperature for cyanazine. 
Cyanazine: vapor pressure vs. 1/T 
-6.0 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP 
/ 
Grayson & Fosbracey 1982 
m.p. = 168 °C 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3517 
17.1.1.21 2,4-D 
(See also Chapter 13, Carboxylic Acids) 
Common Name: 2,4-D 
Synonym: 2,4-Dichlorophenoxyacetic acid 
Chemical Name: 2,4-dichlorophenoxyacetic acid 
Uses: post-emergence control of annual and perennial broadleaf weeds in cereals, maize, sorgum, grassland, established 
turf, grass seed crops, orchards, cranberries, asparagus, sugar cane, rice, forestry, and on noncropland, etc. 
CAS Registry No: 94-75-7 
Molecular Formula: C8H6Cl2O3, Cl2C6H3OCH2COOH 
Molecular Weight: 221.038 
Melting Point (°C): 
140.5 (Hartley & Kidd 1987; Howard 1991; Tomlin 1994; Lide 2003) 
Boiling Point (°C): 
160 (at 0.4 mmHg, Dean 1985) 
215 (Neely & Blau 1985) 
Density (g/cm3 at 25°C): 
1.565 (30°C, Neely & Blau 1985; Tomlin 1994) 
1.416 (Montgomery 1993) 
Molar Volume (cm3/mol): 
209.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
2.73 (potentiometric method, Nelson & Faust 1969) 
2.87 (spectrophotometric method, Cessna & Grover 1978) 
2.80 (Reinert & Rogers 1984; selected, Wauchope et al. 1992) 
2.64 (Dean 1985; Haag & Yao 1992; Lee et al. 1993) 
2.61–3.31 (Howard 1991) 
2.97 (Sangster 1993) 
3.10 (Kollig 1993) 
2.64–3.31 (Montgomery 1993) 
Enthalpy of Vaporization, .HV (kJ/mol): 
93.89 (Rordorf 1989) 
Enthalpy of Fusion .Hfus (kJ/mol): 
38.074 (DSC method, Plato & Glasgow 1969) 
39.6 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0736 (mp at 140.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
890 (Hodgman 1952; Hamaker 1975; Verschueren 1983; Montgomery 1993) 
522 (shake flask-UV, Leopold et al. 1960) 
725 (Bailey & White et al. 1965) 
725, 400, 900, 550 (Gunther et al. 1968) 
900 (Herbicide Handbook 1974; Wauchope 1978; Kenaga 1980a,b; Kenaga & Goring 1980) 
600 (20°C, Khan 1980) 
620–900 (Weber et al. 1980) 
470 (20–25°C, pH 5.6, Geyer et al. 1981) 
633, 812 (15, 25°C, shake flask method, average values of 5 laboratories, OECD 1981) 
620 (20°C, Hartley & Kidd 1983, 1987) 
Cl Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

3518 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
620 (Worthing & Walker 1983) 
609 (Gerstl & Helling 1987) 
400 (20°C, selected, Suntio et al. 1988) 
703 (Gustafson 1989) 
682 (Yalkowsky et al. 1987) 
540–890(Nyholm et al. 1992) 
900, 600, 890, 703, 1072 (Wauchope et al. 1992) 
890 (20–25°C, selected, Wauchope et al. 1992) 
311 (pH 1, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
8.0 . 10–5 (Hamaker 1975) 
0.180–1.69 (transpiration method, Spencer 1976) 
53.0 (160°C, Hartley & Kidd 1983, 1987) 
8.0 . 10–5 (recommended, Neely & Blau 1985; Lyman 1985) 
1.0 (20°C, selected, Suntio et al. 1988) 
6.0 . 10–6 (selected, Nash 1989) 
4.10 . 10–5, 2.0 . 10–3, 0.058, 1.10, 13.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 17.56 – 6544.1/(T/K); measured range 70.2–135°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.558 – 4904.6/(T/K); measured range 140–196°C (liquid, gas saturation-GC, Rordorf 1989) 
0.20, 0.0032 (quoted, estimated from Henry’s law constant, Howard 1991) 
5.6 . 10–5 (selected, Mackay & Stiver 1991) 
1.40, 3.2 . 10–3 (quoted, estimated from HLC, Howard 1991) 
1.33 . 10–5, 8.0 . 10–5, 1.07 . 10–3; 1.07 . 10–3 (20–25°C, quoted lit; selected, Wauchope et al. 1992) 
0.627 (Montgomery 1993) 
0.011 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.36 . 10–5 (calculated-P/C, Jury et al. 1983) 
1.39 . 10–5 (calculated-P/C, Jury et al. 1987a, Jury & Ghodrati 1989) 
0.55 (20°C, calculated-P/C, Suntio et al. 1988) 
0.0015 (calculated, Nash 1989) 
1.03 . 10–3 (calculated-bond contribution, Howard 1991) 
6.80, 0.853 (pH 1, pH 7 at 20°C, wetted wall column-GC, Rice et al. 1997b) 
1.82 . 10–7 (quoted lit., Armbrust 2000) 
Octanol/Water Partition Coefficient, log KOW: 
2.81 (shake flask-UV, Fujita et al. 1964) 
2.59 (electrometric titration, Freese et al. 1979) 
1.57 (Kenaga & Goring 1980; Kenaga 1980b) 
2.74 (selected, Dao et al. 1983) 
2.81 (20°C, Verschueren 1983) 
1.57, 4.88 (shake flask-OECD 1981 Guidelines, Geyer et al. 1984) 
2.65 (shake flask, log P Database, Hansch & Leo 1987) 
2.50 (OECD 1981 method, Kerler & Schonherr 1988) 
2.649 (liquid/liquid-countercurrent-chromatography, Ilchmann et al. 1993) 
2.81 (recommended, Sangster 1993) 
1.44–4.18 (quoted lit. range, Montgomery 1993) 
2.58–2.83 (pH 1, Tomlin 1994) 
2.81 (selected, Hansch et al. 1995) 
0.59 (RP-HPLC-RT correlation, CLOGP, Calculated-S, Finizio et al. 1997) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3519 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.11, –0.097 (calculated-S, KOW, Kenaga 1980a) 
–2.46, 1.30 (beef fat, fish, Kenaga 1980b) 
0.778, 1.94 (alga Chlorella: exptl. 24 h exposure, calculated-S, Geyer et al. 1981) 
0.778 (algae, Freitag et al. 1982) 
< 1.00 (golden orfe, Freitag et al. 1982) 
1.23 (activated sludge, Freitag et al. 1982) 
0.0 (fish, microcosm conditions, Garten & Trabalka 1983;) 
0.778, 1.23 (algae, calculated-KOW, Geyer et al. 1984) 
1.23 (algae, Geyer et al. 1984) 
1.11 (calculated, Isensee 1991) 
–5.00 (bluegill sunfish and channel catfish, Howard 1991) 
–2.70 (frog tadpoles, Howard 1991) 
–3.0, –2.52 (pH 7.8, seaweeds, Howard 1991) 
0.778, 0.85 (quoted: alga, fish, Howard 1991) 
0.0, 0.505 (catfish Ictalurus melas, water flea Daphnia magna, wet wt basis, Wang et al. 1996) 
Sorption Partition Coefficient, log KOC: 
1.51 (Hamaker 1975) 
1.30, 2.0 (quoted, calculated, Kenaga 1980a) 
1.30, 2.11 (quoted, Kenaga & Goring 1980) 
1.30 (quoted, Kenaga 1980b) 
1.76 (quoted, average value of 3 soils, McCall et al. 1980) 
2.25, 2.04, 2.35 (soil I-very strongly acid sandy soil pH 4.5–5.5, soil II-moderately or slightly acid loamy soil 
pH 5.6–6.5, soil III-slightly alkaline loamy soil pH 7.1–8.0, OECD 1981) 
1.29 (soil, Neely & Blau 1985) 
1.30 (soil, screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
1.61 (soil, quoted, Sabljic 1987) 
1.75, 2.00 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
2.59 (HPLC-k. correlation, cyanopropyl column, mobile phase buffered to pH 3, Hodson & Williams 
1988) 
1.00, 1.23, 2.29 (sediment, Alfisol soil, Podzol soil, von Oepen et al. 1991) 
1.30–1.78, 1.30–2.0, 1.72 (soil, quoted lit. values, Bottoni & Funari 1992) 
1.30, 1.78, 1.51, 1.26, 1.72, 1.75, 1.76 (soil, quoted values, Wauchope et al. 1992) 
1.30 (soil, selected, Wauchope et al. 1992) 
0.68 (calculated-KOW, Kollig 1993) 
1.68–2.73 (Montgomery 1993) 
1.66 (calculated-QSAR MCI 1., Sabljic et al. 1995) 
2.09, 1.04, 1.40, 0.778 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, shake flask/batch equilibrium- 
HPLC/UV, Gawlik et al. 1998, 1999) 
1.65, 1.36, 1.37, 0.899 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, shake flask/batch equilibrium- 
HPLC/UV, Gawlik et al. 1999) 
1.652 (second generation Eurosoil ES-1, HPLC-k. correlation, Gawlik et al. 2000) 
1.68 (soil, quoted, Armbrust 2000) 
1.79, 1.77 (soils: organic carbon OC . 0.1%, OC . 0.5%, pH 2.8–8.0, average, Delle Site 2001) 
2.16, 2.13 (soils: organic carbon OC . 0.1%, OC . 0.5%, pH 2.8–5.0, average, Delle Site 2001) 
1.68, 1.68 (soils: organic carbon OC . 0.1%, OC . 0.5%, pH > 5.0, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: volatilization from water is negligible, calculated volatilization t. = 660 d (from 1 cm) and 
t. = 7.1 yr (from 10 cm) from soil (Howard 1991). 
© 2006 by Taylor & Francis Group, LLC

3520 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Photolysis: aqueous photolysis t. = 2–4 d when irradiated at 356 nm, t. = 50 min in water when irradiated at 
254 nm and t. = 29–43 d when exposed to September sunlight (Howard 1991); 
aqueous photolysis rate constant, k = 2.2 . 10–3 h–1 (Armbrust 2000). 
Oxidation: 
photooxidation t. = 1.8–18 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl 
radical in air (Howard et al. 1991) 
k(aq.) = (1.0–2.3) M–1 s–1 for direct reaction with ozone in water at pH 1.5–2.9 and 21 ± 1°C, with t. = 3.9 h 
at pH 7 (Yao & Haag 1991). 
k(calc) = 5.0 . 109 M–1 s–1 (Haag & Yao 1992) 
kOH(aq.) = 1.6 . 109 M–1 s–1 for reaction with hydroxyl radical in irradiated field water both in the laboratory 
and sunlit rice paddies (Mabury & Crosby 1996; quoted, Armbrust 2000); 
kOH(aq.) = 8.4 . 1012 M–1 h–1 at pH 5, 7, 9; measured hydroxyl radical rate constant for 2,4-D, (Armbrust 
2000) 
Hydrolysis: no hydrolyzable groups and rate constant at neutral pH is zero (Kollig et al. 1987; selected, Howard 
et al. 1991); generally resistant to hydrolysis, may become important at pH > 8 (Howard 1991). 
Biodegradation: 
k = 0.7–14.0 d–1 and t. = 10 to > 50 d in clear to murky river water with lag time ranges from 6–12 d 
(Nesbitt & Watson 1980a); 
t. = 4 d in river with nutrient and suspended sediments and t. = 10 d with a lag time of 5 d for filtered 
river water (Nesbitt & Watson 1980b); 
degradation kinetics not first-order, time for 50% decomposition in six soils: Commerce 5 d, Catlin 1.5 d, 
Keith 3.9 d, Cecil 3.0 d, Walla-Walla 2.5 d and Fargo 8.5 d, with an average time of 4 d (McCall et al. 1981) 
aerobic degradation k = 0.3 . 10–3 h–1 with t. = 97.0 d for control system, k = 9.5 . 10–3 h–1 with t. = 3.1 d for 
metabolism, k = 16.2 . 10–3 h–1 with t. = 1.8 d for co-metabolism; anaerobic degradation k = 0.24 . 10–3 h–1 
with t. = 120 d for control system, k = 0.21 . 10–3 h–1 with t. = 135 d for metabolism, k = 0.42 . 10–3 h–1 
with t. = 69 d for co-metabolism, by a mixture of microorganisms from activated sludge, soil and sediment 
in cyclone fermentors (Liu et al. 1981) 
k = (3.6–28.8) . 10–6 mL cell–1 d–1 in natural water (Paris et al. 1981; quoted, Klecka 1985) 
k < 0.14–0.07 d–1 in river water at 25°C (Nesbitt & Watson 1980; quoted, Klecka 1985) 
k = (0.058 ± 0.006) d–1 in lake water at 29°C (Subba-Rao et al. 1982; quoted, Klecka 1985) 
k = 0.08–0.46 d–1 in soil at 25°C (McCall et al. 1981; quoted, Klecka 1985); 
t. (aq. aerobic) = 240–1200 h, based on unacclimated aerobic river die-away test data (Nesbitt & Watson 
1980; selected, Howard et al. 1991); 
t. (anaerobic) = 672–4320 h, based on unacclimated aqueous screening test data (Liu et al. 1981; selected, 
Howard et al. 1991); 
k = 0.035 d–1 in die-away test, k = 0.029 d–1 in CO2 evolution test, in soil and k = 6.9 . 10–1 mL (g bacteria)–1 d–1 
by activated sludge cultures (Scow 1982); 
t. = 18 to over 50 d in clear river water, and t. = 10 to 25 d in muddy river water with lag times of 6 to 
12 d; degradation with a mixture of microorganisms from activated sludge, soil, and sediments lead to 
half-lives of 1.8–3.1 d under aerobic conditions and 69–135 d under anaerobic conditions (Howard 1991) 
k(aerobic) = 5.25 . 10–3 h–1 (Armbrust 2000). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 0.0092 h–1; k2 = 0.0092 h–1 (catfish Ictalurus melas, Wang et al. 1996) 
k1 = 0.8560 h–1; k2 = 0.2690 h–1 (Water flea Daphnia magna, Wang et al. 1996) 
Half-Lives in the Environment: 
Air: t. = 1.8–18 h, based on estimated rate constant for the reaction with OH radical (Howard et al. 1991); 
photooxidation t. = 23.9 h for reactions with OH radical in air (Howard 1991). 
Surface water: t. = 48–96 h, based on reported photolysis half-lives for aqueous solution irradiated at UV 
wavelength of 356 nm (Baur & Bovey 1974; selected, Howard et al. 1991); 
degradation t. = 14 d in sensitized, filtered and sterilized river water, based on sunlight photolysis test of 
1 µg mL–1 in distilled water (Zepp et al. 1975; quoted, Cessna & Muir 1991); 
t. = 1.8 and 3.1 d for cometabolism and metabolism, respectively, easily degraded under aerobic conditions; 
t. = 69 and 135 d under anaerobic conditions (Liu et al. 1981;) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3521 
typical biodegradation t. = 10 to < 50 d with longer expected in oligotrophic waters, photolysis t. = 29–43 d 
for water solutions irradiated at sunlight (Howard 1991); 
degraded relatively slowly when incubated in natural waters or in soil/sediment suspensions, with t. ~ 6 to 
170 d (Muir 1991); 
rate constant k(exptl) = (1.0–2.3) M–1 s–1 for direct reaction with ozone in water at pH 1.5–2.9 and 21°C, 
with t. = 3.9 h at pH 7 (Yao & Haag 1991); 
rate constant k(calc) = 5 . 109 M–1 s–1 for the reaction with hydroxyl radical in aqueous solution (Haag & 
Yao 1992); 
t. = 2–4 d when irradiated at . = 356 nm in aqueous solution (Montgomery 1993). 
Ground water: t. = 480–4320 h, based on estimated unacclimated aqueous aerobic and anaerobic biodegradation 
half-lives (Howard et al. 1991) 
reported t. = 4, 15, 1–35, 7–21 d (Bottoni & Funari 1992) 
Sediment: t. < 1 d for degradation in sediments and lake muds (Howard 1991); 
degraded relatively slowly when incubated in natural waters or in soil/sediment suspensions, with t. = 6 to 
170 d (Muir 1991). 
Soil: degradation t. = 5.0 and 4.0 d in Quachita Highlands’ forest and grassland soil respectively, t. = 4 d in 
Gross Timbers Forest soil, average t. = 4 d in 3 soils (shake flask, Altom & Stritzke 1973); 
field t. = 5.2 d in Arid range (Lane et al. 1977; quoted, Nash 1983); 
field t. = 19 d in Dykland soil (Stewart & Gaul 1977; quoted, Nash 1983); 
lab. t. = 5.5 d in Naff soil (Wilson & Cheng 1978; quoted, Nash 1983); 
microagroecosystem t. = 11 d for granular application to bluegrass turf (Nash & Beall 1980) 
non-persistent in soil with t. < 20 d (Willis & McDowell 1982); 
microagroecosystem t. = 3 d in moist fallow soil (Nash 1983); 
t. = 15 d in soil (Jury et al. 1983, 1987a,b; Jury & Ghodrati 1989); 
persistence of one month in soil (Jury et al. 1987); 
t. = 240–1200 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991); 
biodegradation t. < 1 d to several weeks, t. = 3.9 and 11.5 d in 2 moist soils and t. = 9.4 to 254 d in the 
same soils under dry conditions (Howard 1991); 
degraded relatively slowly when incubated in natural waters or in soil/sediment suspensions, with t. = 6 to 
170 d (Muir 1991); 
reported t. = 4,15, 1–35 and 7–21 d (Bottoni & Funari 1992); 
field t. = 2–16 d, with a selected value of 10 d (Wauchope et al. 1992); 
soil t. = 18 d (Pait et al. 1992); 
rate constants for Amsterdam silt loam at soil depth 0–30 cm: k = 0.0053 d–1 at 10°C, k = 0.0046 d–1 at 
17°C and k = 0.0127 d–1 at 24°C with corresponding first-order t. = 7, 7, and 2 d; at soil depth 30–60 
cm: k = 0.00012 d–1 at 10°C, k = 0.0044 d–1 at 17°C and k = 0.0077 d–1 at 24°C with corresponding 
first-order t. = 273, 8, and 4 d; and at soil depth 60–120 cm: k = 0.00005 d–1 at 10°C, k = 0.0013 d–1 at 
17°C and k = 0.0022 d–1 at 24°C with corresponding first-order t. = 593, 25, and 12 d (Veeh et al. 1996). 
Biota: depuration t. = 13.8 h in daphnids, t. = 1.32 d in catfish (Ellgehausen et al. 1980). 
© 2006 by Taylor & Francis Group, LLC

3522 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.22 Dalapon 
Common Name: Dalapon 
Synonym: Alatex, Basinex P, Crisapon, D-Granulat, Dawpon-Rae, Ded-Weed, Dowpon, DPA, Gramevin, Kenapon, 
Liropon, Proprop, Radapon 
Chemical Name: 2,2-dichloropropanoic acid; 2,2-dichloropropionic acid; .-dichloropropanoic acid; .,.-dichloropropionic 
acid 
Uses: selective systemic herbicide to control perennial and annual grasses on noncropland, fruits, vegetables, and some 
aquatic weeds. 
CAS Registry No: 75-99-0 
Molecular Formula: C3H4Cl2O2 
Molecular Weight: 1432.969 
Melting Point (°C): liquid 
Boiling Point (°C): 
185–190 (Herbicide Handbook 1989; Worthing & Hance 1991; Tomlin 1994) 
98–99 (sodium salt at 20 mmHg, Budavari 1989) 
Density (g/cm3 at 20°C): 
1.389 (Nelson & Faust 1969; quoted, Kenaga 1974; Montgomery 1993) 
1.389 (22.8°C, Herbicide Handbook 1989) 
1.4014 (Budavari 1989; Milne 1995) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
1.84 (potentiometric titration, Nelson & Faust 1969; Freed 1976; Hornsby et al. 1996) 
1.74 (Kenaga 1974; quoted, Howard 1991) 
1.74–1.84 (Worthing & Hance 1991; Tomlin 1994) 
2.06 (Yao & Haag 1991; Haag & Yao 1992) 
1.84 (free acid, Montgomery 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
900000 (Woodford & Evans 1963; Bailey & White 1965) 
> 800000 (Kenaga 1974) 
502000 (Martin & Worthing 1977) 
450000 (Weber et al. 1980; Budavari 1989) 
501200 (Garten & Trabalka 1983) 
431850 (selected, Gerstl & Helling 1987) 
900000 (sodium salt, Worthing & Walker 1987, Worthing & Hance 1991) 
500000 (Reinert 1989) 
450000–900000 (Montgomery 1993) 
900000 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
16.0 (calculated from high temp., Foy 1976) 
1.0 . 10–5 (Worthing & Hance 1991; Tomlin 1994) 
0.0 (20–25°C, selected, Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
6.50 . 10–3 (Hine & Mookerjee 1975) 
0.608 (calculated, Montgomery 1993) 
OH 
O 
Cl Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3523 
4.56 . 10–3 (calculated-P/C as per Howard 1991, Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW: 
0.76 (Kenaga 1974) 
0.78 (Kenaga 1980) 
1.34 (selected, Dao et al. 1983) 
–2.76 (selected, Gerstl & Helling 1987) 
1.48 (Reinert 1989) 
0.78 (selected, Hansch et al. 1995) 
1.47 (LOGSTAR or CLOGP data, Sabljic et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
0.477 (dalapon sodium salt in fish, Kenaga 1974) 
–0.444 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
0.301 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
0.477 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
0.97 (calculated-MCI ., Gerstl & Helling 1987) 
2.13 (Reinert 1989) 
0.48, 2.13 (soil, quoted values, Bottoni & Funari 1992) 
0.27–2.18 (calculated, Montgomery 1993) 
0.40 (soil, calculated-MCI 1., Sabljic et al. 1995) 
0.0 (soil, 20–25°C, selected, Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
photooxidation t. = 289–2893 h in air, based on an estimated rate constant for the vapor-phase reaction 
with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
k(aq.) = 4.6 . 108 M–1 s–1 for the reaction (photo-Fenton with reference to acetophenone) with hydroxyl 
radical in aqueous solutions at pH 3.4 and at 24 ± 1°C (Buxton et al. 1988; quoted, Faust & Hoigne 
1990; Haag & Yao 1992) 
k(aq.) . 0.005 M–1 s–1 for direct reaction with ozone in water at pH 6.4 and 22°C, with a half-life of > 2 yr 
at pH 7 (Yao & Haag 1991). 
k(aq.) = (7.3 ± 0.3) . 107 M–1 s–1 for the reaction (photo-Fenton with reference to acetophenone) with 
hydroxyl radical in aqueous solutions at pH 3.4 and at 24 ± 1°C (Haag & Yao 1992). 
Hydrolysis: 
Biodegradation: aqueous aerobic t. = 336–1440 h, based on unacclimated aerobic soil grab sample data (Corbin & 
Upchurch 1967; Kaufman & Doyle 1977; quoted, Howard et al. 1991); 
rate constant k = 0.047 d–1 by soil incubation die-away studies (Rao & Davidson 1980; quoted, Scow 1982); 
aqueous anaerobic t. = 1344–5760 h, based on estimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 289–2893 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radical in 
air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 336–1440 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 
1991); 
© 2006 by Taylor & Francis Group, LLC

3524 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
measured rate constant k . 0.0005 M–1 s–1 for direct reaction with ozone in water at pH 6.4 and 22°C, with 
a t. . 2 yr at pH 7 (Yao & Haag 1991). 
Groundwater: t. = 672–2880 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
reported t. = 30 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 7–8 d in soil (Kaufman 1966; quoted, Kaufman 1976); 
persistence across 43 soils from < 2 wk to > 8 wk (Day et al. 1963; quoted, Kaufman 1976); 
t. = 336–1440 h, based on unacclimated aerobic soil grab sample data (Corbin & Upchurch 1967; Kaufman 
& Doyle 1977; quoted, Howard et al. 1991); 
estimated persistence of 8 months (Kearney et al. 1969; quoted, Jury et al. 1987); 
persistence of 8 wk in soil (Edwards 1973; quoted, Morrill et al. 1982); 
persistence of about 2 wk in growing season in most agricultural soils (Herbicide Handbook 1974; quoted, 
Kaufman 1976); 
estimated first-order t. = 15 d from biodegradation rate constant k = 0.047 d–1 by soil incubation die-away 
studies (Rao & Davidson 1980; quoted, Scow 1982); 
non-persistent in soil with t. < 20 d (Willis & McDowell 1982); 
reported half-life or persistence, 30 d (Verschuren 1983; Bottoni & Funari 1992); 
field t. = 30 d at 20–25°C (selected, Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3525 
17.1.1.23 2,4-DB 
Common Name: 2,4-DB 
Synonym: Butoxon, Butyrac, Butyrac 118, Embutox, Legumex D 
Chemical Name: 4-(2,4-dichlorophenoxy)butanoic acid; 4-(2,4-dichlorophenoxy)butyric acid 
Uses: herbicide for post-emergence control of many annual and perennial broadleaf weeds in lucerne, clovers, undersown 
cereals, grassland, forage legumes, soybeans, and groundnuts. 
CAS Registry No: 94-82-6 
Molecular Formula: C10H10Cl2O3 
Molecular Weight: 249.090 
Melting Point (°C): 
118 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
254.2 (calculate-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
5.95 (Bailey & White 1965; Que Hee et al. 1981) 
4.80 (Worthing & Walker 1987; Hornsby et al. 1996) 
Enthalpy of Vaporization, .HV (kJ/mol): 
91.29 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
33.6 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.122 (mp at 118°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
82.3 (Bailey & White 1965) 
53 (rm. temp., Melnikov 1971) 
46 (Martin & Worthing 1977; Worthing & Walker 1987, Worthing & Hance 1991) 
46 (Weber et al. 1980) 
46 (Hartley & Kidd 1987; Budavari 1989;, Milne 1995) 
46 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
negligible (Hartley & Kidd 1987) 
1.0 . 10–5, 5.90 . 10–4, 0.019, 0.38, 5.20 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 17.692 – 6760.5/(T/K); measured range 80–120°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 12.682 – 4768.7/(T/K); measured range 125–196°C (liquid, gas saturation-GC, Rordorf 1989) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
3.53 (shake flask-HPLC/UV, Jafvert et al. 1990) 
3.53 (selected, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.85 (calculated-S, Kenaga 1980) 
2.21 (calculated-log KOW as per Mackay 1982, this work) 
Cl Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

3526 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Sorption Partition Coefficient, log KOC: 
2.72 (soil, calculated-S, Kenaga 1980) 
1.3 (organic carbon, Wauchope et al. 1991) 
2.64 (20–25°C, estimated, Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: photooxidation t. = 6–60 h in air, based on an estimated rate constant for the vapor-phase reaction 
with hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: stable in distilled water for 40 d (Chau & Thomson 1978; quoted, Howard et al. 1991). 
Biodegradation: aqueous aerobic t. = 24–168 h, based on unacclimated soil grab sample data (Smith 1978; 
quoted, Howard et al. 1991); aqueous anaerobic t. = 96–672 h, based on estimated unacclimated aqueous 
aerobic biodegradation half-life (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 6–60 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radicals in air 
(Atkinson 1987; Howard et al. 1991). 
Surface water: t. = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Groundwater: t. = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991) 
reported t. < 7 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 24–168 h, based on unacclimated soil grab sample data (Smith 1978; quoted, Howard et al. 1991) 
selected t. = 10 d (Wauchope et al. 1991; quoted, Dowd et al. 1993); 
t. < 7 d (Worthing & Hance 1991; Bottoni & Funari 1992); 
field t. = 5 d (20–25°C, selected, Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3527 
17.1.1.24 Diallate 
Common Name: Diallate 
Synonym: Avadex, CP 15336, DATC, Pyradex 
Chemical Name: S-(2,3-dichloroallyl)diisopropyl(thiocarbamate); S-(2,3-dichloro-2-propenyl)bis(1-methylethyl)- 
carbamothioate 
Uses: pre-emergent and selective herbicide to control wild oats and blackgrass in barley, corn, flax, lentils, peas, potatoes, 
soybeans, and sugar beets. 
CAS Registry No: 2303-16-4 
Molecular Formula: C10H17Cl2NOS 
Molecular Weight: 270.219 
Melting Point (°C): 
25–30 (Herbicide Handbook 1989; Montgomery 1993) 
Boiling Point (°C): 
97 (at 0.15 mmHg, Herbicide Handbook 1989) 
108 (at 0.25 mmHg, Herbicide Handbook 1989; Montgomery 1993) 
150 (at 9 mmHg, Howard 1991; Milne 1995; Montgomery 1993) 
Density (g/cm3 at 20°C): 
1.188 (25°C, Hartley & Kidd 1987; Montgomery 1993) 
Molar Volume (cm3/mol): 
305.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
40.0 (Gunther et al. 1968) 
14.0 (Ashton & Crafts 1973, 1981) 
40.0 (rm. temp., Spencer 1973; Khan 1980) 
40.0 (Martin & Worthing 1977; Hartley & Kidd 1987; Montgomery 1993; Milne 1995) 
14.0 (Herbicide Handbook 1978; Herbicide Handbook 1989; Montgomery 1993) 
68.8 (22°C, shake flask-GC, Bowman & Sans 1979, 1983a,b) 
40.5 (20–25°C, shake flask-GC, Kanazawa 1981) 
52.5 (Garten & Trabalka 1983) 
14.0 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.020 (Ashton & Crafts 1973; Herbicide Handbook 1989) 
0.0117 (20°C, Hartley & Graham-Bryce 1980) 
0.0337 (20°C, GC-RT correlation, Kim 1985) 
0.020 (Hartley & Kidd 1987) 
0.013 (20°C, selected, Suntio et al. 1988) 
0.020 (20°C, Montgomery 1993) 
0.020 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.250 (20°C, calculated-P/C, Suntio et al. 1988) 
0.385 (calculated-P/C, Howard 1991) 
0.253 (20–25°C, calculated-P/C, Montgomery 1993) 
CClCH2S N 
O 
ClCH 
© 2006 by Taylor & Francis Group, LLC

3528 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.108 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
5.23 (estimated, USEPA 1988; quoted, Howard 1991) 
3.29 (calculated, Montgomery 1993) 
3.67 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.15 (calculated-S, Kenaga 1980; quoted, Howard 1991; Isensee 1991) 
2.08 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.28 (soil, Grover 1974) 
2.96. 2.46, 2.59, 2.49, 2.65 (Melfort loam, Weyburn sandy loam, Regina clay, Indian Head sandy loam, 
Asquith loamy sand, Grover et al. 1979) 
3.28 (soil, measured value, Kenaga 1980; Kenaga & Goring 1980) 
3.00 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.77 (calculated-MCI ., Bahnick & Doucette 1988) 
2.28 (Montgomery 1993) 
3.52 (selected, Lohninger 1994) 
2.70 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
3.28 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.28; 3.21, 2.66 (soil, cis-isomer, quoted exptl.; estimated-class-specific model, estimated-general model using 
molecular descriptors, Gramatica et al. 2000) 
3.28; 3.21, 2.65 (soil, trans-isomer, quoted exptl.; estimated-class-specific model, estimated-general model using 
molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 4 h, < 1% of 135 µg/mL to degrade in distilled water under > 300 nm light (Ruzo & Casida 
1985; quoted, Cessna & Muir 1991). 
Oxidation: photooxidation t. = 0.58–5.8 h, based on an estimated rate constant for the vapor-phase reaction with 
hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: neutral hydrolysis rate constant k = (1.2 ± 0.7) . 10–5 h–1 with a calculated first-order t. = 6.6 yr at 
pH 7 (Ellington et al. 1987, 1988); 
first-order t. = 6.6 yr, based on measured first-order base catalyzed hydrolysis rate constant at pH 7 (Ellington 
et al. 1987; quoted, Howard et al. 1991) 
t. = 2400 d at pH 2, t. = 2500 d at pH 7 and t. = 32 d at pH 12 in natural waters (Capel & Larson 1995). 
Biodegradation: aqueous aerobic t. = 252–2160 h, based on aerobic soil die-away test data (Anderson & Domsch 
1976; Smith 1970; quoted, Howard et al. 1991); aqueous anaerobic t. = 1008–8640 h, based on aerobic 
soil die-away test data (Anderson & Domsch 1976; Smith 1970; quoted, Howard et al. 1991) 
t.(aerobic) = 11 d, t.(anaerobic) = 42 d in natural waters (Capel & Larson 1995) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.58–5.8 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radicals in 
air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 252–2160 h, based on aerobic soil die-away test data (Anderson & Domsch 1976; Smith 
1970; quoted, Howard et al. 1991) 
Biodegradation t.(aerobic) = 11 d, t.(anaerobic) = 42 d, hydrolysis t. = 2400 d at pH 2, t. = 2500 d at 
pH 7 and t. = 32 d at pH 12 in natural waters (Capel & Larson 1995) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3529 
Ground water: t. = 504–4320 h, based on aerobic soil die-away test data (Anderson & Domsch 1976; Smith 
1970; quoted, Howard et al. 1991). 
Sediment: 
Soil: t. = 252–2160 h, based on aerobic soil die-away test data (Anderson & Domsch 1976; Smith 1970; quoted, 
Howard et al. 1991; Montgomery 1993); 
t. = 30 d (Hartley & Kidd 1987; quoted, Montgomery 1993); 
selected field t. = 30 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3530 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.25 Dicamba 
Common Name: Dicamba 
Synonym: Banex, Banvel, Banvel D, Brush buster, Dianat, MDBA, Mediben 
Chemical Name: 3,6-dichloro-2-methoxybenzoic acid; 3,6-dichloro-o-anisic acid 
Uses: systemic pre-emergent and post-emergent herbicide to control both annual and perennial broadleaf weeds. 
CAS Registry No: 1918-00-9 
Molecular Formula: C8H6Cl2O3 
Molecular Weight: 221.038 
Melting Point (°C): 
115 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.570 (25°C, Hartley & Kid 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
207.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
1.94 (Kearney & Kaufman 1975; Spencer 1982; Lee et al. 1993) 
1.90 (Cessna & Grover 1978; Weber et al. 1980; Willis & McDowell 1982; Howard 1991; Montgomery 
1993; Armbrust 2000) 
1.95 (Worthing & Hance 1991; Montgomery 1993; Caux et al. 1993) 
1.87 (Tomlin 1994) 
1.91 (Hornsby et al. 1996) 
Enthalpy of Vaporization, .HV (kJ/mol): 
77.85 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
22.59 (DSC method, Plato & Glasgow 1969) 
19.1 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.131 (mp at 115°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
7900 (Freed 1966; Verschueren 1983) 
4500 (Martin & Worthing 1977; quoted, Kenaga 1980; Kenaga & Goring 1980; Khan 1980; Ashton & 
Crafts 1981; Weber et al. 1980; Hartley & Graham-Bryce 1980) 
6500 (Hartley & Kidd 1987; Herbicide Handbook 1989; Caux et al. 1993) 
6500 (Worthing & Walker 1987, Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
5600 (20°C, selected, Suntio et al. 1988) 
4410, 221 (quoted, calculated-group contribution fragmentation method, Kuhne et al. 1995) 
8310 (selected., Armbrust 2000) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00454 (Ashton & Crafts 1973; 1981) 
0.00267 (Baur & Bovey 1974; Spencer 1976) 
0.49 (20°C, Hartley & Graham-Bryce 1980; Khan 1980) 
< 0.00013 (20–25°C, Weber et al. 1980; Willis & McDowell 1982) 
0.00453 (Herbicide Handbook 1983, 1989; Worthing & Hance 1991) 
0.0045 (Hartley & Kidd 1987; Tomlin 1994) 
0.50 (100°C, Budavari 1989) 
2.90 . 10–3, 6.40 . 10–2, 0.88, 8.60, 63.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
O OH
O
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3531 
log (PS/Pa) = 14.706 – 5139.1/(T/K); measured range 60.1–110°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 11.911 – 4067.0/(T/K); measured range 115–176°C (liquid, gas saturation-GC, Rordorf 1989) 
0.50 (20°C, selected, Taylor & Spencer 1990) 
0.0045 (20°C, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.00012 (20°C, calculated-P/C, Suntio et al. 1988) 
0.0248 (calculated-P/C, Taylor & Glotfelty 1988) 
0.0918 (Suntio et al. 1988; quoted, Howard 1991; Majewski & Capel 1995) 
2.2 . 10–5 (calculated-P/C, Nash 1989) 
1.22 . 10–4 (20–25°C, calculated-P/C, Montgomery 1993) 
0.00012, 0.000154 (20, 25°C, quoted, Caux et al. 1993) 
4.46 . 10–5 (quoted lit., Armbrust 2000) 
Octanol/Water Partition Coefficient, log KOW: 
0.477 (Rao & Davidson 1980) 
2.41 (selected, Dao et al. 1983) 
2.21 (shake flask, Log P Database, Hansch & Leo 1985, 1987) 
–1.69 (selected, Gerstl & Helling 1987) 
3.01 (selected, Travis & Arms 1988) 
2.46 (Reinert 1989) 
2.49 (shake flask-HPLC/UV, Jafvert et al. 1990) 
2.46 (EPA Environmental Fate one-liner database Version 3.04, Lee et al. 1993) 
2.21 (recommended, Sangster 1993) 
0.48 (Montgomery 1993) 
–0.80 (pH 7, Tomlin 1994) 
2.21 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
0.699 (calculated-S, Kenaga 1980) 
–2.00 (calculated-KOC, Kenaga 1980) 
–4.58 (beef biotransfer factor logBb, correlated-KOW, Oehler & Ivie 1980) 
–4.60 (milk biotransfer factor logBm, correlated-KOW, Oehler & Ivie 1980) 
1.450 (estimated-KOW per Hansch & Leo 1985, Lyman et al. 1982) 
0.903 (estimated-S per Suntio et al. 1988, Lyman et al. 1982) 
Sorption Partition Coefficient, log KOC: 
–0.398 (soil, quoted exptl., Kenaga 1980) 
1.63 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
0.342 (av. soils/sediments, Rao & Davidson 1980) 
–0.40, 2.08 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
0.34 (soil, screening model calculations, Jury et al. 1987b) 
2.67 (KOC = 470 reported, Reinert 1989) 
0.643 (soil, estimated, Shirmohammadi et al. 1989) 
–1.00 (selected, USDA 1989; quoted, Neary et al. 1993) 
0.30 (organic carbon, Wauchope et al. 1991) 
–0.40, 1.62, 0.18, 0.34 (soil, quoted values, Bottoni & Funari 1992) 
1.50; 1.46 (soil, quoted exptl.; calculated-MCI . and fragment contribution Meylan et al. 1992) 
–0.40, 0.34 (Montgomery 1993) 
0.30 (Tomlin 1994) 
1.50 (quoted or calculated-QSAR MCI 1., Sabljic et al. 1995) 
1.114 (quoted lit., Armbrust 2000) 
Sorption Partition Coefficient, log KOM: 
2.74 (organo-clay DODMA140-SAz, sorption isotherm, Zhao et al. 1996) 
© 2006 by Taylor & Francis Group, LLC

3532 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.57 (organo-clay DODMA-SAz, sorption isotherm-HPLC/UV, Zhao et al. 1996) 
2.48 (organo-clay HDTMA-SAz, sorption isotherm-HPLC/UV, Zhao et al. 1996) 
2.59 (organo-clay HDTMA-SWy, sorption isotherm-HPLC/UV, Zhao et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: aqueous photolysis rate constant k = 7.5 . 10–4 h–1 (Armbrust 2000). 
Oxidation: photooxidation t. = 2.4–6.0 d, based on estimated rate constant for the vapor-phase reaction with 
hydroxyl radicals in the atmosphere (Atkinson 1985; quoted, Howard 1991); 
measured hydroxy radical reaction rate constant for dicamba 4.8 . 1012 M–1 /h (Armbrust 2000). 
Hydrolysis: t. > 133 d for 2 µg mL–1 to hydrolyze in dark sterile pond water at 37–39°C (Scifres et al. 1973; 
quoted, Muir 1991); 
stable aqueous hydrolysis rates at pH 5, 7, 9 (Armbrust 2000). 
Biodegradation: t. = 60 d to > 160 d for 100 µg mL–1 to degrade in pond sediment/water under lighted conditions 
at 20–30°C (Scifres et al. 1973; quoted, Muir 1991); under lab. conditions using nonsterile sandy loam, 
silty clay, or heavy clay soil, 50% of applied dicamba degraded within 2 weeks; however in sterilized (via 
heating) soil, over 90% of applied dicamba was recovered after 4 weeks, suggesting that microbes were 
responsible for the decomposition (Smith 1973; quoted, Howard 1991); 
t. > 25 d for 5.85 mg of labeled dicamba to plants to degrade following washoff from plants and sands in 
model ecosystem (derived from data of Yu et al. 1975; Muir 1991); 
k = 0.022 d–1 by soil incubation die-away studies (Rao & Davidson 1980; quoted, Scow 1982); 
rate of biodegradation in soil generally increases with temperature and soil moisture (up to 50%) and tends 
to be faster when the soil is slightly acidic (Herbicide Handbook 1983; quoted, Howard 1991); 
aerobic rate constant k = 1.60 . 10–3 h–1 (Armbrust 2000). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. ~ 2.42 d for reaction with hydroxyl radicals (estimated, Eisenreich et al. 1981; quoted, Caux et al. 1993 
t. = 2.42–6.0 d, based on estimated rate constant for the vapor-phase reaction with hydroxyl radicals in the 
atmosphere (Atkinson 1985; quoted, Howard 1991). 
Surface water: 
Ground water: t. = 23.5 d determined under batch conditions at 28°C, t. = 38 d at 20°C, and t. = 151 d at 12°C 
and were all higher than t. ~ 13.5 d from the decrease in column effluent concentrations over time (Comfort 
et al. 1992); 
reported t. = 14–433, 201 and 25 d (Bottoni & Funari 1992) 
t. < 7 d in surface water (Caux et al. 1993). 
Sediment: 
Soil: estimated persistence of 2 months (Kearney et al. 1969; quoted, Jury et al. 1987a); 
t. = 59, 19, and 17 d with disappearance rates: k = 0.0117, 0.036 and 0.041 d–1 at pH 4.3, 5.3 and 6.5 
(Hamaker 1972; quoted, Nash 1988); 
persistence of 2 months in soil (Edwards 1973; quoted, Morrill et al. 1982); 
degradation t. = 32 d and 17 d in Quachita Highlands = forest and grassland soil respectively, t. = 26 d in 
Gross Timbers Forest soil, average t. = 25 d in 3 soils (Altom & Stritzke 1973); 
first-order t. ~ 31.5 d in soil from biodegradation rate constant k = 0.022 d–1 by soil incubation die-away 
studies (Rao & Davidson 1980; quoted, Scow 1982); 
nonpersistent in soils with t. < 20 d (Willis & McDowell 1982); 
mean t. = 14 d under lab. conditions from review of persistence literature, while the mean t. = 8 d under 
field conditions (Rao & Davidson 1982; quoted, Howard 1991); 
non-persistent with t. < 20 d in soil (Willis & McDowell 1982); 
t. = 14 d from screening model calculations (Jury et al. 1987b); 
t. < 14 d under conditions amenable to rapid metabolism (Herbicide Handbook 1989); 
selected t. = 14 d (Wauchope et al. 1991; quoted, Dowd et al. 1993); 
t. < 14–25 d (Worthing & Hance 1991; quoted, Montgomery 1993); 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3533 
reported t. = 20 d, 25 d and 14–433 d (Bottoni & Funari 1992); 
t. = 4–555 d with a mean t. = 24 d (Caux et al. 1993); 
t. < 14 d (Tomlin 1994). 
Biota: biochemical t. = 14 d from screening model calculations (Jury et al. 1987b); 
average t. = 25 d in the forest (USDA 1989; quoted, Neary et al. 1993); 
biological t. = 0.64 h (Caux et al. 1993). 
© 2006 by Taylor & Francis Group, LLC

3534 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.26 Dichlobenil 
Common Name: Dichlobenil 
Synonym: Barrier 2G, Barrier 50W, Casoron, DBN, DCB, Decabane, Du-Sprex, Dyclomec, NIA 5996, Niagara 5006, 
Niagara 5996, Norosac 
Chemical Name: 2,6-dichlorobenzonitrile 
Uses: soil applied herbicide to control many annual and perennial broadleaf weeds. 
CAS Registry No: 1194-65-6 
Molecular Formula: C7H3Cl2N 
Molecular Weight: 172.012 
Melting Point (°C): 
144.5 (Lide 2003) 
Boiling Point (°C): 
270 (Verloop 1972; Khan 1980; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
> 1.0 (Milne 1995) 
Molar Volume (cm3/mol): 
148.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
65.74 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
25.94 (DSC method, Plato & Glasgow 1969) 
34.33 (Verloop 1972) 
24.2 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0672 (mp at 144.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
18 (20°C, Gunther et al. 1968; Weber 1972; Verloop 1972; Spencer 1982; Verschueren 1983) 
25 (Gunther et al. 1968; Montgomery 1993) 
18 (Martin & Worthing 1977; Herbicide Handbook 1978) 
18 (Wauchope 1978; Khan 1980; Burkhard & Guth 1981) 
18 (20°C, Ashton & Crafts 1981; Hartley & Kidd 1987; Herbicide Handbook 1989) 
18 (20°C, Worthing & Walker 1987, Worthing & Hance 1991; Tomlin 1994) 
21.2 (20–25°C, selected, Wauchope et al. 1992; Lohninger 1994; Hornsby et al. 1996) 
18, 25 (20°C, 25°C, Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.072 (20°C, effusion manometer technique, Barnsley & Rosher 1961) 
0.0733 (20°C, Verloop 1972; Khan 1980; Ashton & Crafts 1981; Herbicide Handbook 1989) 
0.0667 (20°C, Weber 1972; Worthing & Walker 1987) 
0.0004 (20°C, Spencer 1976) 
0.0666 (20°C, effusion method, Spencer 1976) 
0.0733 (20–25°C, Weber et al. 1980) 
0.073 (20°C, Hartley & Kidd 1987) 
0.070 (20°C, selected, Suntio et al. 1988) 
0.110, 1.80, 20.0, 160, 970 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 14.787 – 4698.2/(T/K); measured range 32.4–125°C (solid, gas saturation-GC, Rordorf 1989) 
Cl Cl 
N 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3535 
log (PL/Pa) = 11.754 – 3434.1/(T/K); measured range 32.4–125°C (liquid, gas saturation-GC, Rordorf 1989) 
0.133 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.0733 (Montgomery 1993) 
0.088 (20°C, gas saturation, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.700 (20°C, volatilization rate, Burkhard & Guth 1981) 
0.669 (20°C, calculated-P/C, Suntio et al. 1988) 
0.637 (20°C, calculated-P/C, Muir 1991) 
0.669 (20–25°C, calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
2.90 (Rao & Davidson 1980; selected, Suntio et al. 1988, Magee 1991) 
2.57; 2.65 (RP-HPLC-RT correlation; shake flask, Eadsforth & Moser 1983) 
3.06 (shake flask, Geyer et al. 1984) 
2.94 (Hansch & Leo 1985) 
1.63 (Reinert 1989) 
2.98 (selected, Dao et al. 1983, Gerstl & Helling 1987) 
2.90 (shake flask, Log P Database, Hansch & Leo 1987) 
2.90 (recommended, Sangster 1993) 
2.70 (Tomlin 1994) 
2.74 (recommended, Hansch et al. 1995) 
2.95 (RP-HPLC-RT correlation, Nakamura et al. 2001) 
2.98 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
1.74 (fish in static water, Kenaga 1975; Kenaga & Goring 1980) 
2.08 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
1.08 (calculated-KOC, Kenaga 1980) 
1.18–1.60 (fish, Freitag et al. 1982) 
1.30 (algae, Freitag et al. 1982) 
1.72 (estimated-S, Lyman et al. 1982; quoted, Howard 1991) 
2.03–2.32 (Montgomery 1993) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
2.91 (potting soil with 22% organic content, Massini 1961) 
2.08 (sandy loam with 5% organic content, Massini 1961) 
2.37 (soil, Hamaker & Thompson 1972–1987) 
2.95 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.35 (Rao & Davidson 1980) 
2.94 (soil, estimated-S, Lyman et al. 1982; quoted, Howard 1991) 
2.37, 1.45 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
2.96 (Reinert 1989) 
2.37; 2.31 (reported as log KOM; estimated as log KOM, Magee 1991) 
2.21, 2.57–2.96 (soil, quoted values, Bottoni & Funari 1992) 
2.60 (soil, 20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
2.60 (estimated-chemical structure, Lohninger 1994) 
2.31 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. ~ 7.4 d, based on Henry’s law constant for a model river 1-m deep with a wind velocity of 
3 m/s and flowing at 1 m/s (estimated, Lyman et al. 1982; quoted, Howard 1991); 
t. ~ 11 d from 1 m depth of water at 20°C (estimated, Muir 1991). 
Photolysis: photolytic t. = 15 d in water (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

3536 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Oxidation: photooxidation t. = 92 d in air, based on estimation for the vapor-phase reaction with hydroxyl 
radicals in atmosphere (Atkinson 1987; quoted, Howard 1991). 
Hydrolysis: 
Biodegradation: t. ~ 7 d for 5 µg/mL to biodegrade in sediment suspension at 30°C (Miyazaki et al. 1975; 
quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 92 d, based on estimation for the vapor-phase reaction with hydroxyl radicals in atmosphere (Atkinson 
1987; quoted, Howard 1991). 
Surface water: 
Ground water: reported t. = 44–360 d (Bottoni & Funari 1992) 
Sediment: t. ~ 7 d for 5 µg/mL to biodegrade in sediment suspension at 30°C (Miyazaki et al. 1975; quoted, 
Muir 1991). 
Soil: estimated persistence of 4 months (Kearney et al. 1969; quoted, Jury et al. 1987); 
t. = 1–6 months in soil depending on soil type (Beynon & Wright 1972; Verloop 1972; quoted, Tomlin 1994); 
persistence of 4 months in soil (Edwards 1973; quoted, Morrill et al. 1982); 
persistence of 4 months (Wauchope 1978); 
t. = 1.5 to 12 months depending upon soil type (Herbicide Handbook 1989); 
selected t. = 60 d (Wauchope et al. 1992; Hornsby et al. 1996); 
reported t. = 45–360 d (Bottoni & Funari 1992). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3537 
17.1.1.27 Dichlorprop 
Common Name: Dichlorprop 
Synonym: Cornox RK, dichloroprop, Dikofag DP, 2,4-DP, Hedonal DP, Polymone 
Chemical Name: ( ± )-2-(2,4-dichlorophenoxy) propanoic acid; ( ± )-2-(2,4-dichlorophenoxy) propionic acid 
Uses: herbicide and growth regulator to control annual broadleaf and grass weeds; also to control aquatic weeds and 
chemical maintenance of embankments and roadside verges. 
CAS Registry No: 120-36-5 
Molecular Formula: C9H8Cl2O3 
Molecular Weight: 235.064 
Melting Point (°C): 
117.5 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.64 (25°C, Bailey & White 1965) 
1.42 (Herbicide Handbook 1989; Tomlin 1994) 
Molar Volume (cm3/mol): 
232.0 (calculated-Le Bas method at normal boiling point) 
165.6 (calculated-density) 
Dissociation Constant pKa: 
2.855 (Cessna & Grover 1978) 
2.86 (Wauchope et al. 1992; Hornsby et al. 1996) 
3.00 (Tomlin 1994) 
Enthalpy of Vaporization, .HV (kJ/mol): 
127.9 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
34.31 (DSC method, Plato 1972) 
30.9 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.124 (mp at 117.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
350 (20°C, Woodford & Evans 1963; Spencer 1973) 
350 (Martin & Worthing 1977) 
350 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987, 1991) 
710 (28°C, Herbicide Handbook 1989) 
50 (ester, 20–25°C, estimated, Wauchope et al. 1992; Lohninger 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
4.50 . 10–4 (20°C, Hartley & Kidd 1987) 
2.90 . 10–7, 4.10 . 10–5, 2.8 . 10–3, 0.11, 2.80 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 21.26 – 8289.2/(T/K); measured range 95.7–118°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 17.174 – 6682.8/(T/K); measured range 120–150°C (liquid, gas saturation-GC, Rordorf 1989) 
4.00 . 10–4 (20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
< 1.0 . 10–5 (20°C, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
2.69 . 10–4 (calculated-P/C, this work) 
Cl Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

3538 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
2.75 (RP-HPLC-k. correlation, Braumann et al. 1983) 
3.43 (shake flask-GC, Ilchmann et al. 1993) 
2.06 to –0.22 (pH 4–7, shake flask-LSC, Riise & Salbu 1992) 
1.77 (Tomlin 1994) 
3.43 (recommended, Sangster 1993; Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.36 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.23 (soil, calculated-S, Kenaga 1980) 
3.00 (soil, 20–25°C, estimated, Wauchope et al. 1992; Lohninger 1994; Hornsby et al. 1996) 
2.05, 2.07, 1.70, 1.79, 1.73 (5 soils: soil A 30.4% OC and pH 4.4, soil B14.6% OC pH 4.1, soil C/loam 3.3% 
OC pH 5.0, soil D/silty clay 1.3% OC pH 5.1, soil E/sand 1.4% OC pH 5.3, batch equilibrium-sorption 
isotherms, Riise Salbu 1992) 
1.08–1.60 (Tomlin 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Photolysis: photodegradation t. = 10 to 19 d on 3 Spanish natural dry soils; t. = 22 to 59 d on 10% peat-amened 
dry soils; degradation t. ~ 2–6 d on moist soils at field capacity and saturation soils for degradation at 0,1 
and 2 exposures days; and t. = 16–37 d on moist soils at field capacity and saturated soils for degradation 
at 2,4 and 10 exposure days (Romero et al. 1998) 
Half-Lives in the Environment: 
Soil: t. = 12 d and 8 d in Quachita Highlands = forest and grassland soil, respectively, t. = 10 d in gross timbers 
forest soil, average t. = 10 d in 3 soils (Altom & Stritzke 1973); 
selected field t. = 10 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. ~ 8 d in soil (Tomlin 1994) 
photodegradation t. = 10–19 d in 3 Spanish natural dry soils, t. = 22–59 d in the 10% peat-amended dry 
soils; degradation t. ~ 2–6 d on moist soils at field capacity and saturation soils for degradation at 0,1 
and 2 exposures days; and t. = 16–37 d on moist soils at field capacity and saturated soils for degradation 
at 2,4 and 10 exposure days (Romero et al. 1998) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3539 
17.1.1.28 Diclofop-methyl 
Common Name: Diclofop-methyl 
Synonym: Hoelon, dichlordiphenoprop, Hoegrass, Illoxan 
Chemical Name: methyl 2-[4-(2.,4.-dichlorophenoxy)-phenoxy]propanoate 
Uses: herbicide to control post-emergent wild oats, wild millets, and other annual grass weeds in wheat, barley, rye, 
red fescue, and broadleaf weeds in crops such as soybeans, sugar cane, fodder beet, flax, legumes, oilseed rape, 
sunflowers, clover, lucerne, groundnuts, brassicas, carrots, celery, beet root, parsnips, lettuce, spinach, potatoes, 
tomatoes, fennel, alliums, herbs, etc. 
CAS Registry No: 51338-27-3 
Molecular Formula: C16H14Cl2O4 
Molecular Weight: 341.186 
Melting Point (°C): 
40 (Lide 2003) 
Boiling Point (°C): 
175–176 (at 0.1 mmHg, Hartley & Kidd 1987; Herbicide Handbook 1989) 
Density (g/cm3): 
1.30 (40°C, Hartley & Kidd 1987; Worthing & Walker 1987; Herbicide Handbook 1989) 
1.035 (Herbicide Handbook 1989) 
Acid Dissociation Constants, pKa: 
3.1 (Wauchope et al. 1992; Hornsby et al. 1996) 
Molar Volume (cm3/mol): 
349.6 (calculated-Le Bas method at normal boiling point) 
329.7 (calculated-density) 
Dissociation Constant pKa: 
3.1 (Wauchope et al. 1992; Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.713 (mp at 40°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
3.0 (22°C, Hartley & Kidd 1987; Worthing & Walker 1987; Worthing & Hance 1991) 
3.0 (22°C, Herbicide Handbook 1989) 
0.80 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.80 (20°C, pH 7, Tomlin 1994) 
4.23 (Majewski & Capel 1995) 
4.06 (calculated-group contribution method, Kuhne et al. 1995) 
3.0 (Lohninger 1994; Milne 1995) 
0.8 (selected, Halfon et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
3.44 . 10–5 (20°C, Worthing 1983, 1987; Hartley & Kidd 1987) 
3.40 . 10–5 (20°C, Worthing & Walker 1987, Worthing & Hance 1991) 
3.47 . 10–5, 1.6 . 10–4, 3.87 . 10–3 (20°C, 30°C, 54.3°C, Herbicide Handbook 1989) 
5.91 . 10–5 (selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.5 . 10–4, 7.7 . 10–3 (20°C, 50°C, Tomlin 1994) 
4.80 . 10–5 (quoted, Majewski & Capel 1987) 
4.7 . 10–4 (selected, Halfon et al. 1996) 
Cl 
Cl 
O 
O 
O 
O 
© 2006 by Taylor & Francis Group, LLC

3540 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.00387 (calculated-P/C, Majewski & Capel 1995) 
0.199 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.80 (shake flask, Log P Database, Hansch & Leo 1987) 
4.601 (Stevens et al. 1988) 
4.58 (Worthing & Hance 1991) 
4.60 (shake flask, pH 7, Baker et al. 1992) 
4.80 (recommended, Sangster 1993) 
4.5775 (Tomlin 1994) 
4.80 (recommended, Hansch et al. 1995) 
5.52 (Pomona-database, Muller & Kordel 1996) 
4.87 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF or log KB: 
2.74 (calculated-S as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
4.69, 4.20 (Wauchope et al. 1992) 
4.15–4.39 (soil, quoted values, Bottoni & Funari 1992) 
4.20 (20–25°C, soil, recommended, Wauchope et al. 1992; Hornsby et al. 1996) 
4.25 (soil, HPLC-screening method, mean value of different stationary and mobile phases, Kordel et al. 
1993, 1995b) 
4.15–4.39 (soil, Tomlin 1994) 
4.20 (estimated-chemical structure, Lohninger 1994) 
4.25; 3.61 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
5.505, 5.334, 4.122, 4.737, 4.182 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1998) 
4.002, 3.731, 3.453, 3.257, 3.715 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask-batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: 
Biodegradation: first-order rate constants k = –0.0883, –0.225, –0.266 h–1 in nonsterile sediment and k = –0.0158, 
–0.0139, –0.0134 h–1 in sterile sediment by shake-tests at Davis Bayou, k = –0.0457, –0.103, –0.120 h–1 in 
nonsterile water and k = –0.00233, –0.00722, –0.00785 h–1 in sterile water by shake-tests at Davis Bayou 
(Walker et al. 1988) 
t. = 10 d in sandy soils and t. ~ 30 d in sandy clay soils under aerobic conditions (Herbicide Handbook 1989) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 363 d at 25°C and pH 5, t. = 31.7 d at pH 7 and t. = 0.52 d at pH 9 (Tomlin 1994). 
Ground water: reported t. = 6–9, 23–38 and 150 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 10 d in sandy soils and t. ~ 30 d in sandy clay soils while under anaerobic conditions, results were 
similar except that the very rapid cleavage of the ester bond by hydrolysis within one hour to propionic acid 
derivatives was experienced and within 2 d, up to 86% of the parent compound was metabolized into various 
free acid metabolites and up to 3.7% of phenol metabolites (Herbicide Handbook 1989); 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3541 
t. = 6–9 d, 23–38 d and 150 d (Bottoni & Funari 1992); 
selected field t. = 30 d at pH 7.0 (Wauchope et al. 1992; Hornsby et al. 1996) 
V = 1–57 d and t. = 30–281 d for various soils in field trials (Tomlin 1994). 
t. = 30 d (selected, Halfon et al. 1996). 
Biota: t. = 3–7 d for wheat (Herbicide Handbook 1989) 
t. = 3 d in sugar beet (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

3542 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.29 Dinitramine 
Common Name: Dinitramine 
Synonym: Cobex, Cobexo 
Chemical Name: N,N-diethyl-2,6-dinitro-4-trifluoromethyl-m-phenylenediamine 
Uses: herbicide for selective pre-plant soil incorporating control of many annual grass and broadleaf weeds in cotton, 
soybeans, peas, groundnuts, beans, sunflowers, safflowers, carrots, turnips, fennel, chicory, etc. and in transplanted 
tomatoes, capsicums, aubergines, and brassicas. 
CAS Registry No: 29091-05-2 
Molecular Formula: C11H13N4O4F3 
Molecular Weight: 322.241 
Melting Point (°C): 
98 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.50 (25°C, Ashton & Crafts 1981; Hartley & Kidd 1987) 
Molar Volume (cm3/mol): 
265.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
4.5 (Haag & Yao 1992) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.192 (mp at 98°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1.1 (Martin & Worthing 1977; Kenaga 1980; Kenaga & Goring 1980; Khan 1980; Isensee 1991) 
1.0 (Wauchope 1978; Verschueren 1983) 
1.0 (20°C, Ashton & Crafts 1981; Hartley & Kidd 1987) 
1.1 (Worthing & Walker 1987, 1991) 
1.1 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
1.0 (20°C, Tomlin 1994; Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.00048 (Khan 1980; Ashton & Crafts 1981) 
0.00048 (Verschueren 1983) 
0.000479 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
0.00040 (20°C, selected, Suntio et al. 1988) 
0.00048 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.160 (20°C, calculated-P/C, Suntio et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
4.31 (selected, Dao et al. 1983) 
4.30 (Worthing & Hance 1991; Tomlin 1994) 
4.30 (Milne 1995) 
4.30 (recommended, Hansch et al. 1995) 
3.89 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
NH2 
NO2 O2N 
N 
F F 
F 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3543 
Bioconcentration Factor, log BCF: 
2.77 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
2.45 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.60 (soil, Harvey 1974) 
3.61 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
3.60 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
3.84 (estimated-chemical structure, Lohninger 1994) 
3.63 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.63; 3.42 (soil, quoted exptl.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. < 1 h in distilled water, river water and ocean water under sunlight (Newsom & Woods 1973; 
quoted, Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: 
Biodegradation: t. = 22 d for 0.5 µg/mL to biodegrade in flooded soil with approximately 1 cm of water on top 
of the soil (Savage 1978; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: t. = 22 d for 0.5 µg/mL to biodegrade in flooded soil with approximately 1 cm of water on top of the soil 
(Savage 1978; quoted, Muir 1991); 
persistence of 3 months in soil (Wauchope 1978); 
selected field t. = 30 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996); 
t. = 10–66 d (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

3544 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.30 Dinoseb 
Common Name: Dinoseb 
Synonym: Anatox, Aretit, Basanite, Butaphene, Caldon, Chemox, Dibutox, Dinitrall, DNBP, DN-289, DNOSAP, 
DNOSBP, DNSBP, Dow General, Dyanap, Dytop 
Chemical Name: 2-sec-butyl-4,6-dinitrophenol 
Uses: herbicides/insecticides; pre- or post-emergence control of broadleaf weeds in cereals, maize, lucerne, clover, 
trefoil, grass leys, potatoes, peas, onions, garlics, peas, leeks, soya beans, orchards, groundnuts, strawberries, 
vineyards and other crops; for control of strawberry runners and raspberry suckers and overwintering forms of 
insect pests on fruit trees; also used as a desiccant for leguminous seed crops; destruction of potato haulms; as a 
pre-harvest hop defoliant, etc. 
CAS Registry No: 88-85-7 
Molecular Formula: C10H12N2O5 
Molecular Weight: 240.212 
Melting Point (°C): 
40 (Lide 2003) 
Boiling Point (°C): 
362 (estimated, Grain 1982) 
Density (g/cm3 at 20°C): 
1.265 (45°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Milne 1995) 
Molar Volume (cm3/mol): 
218.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
4.62 (radiometer/pH meter, Cessna & Grover 1978; Hornsby et al. 1996) 
4.61 (radiometer/pH meter, Cessna & Grover 1978) 
4.62 (Worthing & Walker 1987, 1991) 
4.50 (Yao & Haag 1991) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.713 (mp at 40°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
50 (Gunther 1968; Spencer 1982; Thomas 1982) 
52 (Kearney & Kaufman 1975; Khan 1980) 
50 (Martin & Worthing 1977; Kenaga 1980) 
52 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
100 (rm. temp., Worthing & Walker 1983, Worthing & Hance 1991) 
52 (20°C, Hartley & Kidd 1987; Milne 1995) 
52 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
130 (151.5°C, Khan 1980) 
133 (151.1°C, Ashton & Crafts 1981) 
0.0008, 0.0067 (supercooled liquid, estimated, Grain 1982) 
0.0067 (Thomas 1982) 
0.0023 (30°C, Spencer 1982) 
10 (20°C, selected, Suntio et al. 1988) 
0.183 (60°C, Worthing & Hance 1991) 
0.0067 (20–25°C, selected, Hornsby et al. 1996) 
OH 
NO2 
O2N 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3545 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
51.1 (20°C, calculated-P/C, Suntio et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
3.59 (Hansch & Leo 1979) 
3.69 (calculated, Zitko et al. 1976) 
3.69 (Hansch & Leo 1985) 
4.10 (RP-PHLC-RT correlation, Klein et al. 1988) 
3.14 (shake flask/slow stirring-GC, De Bruijn et al. 1989) 
3.0, 3.57 (pH 7, pH 2, shake flask, Brooke et al. 1990) 
3.69 (recommended, Sangster 1993) 
3.56 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.83 (calculated-S, Kenaga 1980a; quoted, Howard 1991) 
0.778 (calculated-KOC, Kenaga 1980) 
1.51 (measured, Kenaga 1980; quoted, Isensee 1991) 
Sorption Partition Coefficient, log KOC: 
2.85 (soil, Thomas 1982) 
2.09 (soil, Kenaga 1980a; Kenaga & Goring 1980) 
2.71 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980a) 
3.82 (HPLC-k. correlation, cyanopropyl column, mobile phase buffered to pH 3, Hodson & Williams 1988) 
2.68 (estimated as log KOM, Magee 1991) 
1.80, 2.04, 2.08 (soil, literature values, Bottoni & Funari 1992) 
2.70 (selected, Lohninger 1994) 
2.09 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.48 (soil, 20–25°C, estimated, Hornsby et al. 1996) 
Adsorption coefficient, Kd (L·kg–1): 
6.4, 64 (homoionic K+-kaolinite, K+-montmorillonite clay minerals, Haderlein et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: initial rate constant k = 1.1 . 10–3 h–1 and predicted rate constant k = 2.6 . 10–3 h–1 from soil with 
t. = 266.5 h (Thomas 1982). 
Photolysis: 
Oxidation: 
photooxidation t. = 12.2–122 h in air, based on estimated rate constant for the reaction with hydroxyl radical 
in air (Atkinson 1987; quoted, Howard et al. 1991) 
k(aq.) = (0.003–2) . 105 M–1 s–1 for direct reaction with ozone in water at pH 1.9–5.0 and 24 ± 1°C, with 
t. = 0.16 s at pH 7 (Yao & Haag 1991). 
k(calc) = 4 . 109 M–1 s–1 for the reaction with hydroxyl radical in aqueous solutions at 24 ± 1°C (Haag & 
Yao 1992). 
Hydrolysis: 
Biodegradation: aqueous aerobic t. = 1032–2952 h, based on aerobic soil mineralization data for one soil (Doyle 
et al. 1978; quoted, Howard et al. 1991) and aqueous anaerobic t. = 96–360 h, based on anaerobic soil dieaway 
test data for isopropalin (Gingerich & Zimdahl 1976; quoted, Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination Constants (k2): 
Half-Lives in the Environment: 
Air: t. = 12.2–122 h, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 
1987; quoted, Howard et al. 1991). 
Surface water: t. = 1032–2952 h, based on aerobic soil mineralization data for one soil (Doyle et al. 1978; 
quoted, Howard et al. 1991); 
© 2006 by Taylor & Francis Group, LLC

3546 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
measured rate constant k = (0.003–2) . 105 M–1 s–1 for direct reaction with ozone in water at pH 1.9 -5.0 
and 24 ± 1°C, with t. = 0.16 s at pH 7 (Yao & Haag 1991). 
Ground water: t. = 96–5904 h, based on estimated unacclimated aqueous aerobic and anaerobic biodegradation 
half-lives (Howard et al. 1991) 
reported t. = 30 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 1032–2952 h, based on aerobic soil mineralization data for one soil (Doyle et al. 1978; quoted, Howard 
et al. 1991); 
reported t. = 30 d (Bottoni & Funari 1992); 
field t. = 30 d at 20–25°C (estimated, Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3547 
17.1.1.31 Diphenamid 
Common Name: Diphenamid 
Synonym: Difenamide, Dimid, Dymid, Enide, Fenam, Rideon 
Chemical Name: N,N-dimethyldiphenylacetamide; N,N-dimethyl-.-phenyl-benzeneacetamide 
Uses: herbicide for pre-emergence control of annual grasses and some broadleaf weeds in cotton, sweet potatoes, 
tomatoes, vegetables, capsicums, okra, soybeans, groundnuts, tobacco, pome fruit, stone fruit, citrus fruit, bush 
fruit, strawberries, forestry nurseries, and ornamental plants, shrubs, and trees. 
CAS Registry No: 957-51-7 
Molecular Formula: C16H17NO 
Molecular Weight: 239.312 
Melting Point (°C): 
135 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.17 (23.3°C, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
284.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
27.405 (DSC method, Plato & Glasgow 1969) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0833 (mp at 135°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
240 (Melnikov 1971) 
260 (27°C Spencer 1973, 1982; Khan 1980; Worthing & Walker 1987) 
260 (Martin & Worthing 1977; Weber et al. 1980; Kenaga 1980) 
260 (27°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Tomlin 1994) 
280 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 1.33 . 10–4 (Weber et al. 1980) 
negligible (20°C, Hartley & Kidd 1987; Tomlin 1994) 
4.0 . 10–6 (20–25°C, selected, Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
Octanol/Water Partition Coefficient, log KOW: 
Bioconcentration Factor, log BCF: 
1.43 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.32 (soil, calculated-S, Kenaga 1980) 
2.32 (selected, Lohninger 1994) 
2.32 (soil, 20–25°C, selected, Hornsby et al. 1996) 
O N 
© 2006 by Taylor & Francis Group, LLC

3548 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Photolysis: t. = 2.25 h in distilled water (Tanaka et al. 1981; quoted, Cessna & Muir 1991); 
Half-Lives in the Environment: 
Soil: estimated persistence of 8 months (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury 
et al. 1987); 
persistence under warm damp conditions is ca. 3–6 months (Herbicide Handbook 1989; Tomlin 1994) 
field t. = 30 d at 20–25°C (selected, Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3549 
17.1.1.32 Diquat 
Common Name: Diquat 
Synonym: Aquacide, Deiquat, Dextrone, Ortho, Pathclear, Preeglone, Reglone, Weedol, Weedtrine-D 
Chemical Name: 1,1.-ethylene-2,2.-dipyridine 
Uses: nonselective contact herbicide to control broadleaf weeds in fruit and vegetable crops. 
CAS Registry No: 2764-72-9 
Molecular Formula: C12H14N2 
Molecular Weight: 186.236 
Melting Point (°C): 335–340 (Spencer 1982) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.22–1.27 (Ashton & Crafts 1981; Herbicide Handbook 1989; Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
230.6 (calculated-Le Bas method at normal boiling point) 
149.6 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C): 
700000 (Khan 1980; Spencer 1982) 
670000 (Weber et al. 1980) 
700000 (Verschueren 1983) 
700000 (Worthing & Hance 1991; Tomlin 1994) 
700000 (Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 0.00533 (Agrochemicals Handbook 1983) 
< 1.3 . 10–5 (Worthing & Hance 1991; Tomlin 1994) 
< 1.3 . 10–5 (20°C, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
< 6.38 . 10–9 (20–25°C, calculated-P/C, Montgomery 1993) 
< 3.42 . 10–9 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
–3.05 (Garten & Trabalka 1983) 
2.78 (Reinert 1989) 
–4.60 (20°C, Worthing & Hance 1991; Tomlin 1994) 
–4.60 (Montgomery 1993) 
Bioconcentration Factor, log BCF: 
–2.84 (calculated-S as per Kenaga 1980, this work) 
–5.92 (calculated-log KOW as per Mackay 1982, this work) 
Sorption Partition Coefficient, log KOC: 
2.84 (Reinert 1989) 
0.420 (calculated, Montgomery 1993) 
0.425 (calculated-S as per Kenaga 1980, this work) 
N N 
© 2006 by Taylor & Francis Group, LLC

3550 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 192 h for 10 µg/mL to degrade in distilled water under 240–260 nm light (Funderburk et al. 
1960; quoted, Cessna & Muir 1991); 
t. < 5 wk for 4 µg/mL to degrade in distilled water under sunlight (Slade & Smith 1967; quoted, Cessna & 
Muir 1991); 
dry diquat photodecomposed by UV light with t. = 48 h (Funderburk & Bozarth 1967; quoted, Montgomery 
1993); 
t. ~ 48 h when associated with aerosols (Howard 1991); 
t. = 3 wk for 3% of 5 µg/mL to degrade in distilled water under sunlight (Smith & Grove 1969; quoted, 
Cessna & Muir 1991). 
Oxidation: 
k(aq.) = 5.9 . 109 M–1 s–1 for the reaction (Fenton with reference to acetophenone) with hydroxyl radical in 
aqueous solutions at pH 3.1 and at 24 ± 1°C (Buxton et al. 1988; quoted, Faust & Hoigne 1990; Haag & 
Yao 1992) 
k(aq.) = (0.6 ± 0.2) M–1 s–1 for direct reaction with ozone in water at pH 3.1 and 22°C, with a half-life of 
15 h at pH 7 (Yao & Haag 1991). 
k(aq.) = (8.0 ± 1.8) . 108 M–1 s–1 for the reaction (Fenton with reference to acetophenone) with hydroxyl 
radical in aqueous solutions at pH 3.1 and at 24 ± 1°C (Haag & Yao 1992). 
Hydrolysis: t. = 74 d under simulated sunlight at pH 7 (Montgomery 1993; Tomlin 1994). 
Biodegradation: t. ~ 50 d to biodegrade in lake water (Hiltibran 1972; quoted, Muir 1991); 
t. > 158 d for 1.5 µg/mL of infested sediment-water microcosm to biodegrade in sediment and t. ~ 2 d in 
water both at 25°C (derived from Simsiman & Chesters 1976; Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. ~ 50 d to biodegrade in lake water (Hiltibran 1972; quoted, Muir 1991); 
t. ~ 2 d of 14C-diquat in water of a weed-infested simulated lake impoundment containing Lake Mendota 
sediment, the rapid disappearance is attributed to adsorption by sediments, suspended particulate matter 
and aquatic plants (shake flask-scintillation spectrometry, Simsiman & Chesters 1976) 
measured rate constant k = (0.6 ± 0.2) M–1 s–1 for direct reaction with ozone in water at pH 3.1 and 22°C, 
with t. = 15 h at pH 7 (Yao & Haag 1991). 
Ground water: 
Sediment: Slow microbial degradation due to tight bonding of adsorbed Diquat to the clay minerals on the 
sediment (shake flask-liquid scintillation spectrometry, Simsiman & Chesters 1976) 
t. > 158 d for 1.5 µg/mL of infested sediment-water microcosm to biodegrade (derived from results of 
Simsiman & Chesters 1976; Muir 1991). 
Soil: 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3551 
17.1.1.33 Diuron 
Common Name: Diuron 
Synonym: AF 101, Cekiuron, Crisuron, Dailon, DCMU, Diater, dichlorofonidim, Di-on, Direx, DMU, Drexel, Duran, 
Dynex, Herbatox, Karmex, Marmer, NA 2767, Telvar, Unidron, Urox D, Vonduron 
Chemical Name: 3-(3,4-dichlorophenyl)-1,1-dimethylurea; N.-(3,4-dichlorophenyl)-N,N-dimethylurea 
Uses: pre-emergence herbicide in soils to control germinating broadleaf grasses and weeds in crops such as apples, 
cotton, grapes, pears, pineapple, and alfalfa; also used as sugar cane flowering depressant. 
CAS Registry No: 330-54-1 
Molecular Formula: C9H10Cl2N2O 
Molecular Weight: 233.093 
Melting Point (°C): 
158 (Lide 2003) 
Boiling Point (°C): 
180 (decomposes, Montgomery 1993) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
223.8 (calculated-Le Bas method at normal boiling point) 
188.0 (modified Le Bas method at normal boiling point, Spurlock & Biggar 1994a) 
Dissociation Constant pKa: 
–1 to –2 (Montgomery 1993) 
Enthalpy of Vaporization, .HV (kJ/mol): 
66.0 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
33.89 (DSC method, Plato & Glasgow 1969) 
27.3 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0496 (mp at 158°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
42.0 (Gunther et al. 1968; Melnikov 1971; Spencer 1973. 1982; Khan 1980; Ashton & Crafts 1981) 
42.0 (20°C, Weber 1972; Weber et al. 1980) 
37.3 (shake flask-UV, Freed et al. 1976; Freed 1976) 
42.0 (Martin & Worthing 1977; Hartley & Kidd 1987; Worthing & Walker 1987, Worthing & Hance 
1991; Herbicide Handbook 1989; Tomlin 1994; Milne 1995) 
42.4 (shake flask, Briggs 1981) 
22.0 (shake flask-HPLC, Ellgehausen et al. 1981) 
38.7 (generator column-HPLC/RI, Swann et al. 1983) 
120 (RP-HPLC-RT correlation, Swann et al. 1983) 
19.6, 40.1, 53.4 (4, 25, 40°C, shake flask-liquid scintillation spectrometer LSS, Madhun et al. 1986) 
42.0 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
40.0 (20°C, Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
1.6 . 10–5 (estimated, Nex & Swezey 1954) 
3.8 . 10–6 (20°C, Johnson & Julin 1974) 
4.1 . 10–4 (50°C, Khan 1980; Ashton & Crafts 1981) 
< 1.3 . 10–4 (20–25°C, Weber et al. 1980) 
2.5 . 10–4 (Thomas 1982) 
HN
N 
O 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

3552 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.1 . 10–5 (Jury et al. 1983; quoted, Taylor & Glotfelty 1988; Taylor & Spencer 1990) 
3.6 . 10–4 (Jury et al. 1983; quoted, Howard 1991) 
2.7 . 10–4 (selected, Nkedi-Kizza et al. 1985) 
4.1 . 10–4 (50°C, Hartley & Kidd 1987; Worthing & Hance 1991; Herbicide Handbook 1989) 
2.0 . 10–4 (20°C, selected, Suntio et al. 1988) 
5.30 . 10–4, 1.0 . 10–2, 0.130, 1.20, 79 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 13.339 – 4953.8/(T/K); measured range 36.2–90.2°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 9.800335 – 3445.24/(T/K); measured range not specified (liquid, gas saturation-GC, Rordorf 1989) 
9.2 . 10–6 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.1 . 10–6 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.4 . 10–4 (calculated-P/C, Jury et al. 1984, 1987a,b; Jury & Ghodrati 1989) 
1.2 . 10–4 (20°C, calculated-P/C, Suntio et al. 1988) 
1.3 . 10–4 (calculated-P/C, Taylor & Glotfelty 1988) 
0.274 (calculated-P/C, Howard 1991) 
2.1 . 10–5 (20°C, calculated-P/C, Muir 1991) 
1.5 . 10–4 (20–25°C, calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
2.60 (calculated-f const., Rekker 1977) 
2.81 (Rao & Davidson 1980) 
2.68 (shake flask-UV, Briggs 1981) 
2.89 (shake flask-HPLC, Ellgehausen et al. 1981) 
2.60 (Elgar 1983) 
2.77 (Hansch & Leo 1985) 
2.69, 2.65, 2.63 (4, 25, 40°C, shake flask-liquid scintillation spectrometer LSS, Madhun et al. 1986) 
2.86 (shake flask, Mitsutake et al. 1986) 
1.97–2.81 (Montgomery 1993) 
2.78 (recommended, Sangster 1993) 
2.45 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
2.80 (Aquasol Database 1994; quoted, Pinsuwan et al. 1995) 
2.81 (shake flask, Spurlock & Biggar 1994a) 
2.85 ± 1.70 (Tomlin 1994) 
2.58, 2.73 (shake flask-UV, RP-HPLC-k. correlation, Liu & Qian 1995) 
2.68 (recommended, Hansch et al. 1995) 
2.45 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.40 (measured, Isensee 1976) 
1.88 (calculated-S, Kenaga 1980) 
1.34 (calculated-KOC, Kenaga 1980) 
2.16 (Pimephales promelas, Call et al. 1987) 
2.41, 2.48 (cuticle/water: tomato, pepper, Chaumat et al. 1991) 
2.41, 2.51 (cuticle/water: box tree, laurel, Chaumat et al. 1991) 
2.55, 2.28 (cuticle/water: pear, ivy, Chaumat et al. 1991) 
1.18, 1.64 (cuticle/water: cleavers, vanilla, Chaumat et al. 1991) 
2.45, 2.48 (cuticle/water: tomato, pepper, Evelyne et al. 1992) 
Bioaccumulation Factor, log BF: 
–1.70 (adipose tissue in both male & female Albino rats, Hodge et al. 1967) 
Sorption Partition Coefficient, log KOC: 
2.60 (soil, Hamaker & Thompson 1972; Farmer 1976; Hance 1976) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3553 
2.75 (soil, calculated-S as per Kenaga & Goring 1977, Kenaga 1980) 
2.59 (average of 3 soils, HPLC-RT correlation, McCall et al. 1980) 
2.15–2.52 (Peck et al. 1980) 
2.21 (soil, converted from reported KOM multiplied 1.724, Briggs 1981) 
3.06, 2.41 (estimated-S, solubility and mp, Karickhoff 1981) 
1.58, 2.42 (estimated-KOW, Karickhoff 1981) 
2.58 (average of 84 soils, Rao & Davidson 1982) 
2.18 (soil, Thomas 1982) 
2.83 (Webster soil, Nkedi-Kizza 1983) 
2.49 (soil slurry method, Swann et al. 1983) 
2.48 (RP-HPLC-RT correlation, Swann et al. 1983) 
3.03, 2.94 (4°C, 25°C, Semiahmoo soil, batch equilibrium method-LSS, Madhun et al. 1986) 
2.82, 2.68 (4°C, 25°C, Adkins soil, batch equilibrium method-LSS, Madhun et al. 1986) 
2.86, 2.44, 2.48; 2.81, 2.74, 2.44 (estimated-KOW; solubility, Madhun et al. 1986) 
2.50 (calculated-MCI ., Gerstl & Helling 1987) 
2.58 (soil, screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
2.35, 2.57 (2 subsurface soils from Oklahoma, Bouchard & Wood 1988) 
2.94, 2.68 (mucky peat soil, loam sand soil, quoted, Howard 1991) 
2.18, 2.48–2.49, 2.59, 2.66 (soil, quoted values, Bottoni & funari 1992) 
2.68 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.21–2.87 (Montgomery 1993) 
2.68 (selected, Lohninger 1994) 
2.60 (Tomlin 1994) 
2.70 (calculated-KOW, Liu & Qian 1995) 
2.40 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.07, 2.37, 2.82, 2.51, 2.96 (calculated-KOW; HPLC-screening method with different LC-columns, Szabo 
et al. 1999) 
2.48, 2.42 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, Gramatica 
et al. 2000) 
2.44, 2.43, 2.57 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, average, Delle Site 2001) 
2.78‘ (sediment: organic carbon OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 2.5 . 10–3 h–1 (initial) and 5.3 . 10–4 h–1 (predicted) from soil with t. = 1307 h (Thomas 1982); 
the calculated t. = 1918 d due to volatilization from soil when incorporated into 1 cm of soil (Jury et al. 
1983; quoted, Howard 1991). 
Photolysis: t. = 2.25 h for 80–84% of 40 µg/mL to degrade in distilled water under 300 nm light (Tanaka et al. 
1981; quoted, Cessna & Muir 1991); in surface waters should be photolyzed within a few days (Howard 
1991). 
Oxidation: photooxidation t. = 0.12 d in air, based on estimation for the vapor-phase reaction with hydroxyl 
radical in the atmosphere (Atkinson 1987; quoted, Howard 1991). 
Hydrolysis: t. > 4 months for 4660 µg/mL to hydrolyze in phosphate buffer at pH 5–9 and 20°C (El-Dib & Aly 
1976; quoted, Muir 1991). 
Biodegradation: t. = 328 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Rao & Davidson 
1980; quoted, Jury et al. 1983, 1984, 1987a); 
t. = 3–10 d for 40 µg/mL to biodegrade in pond sediment of anaerobic media at 30°C (Attaway et al. 1982a 
quoted, Muir 1991); 
t. < 17 d for 40 µg/mL to biodegrade in pond sediment at 30°C (Attaway et al. 1982b; quoted, Muir 1991); 
67–99% will be degraded in 10 wk under aerobic conditions by mixed cultures isolated from pond water 
and sediments forming 6–7 products (Ellis & Camper 1982; quoted, Howard 1991; Muir 1991); 
t. < 70 d at 30°C (Ellis & Camper 1982; quoted, Muir 1991; Montgomery 1993); 
t. ~ 5 d for 0.22 µg/mL to biodegrade in pond sediment of anaerobic media (Stepp et al. 1985; quoted, Muir 
1991); 
t.(aerobic) ~ 20 d for 0.0005–10 µg/mL to biodegrade in filtered sewage water at 20°C (Wang et al. 1985; 
quoted, Muir 1991). 
© 2006 by Taylor & Francis Group, LLC

3554 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Biotransformation: ~ 7% of a selection of 90 strains of micromycetes mostly isolated from soil-soil fungi, depleted 
over 50% of diuron (20 mg/L) in 5-d experiment (Vroumsia et al. 1996) 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.12 d, based on estimation for the vapor-phase reaction with hydroxyl radical in the atmosphere 
(Atkinson 1987; quoted, Howard 1991). 
Surface water: should be photolyzed within a few days (Howard 1991). 
Ground water: reported half-lives or persistence, t. = 20–70, 90–180, 200, and 328 d (Bottoni & Funari 1992) 
Sediment: t. = 3–10 d for 40 µg/mL to biodegrade in pond sediment of anaerobic media at 30°C (Attaway 
et al. 1982a; quoted, Muir 1991); 
t. < 17 d for 40 µg/mL to biodegrade in pond sediment at 30°C (Attaway et al. 1982b); 
t. ~ 5 d for 0.22 µg/mL to biodegrade in pond sediment of anaerobic media (Stepp et al. 1985) 
Soil: estimated persistence of 10 months in soil (Kearney et al. 1969; quoted, Jury et al. 1987); 
persistence of 8 months in soil (Edwards 1973; quoted, Morrill et al. 1982); 
t. = 7.0 months at 15°C and t. = 5.5 months at 30°C in soils (Freed & Haque 1973); 
persistence of 10 months (Wauchope 1978); 
rate constant k = 0.0031 d–1 with t. = 328 d under field conditions (Rao & Davidson 1980); 
calculated t. = 1918 d due to volatilization from soil when incorporated into 1 cm of soil (Jury et al. 1983; 
quoted, Howard 1991); 
t. ~ 200–4000 d in loamy sand and peat at 25–35°C as follows (Madhum & Freed 1987): 
t. = 705, 414, and 225 d at 25, 30, and 35°C, respectively, at herbicide concn at 5 µg/kg, while t. = 1392, 
630, and 406 d at 25, 30, and 35°C, respectively, at herbicide concn at 100 µg/kg in an Adkins loamy 
sand; however, the half-lives were considerable higher in peat. t. = 3991, 2164, and 1165 d at 25, 30, 
and 35°C, respectively, at herbicide concn at 5 µg/kg while t. = 3416, 1832, and 896 d at 25, 30, and 
35°C, respectively, at herbicide concn at 100 µg/kg in a Semiahoo mucky peat (Madhun & Freed 1987) 
t. = 328 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989); 
reported t. = 20–70 d, 90–180 d, 200 d and 328 d (Bottoni & Funari 1992); 
t. = 75–102 d in 0–40 cm soil cores taken, from cultivated field, t. = 55–65 d from meadow and t. = 29–35 
d from gravel track (Hassink et al. 1994); 
selected field t. = 90 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: biochemical t. = 328 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3555 
17.1.1.34 EPTC 
Common Name: EPTC 
Synonym: Eptam, Eradicane, FDA 1541, R 1608, Torbin 
Chemical Name: carbamic acid, dipropylthio-, S-ethyl ester; S-ethyldipropyl(thiocarbamate); S-ethyldipropylcarbamothioate 
Uses: selective systemic herbicide for pre-emergence control of perennial and annual grasses, broadleaf weeds. 
CAS Registry No: 759-94-4 
Molecular Formula: C9H19NOS 
Molecular Weight: 189.318 
Melting Point (°C): liquid 
Boiling Point (°C): 
235.0 (Khan 1980; Herbicide Handbook 1989) 
127.0 (at 20 mmHg, Hartley & Kidd 1987; Budavari 1989; Worthing & Hance 1991; Montgomery 1993; 
Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
0.9546 (30°C, Spencer 1982; Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994; Milne 1995) 
0.960 (25°C, Herbicide Handbook 1989; Montgomery 1993) 
Molar Volume (cm3/mol): 
236.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
375 (shake flask-GC, Freed et al. 1967) 
365 (Martin & Worthing 1977) 
370 (20°C, Khan 1980; Ashton & Crafts 1981; Herbicide Handbook 1989) 
370–375 (Weber et al. 1980) 
375 (20°C, Spencer 1982) 
370 (Beste & Humburg 1983; Jury et al. 1983, 1984) 
375 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
375 (24°C, Worthing & Walker 1987, Worthing & Hance 1991) 
365 (20°C, Budavari 1989; Milne 1995) 
344 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996; Lohninger 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
4.666 (extrapolated, Patchett et al. 1964) 
20.66 (Bailey & White 1965) 
1.84 (20°C, effusion method, Hamaker & Kerlinger 1971) 
2.16, 2.63, 3.69, 8.266 (23, 24, 28, 40°C, Hamaker 1972) 
4.532 (Khan 1980; Ashton & Crafts 1981; Herbicide Handbook 1989) 
2.62 (20°C, volatilization rate, Burkhard & Guth 1981) 
2.80 (Patchett et al. 1983) 
0.612 (20°C, GC-RT correlation, Kim 1985) 
4.70 (Hartley & Kidd 1987) 
2.00 (20°C, selected, Suntio et al. 1988) 
4.532 (35°C, Budavari 1989) 
4.50 (Worthing & Hance 1991) 
O 
S N 
© 2006 by Taylor & Francis Group, LLC

3556 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
4.532 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
4.532 (20°C, Montgomery 1993) 
0.00001 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.32 (20°C, volatilization rate, Burkhard & Guth 1981) 
1.463 (calculated-P/C, Jury et al. 1983, 1984, 1987a,b; Jury & Ghodrati 1989) 
1.02 (20°C, calculated-P/C, Suntio et al. 1988) 
1.463 (calculated-P/C, Taylor & Glotfelty 1988) 
1.013 (20–25°C, calculated-P/C, Montgomery 1993) 
1.023 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.76 (selected, Dao et al. 1983) 
3.21 (shake flask, Log P Database, Hansch & Leo 1987) 
3.20 (Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
3.21 (recommended, Sangster 1993) 
3.21 (recommended, Hansch et al. 1995) 
3.45 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.34 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
1.08 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.38 (soil, Hamaker & Thompson 1972) 
2.45 (soil, Hamaker & Thompson 1972) 
2.23 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.58 (soil, screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
2.23–2.38, 2.45 (quoted values, Bottoni & Funari 1992) 
2.30 (soil, 20–25°C, selected, Wauchope et al. 1992) 
2.38 (Montgomery 1993) 
2.30 (selected, Lohninger 1994) 
2.45 (selected, Wienhold & Gish 1994) 
2.38 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.23, 1.98 (soil, estimated-class specific model, estimated-general model using molecular descriptors, 
Gramatica et al. 2000) 
2.03, 2.00 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 3.7 d (Jury et al. 1983). 
Photolysis: rate constant k = 5.2 . 10–3 s–1 for a light intensity corresponding to a 12-h average NO2 photolysis 
rate with a black lamp spectral distribution (Kwok et al. 1992); 
photodegradation t. = 14.0 and 18.5 min in water solution under irradiation with UV light at 254 nm 
(Abu-Qare & Duncan 2002). 
Oxidation: second order rate constants kOH = (3.10–3.40) . 10–11 cm3 molecule–1 s–1 for gas-phase reaction with 
OH radical, kNO3 = 0.92 . 10–14 cm3 molecule–1 s–1 with NO3 radical and kO3 < 1.3 . 10–19 cm3 molecule–1 s–1 
with O3 at 298 K (Kwok et al. 1992); 
calculated lifetime of 6 h for the vapor-phase reaction with OH radical in the troposphere (Atkinson et al. 
1992; Kwok et al. 1992). 
Hydrolysis: 
Biodegradation: t. = 30 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Nash 1980; quoted, 
Jury et al. 1983, 1984, 1987a; quoted, Grover 1991). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3557 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: calculated tropospheric lifetimes are: > 8 h due to photolysis, 5.8 d due to reaction with OH radical, 5.0 d 
with NO3 radical and > 125 d with O3 (Kwok et al. 1992); 
calculated lifetime of 6 h for the vapor-phase reaction with OH radical in the troposphere (Atkinson et al. 
1992; Kwok et al. 1992). 
Surface water: t. = 14.0 and 18 min for elimination in water under irradiation with UV light at 254 nm 
(Abu-Qare & Duncan 2002). 
Ground water: reported half-lives or persistence, t. = 7 and 30 d (Bottoni & Funari 1992) 
Sediment: 
Soil: estimated persistence of 4 months in soil (Kearney et al. 1969; quoted, Jury et al. 1987a); 
t. = 30 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989); 
t. ~ 1 wk in moist loam soil at 21 to 27°C (Herbicide Handbook 1974, 1989); 
reported t. = 7, 30 d (Bottoni & Funari 1992); 
selected field t. = 6 d (Wauchope et al. 1992; quoted, Richards & Baker 1993; Hornsby et al. 1996). 
Biota: biochemical t. = 30 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989) 
© 2006 by Taylor & Francis Group, LLC

3558 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.35 Ethalfluralin 
Common Name: Ethalfluralin 
Synonym: Benzenamine, Somilan, Sonalan, Sonalen 
Chemical Name: N-ethyl-N-(2-methyl-2-propenyl)-2.6-dinitro-(trifluoromethyl)-benzenamine 
CAS Registry No: 55283-68-6 
Uses: herbicide 
Molecular Formula: C13H14F3N3O4 
Molecular Weight: 333.263 
Melting Point (°C): 
57 (Lide 2003) 
Boiling Point (°C): 
256 (decomposes, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
1.32 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.485 (mp at 57°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
0.21 (Ashton & Crafts 1981) 
0.20 (pH 7, Spencer; Hartley & Kidd 1987; Worthing & Walker 1987) 
0.30 (pH 7, Herbicide Handbook 1989) 
0.30 (selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.30 (pH 7, Tomlin 1994; Milne 1995) 
0.40 (Majewski & Capel 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
1.10 . 10–4 (Worthing & Walker 1983, 1987; Hartley & Kidd 1987) 
0.0109 (Spencer 1982; Herbicide Handbook 1989) 
0.0117 (selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.0117 (Tomlin 1994) 
2.22 . 10–4 (20–25°C, Majewski & Capel 1995) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.183 (calculated-P/C, Majewski & Capel 1995) 
13 (calculated-P/C, Wolt 1997) 
Octanol/Water Partition Coefficient, log KOW: 
5.11 (pH 7, Tomlin 1994; Milne 1995) 
4.92 (quoted values; selected, Wolt 1997) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
NO2 
N
NO2 
F 
F 
F 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3559 
Sorption Partition Coefficient, log KOC: 
3.60 (selected, soil, Wauchope et al. 1992; Hornsby et al. 1996) 
3.60–3.90 (soil, Tomlin 1994) 
3.61–3.92 (soil, Wolt 1997) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 6.3 h in aqueous phase and t. = 2 h in vapor phase (Tomlin 1994); 
Aqueous photolysis t. = 6.3 h in pH 5 sterile buffer solution; soil photolysis t. = 14.2 d in air-dry sandy 
loam soil when exposed to a xenon light source; air photolysis t. = 2 h when exposed to a light source 
simulating summer sunlight at 34°C (Wolt 1997). 
Oxidation: 
Hydrolysis: no hydrolysis after 33 d at pH 3, 6 and 9 (51°C, Tomlin 1994); stable in sterile, buffered solutions 
across a range of pH (Wolt 1997). 
Biodegradation:. 
Biotransformation: t. = 45 d for aerobic metabolism in sandy loam soils and t. = 14 d for more rapid metabolism 
anaerobically in the same soil (quoted, Tomlin 1994; Wolt 1997). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: air photolysis t. = 2 h when exposed to a light source simulating summer sunlight at 34°C (Wolt 1997). 
Surface water: water photolysis t. = 6.3 h in pH 5 sterile buffer solution; t. = 2 d for dissipation from the water 
column in a pond water-sediment system under outdoor conditions (Wolt 1997). 
Ground water: 
Sediment: t. = 38 h in anaerobic pond water sediment system (Wolt 1997). 
Soil: reported field t. = 30–60 d, 60 d, 25–46 d; recommended t. = 60 d (Wauchope et al. 1992; Hornsby et al. 
1996); 
t. = 45 d for aerobic metabolism in sandy loam soils and t. = 14 d for more rapid metabolism anaerobically 
in the same soil (Tomlin 1994); 
terrestrial filed dissipation t. = 4–146 d, t. = 45 d in moist aerobic soil, t. = 14 d in anaerobic soil shifted 
to anaerobic conditions (Wolt 1997). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3560 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.36 Fenoprop 
Common Name: Fenoprop 
Synonym: Silvex, 2,4,5-TP, Kuron, Kurosal, Fruitone T 
Chemical Name: 2-(2,4,5-trichlorophenoxy) propionic acid 
CAS Registry No: 93-72-1 
Uses: herbicide/growth regulator 
Molecular Formula: C9H7Cl3O3 
Molecular Weight: 269.509 
Melting Point (°C): 
181.6 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
2.84 (Worthing 1983, 1987; Augustijn-Beckers et al. 1994) 
Enthalpy of Vaporization, .HV (kJ/mol): 
75.75 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
44.6 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0291 (mp at 181.6°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
140 (Kenaga & Goring 1980, Kenaga 1980a,b, Spencer 1982) 
140 (Worthing & Walker 1983, 1987; Budavari 1989) 
200 (Verschueren 1983) 
176 (Hartley & Kidd 1987) 
12.0 (calculated-MCI ., Patil 1994) 
140 (selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
2.30 . 10–3, 4.40 . 10–2, 0.55, 4.90, 34.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 13.953 – 4948/(T/K); measured range 85.4–181°C (gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 11.727 – 3956.9/(T/K); measured range 181–211°C (gas saturation-GC, Rordorf 1989) 
< 1.33 . 10–6 (estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
2.44 (Kenaga 1980a) 
3.86 (estimated, Garten & Trabalka 1983) 
3.13 (counter-current chromatography, Ilchmann et al. 1993) 
2.75 (calculated-MCI ., Patil 1994) 
3.80 (selected, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.76 (calculated, Kenaga 1980a) 
1.58, 2.23 (calculated-solubility, KOW, Kenaga 1980b) 
Cl 
Cl Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3561 
1.76 (fish, flowing water, Garten & Grabalka 1983) 
2.35 (Isensee 1991) 
Sorption Partition Coefficient, log KOC: 
3.41 (soil, Kenaga & Goring 1980) 
2.46 (calculated-KOW, Kenaga 1980b) 
1.91 (soil: calculated-MCI ., Meylan et al. 1992) 
2.48 (soil, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
3.28 (soil, calculated-MCI ., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Biodegradation: t. > 205 d for ring cleavage in soil suspensions (Verschueren 1983) 
Half-Lives in the Environment: 
Soil: persistence 47–205 d in soil (Alexander et al. 1961) 
degradation t. = 21 d and 14 d in Quachita Highlands’ forest and grassland soil respectively, t. = 15 d in 
gross timbers forest soil, average t. = 17 d in 3 soils (Altom & Stritzke 1973); 
t. = 5–11 d in a microagroecosystem study (Nash 1983); 
t. > 205 d for ring cleavage in soil suspensions (Verschueren 1983); 
field t. = 21 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
© 2006 by Taylor & Francis Group, LLC

3562 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.37 Fenuron 
Common Name: Fenuron 
Synonym: Dozer, Dybar, Falisilvan, Fenidim, Fenulon, Urab 
Chemical Name: 1,1-dimethyl-3-phenylurea; N,N-dimethyl-N.-phenylurea 
Uses: herbicide to control woody plants and deep-rooted perennial weeds, often used in combination with chlorpropham 
to extend its weed control spectrum and range of crops. 
CAS Registry No: 101-42-8 
Molecular Formula: C9H12N2O 
Molecular Weight: 164.203 
Melting Point (°C): 
132 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.13 (25°C, Hartley & Kidd 1987) 
1.08 (Worthing & Hance 1991; Tomlin 1994) 
Molar Volume (cm3/mol): 
182.0 (calculated-Le Bas method at normal boiling point) 
159.0 (modified Le Bas method, Spurlock & Biggar 1994a) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
24.267 (DSC method, Plato & Glasgow 1969) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0892 (mp at 132°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
2600 (Freed 1966) 
2400 (Gunther et al. 1968) 
3850 (Martin & Worthing 1977; Kenaga 1980; Kenaga & Goring 1980; Verschueren 1983) 
3850 (Khan 1980; Weber et al. 1980; Ashton & Crafts 1981; Willis & McDowell 1982) 
3700 (shake flask-HPLC, Ellgehausen et al. 1981) 
3850 (Hartley & Kidd 1987; Worthing & Walker 1987, Worthing & Hance 1991; Tomlin 1994) 
3000 (20°C, selected, Suntio et al. 1988) 
3900 (Spurlock 1992; Spurlock & Biggar 1994b) 
3850 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0213 (60°C, Khan 1980; Verschueren 1983) 
0.0210 (60°C, Hartley & Kidd 1987) 
0.0050 (20°C, selected, Suntio et al. 1988) 
0.0210 (60°C, Worthing & Hance 1991; Tomlin 1994) 
0.0267 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C at 25°C or as indicated): 
0.00027 (20°C, calculated-P/C, Suntio et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
0.98 (shake flask-UV, Hansch & Anderson 1967) 
1.00 (Leo et al. 1971) 
1.00 (shake flask-UV, Lord et al. 1980) 
HN
N 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3563 
0.96 (shake flask-UV, Briggs 1981; Karickhoff 1981) 
0.88 (shake flask-HPLC, Ellgehausen et al. 1981) 
0.62 (HPLC-k. correlation, McDuffie 1981) 
0.70 (Elgar 1983) 
1.18 (RP-HPLC-k. correlation, Braumann et al. 1983) 
1.00 (shake flask-HPLC, Spurlock & Biggar 1994a) 
0.98 (recommended, Sangster 1993) 
1.18 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
0.98 (recommended, Hansch et al. 1995) 
1.18 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
0.778 (calculated-S, Kenaga 1980) 
0.0 (calculated-KOC, Kenaga 1980) 
1.34 (earthworms, Lord et al. 1980) 
0.699, 0.602 (cuticle/water: tomato, pepper, Evelyne et al. 1992) 
Sorption Partition Coefficient, log KOC: 
1.43 (soil, Hamaker & Thompson 1972) 
1.67 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
0.88 (reported as log KOM, Briggs 1981) 
0.61 (estimated-KOW, Karickhoff 1981) 
1.80, 1.86 (estimated-S, Karickhoff 1981) 
0.72, 0.84 (estimated-S and mp, Karickhoff 1981) 
1.74 (calculated-MCI ., Gerstl & Helling 1987) 
1.62 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
1.40 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.40; 1.40, 1.70 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
1.42, 1.41 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Biodegradation: aerobic t. . 10 d for 0.01 µg/mL to biodegrade in river water (Eichelberger & Lichtenberg 
1971; quoted, Muir 1991). 
Half-Lives in the Environment: 
Air: 
Surface water: aerobic t. .10 d for 0.01 µg/mL to biodegrade in river water (Eichelberger & Lichtenberg 1971; 
quoted, Muir 1991); 
persistence of up to 4 weeks in river water (Eichelberger & Lichtenberg 1971). 
Ground water: 
Sediment: 
Soil: t. = 4.5 months at 15°C and 2.2 months at 30°C in soils (Freed & Haque 1973); 
persistence of 8 months in soil (Edwards 1973; quoted, Morrill et al. 1982); 
selected field t. = 60 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3564 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.38 Fluchloralin 
Common Name: Fluchloralin 
Synonym: BAS-392H, Basalin 
Chemical Name: N-(2-chloroethyl)-2,6-dinitro-N-propyl-4-(trifluoromethyl)benzenamine; N-(2-chloroethyl).,.,.-trifluoro- 
2,6-dinitro-N-propyl-p-toluidine 
Uses: herbicide for pre-plant or pre-emergence control of annual grass and broadleaf weeds in cotton, groundnuts, jute, 
potatoes, rice soybeans, and sunflowers, etc. 
CAS Registry No: 33245-39-5 
Molecular Formula: C12H13ClF3N3O4 
Molecular Weight: 355.697 
Melting Point (°C): 
42 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
326.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.681 (mp at 42°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1.00 (20°C, Weber 1972; Ashton & Crafts 1981) 
1.00 (Edwards 1977) 
< 1.0 (Martin & Worthing 1977; Herbicide Handbook 1978, 1989) 
0.70 (20°C, Spencer 1982) 
< 1.0 (Worthing & Walker 1987, 1991; Tomlin 1994) 
10 (Budavari 1989; Milne 1995) 
0.90 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
0.50 (selected, Lohninger 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0033 (20°C, Weber 1972; Worthing & Walker 1987) 
0.373 (20°C, Ashton & Crafts 1981) 
0.0008, 0.0033, 0.0133, 0.533 (20, 30, 40, 50°C, gas saturation, Spencer 1982) 
0.0035 (Herbicide Handbook 1983; quoted, Nash 1988) 
0.0037, 0.0033 (20°C, 30°C, Herbicide Handbook 1989) 
0.004 (20°C, Worthing & Hance 1991; Tomlin 1994) 
0.004 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.174 (20°C, calculated-P/C, Muir 1991) 
1.343 calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.63 (selected, Magee 1991) 
N 
NO2 O2N
F F 
F 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3565 
4.70 (CLOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
> 2.79, 2.40 (calculated-S, calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.56 (soil, Harvey 1974) 
3.60 (soil, Kenaga 1980) 
> 3.64 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
4.25 (calculated-MCI ., Bahnick & Doucette 1988) 
3.56; 3.58 (reported as log KOM, estimated as log KOM, Magee 1991) 
3.48 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
3.80 (estimated-chemical structure, Lohninger 1994) 
3.55 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.55; 4.02 (soil, quoted obs.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. ~ 1 d from 1 m depth of water (20°C, Muir 1991). 
Photolysis: t. = 13 d for 84% of 5 µg/mL to degrade in distilled water under sunlight (Nilles & Zabik 1974; 
quoted, Cessna & Muir 1991); 
t. = 8 h for 50% of 2000 µg/mL to degrade in methanol under sunlight (Plimmer & Klingebiel 1974; quoted, 
Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: 
Biodegradation: t. = 8 d for 0.5 µg/mL to biodegrade in soil at 20–42°C (Savage 1978; quoted, Muir 1991); 
t. = 3.6 wk for 2.0 µg/mL to biodegrade in soil at 25°C (Brewer et al. 1982; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: t. = 8 d for 0.5 µg/mL to biodegrade in soil at 20–42°C (Savage 1978; quoted, Muir 1991); 
t. = 1.5 d on Bosket silt loam, t. = 4 d on Sharkey clay for the first 3 to 5 days when sprayed onto soil 
surface, rate of loss much slower for the remainder of the 7- or 12-d sampling period with t. = 13 d on 
Bosket silt loam, t. = 8 d on Sharkey clay (Savage & Jordon 1980) 
measured dissipation rate k = 0.099–0.13 d–1 (derived from Savage & Jordan 1980, Nash 1988); 
field studies, t. = 12.2 wk - 1978 first study; t. = 13.0 wk -1978 second study; t. = 17.6 wk -1979, in a 
Crowley silt loam at Stuttgart, Arkansas (Brewer et al. 1982) 
Laboratory studies: t. = 28.7 wk at 4°C, 10.5 wk at 25°C for soils of field capacity moisture (27% w/w for 
Crowley silt loam) and t. = 20.8 wk at 4°C, t. = 8.4 wk at 25°C for flooded soil of Crowley silt loam; 
t. = 29.3 wk at 4°C, t. = 10.5 wk at 25°C for soil of field capacity moisture (34% w/w for Sharkey silty 
clay) and t. = 20.8 wk at 4°C and t. = 4.3 wk at 25°C for flooded soil, Sharkey silty clay (Brewer et al. 
1982); 
t. = 3.6 wk for 2.0 µg/mL to biodegrade in soil at 25°C (derived form Brewer et al. 1982, Muir 1991); 
estimated dissipation rate k = 0.29, and 0.120 d–1 (Nash 1988); 
estimated field t. ~ 60 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

3566 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.39 Fluometuron 
Common Name: Fluometuron 
Synonym: CIBA 2059, Cotoran, Cottonex, Higalcoton, Lanex, Meturon, Pakhtaran 
Chemical Name: 1,1-dimethyl-3-(.,.,.-trifluoro-m-tolyl)urea; N,N-dimethyl-N.-[3-(trifluoromethyl)phenyl]urea 
Uses: herbicide to control many annual broadleaf weeds in sugar cane and cotton. 
CAS Registry No: 2164-17-2 
Molecular Formula: C10H11F3N2O 
Molecular Weight: 232.201 
Melting Point (°C): 
163–164.5 (Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & Hance 1991; Montgomery 1993; 
Tomlin 1994; Milne 1995) 
164 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.390 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
229.7 (calculated-Le Bas method at normal boiling point) 
167.1 (calculated-density) 
Dissociation Constant pKa: 
–1.00 (Sangster 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
29.706 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0433 (mp at 164°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
90 (Melnikov 1971; Spencer 1973, 1982; quoted, Wauchope 1978; Khan 1980; Weber et al. 1980) 
90 (20°C, Martin & Worthing 1977; Herbicide Handbook 1978,89) 
106 (shake flask-UV, Briggs 1981) 
90 (Herbicide Handbook 1983) 
105 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987, 1991) 
110 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
80 (Montgomery 1993) 
110 (Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
6.70 . 10–5 (20–25°C, Weber et al. 1980) 
6.70 . 10–5 (Herbicide Handbook 1983) 
6.70 . 10–5 (20°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Montgomery 1993) 
6.60 . 10–5 (20°C, Worthing & Hance 1991) 
1.25 . 10–4 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.25 . 10–4 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
< 0.283 (20–25°C, calculated-P/C, Montgomery 1993) 
1.73 . 10–4 (calculated-P/C, this work) 
HN
N 
O 
F F 
F 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3567 
Octanol/Water Partition Coefficient, log KOW: 
1.34 (Briggs 1969) 
2.42 (shake flask-UV, Briggs 1981) 
1.88 (shake flask-UV, pH 5, Barak et al. 1983) 
2.40 (selected, Gerstl & Helling 1987) 
2.23 (Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
2.23, 2.38 (Montgomery 1993) 
2.03 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
2.20 (recommended, Sangster 1993) 
2.42 (recommended, Hansch et al. 1995) 
2.03 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.67 (calculated-S, Kenaga 1980) 
0.954 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.24 (soil, Abernethy & Davidson 1971; Davidson & McDougal 1973; Savage & Wauchope 1974; 
Carringer et al. 1975; Wood & Davidson 1975) 
2.30 (soil, Kenaga 1980) 
2.57 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
1.82 (soil, converted from reported KOM multiplied by 1.724, Briggs 1981) 
2.30 (calculated-MCI ., Gerstl & Helling 1987) 
2.00 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.46–2.08 (Montgomery 1993) 
2.00 (estimated-chemical structure, Lohninger 1994) 
1.49–2.07 (Tomlin 1994) 
2.00 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.33; 2.66., 2.03, 2.64, 2.36, 1.94 (quoted lit., calculated-KOW; HPLC-screening method with different 
LC-columns, Szabo et al. 1999) 
2.14, 2.51 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, 
Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = (11 ± 2 h) in 10 ppm aqueous solutions under summer sunlight of 9.1 h/d exposure and 
t. = (33 ± 16) h under spring sunlight of 3.7 h/d exposure (Burkhard et al. 1975). 
Oxidation: 
Hydrolysis: t. = 1.6 yr at 20°C and pH 1, t. = 2.4 yr at pH 5, and t. = 2.8 yr at pH 9 (Montgomery 1993). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 730–1010 d at pH 5–9 and 20°C in aqueous solutions (Herbicide Handbook 1989). 
Ground water: 
Sediment: 
Soil: measured dissipation rate k = 0.023–0.043 d–1 (Horowitz & Herzlinger 1974: quoted, Nash 1988); 
estimated dissipation rate k = 0.0012, and 0.011 d–1 (Nash 1988); 
persistence of 4 months in soil (Wauchope 1978); 
selected field t. = 85 d (Wauchope et al. 1992; Hornsby et al. 1996); 
soil t. = 30 d (Pait et al. 1992); 
median t. ~ 30 d in soil (Herbicide Handbook 1989; Tomlin 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3568 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.40 Fluorodifen 
Common Name: Fluorodifen 
Synonym: Preforan, Soyex 
Chemical Name: 4-nitrophenyl .,.,.-trifluoro-2-nitro-p-tolyl ether 
Uses: herbicide. 
CAS Registry No: 15457-05-3 
Molecular Formula: C13H7F3N2O5 
Molecular Weight: 328.200 
Melting Point (°C): 
94 (Spencer 1982; Milne 1995; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
282.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.210 (mp at 94°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
2.0 (20°C, Spencer 1973, 1982) 
< 2.0 (Weber et al. 1980) 
2.0 (shake flask-HPLC, Ellgehausen et al. 1981) 
2.0 (20°C, Worthing & Walker 1987, Worthing & Hance 1991) 
Vapor Pressure (Pa at 25°C or as indicated): 
9.33 . 10–6 (20°C, Spencer 1982) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
3.30 (shake flask-HPLC, Ellgehausen et al. 1980; Geyer et al. 1991) 
4.40 (20 ± 2°C, shake flask-UV, Briggs 1981) 
3.65 (shake flask-HPLC, Ellgehausen et al. 1981) 
3.60 (HPLC-RT correlation, Nandihalli et al. 1993) 
3.65 (recommended, Sangster 1993) 
3.65 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
2.019 (algae, log BF-bioaccumulation factor, Ellgehausen et al. 1980) 
2.386 (catfish, log BF-bioaccumulation factor, Ellgehausen et al. 1980) 
1.178 (daphnids, log BF-bioaccumulation factor, Ellgehausen et al. 1980) 
Sorption Partition Coefficient, log KOC: 
3.13 (calculated-MCI ., Gerstl & Helling 1987) 
Environmental Fate Rate Constants, k, or Half-Lives. t.: 
Half-Lives in the Environment: 
O
O2N 
O2N 
F
F
F 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3569 
17.1.1.41 Fluridone 
Common Name: Fluridone 
Synonym: Brake, EL-171, Fluridon, Pride, Sonar 
Chemical Name: 1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl] 4(1H)-pyridinone; 1-methyl-3-phenyl-5-( ., ., .-trifluorom-
tolyl)-4-pyridone 
Uses: herbicide to control annual grass and broadleaf weeds and certain perennial species in cotton; also used to control 
aquatic weeds and plants in lakes, ponds, ditches, etc. 
CAS Registry No: 59756-60-4 
Molecular Formula: C19H14F3NO 
Molecular Weight: 329.315 
Melting Point (°C): 
155 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
333.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
12.3 (pKb, Wauchope et al. 1992) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0530 (mp at 155°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
12.0 (20°C, Weber 1972; Worthing & Walker 1987) 
12.0 (Kenaga 1980) 
12.0 (Herbicide Handbook 1983, 1989; Budavari 1989; Milne 1995) 
12.0 (Hartley & Kidd 1987; Worthing & Walker 1987, Worthing & Hance 1991) 
10.0 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
10.0 (selected, Lohninger 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
1.31 . 10–5 (20°C, Weber 1972; Worthing & Walker 1987) 
1.00 . 10–5 (Herbicide Handbook 1983) 
0.013 (Hartley & Kidd 1987; Worthing & Hance 1991) 
1.33 . 10–5 (Herbicide Handbook 1989) 
1.33 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.30 . 10–5 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
3.59 . 10–4 (20°C, calculated-P/C, Muir 1991) 
Octanol/Water Partition Coefficient, log KOW: 
1.87 (Reinert 1989) 
1.87 (Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
2.98 (shake flask, Takahashi et al. 1993; quoted, Sangster 1993) 
3.16 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
F 
F 
F 
N
O 
© 2006 by Taylor & Francis Group, LLC

3570 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioconcentration Factor, log BCF: 
2.18 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
0.778 (measured, West et al. 1983; quoted, Isensee 1991) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
1.60 (soil, Kenaga 1980) 
2.97–3.39 (pond sediment, Muir et al. 1980) 
3.36, 2.95 (lake and river sediment, Muir et al. 1980) 
2.94 (Reinert 1989) 
2.90, 3.81, 3.03 (Norfolk sand pH 6.0, Norfold with montmorillonite pH 5.9, Norfolk sand with added organic 
matter pH 5.3, Reinert 1989) 
3.43, 2.57, 2.43 (California soil at pH 6, 7, 7.3, Reinert 1989) 
3.00 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
3.00 (selected, Lohninger 1994) 
2.85 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 10,000 d from 1 m depth of water at 20°C (Muir 1991). 
Photolysis: t. . 23 h to degrade in distilled water under > 290 nm light (West et al. 1979; quoted, Cessna & 
Muir 1991); 
t. . 6 h for 5 µg/mL to degrade in nonsterile pond water under sunlight (Muir & Grift 1982; quoted, Cessna & 
Muir 1991); 
t. = 27 d for 85% of 10 µg/mL to degrade in distilled water and for 85% of 10 µg/mL to degrade in lake 
water at pH 8.4 both under sunlight (Sanders & Mosier 1983; quoted, Cessna & Muir 1991; Howard et 
al. 1991) 
resistance to decomposition by UV light with t. = 23 h in deionized water (Herbicide Handbook 1989). 
Oxidation: photooxidation t. = 0.359–3.20 h, based on estimated rate constant for reaction with hydroxyl radicals 
(Atkinson 1987; quoted, Howard et al. 1991) and ozone (Atkinson & Carter 1984; quoted, Howard et al. 
1991). 
Hydrolysis: t. > 113 d for 1 µg/mL to hydrolyze in pond water at 4°C (Ghassemi et al. 1981; quoted, Muir 
1991); t. = 23 h in water (Tomlin 1994). 
Biodegradation: aqueous aerobic t. = 44–192 d, based on soil die-away test data and field study soil persistence 
(Banks et al. 1979; quoted, Howard et al. 1991); 
t. = 12 months for 5 µg/mL to biodegrade in static sediment and water, and t. . 9 months in aerobic and 
anaerobic sediment and water all at 25°C (Muir & Grift 1982; quoted, Muir 1991); 
aqueous anaerobic t. = 176 d to 2.1 yr, based on estimated unacclimated aqueous aerobic biodegradation 
half-life (Howard et al. 1991); 
microbial degradation t. > 343 d at pH 7.3 with 2.6% organic matter in a silt loam soil (Tomlin 1994). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 0.9–1.3 h–1 (Chironomus tentans larvae in pond sediment-water system, 96-h exposure, calculated by 
using first-order kinetic and concn factors, Muir et al. 1983) 
k1 = 0.70–5.6 h–1 (Chironomus tentans larvae in river sediment-water system, 96-h exposure, calculated by 
using first-order kinetic and concn factors, Muir et al. 1983) 
k1 = 1.7–3.40 h–1 (Chironomus tentans larvae in sediment (sand)-water system, 96-h exposure, calculated 
by using first-order kinetic and concn factors, Muir et al. 1983) 
k1 = 1.7–2.1 h–1 (Chironomus tentans larvae in sediment (sand)-water system, 96-h exposure, calculated by 
using initial uptake data of 0–12 h, Muir et al. 1983) 
k2 = 0.052 h–1 (Chironomus tentans larvae in pond sediment-water system, calculated by concentration decay 
curve, Muir et al. 1983) 
k2 = 0.118 h–1 (Chironomus tentans larvae in river water system, calculated by concentration decay curve, 
Muir et al. 1983) 
k2 = 0.055 h–1 (Chironomus tentans larvae in river sediment-water system, calculated by concentration decay 
curve, Muir et al. 1983) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3571 
k2 = 0.041 h–1 (Chironomus tentans larvae in sediment (sand)-water system, calculated by concentration 
decay curve, Muir et al. 1983) 
Half-Lives in the Environment: 
Air: t. = 0.359–3.20 h, based on estimated rate constant for reaction with hydroxyl radicals (Atkinson 1987; 
quoted, Howard et al. 1991) and ozone (Atkinson & Carter 1984; quoted, Howard et al. 1991). 
Surface water: t. ~ 21 d in water (Hartley & Kidd 1987); 
t. = 288–864 h, based on estimated photolysis half-life in water (Howard et al. 1991); 
anaerobic t. = 9 months and aerobic t. ~ 20 d (Tomlin 1994). 
Ground water: t. = 2112–9216 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: t. = 12 months for 5 µg/mL to biodegrade in static sediment and water, and t. . 9 months in aerobic 
and anaerobic sediment and water all at 25°C (Muir & Grift 1982; quoted, Muir 1991). 
Soil: measured dissipation rate k = 0.0041 d–1 (Banks et al. 1979; quoted, Nash 1988) with estimated t. = 44–192 
d (Banks et al. 1979; quoted, Howard et al. 1991); 
estimated dissipation rate k = 0.0067 and 0.025 d–1 (Nash 1988); 
selected field t. = 21 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. ~ 90 d in the hydrosoil (Tomlin 1994). 
Biota: elimination t. = 13.2 h in pond sediment-water, t. = 5.9 h in river water, t. = 12.5 h in river sedimentwater, 
t. = 16.9 in sand-water systems (Chironomus tentans larvae, Muir et al. 1983) 
© 2006 by Taylor & Francis Group, LLC

3572 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.42 Glyphosate 
Common Name: Glyphosate 
Synonym: Mon-0573, 0468, 2139; Polado, Roundup 
Chemical Name: N-(phosphoromethyl)glycine 
Uses: nonselective, post-emergent, broad spectrum herbicide to control annual and perennial grasses, sedges, broadleaf, 
and emerged aquatic weeds; also used to control insects on fruit trees. 
CAS Registry No: 1071-83-6 
Molecular Formula: C3H8NO5P 
Molecular Weight: 169.074 
Melting Point (°C): 
230 (dec., Montgomery 1993; Milne 1995; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.74 (Herbicide Handbook 1989; Montgomery 1993) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
5.70 (Worthing & Hance 1991) 
2.60, 5.90, 10.40 (pK1, pK2, pK3, Yao & Haag 1991; Haag & Yao 1992) 
2.32, 5.86, 10.86 (pK1, pK2, pK3, Montgomery 1993; Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0097 (mp at 230°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
10000 (Spencer 1973, 1982; Herbicide Handbook 1978; Ashton & Crafts 1981) 
12000 (Martin & Worthing 1977; Worthing & Walker 1987, Worthing & Hance 1991; Tomlin 1994) 
15700 (Herbicide Handbook 1989) 
12000 (Budavari 1989; Montgomery 1993; Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
2.59 . 10–5 (45°C, Herbicide Handbook 1989) 
4.00 . 10–5 (Worthing & Hance 1991) 
0.001 (Montgomery 1993; quoted, Majewski & Capel 1995) 
negligible (Tomlin 1994) 
0.0 (selected, Halfon et al. 1996) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
1.41 . 10–5 (calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
–1.70 (shake flask, pH 5.3, Martin & Edgington 1981) 
–4.10 (shake flask, pH 2.5, Stevens et al. 1988) 
–3.25 (Reinert 1989) 
–4.59 (Worthing & Hance 1991) 
–1.60 (Montgomery 1993) 
–4.10, –1.70 (pH 2.5, pH 5.3, quoted, Sangster 1993) 
–1.70 (pH 5.3, selected, Hansch et al. 1995) 
0.94 (RP-HPLC-RT correlation, Finizio et al. 1997) 
P 
HN
OH 
O 
HO 
O 
HO 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3573 
Bioconcentration Factor, log BCF: 
0.477 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
2.26 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.42 (soil, Sprankle et al. 1975; Hance 1976; Nomura & Hilton 1977) 
1.40 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
1.22 (selected, USDA 1989; quoted, Neary et al. 1993) 
–0.43 (Reinert 1989) 
3.69, 3.53, 3.42 (3 agricultural soils: Houston clay loam at pH 7.5, Muskingum silt loam at pH 5.8, Sassafras 
sandy loam at pH 5.6, Reinert 1989) 
4.38 (organic carbon, Wauchope et al. 1991) 
3.43–3.69 (Montgomery 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 48 h for 0% of 168 µg/mL to degrade in distilled water under > 290 nm light (Rueppel et al. 
1977; quoted, Cessna & Muir 1991); 
t. = 9 wk for > 90% of 2 µg/mL to degrade in distilled water under sunlight (Lund-HOie & Friestad 1986; 
quoted, Cessna & Muir 1991); 
t. = 4.0 d and 3–4 wk for aqueous solutions of 1.0 and 2000 ppm under indoor UV light (Lund-HOie & 
Friestad 1986; quoted, Montgomery 1993). 
Oxidation: 
k(aq.) = 7.3 . 108 M–1 s–1 for the reaction (photo-Fenton with reference to glycolic acid) with hydroxyl 
radical in aqueous solutions at pH 3.8 and at 24 ± 1°C (Buxton et al. 1988; quoted, Faust & Hoigne 
1990; Haag & Yao 1992) 
k(aq.) = (0.027–8.2) . 103 M–1 s–1 for direct reaction with ozone in water at pH 1.8–7.0 and 22 ± 2°C, with 
a half-life of 4.0 s at pH 7 (Yao & Haag 1991). 
k(aq.) = (1.8 ± 0.5) . 108 M–1 s–1 for the reaction (photo-Fenton with reference to glycolic acid) with hydroxyl 
radical in aqueous solutions at pH 3.8 and at 24 ± 1°C (Haag & Yao 1992). 
Hydrolysis: t. = 7 d for 10 µg/mL to hydrolyze in sterile water + soil (Rueppel et al. 1977; quoted, Muir 1991); 
t. = 32 d for 25 and 250 µg/mL to hydrolyze in sterile distilled water at pH 3, 6 and 9 in the dark at 5 and 
35°C (Ghassemi et al. 1981; quoted, Muir 1991) 
Biodegradation: t. < 28 d for 10 µg/mL to biodegrade in soil-water suspension (Rueppel et al. 1977; quoted, 
Muir 1991); 
t. > 9 wk for 2 µg/mL to biodegrade in polluted lake water (Rueppel et al. 1977; quoted, Muir 1991); 
rate constant k = 0.1 d–1 from soil incubation die-away studies (Rao & Davidson 1980; quoted, Scow 1982); 
t. = 70 d in pond water at pH 7.2, t. = 63 d in swamp water at pH 6.3 and t. = 49 d in Sphagnum bog 
water at pH 4.2 (Ghassemi et al. 1981; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. > 9 wk for 2 µg/mL to biodegrade in polluted lake water (Rueppel et al. 1977; quoted, Muir 
1991); 
t. = 70 d in pond water at pH 7.2, t. = 63 d in swamp water at pH 6.3 and t. = 49 d in Sphagnum bog 
water at pH 4.2 (Ghossemi et al. 1981; quoted, Muir 1991); 
measured rate constant k = (0.027 - 8.2) . 103 M–1 s–1 for direct reaction with ozone in water at pH 1.8–7.0 
and 22 ± 2°C, with t. = 4.0 s at pH 7 (Yao & Haag 1991). 
Ground water: 
Sediment: 
© 2006 by Taylor & Francis Group, LLC

3574 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Soil: t. < 28 d for 10 µg/mL to biodegrade in soil-water suspension (Rueppel et al. 1977; quoted, Muir 1991); 
estimated first-order t. = 7 d from biodegradation rate constant k = 0.1 d–1 from soil incubation die-away 
studies (Rao & davidson 1980; quoted, Scow 1982); 
moderately persistent in soil with t. = 20–100 d (Willis & McDowell 1982); 
average t. < 60 d (Hartley & Kidd 1987; Herbicide Handbook 1989; quoted, Montgomery 1993); 
selected t. = 47 d (Wauchope et al. 1991; quoted, Dowd et al. 1993; Halfon et al. 1996). 
Biota: average t. = 60 d in the forest (USDA 1989; quoted, Neary et al. 1993). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3575 
17.1.1.43 Isopropalin 
Common Name: Isopropalin 
Synonym: EL 179, Isopropaline, Isopropalin solution, Paarlan 
Chemical Name: 4-isopropyl-2,6-dinitro-N,N-dipropylaniline; 4-(1-methylethyl)-2,6-dinitro-N,N-dipropylbenzenamine; 
2,6-dinitro-N,N-dipropylcumidine 
Uses: herbicide used pre-planting and incorporated with soil preparation to control broadleaf weeds and grasses in 
transplanted tobacco, and in direct-seeded tomatoes and capsicums. 
CAS Registry No: 33820-53-0 
Molecular Formula: C15H23N3O4 
Molecular Weight: 309.362 
Melting Point (°C): liquid 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
361.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.11 (Martin & Worthing 1977; Herbicide Handbook 1978) 
1.10 (Ashton & Crafts 1981) 
0.10 (Spencer 1982; Hartley & Kidd 1987; Budavari 1989; Milne 1955) 
0.10 (Worthing & Walker 1987, Worthing & Hance 1991) 
0.08 (Herbicide Handbook 1989) 
0.10 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.02 (predicted-AQUAFAC, Lee et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0019 (30°C, Ashton & Crafts 1981) 
0.0019 (30°C, Hartley & Kidd 1987) 
0.0040 (25.6°C, Herbicide Handbook 1989) 
0.0012 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
5.34 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
Bioconcentration Factor, log BCF: 
3.50 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
3.88 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
4.88 (soil, Harvey 1974) 
4.17 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
4.17–4.88 (soil, quoted values, Bottoni & Funari 1992) 
N 
NO2 O2N 
© 2006 by Taylor & Francis Group, LLC

3576 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
4.00 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
4.00 (selected, Lohninger 1994) 
3.50 (soil, estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: atmosphere photolysis t. = 288–864 h, based on observed photolysis on soil TLC plates under 
summer sunlight (Helling 1976; quoted, Howard et al. 1991) and adjusted for relative winter sunlight intensity 
(Lyman et al. 1982; quoted, Howard et al. 1991); aqueous photolysis t. = 288–864 h, based on observed 
photolysis on soil TLC plates under summer sunlight (Helling 1976; quoted, Howard et al. 1991) and 
adjusted for relative winter sunlight intensity (Lyman et al. 1982; quoted, Howard et al. 1991). 
Oxidation: photooxidation t. = 0.743–74.3 h in air, based on estimated rate constant for the vapor-phase reaction 
with hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: 
Abiotic Transformation: Degradation by abiotic reductive transformations: 
k = 1.71 M–1 s–1 in H2S with (mecapto)juglone (hydroquinone moiety, an abiotic reductant found in natural 
systems) solution at pH 6.65 (Wang & Arnold 2003) 
Aqueous solutions with surface-bound Fe(II) species and their furst-order rate constants as: 
k = 0.94 . 10–3 h–1 at pH 6.5, k = 0.36 . 10–2 h–1 at pH 7.0, k = 0.057 h–1 at pH 7.4, and k = 1.76 h–1 at 
pH 7.8 for aqueous ferrous ion system; 
k = 0.297 h–1 at pH 6.5, k = 0.586 h–1 at pH 6.7, k = 1.28 h–1 at pH 7.0, and k = 6.90 h–1 at pH 7.3 for 
Fe(II)/goethite system; 
k = 9.91 . 10–3 h–1 at pH 6.5, k = 8.45 . 10–3 h–1 at pH 7.0, k = 7.45 . 10–3 h–1 at pH 7.4 and k = 6.96 . 10–2 
h–1 at pH 7.8 for Fe(II)/clay system, all with total dissolved Fe(II) = 1 mM (Wang & Arnold 2003) 
Biodegradation: 
t.(aq. aerobic) = 408–2520 h, based on aerobic soil die-away test data for one soil at 15°C and 30°C 
(Gingerich & Zimdahl 1976; quoted, Howard et al. 1991) 
t.(aq. anaerobic) = 96–360 h, based on anaerobic soil die-away test that tested one soil (Gingerich & Zimdahl 
1976; quoted, Howard et al. 1991) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.743–74.3 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl radicals in 
air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 288–864 h, based on observed photolysis on soil TLC plates under summer sunlight (Helling 
1976; quoted, Howard et al. 1991) and adjusted for relative winter sunlight intensity (Lyman et al. 1982; 
quoted, Howard et al. 1991). 
Ground water: t. = 96–5040 h, based on estimated unacclimated aqueous aerobic and anaerobic degradation 
half-lives (Howard et al. 1991) 
reported t. < 180 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 408–2520 h, based on aerobic soil die-away test data for one soil at 15°C and 30°C (Gingerich & 
Zimdahl 1976; quoted, Howard et al. 1991); 
selected field t. = 100 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. < 180 d (Bottoni & Funari 1992). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3577 
17.1.1.44 Isoproturon 
Common Name: Isoproturon 
Synonym: Alon, Arelon, CGA 18731, Gramion, Graminon, Hoe 16410, Hytane, IP 50, IP flo, Tolkan 
Chemical Name: 3-(4-isopropylphenyl)-1,1-dimethylurea; 3-p-cumenyl-l-1-dimethylurea 
Uses: herbicide used for pre- and post-emergence control of annual grasses and broadleaf weeds in spring and winter 
wheat (except durum wheat), spring and winter barley, winter rye, and triticale. 
CAS Registry No: 34123-59-6 
Molecular Formula: C12H18N2O 
Molecular Weight: 206.284 
Melting Point (°C): 
155–156 (Worthing & Hance1991) 
158 (Tomlin 1994) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.16 (Hartley & Kidd 1987; Tomlin 1994) 
Molar Volume (cm3/mol): 
259.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
60 (Martin & Worthing 1977) 
70 (20°C, Spencer 1982) 
72 (20°C, Hartley & Kidd 1987) 
55 (Worthing & Walker 1987, Worthing & Hance 1991) 
55.9 (Chaumat et al. 1991) 
65 (22°C, Tomlin 1994; quoted, Otto et al. 1997) 
65 (20°C, selected, Traub-Eberhard et al. 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
3.3 . 10–6 (20°C, Spencer 1982; Hartley & Kidd 1987) 
3.3 . 10–6 (20°C, Worthing & Hance 1991) 
3.3 . 10–6, 3.15 . 10–2, 0.172 (20, 77, 150°C, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
1.05 . 10–5 (calculated-P/C, Otto et al. 1997) 
1.24 . 10–5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW at 25°C or as indicated: 
2.87 (shake flask, Log P Database, Hansch & Leo 1987) 
2.25 (Worthing & Hance 1991) 
2.30 (shake flask, pH 7, Baker et al. 1992) 
2.537 (calculated, Evelyne et al. 1992) 
2.30 (Behrendt & Bruggemann 1993) 
2.87 (recommended, Sangster 1993) 
2.87 (recommended, Hansch et al. 1995) 
HN
N 
O 
© 2006 by Taylor & Francis Group, LLC

3578 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.50 (pH 7, 22°C, Tomlin 1994) 
2.40 (quoted Pomona-database, Muller & Kordel 1996) 
Bioconcentration Factor, log BCF: 
1.79 (calculated-S, Kenaga 1980) 
1.76, 1.82 (cuticle/water: tomato, pepper; Chaumat et al. 1991) 
1.71, 1.90 (cuticle/water: box tree, pear; Chaumat et al. 1991) 
1.52, 1.20 (cuticle/water: ivy, vanilla; Chaumat et al. 1991) 
1.76, 1.82 (cuticle/water: tomato, pepper; Evelyne et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.66 (soil, calculated-S, Kenaga 1980) 
1.86 (soil, HPLC-screening method, mean value of different stationary and mobile phases, Kordel et al. 1993) 
2.11 (soil, quoted from Kordel et al. 1993, Traub-Eberhard et al. 1994) 
1.86; 2.40 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
2.57, 1.71, 1.78, 1.73, 2.34 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-
HPLC/UV, Gawlik et al. 1998, 1999) 
1.86, 2.31; 2.81, 2.24, 2.83, 2.35, 1.93 (quoted lit., calculated-KOW; HPLC-screening method with different LCcolumns, 
Szabo et al. 1999) 
2.155, 1.918, 1.790, 1.719, 2.367 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 1999) 
2.155, 1.918, 1.790, 1.719, 2.367 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
1.78, 2.10 (Kishon river sediments, sorption isotherm, Chefetz et al. 2004) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: atmosphere photolysis t. = 288–864 h, based on observed photolysis on soil TLC plates under 
summer sunlight (Helling 1976; quoted, Howard et al. 1991) and adjusted for relative winter sunlight intensity 
(Lyman et al. 1982; quoted, Howard et al. 1991); 
aqueous photolysis t. = 288–864 h, based on observed photolysis on soil TLC plates under summer sunlight 
(Helling 1976; quoted, Howard et al. 1991) and adjusted for relative winter sunlight intensity (Lyman 
et al. 1982; quoted, Howard et al. 1991); 
t. = 1.5 h for 215 µg/mL to degrade in distilled water under 254 nm light (Kulshrestha & Mukerjee 1986; 
quoted, Cessna & Muir 1991). 
Oxidation: photooxidation t. = 0.743–74.3 h in air, based on estimated rate constant for the vapor-phase reaction 
with hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: 
Biodegradation: aqueous aerobic t. = 408–2520 h, based on aerobic soil die-away test data for one soil at 15°C 
and 30°C (Gingerich & Zimdahl 1976; quoted, Howard et al. 1991); aqueous anaerobic t. = 96–360 h, 
based on anaerobic soil die-away test which tested one soil (Gingerich & Zimdahl 1976; quoted, Howard 
et al. 1991) 
Biotransformation: ~ 11% of a selection of 90 strains of micromycetes mostly isolated from soil-soil fungi, 
depleted over 50% of isoproturon (100 mg/L) in 5-d experiment (Vroumsia et al. 1996) 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.743–74.3 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl radicals in 
air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 288–864 h, based on observed photolysis on soil TLC plates under summer sunlight (Helling 
1976; quoted, Howard et al. 1991) and adjusted for relative winter sunlight intensity (Lyman et al. 1982; 
quoted, Howard et al. 1991). 
Groundwater: t. = 96–5040 h, based on estimated unacclimated aqueous aerobic and anaerobic degradation halflives 
(Howard et al. 1991) 
reported half-lives or persistence, t. = 12–29 and 60–120 d (Bottoni & Funari 1992) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3579 
Sediment: 
Soil: t. = 408–2520 h, based on aerobic soil die-away test data for one soil at 15°C and 30°C (Gingerich & 
Zimdahl 1976; quoted, Howard et al. 1991); 
reported t. = 12–29 d and 60–120 d (Bottoni & Funari 1992); 
t. = 15–21 d in sandy loam, t. = 11 d in silt loam at 20°C (Traub-Eberhard et al. 1994) 
Degradation and mineralization t. = 16 d, 24 d and 34 d for pelosol, brown calcareous soil and brown acid 
soil, respectively, over 120 days under controlled laboratory conditions (Pieuchot et al. 1996) 
estimated t. ~ 14.6 d under conventional tillage, t. = 7.99 d under ridge tillage and t. = 12.17 d with no 
tillage (Otto et al. 1997). 
© 2006 by Taylor & Francis Group, LLC

3580 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.45 Linuron 
Common Name: Linuron 
Synonym: Afalon, Cephalon, Garnitan, Herbicide 326, Hoe 2810, Linex 4L, Linorox, Linurex, Lorox, Methoxydiuron, 
Premalin, Scarclex, Sinuron 
Chemical Name: 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea; N.-(3,4-dichlorophenyl)-N-methoxy-N-methylurea 
Uses: selective pre-emergence and post-emergence herbicide used on a wide variety of food crops to control many 
annual broadleaf and grass weeds. 
CAS Registry No: 330-55-2 
Molecular Formula: C9H10Cl2N2O2 
Molecular Weight: 249.093 
Melting Point (°C): 
93 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
232.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
90.23 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
28.66 (DSC method, Plato & Glasgow 1969) 
25.9 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.215 (mp at 93°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
75 (Woodford & Evans 1963; Bailey & White 1965; Hartley & Graham-Bryce 1980; Kenaga 1980; 
Kenaga & Goring 1980; Beste & Humburg 1983) 
75 (Melnikov 1971; Spencer 1973, 1982; Wauchope 1978; Khan 1980; Weber et al. 1980; Ashton & 
Crafts 1981; Briggs 1981) 
75 (Martin & Worthing 1977; Worthing & Walker 1983, 1987; Herbicide Handbook 1978,1989) 
81 (Hartley & Kidd 1987; Milne 1995) 
81 (24°C, Worthing & Hance 1991) 
75 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
75–81 (Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00147 (20°C, Quellette & King 1977) 
0.0012 (20°C, Hartley & Graham-Bryce 1980) 
0.002 (24°C, Khan 1980) 
0.002 (20–25°C, Weber et al. 1980) 
0.002 (24°C, Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993) 
0.0014 (20°C, selected, Suntio et al. 1988) 
3.50 . 10–4, 1.10 . 10–2, 0.22, 2.90, 28.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 16.074 – 5824.2/(T/K); measured range 40.5–92 7°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 12.989 – 4713.7/(T/K); measured range 92.7–160°C (liquid, gas saturation-GC, Rordorf 1989) 
0.0011 (20°C, selected, Taylor & Spencer 1990) 
0.0023 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
HN
N 
O 
O 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3581 
0.0027 (selected, Halfon et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.0054 (20°C, calculated-P/C, Suntio et al. 1988) 
0.004 (Taylor & Glotfelty 1988) 
0.0062 (20–25°C, calculated-P/C, Montgomery 1993) 
0.00465 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.19 (Briggs 1969) 
3.20 (shake flask-UV, Erkell & Walum 1979) 
2.76 (shake flask-UV, Briggs 1981) 
3.11 (shake flask, Mitsutake et al. 1986) 
2.48 (selected, Gerstl & Helling 1987) 
3.00 (Worthing & Hance 1991; Milne 1995) 
2.19, 3.00 (Montgomery 1993) 
2.75 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
3.20 (recommended, Sangster 1993) 
3.20 (recommended, Hansch et al. 1995) 
3.18 (Pomona-database, Muller & Kordel 1996) 
2.75 (RP-HPLC-RT correlation, Finizio et al. 1997) 
2.72 (RP-HPLC-RT correlation, Yu et al. 1997) 
Bioconcentration Factor, log BCF: 
1.73 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
1.68 (calculated-KOC, Kenaga 1980) 
1.73 (calculated, Pait et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.91 (soil, Hamaker & Thompson 1972) 
2.61 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.93 (average soils/sediments, Rao & Davidson 1980) 
2.43 (soil, converted form reported KOM multiplied by 1.724, Briggs 1981) 
2.93, 2.80, 1.80 (estimated-S, calculated-S and mp, calculated-KOW, Karickhoff 1981) 
3.83 (Means & Wijayaratne 1982) 
2.99, 2.58; 2.62, 2.80 (estimated-KOW, S, Madhun et al. 1986) 
2.76, 2.64 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
2.94 (screening model calculations, Jury et al. 1987b) 
2.61–2.91, 2.83, 2.93 (soil, quoted values, Bottoni & Funari 1992) 
2.60 (soil, 20–25°C, selected, Wauchope et al. 1992;) 
2.70–2.78 (Montgomery 1993) 
2.59 (soil, HPLC-screening method, mean value from different stationary and mobile phases, Kordel 
et al. 1993, 1995a) 
2.59 (soil, HPLC-screening method, Kordel et al. 1993, 1995b) 
2.70 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.59; 2.54 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
3.28, 2.39, 2.46, 2.29, 3.12 (first generation Eurosoils ES-1, ES2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-
HPLC/UV, Gawlik et al. 1998, 1999) 
2.884, 2.58, 2.45, 1.33, 3.18 (second generation Eurosoils ES-1, ES2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1999) 
2.884, 2.578, 2.450, 2.336, 3.183 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
2.70; 2.55, 2.61 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
2.65, 2.64 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
© 2006 by Taylor & Francis Group, LLC

3582 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.78 (average values for sediment OC. 0.5%, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 2 months for 31% of 55 µg mL–1 to degrade in distilled water under sunlight (Rosen et al. 1969; 
quoted, Cessna & Muir 1991); 
t. = 2.25 h for 67–75% of 75 µg mL–1 to degrade in distilled water under 300 nm light (Tanaka et al. 1981; 
quoted, Cessna & Muir 1991); 
atmosphere photolysis t. = 1344–4032 h, based on measured rate constant for summer sunlight photolysis 
in distilled water (Rosen et al. 1969; quoted, Howard et al. 1991) and adjusted to relative winter sunlight 
intensity (Lyman et al. 1982; quoted, Howard et al. 1991); aqueous photolysis t. = 1344–4032 h, based 
on measured rate constant for summer sunlight photolysis in distilled water (Rosen et al. 1969; quoted, 
Howard et al. 1991) and adjusted to relative winter sunlight intensity (Lyman et al. 1982; quoted, Howard 
et al. 1991). 
Oxidation: photooxidation t. = 0.49–4.90 h in air, based on an estimated rate constant for the vapor-phase 
reaction with hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: t. > 4 months for 4980 µg mL–1 to hydrolyze in phosphate buffer at pH 5–9 and 20°C (El-dib & 
Aly 1976; quoted, Muir 1991). 
Biodegradation: t. = 78 d in soil (Moyer et al. 1972; quoted, Means et al. 1983), 
t. = 87 d in soil (Hance 1974; quoted, Means et al. 1983), 
t. = 58 and 180 d in soil (Urosol & Hance 1974; quoted, Means et al. 1983); 
aqueous aerobic t. = 672–4272 h, based on soil die-away test data (Walker 1978; Walker & Zimdahl 1981; 
quoted, Howard et al. 1991); 
rate constant k = 0.0096 d–1 by soil incubation die-away studies (Rao & Davidson 1980; quoted, Scow 1982); 
aerobic t. . 40 d for 1 µg mL–1 to biodegrade in lake sediment and t. . 60 d for 4 µg mL–1 to biodegrade 
in lake sediment and water (Huber & Gemes 1981; quoted, Muir 1991); 
aerobic t. . 20 d for 0.22 µg mL–1 to biodegrade in pond sediment plus aerobic salts medium of 34 g L–1 
(Stepp et al. 1985; quoted, Muir 1991); 
aqueous anaerobic t. = 2688–17088 h, based on estimated unacclimated aqueous aerobic biodegradation 
half-life (Howard et al. 1991) 
degradation rate constant k = (3.48 ± 0.156) . 10–2 d–1 with t. = 19.9 d in control soil and k = (23.2 ± 2.07) 
. 10–2 d–1 with t. = 2.99 d in pretreated soil in the field; k = (3.73 ± 0.208) . 10–2 d–1 with t. = 18.6 d 
in control soil and k = (18.8 ± 2.76) . 10–2 d–1 with t. = 3.68 d in pretreated soil once only in the laboratory 
(Walker & Welch 1991) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.49–4.90 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radicals 
in air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 672–4272 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Ground water: t. = 1344–8544 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991) 
reported half-lives or persistence, t. = 38–69 and 75 d (Bottoni & Funari 1992). 
Sediment: degradation t. = 12 d in estuarine sediment (12o/.) system (Cunningham et al. 1981; quoted, Means 
et al. 1983); 
degradation t. = 6 d in estuarine sediment (18o/.) system (Means et al. 1983). 
Soil: estimated persistence of 4 months (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury 
et al. 1987a); 
t. = 672–4272 h, based on soil die-away test data (Walker 1978; Walker & Zimdahl 1981; quoted, Howard 
et al. 1991); 
persistence of 4 months (Wauchope 1978); 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3583 
correlated t. = 57 d at pH 5.1–5.8, t. = 22 d at pH 6.3–7.0 and t. = 19 d at pH 7.7–8.2 (Boddington Barn 
soil, Hance 1979) and t. = 67 d at pH 4.6–5.2, t. = 53 d at pH 5.3–6.1, and t. ~ 20 d at pH 6.3–8.0 
(Triangle soil, Hance 1979); 
estimated first-order t. = 72 d from biodegradation rate constant k = 0.0096 d–1 by soil incubation die-away 
studies (Rao & Davidson 1980; quoted, Scow 1982); 
decomposition t. = 11 d in fresh soil and t. = 12 d in air dried soil both in polyethylene bags, t. = 49 d in 
undisturbed cores and t. = 40 d in perfusion (Hance & Haynes 1981); 
moderately persistent in soil with t. = 20–100 d (Willis & McDowell 1982); 
t. = 2 to 5 months under field conditions (Hartley & Kidd 1987; Herbicide Handbook 1989; quoted, 
Montgomery 1993); 
t. = 75 d from screening model calculations (Jury 1987b); 
t. = 60, 35, 35, 30 d in plots treated, i.e., repeated application of pesticide, for the first, second, third and 
fourth time, respectively, in the field; in the laboratory t. reduced from 19 d to 3–7 d in a single 
pretreatment in moist oil at 20°C (Walker & Welch 1991) 
reported t. = 38–69 d and 75 d (Bottoni & Funari 1992); 
selected field t. = 60 d (Wauchope et al. 1992; quoted, Richards & Baker 1993; quoted, Halfon et al. 1996; 
Hornsby et al. 1996); 
soil t. = 60 d (Pait et al. 1992); 
soil t. = 29–67 d (Di Guardo et al. 1994). 
Biota: biochemical t. = 75 d from screening model calculations (Jury et al. 1987b). 
© 2006 by Taylor & Francis Group, LLC

3584 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.46 MCPA 
Common Name: MCPA 
Synonym: Agritox, Agroxohe, Agroxone, Anicon Kombi, Bordermaster, Chiptox, Chwastox, Cornox, Ded-weed, 
Dicopur-M, Dicotex, Dikotes, Emcepan, Empal, Hedapur M 52, Hederax M, Herbicide M, Hedonal, Hormotuho, 
Kilsem, Krezone, Legumex DB, Leuna M, Leyspray, Linormone, MCP, metaxon, Methoxone, Netazol, Okultin M, 
Phenoxylene Plus, Raphone, Razol dock killer, Rhomenc, Rhonox, Shamrox, Seppic MMD, Trasan, Ustinex, Vacate, 
Verdone, Weedar, Weed-rhap, Zelan 
Chemical Name: (4-chloro-2-methylphenoxy)acetic acid; 4-chloro-o-tolyloxyacetic acid 
Uses: systemic post-emergence herbicide to control annual and perennial weeds in cereals, rice, flax, vines, peas, 
potatoes, asparagus, grassland and turf. 
CAS Registry No: 94-74-6 
Molecular Formula: C9H9ClO3 
Molecular Weight: 200.618 
Melting Point (°C): 
120 (Montgomery 1993; Milne 1995; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.56 (25°C, Que Hee et al. 1981; Herbicide Handbook 1989; Montgomery 1993) 
Molar Volume (cm3/mol): 
211.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
3.05 (potentiometric titration, Nelson & Faust 1969) 
3.125 (Cessna & Grover 1978) 
3.07 (Worthing & Hance 1991) 
3.05–3.13 (Montgomery 1993) 
3.12 (Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.117 (mp at 120°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1605 (shake flask-UV, Leopold et al. 1960) 
1605 (Bailey & White 1965) 
< 1000 (Khan 1980) 
630 (20°C, Melnikov 1971) 
825 (Martin & Worthing 1977; Weber et al. 1980; Milne 1995) 
1500 (selected, Seiber et al. 1986) 
825 (room temp., Hartley & Kidd 1987; Worthing & Hance 1991) 
817 (selected, Gerstl & Helling 1987) 
835 (room temp., Worthing & Walker 1987) 
730–825 (Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
7.9 . 10–4 (measured-volatilization rate, Seiber et al. 1986) 
2.0 . 10–4 (20°C, Hartley & Kidd 1987) 
2.0 . 10–4 (21°C, Worthing & Walker1987, 1991) 
2.3 . 10–5 (20°C, Tomlin 1994) 
2.0 . 10–4 (20°C, Milne 1995) 
2.0 . 10–4 (selected, Halfon et al. 1996) 
Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3585 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
1.0 . 10–4 (calculated-P/C, Seiber et al. 1986) 
4.86 . 10–4 (calculated-P/C as per Worthing & Walker 1987, Majewski & Capel 1995) 
< 0.010 (estimated, Mabury & Crosby 1996) 
2.5 . 10–4 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.69 (selected, Dao et al. 1983) 
2.30 (RP-HPLC-k. correlation, Braumann et al. 1983) 
–1.41 (selected, Gerstl & Helling 1987) 
–0.57 (shake flask-UV, pH 7, Stevens et al. 1988) 
3.25 (countercurrent LC, Ilchmann et al. 1993) 
1.37–1.43 (calculated, Montgomery 1993) 
–0.57, 3.25 (quoted, Sangster 1993) 
2.68 (MedChem Master file or ClogP program, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
1.15 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.04 (soil, calculated-S, Kenaga 1980; quoted, Bottoni & Funari 1992) 
1.95 (calculated-MCI ., Gerstl & Helling 1987) 
2.03–2.07 (calculated, Montgomery 1993) 
1.73 (calculated-QSAR MCI 1., Sabljic et al. 1995) 
2.49; 1.58., 3.27, 3.17, 1.85, 2.19 (calculated-KOW; HPLC-screening method with different LC-columns, Szabo 
et al. 1999) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: k = 9.78 . 10–7 h–1 at pH 3.5 (Seiber et al. 1986). 
Photolysis: t. = 71 h for < 10% of 50 µg mL–1 to degrade in NaOH solution at pH 9.8 under > 290 nm light 
(Soderquist & Crosby 1975; quoted, Cessna & Muir 1991); 
t. = 245 h for 17–98.5% of 9 µg mL–1 to degrade in distilled water under sunlight (Draper & Crosby 1984; 
quoted, Cessna & Muir 1991); 
t. = 4.6 d for 14,700 µg mL–1 to degrade in droplets of spray solution suspended in air under sunlight 
(Freiberg & Crosby 1986; quoted, Cessna & Muir 1991). 
Oxidation: degradation by ozone in dilute aqueous solutions (Benoit-Guyod et al. 1986) as follows:- 
t. = 9.4 min - dark with O3 in air; t. = 8.4 min - light with O3 in air, t. = 500 min - light, air only, at initial 
pH of 3.55; MCPA concn of 224 µM L–1, ozone input at 246 µM h–1; 
t. = 10.4 min - dark with O3 in air; t. = 9.0 min - light with O3 in air, at initial pH of 8.0, 
t. = 11.5 min - dark with O3 in air; t. = 11.3 min - light with O3 in air, at initial pH of 7.0, 
t. = 8.4 min - dark with O3 in air; t. = 9.4 min - light with O3 in air, at initial pH of 7.0, 
t. = 4.2 min - dark with O3 in air; t. = 4.2 min - light with O3 in air, t. = 150 min - light, air only, at initial 
pH of 8.0; MCPA concn of 5 µM L–1, ozone input at 246 µM h–1; 
t. = 176 min - dark with O3 in air; t. = 63 min - light with O3 in air, at initial pH of 8.0, MCPA concn of 
224 µM L–1, ozone input at 4.6 µM h–1; 
t. = 300 min - dark with O3 in air; t. = 162 min - light with O3 in air, at initial pH of 8.0; MCPA concn of 
224 µM L–1, ozone input at 0.2 µM h–1 (Benoit-Guyod et al. 1986). 
measured rate constant kOH(aq.) = 1.70 . 109 M–1 s–1 for reaction with hydroxyl radical, in irradiated field 
water both in the laboratory and sunlit rice paddies (Mabury & Crosby 1996). 
Hydrolysis: 
Biodegradation: t. > 168 h for 1 µg mL–1 to degrade in activated sludge (Schmidt 1975; quoted, Muir 1991); 
aerobic t. . 9 d for 1 µg mL–1 to degrade in natural water in absence of sunlight (Soderquist & Crosby 
1975; quoted, Muir 1991); 
t. > 12 d for 0.045–0.156 µg mL–1 to degrade in water after application to model crop and washoff (Virtanen 
et al. 1979; quoted, Muir 1991); 
© 2006 by Taylor & Francis Group, LLC

3586 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
t. = 15–25 d for 10 µg mL–1 to degrade in flooded soils (Duah-Yentumi & Kuwatsuka 1980; quoted, Muir 
1991); 
first order microbial degradation k = 0.01393 d–1 with t. = 50 d at room temp, k = 0.01687 d–1 with t. = 41 
d at 35°C in sandy clay soil from Finland; k = 0.02999 d–1 with t. = 23 d at room temp, k = 0.03397 d–1 
with t. = 20 d at 35°C in sandy loam soil from Bangladesh (Sattar & Paasivirta 1980) 
t. > 25 d for 10 µg mL–1 to degrade in flooded soils (Ursin 1985; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: dissipation t. . 4 d in rice field; t. = 17 d in dilute aqueous solution under laboratory irradiation 
(Soderquist & Crosby 1975); 
degradation t. = 4.2 - 300 min by ozone and light (UV > 300 nm) in dilute aqueous solution, depending 
on pH, concn of MCPA and ozone (shake flask-GC, Benoit-Guyod et al. 1986) 
degraded rapidly with t. = 9 d in rice paddy water held under darkened conditions (Muir 1991) 
field dissipation t. = 28.8 h in water (Mabury & Crosby 1996) 
Ground water: reported t. < 7 and t. = 20–25 d (Bottoni & Funari 1992) 
Sediment: t. = 80 to 400 d of MCPA at low concentrations in marine sediments (Muir 1991). 
Soil: degradation t. = 50 d at room temp., t. = 41 d at 35°C in Finland sandy clay soil; degradation t. = 23 d 
at room temp., t. = 20 d at 35°C in Bangladesh loam soil from first-order rate constant obtained by linear 
regression (Sattar & Paasivirta 1980); 
persistence of 3 months in soil (Edwards 1973; quoted, Morrill et al. 1982); 
t. = 25 d in flooded soils (Muir 1991); 
t. = 15 d (selected, Halfon et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3587 
17.1.1.47 MCPB 
Common Name: MCPB 
Synonym: Bexane, Can-Trol, Legumex, Thistrol, Thitrol, Trifolex, Tropotox 
Chemical Name: 4-(4-chloro-2-methylphenoxy)butanoic acid; 4-(4-chloro-2-methylphenoxy)-butyric acid 
Uses: herbicide for post-emergence control of annual and perennial broadleaf weeds in cereals, clovers, sainfoin, 
groundnuts, peas, etc. and also used to control broadleaf and woody weeds in forestry. 
CAS Registry No: 94-81-5 
Molecular Formula: C11H13ClO3 
Molecular Weight: 228.672 
Melting Point (°C): 
100 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995; Lide 2003) 
Boiling Point (°C): 
> 280 (Tomlin 1994) 
Density (g/cm3 at 22°C): 
1.254 (Tomlin 1994) 
Molar Volume (cm3/mol): 
255.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
4.80 (potentiometric titration, Nelson & Faust 1969) 
4.84 (Worthing & Hance 1991; Tomlin 1994) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
34.31 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.184 (mp at 100°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
41 (shake flask-UV, Leopold et al. 1960) 
44 (rm. temp., Melnikov 1971) 
44 (Bailey & White 1965; Martin & Worthing 1977; Hartley & Kidd 1987) 
44 (rm. temp., Worthing & Walker 1987, Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
5.77 . 10–5, 9.83 . 10–5 (20, 25°C, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
3.22 . 10–4 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.60 (selected, Dao et al. 1983) 
3.53 (RP-HPLC-k. correlation, Braumann et al. 1983) 
3.473 (countercurrent LC, Ilchmann et al. 1993) 
2.79 (Tomlin 1994) 
3.43 (selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.86 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.73 (soil, calculated-S, Kenaga 1980) 
Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

3588 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Soil: duration of residual activity in soil is ca. 3–4 months (Hartley & Kidd 1987; Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3589 
17.1.1.48 Mecoprop 
Common Name: Mecoprop 
Synonym: Compitox, Duplosan, Hedonal, Iso-Cornox, Kilprop, MCPP, Mecopex, Mepro, Methoxone, Propal 
Chemical Name: ( ± )-2-(4-chloro-2-methylphenoxy)propanoic acid; ( ± )-2-(4-chloro-o-tolyl-oxy)propionic acid 
Uses: herbicide for post-emergence control of broadleaf weeds in wheat, barley, rye, herbage seed crops, grassland, and 
under fruit trees and vines, etc. 
CAS Registry No: 7085-19-0 
Molecular Formula: C10H11ClO3 
Molecular Weight: 214.645 
Melting Point (°C): 
94–95 (Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & Hance 1991) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
233.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
3.75 (Bailey & White 1965; quoted, Que Hee et al. 1981) 
3.105 (Cessna & Grover 1978) 
3.78 (Worthing & Hance 1991) 
3.11 (Armbrust 2000) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
28.87 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
895 (Martin 1961; Bailey & White 1965) 
891 (Bailey & White 1965) 
620 (20°C, Melnikov 1971; Ashton & Crafts 1981; Herbicide Handbook 1989) 
620 (Martin & Worthing 1977) 
620 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987, Worthing & Hance 1991) 
734 (Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 1.0 . 10–5 (20°C, Hartley & Kidd 1987) 
3.10 . 10–4 (20°C, Worthing & Hance 1991) 
0.0 (selected, Halfon et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
7.43 . 10–5 (calculated-P/C, this work) 
1.11 . 10–5 (quoted lit., Armbrust 2000) 
Octanol/Water Partition Coefficient, log KOW: 
3.94 (selected, Dao et al. 1983) 
2.83 (RP-HPLC-k. correlation, Braumann et al. 1983) 
0.10 (Worthing & Hance 1991) 
0.09; 3.126 (quoted; countercurrent LC, Ilchmann et al. 1993) 
3.13 (recommended, Hansch et al. 1995) 
Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

3590 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioconcentration Factor, log BCF: 
1.20 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.11 (soil, calculated, Kenaga 1980, quoted, Bottoni & Funari 1992) 
1.30 (selected, Lohninger 1994) 
1.30 (quoted lit., Armburst 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: photodegradation t. < 10 -15 d on 3 Spanish natural dry soils; t. = 15–50 d on 10% peat-amened 
dry soils; degradation t. ~ 2–5.5 d on moist soils at field capacity and saturated soils for degradation at 0,1 
and 2 exposures days; and t. = 13–32 d on moist soils at field capacity and saturated soils for degradation 
at 2,4 and 10 exposure days (Romero et al. 1998) 
Oxidation: photooxidation t. = 3.8–37.8 h in air, based on an estimated rate constant for the vapor-phase reaction 
with hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: stable aqueous hydrolysis rate at pH 5, 7, pH 9; measured hydroxy radical rate constant for mecoprop 
k = 9.0 . 1012 M–1 h–1 (Armbrust 2000) 
Biodegradation: aqueous aerobic t. = 168–240 h, based on aerobic soil grab sample data (Kirkland & Fryer 
1972; Smith & Hayden 1981; quoted, Howard et al. 1991); aqueous anaerobic t. = 672–4320 h, based on 
anaerobic digest or sludge data (Battersby & Wilson 1989; quoted, Howard et al. 1991); 
aerobic rate constant, k = 2.89 . 10–3 h–1 (Armbrust 2000). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 3.8–37.8 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radicals in 
air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 168–240 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Groundwater: t. = 336–4320 h, based on estimated aqueous aerobic and anaerobic biodegradation half-lives 
(Howard et al. 1991) 
reported t. = 8 d (Bottoni & Funari 1992). 
Sediment: 
Soil: t. = 168–240 h, based on aerobic soil grab sample data (Kirkland & Fryer 1972; Smith & Hayden 1981; 
quoted, Howard et al. 1991); 
reported t. = 8 d (Bottoni & Funari 1992); 
t. = 21 d (selected, Halfon et al. 1996) 
photodegradation t. < 10 -15 d on 3 Spanish natural dry soils; t. = 15–50 d on 10% peat-amened dry soils; 
degradation t. ~ 2–5.5 d on moist soils at field capacity and saturated soils for degradation at 0,1 and 2 
exposures days; and t. = 13–32 d on moist soils at field capacity and saturated soils for degradation at 
2,4 and 10 exposure days (Romero et al. 1998). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3591 
17.1.1.49 Metolachlor 
Common Name: Metolachlor 
Synonym: Bicep, CGA 24705, Codal, Cortoran multi, Dual, Metetilachlor, Milocep, Ontrack 8E, Pennant, Primagram, 
Primextra 
Chemical Name: 2-chloro-6.-ethyl-N-(2-methoxy-1-methylethyl)acet-o-toluidide; 2-chloro-N-(2-ethyl-6-methylphenyl)- 
N-(2-methoxy-1-methylethyl)acetamide 
Uses: pre-emergence herbicide to control most annual grasses and weeds in beans, chickpeas, corn, cotton, milo, okra, 
peanuts, peas, potatoes, sunflower, soybeans and some ornamentals. 
CAS Registry No: 51218-45-2 
Molecular Formula: C15H22ClNO2 
Molecular Weight: 283.795 
Melting Point (°C): liquid 
Boiling Point (°C): 
100 (at 0.001 mmHg, Herbicide Handbook 1989; Budavari 1989; Worthing & Hance 1991; Montgomery 
1993; Milne 1995) 
Density (g/cm3 at 20°C): 
1.12 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Milne 1995) 
1.085 (Herbicide Handbook 1989) 
Molar Volume (cm3/mol): 
340.0 (calculated-Le Bas method at normal boiling point) 
258.0 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
530 (Martin & Worthing 1977) 
440 (selected, Ellgehausen et al. 1980) 
520 (20°C, Ashton & Crafts 1981; Spencer 1982) 
530 (shake flask-HPLC, Ellgehausen et al. 1981) 
530 (20°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Budavari 1989; Montgomery 1993) 
530 (Hartley & Graham-Bryce 1980; Beste & Humburg 1983) 
530 (20°C, Worthing & Walker 1987, Worthing & Hance 1991; Majewski & Capel 1995; Milne 1995) 
488 (Tomlin 1994) 
530 (20–25°C, selected, Hornsby et al. 1996) 
531, 505 (supercooled liquid SL: literature derived value LDV, final adjust value FAV, Muir et al. 2004) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00170 (20°C, Hartley & Graham-Bryce 1980) 
0.00173 (20°C, Ashton & Crafts 1981) 
0.00173 (20°C, volatilization rate, Burkhard & Guth 1981) 
0.00170 (20°C, Hartley & Kidd 1987) 
0.00170 (20°C, Worthing & Walker 1987, Worthing & Hance 1991) 
0.00173 (20°C, Herbicide Handbook 1989; Budavari 1989; Montgomery 1993) 
4.20 . 10–3, 6.60 . 10–2, 0.70, 5.40, 33.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.115 – 4619.7/(T/K); measured range 32.5–140°C (gas saturation-GC, Rordorf 1989) 
0.00420 (Tomlin 1994) 
N 
O 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

3592 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.0023 (liquid PL, GC-RT correlation; Donovan 1996) 
0.00418 (selected, Halfon et al. 1996) 
0.00418 (20–25°C, selected, Hornsby et al. 1996) 
0.00239, 0.0024 (supercooled liquid PL: literature derived value LDV, final adjust value FAV, Muir et al. 2004) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated. Additional data at other temperatures designated * are 
complied at the end of this section): 
0.00092 (Hartley & Graham-Bryce 1980) 
0.00093 (20°C, volatilization rate, Burkhard & Guth 1981) 
0.00091 (20°C, calculated-P/C as per Worthing & Walker 1987) 
0.00093 (20°C, calculated-P/C, Montgomery 1993) 
0.00082 (20°C, calculated-P/C, Majewski & Capel 1995) 
0.00244 (calculated-P/C, Otto et al. 1997) 
0.00782 (20°C, distilled water, wetted wall column-GC, Rice et al. 1997b) 
0.00110 (calculated-P/C, this work) 
0.00238* (20°C, gas stripping-GC/MS, measured range 283.05–299.45 K, Feigenbrugel et al. 2004) 
H./(M atm–1) = (3.0 ± 0.4) . 10–11 exp[(10200 ± 1000)/(T/K)]; temp range 283–310 K (Arrhenius eq., gas stripping- 
GC/MS, Feigenbrugel et al. 2004) 
0.0014. 0.0014 (literature derived value LDV, final adjust value FAV, Muir et al. 2004) 
Octanol/Water Partition Coefficient, log KOW: 
3.13 (shake flask-HPLC, Ellgehausen et al. 1980; Geyer et al. 1991) 
3.28 (shake flask-HPLC, Ellgehausen et al. 1981) 
3.45 (Worthing & Hance 1991) 
2.93, 3.45 (Montgomery 1993) 
3.13, 3.28 (quoted, Sangster et al. 1993) 
2.90 (Tomlin 1994) 
3.45 (Milne 1995) 
3.31, 2.95 (selected, calculated-f const., Pinsuwan et al. 1995) 
3.13 (recommended, Hansch et al. 1995) 
2.60 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
3.10 (literature derived value LDV, Muir et al. 2004) 
Octanol/Air Partition Coefficient, log KOA: 
9.37 (final adjust value FAV, Muir et al. 2004) 
Bioconcentration Factor, log BCF: 
1.813 (log BF-bioaccumulation of algae, Ellgehausen et al. 1980) 
0.733 (log BF-bioaccumulation of daphnids, Ellgehausen et al. 1980; quoted, Geyer et al. 1991) 
0.851 (log BF-bioaccumulation of catfish, Ellgehausen et al. 1980) 
1.26 (calculated-S, Kenaga 1980) 
1.15 (catfish Ictalurus melas, wet wt basis, Wang et al. 1996) 
Sorption Partition Coefficient, log KOC: 
2.15 (soil, calculated-S, Kenaga 1980) 
2.26 (soil, screening model calculations, Jury et al. 1987b) 
2.00, 2.15, 2.28, 2.30 (soil, quoted values, Bottoni & Funari 1992) 
2.46, 2.46 (soil, quoted exptl., calculated-MCI . and fragment contribution, Meylan et al. 1992) 
2.30 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.08–2.49 (Montgomery 1993; Tomlin 1994) 
2.46 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.43 (soil, estimated-general model using molecular descriptors, Gramatica et al. 2000) 
2.28, 2.19, 2.69 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0 .5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3593 
Photolysis: under optimum exposure conditions to natural sunlight, t. ~ 8 d (Herbicide Handbook 1989). 
Oxidation ; kOH = 5.6 . 10–11 cm3 molecule–1 s–1 at 298 K in gas phase with atmospheric lifetime of 0.9 h but 
reduced to 0.4 h at 283 K; log kOH(aq.) = 1.2 . 1010 M–1 s–1 in aqueous phase (Feigenbrugel et al. 2004) 
Hydrolysis: t. > 200 d at 20°C and 1 . pH . 9 (Montgomery 1993); 
t.(calc) > 200 d (2 . pH . 10) (Tomlin 1994). 
Biodegradation: overall degradation rate constant k = 0.0154 h–1 with t. = 45.0 h in sewage sludge and rate 
constant k = 0.0460 d–1 with t. = 15.1 d in garden soil (Muller & Buser 1995). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k2 = 9.11 d–1 (catfish, Ellgehausen et al. 1980) 
k1 = 0.336 h–1, k2 = 0.024 h–1 (catfish Ictalurus melas, Wang et al. 1996) 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: reported t. = 20, 30, 42, and 47–107 d (Bottoni & Funari 1992) 
degradation time 500–1000 d (Tomlin 1994). 
Sediment: 
Soil: t. = 15–38 d in clay loam soils and t. = 33–100 d in sandy loam soils (Zimdahl & Clark 1982; quoted, 
Montgomery 1993); 
t. = 42 d from field t. = 3–4 wk by using lysimeters (Bowman 1990); 
t.(calc) = 80, 99 and 142 d for the disappearance from upper 15 cm on an Ontario clay loam soil while the 
decline was followed for 332, 364 and 370 d, respectively, in 1987, 1988 and 1989 (Frank et al. 1991); 
t. ~ 6 d in soil (Worthing & Hance 1991; quoted, Montgomery 1993); 
reported t. = 20, 30, 42, 47–107 d (Bottoni & Funari 1992) 
field t. = 90 d at 20–25°C (selected, Wauchope et al. 1992; quoted, Richards & Baker 1993; Halfon et al. 
1996; Hornsby et al. 1996); 
soil t. = 40 d (Pait et al. 1992); 
soil t. = 28–46 d (Di Guardo et al. 1994); 
t. ~ 30 d (Tomlin 1994); 
degradation t. = 15.1 d in garden soil (Muller & Buser 1995); 
t. ~ 28.3 d under conventional tillage, t. ~ 25.61 d under ridge tillage and t. ~ 8.63 d with no tillage (Otto 
et al. 1997). 
Biota: t. = 1.15 d in catfish (Ellgehausen et al. 1980); 
biochemical t. = 42 d from screening model calculations (Jury et al. 1987b). 
TABLE 17.1.1.49.1 
Reported Henry’s law constants of metolachlor at various temperatures 
Feigenbrugel et al. 2004 
gas stripping-GC/MS 
t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) 
283.05 5.39 . 10!4 293.25 2.262 . 10!3 
283.15 6.34 . 10!4 297.55 3.099 . 10!3 
283.25 8.126 . 10!4 298.05 4.053 . 10!3 
283.65 8.465 . 10!4 298.15 4.757 . 10!3 
285.55 8.01 . 10!4 298.15 4.312 . 10!3 
287.55 1.088 . 10!3 299.45 4.170 . 10!3 
289.45 1.193 . 10!3 
291.55 1.419 . 10!3 ln H.= A – B/(T/K) 
293.05 2.702 . 10!3 H./(M/atm) 
293.05 2.471 . 10!3 A !24.2298 
293.15 2.282 .10!3 B 10200 
293.15 2.227 .10!3 
© 2006 by Taylor & Francis Group, LLC

3594 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 17.1.1.49.1 Logarithm of Henry’s law constant versus reciprocal temperature for metolachlor. 
Metolachlor: Henry's law constant vs. 1/T 
-9.0 
-8.0 
-7.0 
-6.0 
-5.0 
-4.0 
0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
m. aP( / H 
nl 
3 
) l om/ 
Feigenbrugel et al. 2004 
Rice et al. 1997b 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3595 
17.1.1.50 Metribuzin 
Common Name: Metribuzin 
Synonym: Metribuzine, Lexone, Preview, Sencor, Sencoral, Sencorer, Sencorex 
Chemical Name: 4-amino-6-(t-butyl)-3-(methylthio)-1,2,4-triazin-5-(4H)-one 
CAS Registry No: 21087-64-9 
Uses: herbicide 
Molecular Formula: C8H14N4OS 
Molecular Weight: 214.288 
Melting Point (°C): 
126 (Lide 2003) 
Boiling Point (°C): 132.2 Pa (Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.31 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
1.28 (Herbicide Handbook 1989) 
Dissociation Constant pKb: 
13.0 (Wauchope et al. 1992; Hornsby et al. 1996) 
1.0 (pKa, Montgomery 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.102 (mp at 126°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1220 (Kenaga & Goring 1980; Kenaga 1980b; Verschueren 1983) 
1200 (20°C, Spencer 1982; Worthing & Walker 1983, 1987; Hartley & Kidd 1987) 
1220 (Herbicide Handbook 1989) 
1050 (20°C, Montgomery 1993; Tomlin 1994) 
1220 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1065 (20–25°C, reported as 4.97E + 01 mol/m3, Majewski & Capel 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 1.3 . 10–3 (20°C, Worthing 1983, 1987; Hartley & Kidd 1987; Tomlin 1994) 
< 1.3 . 10–3; 2.67 . 10–2 (20°C; 60°C, Herbicide Handbook 1989) 
5.8 . 10–5 (20°C, Montgomery 1993) 
< 1.3 . 10–3 (20–25°C, Wauchope et al. 1992; Hornsby et al. 1996) 
5.89 . 10–4 (20–25°C, Majewski & Capel 1995) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
< 1.3 . 10–3 (Spencer 1982; Worthing 1987; Hartley & Kidd 1987) 
1.21 . 10–5 (calculated-P/C, Montgomery 1993) 
1.18 . 10–5 (calculated-P/C, Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW: 
1.60, 1.70 (quoted, Montgomery 1993) 
1.58 (pH 5.6, Tomlin 1994) 
1.70 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
N 
N 
N
NH2 
O S 
© 2006 by Taylor & Francis Group, LLC

3596 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
2.46, 1.48, < 1.30 (algae, activated sludge, fish in 3-d testing, Korte et al. 1978) 
1.77, 1.75 (Chlorella, calculated-solubility, Geyer et al. 1981) 
1.77, 1.48, 1.04 (algae, activated sludge, Golden orfe, Geyer et al. 1982) 
1.04, 0.602 (calculated-solubility, calculated-KOW, Kenaga 1980a) 
1.48, 1.78, 1.0 (activated sludge, algae, Golden ide, Freitag et al. 1985) 
Sorption Partition Coefficient, log KOC: 
1.98 (soil, Kenaga & Goring 1980) 
1.98; 1.94 (quoted, calculated-KOW, Kenaga 1980b) 
0.954–2.72 (soil, literature range, Wauchope et al. 1992) 
1.80 (soil, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
1.94–1.98, 2.18 (soil, Bottoni & Funari 1992) 
1.80–2.72 (soil, Montgomery 1993) 
1.78 (soil, Senseman et al. 1997) 
1.71 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.71; 1.68, 1.33 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
2.05, 2.06, 2.04 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: photodecomposition in water is very rapid with t. < 1 d; on soil surface under natural sunlight 
conditions, t. = 14–25 d (Tomlin 1994). 
Oxidation: 
Hydrolysis: t. ~ 1 wk in pond water (Hartley & Kidd 1987; Montgomery 1993). 
Biodegradation: under goes microbial degradation in moist soil (Worthing 1987) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: hydrolysis t. ~ 1 wk in pond water (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994); 
stable to dilute acids and alkalis, t. = 6.7 h at pH 1.2 and 37°C; t. = 569 h at pH 4, t. = 47 d at pH 7 and 
t. = 191 h at pH 9 for 70°C (Tomlin 1994). 
Ground water: reported half-life or persistence t. = 4–25, 17–301 and 56 d (Bottoni & Funari 1992). 
Sediment: 
Soil: undergoes microbial degradation in moist soil (Worthing 1983, 1987); 
half-life varies with soil types, t. ~ 90–115 d for Red River, Almasippi, and Stockton soils the 3 times this 
period for Newdale soil for normal application rates (Verschueren 1983); 
t. ~ 1–2 months in soil (Hartley & Kidd 1987; Tomlin 1994); 
t. ~ 30–60 d in various soil types varies greatly with climatic conditions, during the growing season 
(Herbicide Handbook 1989); 
t. = 9–12 d irrespective of the number of previous treatments in the field; t. = 25–40 d irrespective of the 
pretreatment history of the soil at 20°C in the laboratory (Walker & Welch 1992) 
reported t. = 23–120 d and the recommended field t. = 40 d (Wauchope et al. 1992; Hornsby et al. 1996; 
quoted, Senseman et al. 1997); 
half-lives of in two surface soil microcosms under nitrate, t. = 157 d and non-nitrate, t. = 187 and 349 d 
in reducing culture conditions at 16.4°C (Pavel et al. 1999). 
Biota: in mammals, following oral administration, 90% elimination within 96 h (Hartley & Kidd 1987). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3597 
17.1.1.51 Molinate 
Common Name: Molinate 
Synonym: Felan, Higalnate, Hydram, Jalan, Molmate, Ordram, Stauffer R 4572, Sakkimok, Yalan, Yulan 
Chemical Name: 1H-azepine-1-carbothioic acid, hexahydro, S-ethyl ester; ethyl 1-hexa-methyleneiminecarbothioate 
Uses: selective herbicide to control the germination of annual grasses and broadleaf weeds in rice crops. 
CAS Registry No: 2212-67-1 
Molecular Formula: C9H17NOS 
Molecular Weight: 187.302 
Melting Point (°C): < 25 (Montgomery 1993) 
Boiling Point (°C): 
202 (at 10 mmHg, Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & Hance 1991; Milne 
1995) 
117 (at 10 mmHg, Montgomery 1993) 
Density (g/cm3 at 20°C): 
1.064 (Hartley & Kidd 1987) 
1.0643 (Herbicide Handbook 1989; Montgomery 1993) 
1.063 (Worthing & Hance 1991; Milne 1995) 
Molar Volume (cm3/mol): 
220.6 (calculated-Le Bas method at normal boiling point) 
176.1 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
880 (20°C, Weber 1972; Hartley & Kidd 1987; Worthing & Walker 1987; Worthing & Hance 1991) 
800 (Martin & Worthing 1977) 
800–912 (Weber et al. 1980) 
912 (21°C, Spencer 1982) 
800 (20°C, Herbicide Handbook 1983, 1989) 
870 (Kanazawa 1989) 
970 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996; Armbrust 2000) 
880 (20°C, Montgomery 1993; Tomlin 1994; Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.748 (20°C, Weber 1972; Worthing & Walker 1987) 
0.746 (20°C, Khan 1980) 
0.185 (20°C, GC-RT correlation, Kim 1985) 
0.413 (Seiber et al. 1986, 1989) 
0.746 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
0.746 (Herbicide Handbook 1989; Worthing & Hance 1991) 
0.746 (20–25°C, selected, Wauchope et al. 1992) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.097 (calculated-P/C, Seiber et al. 1986, 1989) 
0.314 (20°C, calculated-P/C, Suntio et al. 1988) 
0.159 (20°C, calculated-P/C as per Worthing & Walker 1987;) 
0.159 (20°C, calculated-P/C, Muir 1991) 
N 
S O 
© 2006 by Taylor & Francis Group, LLC

3598 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.095 (20°C, calculated-P/C, Sagebiel et al. 1992) 
0.460 (20°C, gas-stripping method, Sagebiel et al. 1992) 
0.390 (20°C, headspace-GC method, Sagebiel et al. 1992) 
0.162 (calculated-P/C, Montgomery 1993) 
0.145 (calculated-P/C, this work) 
0.132 (quoted lit., Armbrust 2000) 
0.397 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 6.527 – 3024/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
3.21 (shake flask-GC, Kanazawa 1981) 
2.88 (Worthing & Hance 1991; Tomlin 1994) 
2.88 (Montgomery 1993) 
3.13 (RP-HPLC-RT correlation, Saito et al. 1993) 
3.26 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
3.21 (recommended, Sangster 1993) 
2.88 (Milne 1995) 
3.21 (recommended, Hansch et al. 1995) 
3.25 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.15 (calculated-S, Kenaga 1980; quoted, Pait et al. 1992) 
1.41 (Peudorasbora parva, Kanazawa 1981) 
Sorption Partition Coefficient, log KOC: 
2.04 (soil, calculated-S, Kenaga 1980) 
1.92 (average of 2 soils, Kanazawa 1989) 
1.92, 2.04 (soil, quoted values, Bottoni & Funari 1992) 
1.92, 2.46 (soil, quoted exptl., calculated-MCI . and fragments contribution, Meylan et al. 1992) 
2.28 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.93–1.97 (Montgomery 1993) 
2.28 (selected, Lohninger 1994) 
1.92 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.07 (soil, quoted lit., Armbrust 2000) 
1.92; 2.31, 1.86 (soil, quoted exptl.; estimated-class specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: k = 0.0150 h–1 (average of 2 runs, Seiber et al. 1986); 1.1 kg ha–1 (1st 4 day) from flooded rice 
fields (Seiber et al. 1986; Seiber & McChesney 1987); 
estimated t. = 43 d from 1 m depth of water at 20°C (Muir 1991). 
Photolysis: t. = 7–10 d for 8–10 µg mL–1 to degrade in distilled water under > 290 nm light (Soderquist et al. 
1977; quoted, Cessna & Muir 1991); 
t. = 96 h for < 5% of 0.2 µg mL–1 to degrade in distilled water under sunlight (Deuel et al. 1978; quoted, 
Cessna & Muir 1991); 
t. = 245 h for 2–54% of 10 µg mL–1 to degrade in distilled water under sunlight (Draper & Crosby 1984; 
quoted, Cessna & Muir 1991). 
Oxidation: calculated life-time of 6 h for the vapor-phase reaction with OH radicals in the troposphere (Atkinson 
et al. 1992; Kwok et al. 1992); 
measured rate constant for reaction with hydroxyl radical, k(aq.) = 0.85 . 109 M–1·s–1 in irradiated field 
water both in the laboratory and sunlit rice paddies (Mabury & Crosby 1996); 
measured hydroxy radical reaction rate constant for molinate k = 7.7 . 1012 M–1 h–1 (Armbrust 2000). 
Hydrolysis: t. > 10 d in aqueous buffer at pH 5–9 in the dark (Soderquist et al. 1977; quoted, Muir 1991); stable 
aqueous hydrolysis rate at pH 5, 7, 9 (Armbrust 2000). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3599 
Biodegradation: t. ~16 d for 0.2 µg mL–1 to biodegrade in flooded soils (Deuel et al. 1978; quoted, Muir 1991); 
t. = 10 wk for 4.2 µg mL–1 to biodegrade in flooded soil and t. < 2 wk in water both at 21–26°C (Thomas & 
Holt 1980; quoted, Muir 1991); 
aerobic rate constant, k = 2.22 . 10–3 h–1 (Armbrust 2000). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: calculated lifetime of 6 h for the vapor-phase reaction with OH radicals in the troposphere (Atkinson et al. 
1992; Kwok et al. 1992). 
Surface water: t. = 84 h from dissipation from flooded rice fields (Seiber & McChesney 1987; quoted, Seiber 
et al. 1989). 
Ground water: reported half-lives or persistence, t. = 3–14, 8–25 and 40–160 d (Bottoni & Funari 1992) 
Sediment: 
Soil: persistence of 2 months in soil (Wauchope 1978); 
t. ~ 3 wk in moist loam soils at 21–27°C (Herbicide Handbook 1989); 
selected field t. = 21 d (Wauchope et al. 1992; quoted, Halfon et al. 1996; Hornsby et al. 1996); 
soil t. = 21 d (Pait et al. 1992); 
reported t. = 3–14 d, 8–25 d and 40–160 d (Bottoni & Funari 1992). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3600 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.52 Monolinuron 
Common Name: Monolinuron 
Synonym: Afesin, Aresin, Arresin, Hoe 02747 
Chemical Name: 3-(4-chlorophenyl)-1-methoxy-1-methylurea; N.-(4-chlorophenyl)-N-methoxy-N-methylurea 
Uses: herbicide for pre- or post-emergence control of annual broadleaf weeds and annual grasses in asparagus, berry 
fruit, cereals, maize, field beans, vines, leeks, onions, potatoes, herbs, lucerne, flowers, ornamental shrubs and 
trees, etc. 
CAS Registry No: 1746-81-2 
Molecular Formula: C9H11ClN2O2 
Molecular Weight: 214.648 
Melting Point (°C): 
77 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
224.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.309 (mp at 77°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
735 (20°C, Melnikov 1971) 
735 (Spencer 1973, 1982) 
580 (Martin & Worthing 1977; Khan 1980) 
735 (Worthing & Walker 1983, 1987, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
735 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.02 (22°C, Khan 1980; Hartley & Kidd 1987) 
0.0015 (20°C, Spencer 1982) 
6.40 (65°C, Worthing & Hance 1991) 
0.02 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
0.0013, 0.10 (20°C, 50°C, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0058 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.60 (Briggs 1969) 
2.30 (shake flask-UV, Briggs 1981) 
1.60 (selected, Dao et al. 1983) 
1.99 (RP-HPLC-k. correlation, Braumann et al. 1983) 
2.22 (shake flask, Mitsutake et al.1986) 
2.20 (Worthing & Hance 1991; Tomlin 1994) 
2.16 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
2.30 (recommended, Sangster 1993) 
2.30 (recommended, Hansch et al. 1995) 
2.31 (Pomona-database, Muller & Kordel 1996) 
HN
N 
O 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3601 
2.16 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.23; 1.00 (calculated-S, calculated-KOC, Kenaga 1980) 
1.85 (activated sludge, Freitag et al. 1982, 1984, 1985) 
1.52, < 1.0 (algae, golden orfe, Freitag et al. 1982) 
1.60, 1.30 (algae, golden ide, Freitag et al. 1985) 
Sorption Partition Coefficient, log KOC: 
2.30 (soil, Hamaker & Thompson 1972) 
2.11 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
1.60 (reported as log KOM, Briggs 1981) 
2.36, 2.08, 1.21 (estimated-S, calculated-S and mp, calculated-KOW, Karickhoff 1981) 
2.40–2.70 (soil, Worthing & Hance 1991) 
2.26–2.30, 2.40–2.70 (soil, quoted values, Bottoni & Funari 1992) 
1.78 (soil, HPLC-screening method, mean value of different stationary and mobile phases, Kordel et al. 
1993, 1995b) 
2.30 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
2.10 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.78; 2.33 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
2.44, 1.50, 1.71, 1.754, 2.45 (first generation Eurosoils ES-1, ES2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-
HPLC/UV, Gawlik et al. 1998, 1999) 
2.05, 1.72, 1.695, 1.825, 2.407 (second generation Eurosoils ES-1, ES2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1999) 
2.050, 1.721, 1.695, 1.825, 2.407 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask-batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
2.10; 2.04, 2.31 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
1.88, 1.88 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Photolysis: t. = 23 h for 66% of 286 µg/mL to degrade in distilled water under > 300 nm light (Kotzias et al. 
1974; quoted, Cessna & Muir 1991). 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: reported half-lives or persistence, t. = 45–60 d (Bottoni & Funari 1992) 
Sediment: 
Soil: reported t. = 45–60 d (Worthing & Hance 1991); 
estimated field t. = 60 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3602 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.53 Monuron 
Common Name: Monuron 
Synonym: Chlorfenidim, CMU, Karmex, Lirobetarex, Monurex, Monurox, Rosuran, Telvar, Urox 
Chemical Name: N.-(4-chlorophenyl)-N-N-dimethylurea; 1,1-dimethyl-3-(p-chlorophenyl)urea 
Uses: herbicide; also as sugar cane flowering suppressant. 
CAS Registry No: 150-68-5 
Molecular Formula: C9H11ClN2O 
Molecular Weight: 198.648 
Melting Point (°C): 
170.5 (Kuhne et al. 1995; Lide 2003) 
Boiling Point (°C): 
185–200 (decomposes, Montgomery 1993) 
Density (g/cm3 at 20°C): 
1.27 (Spencer 1982; Hartley & Kidd 1987; Montgomery 1993) 
Molar Volume (cm3/mol): 
202.9 (calculated-Le Bas method at normal boiling point) 
173.0 (modified Le Bas method, Spurlock & Biggar 1994a) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0374 (mp at 170.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
203 (Freed 1966) 
230 (Gunther et al. 1968; Sanborn et al. 1977; Khan 1980; Ashton & Crafts 1981) 
262 (shake flask-UV, Hurle & Freed 1972) 
230 (20°C, Weber 1972; Worthing & Walker 1987) 
230 (Martin & Worthing 1977; Hartley & Kidd 1987) 
200 (shake flask-HPLC, Ellgehausen et al. 1981) 
200 (20°C, selected, Suntio et al. 1988) 
275 (Spurlock 1992; Spurlock & Biggar 1994b) 
230 (at pH 6.26, Montgomery 1993) 
230 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
7.60 . 10–5, 1.2 . 10–5 (25, 27°C, Nex & Swezey 1954) 
6.67 . 10–5 (Bailey & White 1965) 
6.72 . 10–5 (20°C, Weber 1972; Worthing & Walker 1987) 
6.67 . 10–5 (Ashton & Crafts 1973, 1981; Khan 1980) 
5.33 . 10–5* (30.35°C, Knudsen effusion, measured range 303.5–379.1 K, Wiedemann 1972) 
log (P/mmHg) = 13.3052 – 5988.39/(T/K); temp range 303.5–379.1 K (Antoine eq., effusion, Wiedemann 1972) 
6.70 . 10–5 (OECD 1981) 
2.30 . 10–5 (calculated, Jury et al. 1983) 
6.00 . 10–5 (Hartley & Kidd 1987) 
6.67 . 10–5 (Budavari 1989) 
2.30 . 10–5 (selected, Taylor & Spencer 1990) 
6.00 . 10–5 (20°C, Montgomery 1993) 
6.67 . 10–5 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
HN
N 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3603 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
5.80 . 10–5 (20°C, volatilization rate, Burkhard & Guth 1981) 
1.88 . 10–5 (calculated-P/C, Jury et al. 1984, 1987a; Jury & Ghodrati 1989) 
3.00 . 10–3 (20°C, calculated-P/C, Suntio et al. 1988) 
1.91 . 10–5 (calculated-P/C, Taylor & Glotfelty 1988) 
5.60 . 10–5 (20°C, calculated-P/C, Muir 1991) 
3.00 . 10–3 (20°C, calculated-P/C, Montgomery 1993) 
6.60 . 10–5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.46 (Briggs 1969) 
1.66 (calculated-fragment const., Rekker 1977) 
1.80 (shake flask-UV, Erkell & Walum 1979) 
2.08 (selected, Ellgehausen et al. 1980; Geyer et al. 1991) 
2.12 (Rao & Davidson 1980) 
1.98 (shake flask-UV, Briggs 1981) 
2.08 (shake flask, Ellgehausen et al. 1980) 
1.66 (shake flask, Ellgehausen et al. 1981) 
1.86 (selected, Dao et al. 1983; Gerstl & Helling 1987) 
1.91 (RP-HPLC-k. correlation Braumann et al. 1983) 
1.80 (selected, Suntio et al. 1988) 
2.12 (shake flask-HPLC, Spurlock 1992; Spurlock & Biggar 1994b) 
1.46, 2.12 (Montgomery 1993) 
1.86 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
1.94 (recommended, Sangster 1993) 
1.89; 1.88 (shake flask-UV; RP-HPLC-k. correlation, Liu & Qian 1995) 
1.94 (recommended, Hansch et al. 1995) 
1.99 (Pomona-database, Muller & Kordel 1996) 
1.86 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.786 (log BF bioaccumulation factor for algae, Ellgehausen et al. 1980) 
0.32 (log BF bioaccumulation factor for daphnids, Ellgehausen et al. 1980) 
0.245 (log BF bioaccumulation factor for daphnids, Ellgehausen et al. 1980) 
1.46 (calculated-S, Kenaga 1980) 
0.699 (calculated-KOC, Kenaga 1980) 
0.0 (Triaenodes tardus, Belluck & Felsot 1981) 
1.58, 1.67 (cuticle/water: tomato, pepper; Evelyne et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.00 (soil, Hamaker & Thompson 1972) 
2.34 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.26 (av. of 18 soils, Rao & Davidson 1980) 
1.70 (soil, converted from reported KOM, multiplied by 1,724, Briggs 1981) 
2.58, 1.51 (estimated-S, calculated-S and mp, Karickhoff 1981) 
1.07, 1.73 2.58 (estimated-KOW, Karickhoff 1981) 
2.03, 1.85; 2.17, 1.52 (estimated-KOWs; solubilities, Madhun et al. 1986) 
1.99; 2.12 (quoted; calculated-MCI ., Gerstl & Helling 1987) 
2.26 (screening model calculations, Jury et al. 1987a,b; Jury & Ghoodrati 1989) 
1.99, 2.33 (Montgomery 1993) 
2.18 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
1.99 (soil, HPLC-screening method, mean value from different stationary and mobile phases, Kordel et 
al. 1993, 1995a,b) 
2.29 (calculated-KOW, Liu & Qian 1995) 
1.95 (soil, calculated-MCI 1., Sabljic et al. 1995) 
© 2006 by Taylor & Francis Group, LLC

3604 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
1.99; 1.92 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
2.58, 1.77, 1.85, 1.77, 2.41 (first generation Eurosoils ES-1, ES2, ES-3, ES-4, ES-5, shake flask/batch equilibrium- 
HPLC/UV, Gawlik et al. 1998, 1999) 
2.14, 2.018, 1.79, 1.764, 2.243 (second generation Eurosoils ES-1, ES2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1999) 
2.141, 2.018, 1.793, 1.764, 2.243 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
1.95; 1.96, 2.13 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
1.80, 1.80 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 14 d for 6% of 200 µg mL–1 to degrade in distilled water under sunlight (Crosby & Tang 1969; 
quoted, Cessna & Muir 1991); 
t. = 2.25 h for 44% of 200 µg mL–1 to degrade in distilled water under 300 nm light (Tanaka et al. 1977; 
quoted, Cessna & Muir 1991); 
t. = 2.25 s for 75% of 100 µg mL–1 to degrade in 0.2% Triton X-100 aqueous solution under 300 nm light 
(Tanaka et al. 1981; quoted, Cessna & Muir 1991); 
t. = 2.25 h for > 70% of 200 µg mL–1 to degrade in aqueous solutions of nonionic surfactants at concns. in 
excess of critical micelle concn. under 300 nm light (Tanaka et al. 1979; quoted, Cessna & Muir 1991); 
t. = 45 h for 69% of 165 µg mL–1 to degrade in distilled water under > 280 nm light (Tanaka et al. 1982; 
quoted, Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: t. > 4 months for 3974 µg mL–1 to hydrolyze in phosphate buffer at pH 5–9 and 20°C (El-Dib & 
Aly 1976; quoted, Muir 1991). 
Biodegradation: aerobic t. . 7 d for 0.01 µg mL–1 to biodegrade in river water (Eichelberger & Lichtenberg 
1971; quoted, Muir 1991); 
t. = 166 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Jury et al. 1983, 1984, 1987a,b; 
Jury & Ghodrati 1989); 
aerobic t. . 10–15 d for 0.0005–10 µg mL–1 to biodegrade in filtered sewage water at 20°C (Wang et al. 
1985; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k2 = 21.05 d–1 (catfish, Ellgehausen et al. 1980) 
Half-Lives in the Environment: 
Air: 
Surface water: persistence of up to 8 wk in river water (Eichelberger & Lichtenberg 1971). 
Ground water: 
Sediment: 
Soil: t. = 5.0 months at 15°C and 4.1 months at 30°C in soils (Freed & Haque 1973); 
reported t. = 166 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989; quoted, 
Montgomery 1993); 
estimated field t. = 170 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: t. = 0.45 d in catfish (Ellgehausen et al. 1980); 
biochemical t. = 166 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3605 
TABLE 17.1.1.53.1 
Reported vapor pressures of monuron at various temperatures 
Wiedemann 1972 
Knudsen effusion 
T/K P/Pa T/K P/Pa 
303.5 5.33 . 10!5 358.7 0.0536 
316.0 2.44 . 10!4 360.2 0.0561 
329.8 2.16 . 10!3 379.1 0.399 
330.6 1.53 . 10!3 
330.6 2.22 . 10!3 log P = A – B/(T/K) 
338.8 7.05 . 10!3 P/mmHg 
341.4 9.45 . 10!3 A 13.3952 
345.7 0.0105 B 5988.39 
349.5 0.0204 
357.0 0.0529 .Hsubl/(kJ mol–1) = 114.6 
FIGURE 17.1.1.53.1 Logarithm of vapor pressure versus reciprocal temperature for monuron. 
Monuron: vapor pressure vs. 1/T 
-6.0 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Wiedemann 1972 
m.p. = 170.5 °C 
© 2006 by Taylor & Francis Group, LLC

3606 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.54 Napropamide 
Common Name: Napropamide 
Synonym: Devrinol 
Chemical Name: 2-(.-naphthloxy)-N,N-diethylpropionamide 
CAS Registry No: 15299-99-7 
Uses: herbicide 
Molecular Formula: C17H21NO2 
Molecular Weight: 271.355 
Melting Point (°C): 
75 (Worthing & Walker 1987; Lide 2003) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
2.93 (Woodburn et al. 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.323 (mp at 75°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
69 (shake flask-LSC or GC, Gerstl & Mingelgrin 1984) 
73 (20°C, Spencer 1982; Hartley & Kidd 1987; Worthing & Walker 1987; Herbicide Handbook 1989; 
Montgomery 1993; Tomlin 1994) 
74 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
2.67 . 10–4 (Spencer 1982) 
5.3 . 10–4 (Herbicide Handbook 1989) 
5.3 . 10–4 (Hartley & Kidd 1987; Worthing & Walker 1987; Montgomery 1993; Tomlin 1994) 
2.27 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.67 . 10–3 (20–25°C, Majewski & Capel 1995) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.00294 (calculated-P/C, Montgomery 1993) 
0.00197 (20–25°C, Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW: 
3.08 (shake flask-GC or LSC, Gerstl & Mingelgrin 1984) 
3.36 (Montgomery 1993) 
3.30 (Tomlin 1994) 
3.36 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
2.04–3.09 (various soils, Mingelgrin & Gestl 1983) 
2.82, 3.56 (soil: quoted, calculated-MCI ., Gerstl & Helling 1987) 
O 
N 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3607 
2.62 (soil, average of log KOC values, Gerstl 1990) 
3.52–4.29; 3.72 at pH 2, 3.35 at pH 6 (Dead sea sediment, Gestl & Kilger 1990) 
2.62–3.54; 3.54 at pH 2, 3.40 at pH 6 (Kinnert F sediment, Gestl & Kilger 1990) 
2.71–3.62; 3.62 at pH 2, 3.27 at pH 6 (Kinnert G sediment, Gestl & Kilger 1990) 
2.40–3.31; 3.31 at pH 2, 3.20 at pH 5 (Oxford soil, Gestl & Kilger 1990) 
2.39–3.15; 3.15 at pH 2, 2.88 at pH 6 (Malkiya soil, Gestl & Kilger 1990) 
2.28–3.29; 3.29 at pH 2, 3.09 at pH 5 (Neve Ya’ar soil, Gestl & Kilger 1990) 
2.85 (soil, Wauchope et al. 1992; Hornsby et al. 1996) 
2.29–3.99 (soil/sediment, literature range, Montgomery 1993) 
2.83 (soil, Montgomery 1993) 
2.62 (soil, calculated-MCI ., Sabljic et al. 1995) 
2.58, 2.58, 2.61 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, average, Delle Site 2001) 
2.80 (sediment: organic carbon OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: very little loss occurred by volatilization from soil surface (Herbicide Handbook 1989). 
Photolysis: under condition of high sunlight intensity in the summer, t. ~ 4 d on the soil surface (Herbicide 
Handbook 1989); 
decomposed by sunlight, t. = 25.7 min. (Tomlin 1994). 
Oxidation: 
Hydrolysis: stable to hydrolysis between pH 4 and 10 at 40°C (Hartley & Kidd 1987; Worthing 1987; Tomlin 
1994). 
Biodegradation: slowly broken down by microorganisms in soil, in pure culture, a soil fungus metabolizes rapidly 
with t. = 2 wk (Herbicide Handbook 1989). 
Biotransformation: rapidly metabolized in plants to water-soluble metabolites (Tomlin 1994). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: decomposed by sunlight, t. = 25.7 min. (Montgomery 1993; Tomlin 1994). 
Sediment: 
Soil: t. ~ 55 d in the plots treated for the first time whereas t. = 6–12 d in pre-treated plots that had previously 
been sprayed with napropamide in the field; t. = 25–40 d irrespective of the pre-treatment history of the 
soil in the laboratory at 20°C (Walker & Welch 1992) 
t. ~ 8–12 wk (Hartley & Kidd 1987; Tomlin 1994); 
field t. = 70 d (Wauchope et al. 1992; Hornsby et al. 1996); 
moist loam or sandy-loam soils at 79–90°C, t. = 8–12 wk (Montgomery 1993). 
Biota: rapidly metabolized in plants to water-soluble metabolites (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

3608 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.55 Neburon 
Common Name: Neburon 
Synonym: Kloben, Neburea, Neburex 
Chemical Name: 1-butyl-3-(3,4-dichlorophenyl)-1-methylurea; N-butyl-N.(3,4-dichloro-phenyl)-N-methylurea 
Uses: pre-emergence herbicide to control grasses and broadleaf weeds in peas, beans, lucerne, garlic, beets, cereals, 
strawberries, ornamentals and forestry. 
CAS Registry No: 555-37-3 
Molecular Formula: C12H16Cl2N2O 
Molecular Weight: 275.174 
Melting Point (°C): 
102–103 (Khan 1980; Spencer 1982; Worthing & Hance 1991; Tomlin 1994) 
101.5–103 (Montgomery 1993) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
236.0 (modified Le Bas method at normal boiling point, Spurlock & Biggar 1994a) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
96.91 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
29.71 (DSC method, Plato & Glasgow 1969) 
26.9 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
4.8 (24°C, Bailey & White 1965; Melnikov 1971) 
4.8 (Martin & Worthing 1977) 
4.8 (28°C, Khan 1980) 
5.0 (Hartley & Kidd 1987; Tomlin 1994) 
4.8 (24°C, Worthing & Walker 1987, Worthing & Hance 1991; Montgomery 1993) 
5.2 (Spurlock 1992; Spurlock & Biggar 1994b) 
5.0 (20–25°C, selected, Augustijn-Beckers et al. 1994; selected, Hornsby et al. 1996) 
4.67, 9.99 (quoted, calculated-group contribution fragmentation method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
6.30 . 10–6, 4.10 . 10–4, 0.015, 0.33, 4.90 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 18.272 – 6999.1/(T/K); measured range 50–103°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.285 – 5062.2/(T/K); measured range 105–140°C (liquid, gas saturation-GC, Rordorf 1989) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
4.59 (selected, Dao et al. 1983; Gerstl & Helling 1987) 
4.31 (RP-HPLC-k. correlation, Braumann et al. 1983) 
4.22 (Spurlock 1992; Spurlock & Biggar 1994b) 
3.80 (selected, Sangster 1993) 
3.80 (calculated, Montgomery 1993) 
HN
N 
O 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3609 
4.10 (shake flask-UV, Liu & Qian 1995) 
3.99 (RP-HPLC-k. correlation, Liu & Qian 1995) 
3.80 (recommended, Hansch et al. 1995) 
3.40, 4.02, 4.13 (RP-HPLC-RT correlation, CLOGP, calculated-S, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
2.41 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
1.85, 2.18 (calculated-S, KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.36 (soil, Hamaker & Thompson 1972) 
3.26, 2.72 (soil, calculated-S, Kenaga 1980) 
3.49 (average of soils/sediments, Rao & Davidson 1980) 
3.36, 3.23 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
2.95 (soil, calculated-. and fragment contribution, Meylan et al. 1992) 
3.49 (Montgomery 1993) 
3.40 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
3.40 (selected, Lohninger 1994) 
3.60 (calculated-KOW, Liu & Qian 1995) 
3.140 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.40; 2.86, 2.69 (soil, quoted exptl.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: t. > 4 months for 5500 µg/mL to hydrolyze in phosphate buffer at pH 5–9 and 20°C (El-dib & Aly 
1976; quoted, Muir 1991). 
Half-Lives in the Environment: 
Soil: residual activity in soil is limited to approximately 3–4 months (Hartley & Kidd 1987; quoted, Montgomery 
1993); 
selected field t. = 120 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

3610 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.56 Nitralin 
Common Name: Nitralin 
Synonym: Planavin 
Chemical Name: 4-(methylsulfonyl)-2,6-dinitro-N,N-dipropylbenzamine 
CAS Registry No: 4726-14-1 
Uses: herbicide 
Molecular Formula: C13H19N3O6S 
Molecular Weight: 345.371 
Melting Point (°C): 
150 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 1.39 (Hartley & Kidd 1987) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0594 (mp at 150°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
0.60 (Melnikov 1971; Kenaga & Goring 1980; Kenaga 1980b; Isensee 1991) 
0.60 (Ashton & Crafts 1981; Hartley & Kidd 1987; Worthing & Walker 1987) 
Vapor Pressure (Pa at 25°C): 
0.240 (Ashton & Crafts 1981) 
2.0 . 10–5 (Hartley & Kidd 1987) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
6.73 (calculated-MCI ., Patil 1994) 
2.81 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
2.90, 1.76 (calculated-solubility, KOW, Kenaga 1980b) 
Sorption Partition Coefficient, log KOC: 
2.98 (Kenaga & Goring 1980) 
3.76 (calculated, Kenaga 1980a) 
2.92 (soil, calculated-MCI ., Sabljic et al. 1995) 
2.92; 3.28 (soil, quoted obs.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Biotransformation: Degradation by abiotic reductive transformations: 
k = 3.44 M–1 s–1 in H2S with (mecapto)juglone (hydroquinone moiety, an abiotic reductant found in natural 
systems) solution at pH 6.65 (Wang & Arnold 2003) 
Aqueous solutions with surface-bound Fe(II) species and their furst-order rate constants as: 
N 
NO2 O2N 
S O O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3611 
k = 0.44 . 10–3 h–1 at pH 6.5, k = 0.68 . 10–2 h–1 at pH 7.0, k = 0.133 h–1 at pH 7.4, and k = 1.96 h–1 at pH 
7.8 for aqueous ferrous ion system; 
k = 0.580 h–1 at pH 6.5, k = 1.15 h–1 at pH 6.7, k = 6.06 h–1 at pH 7.0, and k = 20.9 h–1 at pH 7.3 for 
Fe(II)/goethite system; 
k = 2.54 . 10–3 h–1 at pH 6.5, k = 1.83 . 10–3 h–1 at pH 7.0, k = 4.13 . 10–3 h–1 at pH 7.4 and k = 7.70 . 10–3 h–1 
at pH 7.8 for Fe(II)/clay system, all with total dissolved Fe(II) = 1 mM(Wang & Arnold 2003) 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: 
Sediment: 
Soil: t. ~ 30–54 d in dry soil (Hartley & Kidd 1987) 
Biota: in mammals, following oral administration, degradation and elimination occur within a few days (Hartley & 
Kidd 1987). 
© 2006 by Taylor & Francis Group, LLC

3612 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.57 Nitrofen 
Common Name: Nitrofen 
Synonym: nitrophen Tok, Tokkron 
Chemical Name: 2,4-dichloro-1-(4-nitrophenoxy)benzene 
CAS Registry No: 1836-75-5 
Uses: herbicide 
Molecular Formula: C12H7Cl2NO3 
Molecular Weight: 284.095 
Melting Point (°C): 
70 (Lide 2003) 
Boiling Point (°C): 
180–190/0.25 mmHg (Hartley & Kidd 1987) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
93.66 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
22,7 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.362 (mp at 70°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1.0 (Kenaga 1980b) 
~1.0 (Spencer 1982) 
0.7–1.2 (22°C, Worthing 1987) 
~1 (room temp., Hartley & Kidd 1987) 
1.0 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et a;. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations.): 
1.07 . 10–3 (40°C, Spencer 1982) 
1.06 . 10–3 (40°C, Worthing 1987; Hartley & Kidd 1987) 
1.30 . 10–4, 4.50 . 10–3, 0.091, 1.20, 12.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 15.867 – 5886.5/(T/K); measured range 50–70.2°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.022 – 4892.8/(T/K); measured range 72.7–140°C (liquid, gas saturation-GC, Rordorf 1989) 
1.33 . 10–5 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
3.09 (Rao & Davidson 1980) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
2.79 (fish, Kenaga 1980b) 
Sorption Partition Coefficient, log KOC: 
3.64 (soil, calculated, Kenaga 1980b) 
3.01, 3.64, 4.18, 4.05 (quoted literature values, Augustijn-Beckers et al. 1994) 
4.0 (soil, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
O O2N Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3613 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Soil: reported field t. = 3 to 25 d and the recommended field t. = 30 d (Augustijn-Beckers et al. 1994; Hornsby 
et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

3614 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.58 Norflurazon 
Common Name: Norflurazon 
Synonym: Zorial, Solicam, Evital, Telok 
Chemical Name: 4-chloro-5-(methylamino)-2[3-(trifluoromethyl)phenyl]-3-(2H)-pyridazinone 
CAS Registry No: 27314-13-2 
Uses: herbicide 
Molecular Formula: C12H9ClF3N3O 
Molecular Weight: 303.666 
Melting Point (°C): 
184 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0275 (mp at 184°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
28 (Kenaga & Goring 1980; Kenaga 1980b; Gerstl & Helling 1987; Isensee 1991) 
28 (Ashton & Crafts 1981; Worthing & Walker 1987; Herbicide Handbook 1989; Tomlin 1994) 
40 (Spencer 1982) 
28 (23°C, Hartley & Kidd 1987) 
28 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996; quoted, Senseman et al. 1997) 
Vapor Pressure (Pa at 25°C or as indicated): 
2.7 . 10–6 (20°C, Ashton & Crafts 1981; Spencer 1982) 
2.8 . 10–6 (20°C, Worthing & Walker 1987; Tomlin 1994) 
2.7 . 10–6, 3.3 . 10–5, 3.3 . 10–4, 1.6 . 10–3, 1.3 . 10–2 (20, 40, 60, 80, 100°C, Herbicide Handbook 1989) 
9.24 . 10–5 (20–25°C, Majewski & Capel 1995) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
3.04 . 10–5 (20–25°C, Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW: 
2.30 (22°C, shake flask-UV, Braumann & Grimme 1981) 
2.52 (shake flask, Takahashi et al. 1993) 
2.45 (pH 6.5, Tomlin 1994) 
2.30 (recommended, Hansch et al. 1995) 
2.30 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
2.60 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.97 (fish, calculated-solubility, Kenaga 1980b; Isensee 1991) 
N 
N 
Cl 
HN
O 
F 
F 
F 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3615 
Sorption Partition Coefficient, log KOC: 
3.28 (soil, Kenaga & Goring 1980) 
2.85 (calculated-solubility, Kenaga 1980b) 
3.28, 3.07 (soil: quoted, calculated-MCI ., Gerstl & Helling 1987) 
2.85 (soil, Wauchope et al. 1992; Hornsby et al. 1996) 
3.02, 2.64, 3.02, 2.46 2.59 (sandy loam, Mississippi loam, Mississippi sediment, Keaton sandy loam, Biggs clay, 
Tomlin 1994) 
3.75 (calculated-MCI ., Meylan et al. 1992) 
3.28 (soil, calculated-MCI ., Sabljic et al. 1995) 
2.78 (soil, Senseman et al. 1997) 
Environmental Fate Rate Constants, or Half-Lives, t.: 
Volatilization: dissipated in soil by photodegradation and volatilization, t. = 45–180 d (Tomlin 1994) 
Photolysis: rapidly degraded by sunlight (Worthing 1987; Tomlin 1994) 
dissipated in soil by photodegradation and volatilization, t. = 45–180 d (Tomlin 1994) 
Oxidation: 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 3.4 and 1.9 d reported in the absence and presence of 20 ppm H2O2 (quoted, Massad et al. 2004) 
Ground water: 
Sediment: 
Soil: the average t. = 45–130 d residues in soil from the Delta and Southeast depending on clay and organic 
content (Herbicide Handbook 1989) 
field t. ~ 30 d (estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
dissipated in soil by photodegradation and volatilization, t. = 45–180 d (Tomlin 1994) 
soil t. = 90 d (Senseman et al. 1997) 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3616 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.59 Oryzalin 
Common Name: Oryzalin 
Synonym: Dirimal, EL 119, Rycelan, Rycelon, Ryzelan, Surflan 
Chemical Name: 4-(dipropylamino)-3,5-dinitrobenzene-sulfonamide; 3,5-dinitro-N4, N4-dipropylsulfanilamide 
Uses: herbicide for pre-emergence control of many annual grasses and broadleaf weeds in cotton, fruit trees, vines, nut 
trees, soybeans, groundnuts, oilseed rape, sunflowers, lucerne, peas, sweet potatoes, mint, ornamentals and also 
used in noncrop areas. 
CAS Registry No: 19044-88-3 
Molecular Formula: C12H18N4O6S 
Molecular Weight: 346.359 
Melting Point (°C): 
141 (Lide 2003) 
Boiling Point (°C): 265 (dec. Tomlin 1994) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
351.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
9.40 (Worthing & Hance 1991; Tomlin 1994) 
8.60 (Wauchope et al. 1992; Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0728 (mp at 141°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
2.4 (Martin & Worthing 1977; Spencer 1982; Ashton & Crafts 1981) 
2.6 (Weber et al. 1980) 
2.5 (Hartley & Kidd 1987; Budavari 1989; Milne 1995) 
2.4 (Worthing & Walker 1987, Worthing & Hance 1991) 
2.6 (Herbicide Handbook 1989; Tomlin 1994) 
2.5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
3.5 (calculated-group contribution fragmentation method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 1.33 . 10–5 (30°C, Ashton & Crafts 1981) 
< 1.30 . 10–5 (30°C, Hartley & Kidd 1987) 
< 1.33 . 10–6 (Herbicide Handbook 1989; Tomlin 1994) 
< 1.33 . 10–5 (30°C, Budavari 1989) 
< 1.30 . 10–6 (Worthing & Hance 1991) 
< 1.30 . 10–6 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.000188 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.13 (selected, Dao et al. 1983) 
3.73 (Worthing & Hance 1991) 
N 
NO2 O2N 
S O O 
NH2 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3617 
3.72 (pH 7, Tomlin 1994) 
3.73 (Milne 1995) 
3.73 (selected, Hansch et al. 1995) 
2.79 (MedChem master file or ClogP program, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
2.58 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.43 (soil, calculated-S, Kenaga 1980) 
2.78 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.78 (estimated-chemical structure, Lohninger 1994) 
2.85–3.04 (Tomlin 1994) 
3.40 (quoted or calculated-QSAR MCI 1., Sabljic et al. 1995) 
3.40; 3.18 (soil, quoted obs.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Biodegradation: in soil, microbial degradation occurs rapidly, t. = 2.1 months for aerobic and t. = 10 d for 
anaerobic metabolism (Tomlin 1994). 
Half-Lives in the Environment: 
Soil: selected field t. = 20 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 2.1 months for aerobic degradation and t. = 10 d for anaerobic degradation (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

3618 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.60 Pebulate 
Common Name: Pebulate 
Synonym: PEBC, R-2061, Stauffer 2061, Tillam, Timmam-6-E 
Chemical Name: S-propyl butylethyl(thiocarbamate); S-propyl butylethylcarbamothioate 
Uses: selective pre-emergence herbicide to control annual grasses and broadleaf weeds in tomatoes, sugar beet, and 
tobacco. 
CAS Registry No: 1114-71-2 
Molecular Formula: C10H21NOS 
Molecular Weight: 203.345 
Melting Point (°C): liquid 
Boiling Point (°C): 
142 (at 20 mmHg, Hartley & Kidd 1987; Budavari 1989; Montgomery 1993; Milne 1995) 
142 (at 21 mmHg, Herbicide Handbook 1989) 
Density (g/cm3 at 20°C): 
0.956 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
0.9555 (Herbicide Handbook 1989; Montgomery 1993) 
Molar Volume (cm3/mol): 
258.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
92 (21°C, Woodford & Evans 1963) 
92 (21°C, Spencer 1973, 1982) 
60 (Herbicide Handbook 1978, 1989; quoted, Kenaga 1980; Kenaga & Goring 1980) 
60 (Ashton & Crafts 1973, 1981) 
60 (20°C, Khan 1980; Hartley & Kidd 1987; Tomlin 1994; Montgomery 1993; Milne 1995) 
60 (20°C, Worthing & Walker 1987, Worthing & Hance 1991) 
100 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
4.67 (Ashton & Crafts 1973, 1981; Herbicide Handbook 1989) 
3.60 (20°C, Hartley& Graham-Bryce 1980) 
9.06 (30°C, Khan 1980) 
0.216 (20°C, GC-RT correlation, Kim 1985) 
9.00 (30°C, Hartley & Kidd 1987; Tomlin 1994) 
3.50 (20°C, selected, Suntio et al. 1988) 
4.70 (Worthing & Hance 1991; Tomlin 1994) 
1.186 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
9.064 (20°C, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
11.67 (20°C, calculated-P/C, Suntio et al. 1988) 
11.65 (20°C, calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
3.78 (selected, Magee 1991) 
3.84 (Worthing & Hance 1991; Montgomery 1993; Milne 1995) 
S N 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3619 
3.83 (Tomlin 1994) 
3.84 (selected, Hansch et al. 1995) 
4.19, 3.74, 3.27 (RP-HPLC, CLOGP, calculated-S, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.79 (calculated-S, Kenaga 1980) 
1.54 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.80 (soil, Hamaker & Thompson 1972) 
2.66 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.80 (reported as log KOM, Magee 1991) 
2.65 (estimated as log KOM, Magee 1991) 
2.63 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.80 (Montgomery 1993) 
2.63 (selected, Lohninger 1994) 
2.80 (quoted or calculated-QSAR MCI 1., Sabljic et al. 1995) 
2.48, 2.10 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, 
Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Biodegradation: in soil, microbial degradation t. = 2–3 wk (Tomlin 1994). 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 11 d, at pH 4 and pH 10, t. = 12 d at pH 7 (40°C, Tomlin 1994). 
Ground water: 
Sediment: 
Soil: t. ~ 2 wk in moist loam soil at 21–27°C (Herbicide Handbook 1989; Montgomery 1993); 
selected field t. = 14 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 2–3 wk (Tomlin 1994);. 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3620 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.61 Pendimethalin 
Common Name: Pendimethalin 
Synonym: penoxalin 
Chemical Name: N-(1-ethylpropyl-3,4-dimethyl-2,6-dinitrobenzenamine 
CAS Registry No: 40487-42-1 
Uses: herbicide 
Molecular Formula: C13H19N3O4 
Molecular Weight: 281.308 
Melting Point (°C): 
56 (Lide 2003) 
Boiling Point (°C): 
330 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
decomposes on heating (Hartley & Kidd 1987; Tomlin 1994) 
Density (g/cm3 at 25°C): 
1.19 (Ashton & Crafts 1981; Montgomery 19993; Tomlin 1994) 
1.12 (Hartley & Kidd 1987) 
1.17 (Herbicide Handbook 1989) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.496 (mp at 56°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.50 (23°C, Ashton & Crafts 1981) 
0.30 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987; Montgomery 1993; Tomlin 1994) 
0.275 (Herbicide Handbook 1989) 
0.275 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.61 (20–25°C, Majewski & Capel 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.004 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
0.004 (Hartley & Kidd 1987; Worthing & Walker 1987; Tomlin 1994) 
1.25 . 10–3 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.004 (Montgomery 1993) 
8.16 . 10–3 (20–25°C, Majewski & Capel 1995) 
0.00123; 0.00776 (liquid PL, GC-RT correlation; quoted lit., Donovan 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.0867 (Montgomery 1993) 
3.75 (20–25, calculated-P/C, Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW: 
5.18 (Montgomery 1993) 
5.18 (Tomlin 1994) 
5.24 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
HN 
NO2 O2N 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3621 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
2.95 (soil, Wauchope et al. 1992; Hornsby et al. 1996) 
4.20 (soil, Bottoni & Funari 1992) 
4.14, 4.47 (loam, pH 7, pH 6.5, quoted, Montgomery 1993) 
3.81 (sand, pH 7.6, Montgomery 1993) 
4.07, 4.14 (sandy loam pH 6.4, silty loam, pH 7.0, Montgomery 1993) 
1.48–2.93 (soil, Montgomery 1993) 
3.70 (soil, Senseman et al. 1997) 
3.14 (soil, estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: slowly decomposed by light (Hartley & Kidd 1987; Tomlin 1994). 
Oxidation: 
Hydrolysis: t. < 21 d (Montgomery 1993). 
Biodegradation: observed t. = 33 d, 45 d, 52 d and 67 d in flooded and nonflooded conditions in nonsterile and 
sterile soils, respectively, in the study of degradation of pendimethalin under the influence of soil moisture 
and microbial activity in a sandy loam soil, in both nonsterile nonflooded and flooded soil, degradation 
followed first-order kinetics. (Kulshrestha & Singh 1992; quoted, Montgomery 1993). 
Biotransformation: Degradation by abiotic reductive transformations: 
k = 1.25 M–1 s–1 in H2S with (mecapto)juglone (hydroquinone moiety, an abiotic reductant found in natural 
systems) solution at pH 6.65 (Wang & Arnold 2003) 
Aqueous solutions with surface-bound Fe(II) species and their first-order rate constants as: 
k = 0.50 . 10–3 h–1 at pH 6.5, k = 0.27 . 10–2 h–1 at pH 7.0, k = 0.093 h–1 at pH 7.4, and k = 0.81 h–1 at pH 
7.8 for aqueous ferrous ion system; 
k = 0.216 h–1 at pH 6.5, k = 0.274 h–1 at pH 6.7, k = 0.918 h–1 at pH 7.0, and k = 2.10 h–1 at pH 7.3 for 
Fe(II)/goethite system; 
k = 3.81 . 10–3 h–1 at pH 6.5, k = 2.66 . 10–3 h–1 at pH 7.0, k = 1.13 . 10–2 h–1 at pH 7.4 and k = 1.74 . 10–2 
h–1 at pH 7.8 for Fe(II)/clay system, all with total dissolved Fe(II) = 1 mM (Wang & Arnold 2003) 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. < 21 d in water (Tomlin 1994). 
Ground water: reported t. = 30–90 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 98 and 409 d at 30 and 10°C in a sandy loam soil with 75% moisture (Walker & Bond 1977) 
t. = 4 d on Bosket silt loam, t. = 6 d on Sharkey clay for the first 3 to 5 days when sprayed onto soil 
surface, rate of loss much slower for the remainder of the 7- or 12-d sampling period with t. = 18 d on 
Bosket silt loam, t. = 27 d on Sharkey clay (Savage & Jordon 1980) 
t. = 58–63 d in IARI sandy loam soil under Indian tropical climate (Kulshrestha & Yaduraju 1987) 
t. = 30–90 d or persistence (Bottoni & Funari 1992) 
t. = 66.9 d in sterile, t. = 52.2 d in nonsterile non-flooded sandy loam soil; t. = 44.9 d in sterile and 33.4 
d in nonsterile flooded sandy loam soil in the study of degradation under the influence of soil moisture 
and microbial activity (Kulshrestha & Singh 1992; quoted, Montgomery 1993) 
reported field t. = 8–480 d, recommended t. = 90 d (Wauchope et al 1992; Hornsby et al. 1996); 
soil t. = 90 d (Senseman et al. 1997). 
Biota: t. = 3–4 months (quoted, Hartley & Kidd 1987; Tomlin 1994) 
© 2006 by Taylor & Francis Group, LLC

3622 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.62 Picloram 
Common Name: Picloram 
Synonym: Amdon, ATCP, Borolin, Grazon, K-Pin, Tordon 
Chemical Name: 4-amino-3,5,6-trichloropicolinic acid; 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid 
Uses: systemic herbicide to control most broadleaf weeds on grassland and noncropland. 
CAS Registry No: 1918-02-1 
Molecular Formula: C6H3Cl3N2O2 
Molecular Weight: 241.459 
Melting Point (°C): 
218.5 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
204.2 (calculated-Le Bas method at normal boiling point, Suntio et al. 1988) 
Dissociation Constant pKa: 
3.43, 3.42, 3.39, 3.36 (10, 20, 30. 40°C, Cheung & Biggar 1974) 
1.90 (Weber et al. 1980; Willis & McDowell 1982) 
3.60 (Windholz 1983; quoted, Howard 1991; Yao & Haag 1991; Haag & Yao 1992; Montgomery 1993) 
2.3 (22°C, Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
1.94 (Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0126 (mp at 218.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional 
data at other temperatures designated * are compiled at the end of this section): 
430 (Bailey & White 1965; Freed 1966; Khan 1980; Weber et al. 1980; Ashton & Crafts 1981; Spencer 
1982) 
546* (20°C, shake flask-IR, measured range 10–40°C, pH 2.8, distilled water, Cheung & Biggar 1974) 
73.65* (20°C, shake flask-IR, measured range 10–40°C at pH 0.2, Cheung & Biggar 1974) 
62.7* (20°C, shake flask-IR, measured range 10v40°C at pH 1.1, Cheung & Biggar 1974) 
137* (20°C, shake flask-IR, measured range 10–40°C at pH 2.0, Cheung & Biggar 1974) 
19560* (20°C, shake flask-IR, measured range 10–40°C at pH 4.2, Cheung & Biggar 1974) 
74593* (20°C, shake flask-IR, measured range 10–40°C at pH 4.7, Cheung & Biggar 1974) 
430 (Martin & Worthing 1977, Worthing & Hance 1991; quoted, Kenaga 1980; Kenaga & Goring 1980; 
Isensee 1991; Howard 1991) 
430 (Hartley & Graham-Bryce 1980; Taylor & Glotfelty 1988) 
430 (Hartley & Kidd 1987; Herbicide Handbook 1989; Tomlin 1994; Milne 1995) 
400–430 (Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
7.30 . 10–7 (20°C, Hartley & Graham-Bryce 1980) 
8.20 . 10–5 (35°C, Khan 1980; Ashton & Crafts 1981; Hartley & Kidd 1987; Herbicide Handbook 1989) 
8.26 . 10–5 (20–25°C, Weber et al. 1980; Willis & McDowell 1982) 
9.70 . 10–9 (Dobbs & Cull 1982; quoted, Howard 1991) 
7.30 . 10–6 (20°C, quoted from Hartlet & Graham-Bryce 1980, Dobbs et al. 1984) 
6.00 . 10–5 (20°C, selected, Suntio et al. 1988) 
1.40 . 10–4 (45°C, Herbicide Handbook 1989) 
N 
OH 
O
Cl 
NH2 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3623 
4.50 . 10–8 (quoted, Nash 1989) 
7.40 . 10–7 (20°C, selected, Taylor & Spencer 1990) 
8.20 . 10–5 (35°C, Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 
3.40 . 10–5 (20°C, calculated-P/C, Suntio et al. 1988; quoted, Mabury & Crosby 1996) 
4.20 . 10–7 (calculated-P/C, Taylor & Glotfelty 1988) 
2.50 . 10–5 (calculated-P/C, Nash 1989) 
4.10 . 10–6 (calculated-P/C, Howard 1991) 
3.40 . 10–5 (20–35°C, calculated-P/C, Montgomery 1993) 
3.17 . 10–5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
0.30 (Kenaga 1975) 
0.63 (selected, Dao et al. 1983) 
0.30 (Hansch & Leo 1985; Hansch et al. 1995;) 
–3.47 (selected, Gerstl & Helling 1987) 
1.166 (calculated as per Broto et al. 1984, Karcher & Devillers 1990) 
0.26, 0.30 (quoted, Sangster 1993) 
1.87 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
–1.70 (fish in static water, quoted from Dow Chemical data, Kenaga & Goring 1980) 
1.30 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
–0.222 (calculated-KOC, Kenaga 1980) 
0.0 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1991) 
1.49 (fish in flowing water, Garten & Trabalka 1983; quoted, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
1.23 (soil, Hamaker & Thompson 1972) 
1.10 (average in soil, Hamaker & Thompson 1972) 
1.10 (average in soil, Reinhold et al. 1979) 
1.23 (Kenaga & Goring 1980; quoted, Bahnick & Doucette 1988) 
2.20 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
1.41 (av. of 26 soils, Rao & Davidson 1980) 
1.40 (soil, Rao & Davidson 1982) 
1.31, 1.05, 1.34, 1.0, 1.26. 1.10, 1.05 (Catlin soil, Commerce soil, Fargo soil, Holdredge soil, Norfolk soil, 
Kawkawlin soil, Walla-Walla soil, McCall & Agin 1985; quoted, Brusseau & Rao 1989) 
2.11 (calculated-MCI ., Gerstl & Helling 1987) 
1.68 (screening model calculations, Jury et al. 1987b) 
1.47 (calculated-MCI ., Bahnick & Doucette 1988) 
1.88 (Nash 1989) 
1.23 (reported as log KOM, Magee 1991) 
1.20 (organic carbon, Wauchope et al. 1991) 
1.11, 1.41, 1.68 (soil, quoted values, Bottoni & Funari 1992) 
1.41 (Montgomery 1993) 
1.30 (soil, calculated-QSAR MCI 1., Sabljic et al. 1995) 
1.55, 1.39, 2.38 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, and pH 2.0–10.5, average, 
Delle Site 2001) 
3.07, 2.96, 3.30 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, and pH . 2.0 undissociated, 
average, Delle Site 2001) 
1.80, 1.76 (soils: organic carbon OC . 0.1%, OC . 0.5%, pH 4.2–5.9, average, Delle Site 2001) 
1.12, 2.02, 1.93 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, pH . 6.0, dissociated, average, 
Delle Site 2001) 
© 2006 by Taylor & Francis Group, LLC

3624 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 200 h for 40% of 4,840 µg/mL to degrade in dilute NaOH solution under sunlight (Hall et 1968; 
quoted, Cessna & Muir 1991); 
t. = 2.3 d to 9.58 d direct photolysis by sunlight under various conditions, at depths of 2.54 cm-3.65 m at 
various times of the year; one result at 3.65 m during Sept.-Oct. gave t. = 41.3 d; distilled water and 
canal water gave essentially the same results in one set of experiments (Hedlund & Youngson 1972; 
quoted, Cessna & Muir 1991; Howard 1991); 
t. = 72 h for 99% of 548 µg mL–1 to degrade in Na salt solution under 300–380 nm light (Mosier & Guenzi 
1973; quoted, Cessna & Muir 1991); 
t. = 0.5 h for 38% of 265 µg mL–1 to degrade in distilled water under 254 nm light (Glass 1975; quoted, 
Cessna & Muir 1991); 
t. = 2.2 d for < 2.4 µg mL–1 L to degrade in distilled water under sunlight (Skurlatov et al. 1983; quoted, 
Cessna & Muir 1991); 
t. = 16 h in surface water estimated from direct midday sunlight photolysis in mid-summer at 40°N (Zepp 
1991). 
Oxidation: 
photooxidation: t. = 12.21 d in air, based on estimated rate constant for the reaction with photochemically 
produced hydroxyl radical in the atmosphere (GEMS 1986; quoted, Howard 1991) 
k = 5.9 . 109 M–1 s–1 for the reaction (Fenton with reference to acetophenone) with hydroxyl radical in 
aqueous solutions at pH 2.1–3.7 and at 24 ± 1°C (Buxton et al. 1988; quoted, Haag & Yao 1992) 
k(aq.) = (50–150) M–1 s–1 for direct reaction with ozone in water at pH 1.5–4.9 and 21 ± 1°C, with t. = 4.0 
min at pH 7 (Yao & Haag 1991). 
k(aq.) = (3.4 ± 0.3) . 109 M–1 s–1 for the reaction (Fenton with reference to acetophenone) with hydroxyl 
radicals in aqueous solutions at pH 2.1–3.7 and at 24 ± 1°C (Haag & Yao 1992) 
k(aq.) = 1.3 . 109 M–1 s–1 for reaction with hydroxyl radical, in irradiated field water both in the laboratory 
and sunlit rice paddies (Mabury & Crosby 1996). 
Hydrolysis: 
Biodegradation: t. = 128–144 h in mixture of 5 g soil and 1–4 mL water, t. = 90–1000 h in mixture of 1 mL 
water with 0.25–10 g soil, (Hance 1969; quoted, Howard 1991); 
t. > 15 months for 0.07, 0.72 and 10 µg mL–1 to biodegrade in groundwater (Weidner 1974; quoted, Muir 
1991); 
k = 0.0073 d–1 by soil incubation die-away test studies (Rao & Davidson 1980; quoted, Scow 1982); 
biochemical t. = 100 d from screening model calculations (Jury et al. 1987b); 
t. = 30–300 d, degraded slowly by soil microorganisms (Tomlin 1994). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 12.21 d, based on estimated rate constant for the vapor-phase reaction with photochemically produced 
hydroxyl radicals in the atmosphere (GEMS 1986; quoted, Howard 1991). 
Surface water: t. = 2.6 d decomposed by UV irradiation (Tomlin 1994); 
measured rate constant k = (50 - 150) M–1 s–1 for direct reaction with ozone in water at pH 1.5–4.9 and 
21°C, with t. = 4.0 min at pH 7 (Yao & Haag 1991). 
Ground water: t. > 15 months for 0.07, 0.72 and 10 µg/mL to biodegrade in ground water (Weidner 1974; 
quoted, Muir 1991); 
measured rate constant k . 0.005 M–1 s–1 for direct reaction with ozone in water at pH 2 and 21°C, with 
t. . 80 d at pH 7 (Yao & Haag 1991) 
reported t. = 30–330, 138, 180 and 206 d (Bottoni & Funari 1992). 
Sediment: 
Soil: estimated persistence of 18 months (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury 
et al. 1987b); 
persistent in soils with t. > 5 yr (Alexander 1973; quoted, Howard 1991); 
estimated first-order t. = 95 d in soil from biodegradation rate constant k = 0.0073 d–1 by soil incubation 
die-away test studies (Rao & Davidson 1980; quoted, Scow 1982); 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3625 
persistent in soil with t. > 100 d (Willis & McDowell 1982); 
t. = 100 d from screening model calculations (Jury et al. 1987b); 
selected t. = 90 d (Wauchope et al. 1991; quoted, Dowd et al. 1993); 
reported t. = 30–330 d, 18 d, 180 d and 206 d (Bottoni & Funari 1992); 
t. = 3–330 d (Tomlin 1994). 
Biota: biochemical t. = 100 d from screening model calculations (Jury et al. 1987b); 
average t. = 60 d in the forest (USDA 1989; quoted, Neary et al. 1993). 
TABLE 17.1.1.62.1 
Reported aqueous solubilities of picloram at various temperatures 
Cheung & Biggar 1974 
shake flask-IR spec. 
t/°C S/g·m–3 S/g·m–3 S/g·m–3 S/g·m–3 S/g·m–3 S/g·m–3 
pH 0.20 pH 1.10 pH 2.0 pH 2.8 pH 4.2 pH 4.7 
10 43.95 39.12 89.11 475 22240 84446 
20 73.65 62.78 136.92 545.74 19560 74953 
30 119.5 108.9 205.3 683.4 21395 82248 
40 214.9 199 316.3 704.5 21371 78240 
.Hsol/(kJ mol–1) 38.49 38.91 31.38 12.97 0 0 
© 2006 by Taylor & Francis Group, LLC

3626 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.63 Profluralin 
Common Name: Profluralin 
Synonym: CGA 10832, Pregard, Tolban 
Chemical Name: N-(cyclopropylmethyl)-2,6-dinitro-N-propyl-4-trifluoromethylaniline; N-(cyclopropylmethyl)- 
2,6-dinitro-N-propyl-4-(trifluoromethyl) benzenamine 
Uses: herbicide for pre-planting by soil incorporation to control annual and perennial broadleaf and grass weeds in 
cotton, soybeans, brassicas, capsicums, tomatoes and other crops. 
CAS Registry No: 26399-36-0 
Molecular Formula: C14H16F3N3O4 
Molecular Weight: 347.290 
Melting Point (°C): 
34 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.45 (25°C, Ashton & Crafts 1981) 
1.38 (Hartley & Kidd 1987; Worthing & Hance 1991) 
Molar Volume (cm3/mol): 
304.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.816 (mp at 34°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.10 (20°C, Weber 1972) 
0.10 (Spencer 1973, 1982; Wauchope 1978; Kenaga 1980) 
0.10 (27°C, Ashton & Crafts 1973, 1981) 
0.10 (shake flask-HPLC, Ellgehausen et al. 1981) 
0.10 (20°C, Hartley & Kidd 1987; Milne 1995) 
0.10 (20°C, Worthing & Walker 1987, Worthing & Hance 1991) 
0.10 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0092 (20°C, Weber 1972; Worthing & Walker 1987) 
0.0092 (20°C, Ashton & Crafts 1973, 1981) 
0.0084 (20°C, Hartley & Kidd 1987) 
0.0084 (20°C, Worthing & Hance 1991) 
0.0084 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
39.07 (20°C, calculated-P/C, Suntio et al. 1988) 
31.91 (20°C, calculated-P/C, Muir 1991) 
Octanol/Water Partition Coefficient, log KOW: 
5.16 (selected, Dao et al. 1983) 
6.34 (shake flask-HPLC/UV, Ellgehausen et al. 1981) 
6.34 (recommended, Sangster 1993) 
NO2 
F F 
F 
O2N 
N 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3627 
4.46 (calculated-fragment const., Pinsuwan et al. 1995) 
6.34 (recommended, Hansch et al. 1995) 
5.08 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
3.35 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
2.83 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.93 (soil, exptl., Kenaga 1980) 
4.19 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
3.83 (estimated as log KOM, Magee 1991) 
3.93 (soil, quoted exptl., Meylan et al. 1992) 
4.26 (soil, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
4.00 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
4.16 (selected, Lohninger 1994) 
4.01 (soil, calculated-QSAR MCI 1., Sabljic et al. 1995) 
3.87 (soil, estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. ~ 1.2 d from 1 m depth of water at 20°C (Muir 1991). 
Photolysis: 
Oxidation: 
Hydrolysis: 
Biodegradation: t. = 12 d for 0.5 µg mL–1 to biodegrade in flooded soils at 20–42°C (Savage 1978; quoted, 
Muir 1991); 
Degradation t. < 1 month in three soils, Goldsborol loamy sand, Cecil loamy sand Drummer clay loam 
treated with 1 ppm profluralin) for 4 month under aerobic conditions, no degradation in sterile controls. 
(shake flask-TLC, Camper et al. 1980) 
t. < 1 month for 1 µg/mL to biodegrade in flooded soils at 25°C (derived from results of Camper et al. 
1980, Muir 1991); 
biodegradation t. < 20 d in water and sediment with flooded soils and terrestrial-aquatic model ecosystems 
(Miur 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: biodegradation t. < 20 d in water and sediment with flooded soils and terrestrial-aquatic model 
ecosystems (Muir 1991). 
Ground water: 
Sediment: biodegradation t. < 20 d in water and sediment with flooded soils and terrestrial-aquatic model 
ecosystems (Muir 1991). 
Soil: t. = 12 d for 0.5 µg mL–1 to biodegrade in flooded soils at 20–42°C (Savage 1978, Muir 1991) 
persistence of 12 months in soil (Wauchope 1978); 
aerobic and anaerobic degradation t. < 1 month in 3 flooded soils at 25°C (Camper et al. 1980); 
field studies, t. = 10.9 wk - 1978 first study; t. = 10.1 wk -1978 second study; t. = 11.5 wk -1979, in a 
Crowley silt loam at Stuttgart, Arkansas (Brewer et al. 1982) 
laboratory studies: t. = 19.9 wk at 4°C, t. = 6.7 wk at 25°C for soil of field capacity moisture (27% w/w 
for Crowley silt loam), t. = 20.4 wk at 4°C, t. = 4.8 wk at 25°C for flooded soils, Crowley silt loam; 
and t. = 25.8 wk at 4°C, t. = 8.6 wk at 25°C for soil of field capacity moisture (34% w/w for Sharkey 
silty clay), t. = 21.3 wk at 4°C and t. = 6.2 wk at 25°C for flooded soils, Sharkey silty clay (Brewer et 
al. 1982); 
selected field t. = 110 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3628 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.64 Prometon 
Common Name: Prometon 
Synonym: G 31435, Gesafram, Gesagram, Methoxypropazine, Ontracic 800, Ontrack, Pramitol, Prometone 
Chemical Name: 6-methoxy-N,N.-bis(methylethyl)-1,3,5-triazine-2,4-diamine; 2,4-bis(isopropylamino)-6-methoxy- 
1,3,5-triazine 
Uses: nonselective pre-emergence and post-emergence herbicide to control most annual and broadleaf weeds, grasses, 
and brush weeds on noncropland. 
CAS Registry No: 1610-18-0 
Molecular Formula: C10H19N5O 
Molecular Weight: 225.291 
Melting Point (°C): 
91.5 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.088 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993) 
Molar Volume (cm3/mol): 
280.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
4.28 (pKa, Weber 1970; quoted, Bintein & Devillers 1994) 
4.30 (pKa, 21°C, Worthing & Hance 1991; Montgomery 1993) 
9.73 (pKb, Wauchope et al. 1992; Hornsby et al. 1996) 
9.7 (21°C, pKb, Tomlin 1994) 
Enthalpy of Vaporization, .HV (kJ/mol): 
90.77 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
22.175 (DSC method, Plato & Glasgow 1969) 
21.6 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.223 (mp at 91.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
750 (20°C, Bailey & White 1965; Ashton & Crafts 1981; Herbicide Handbook 1989) 
1000, 678, 669 (26°C, pH 3.0, 7.0, 10.0, shake flask-UV, Ward & Weber 1968) 
750 (Martin & Worthing 1977; Herbicide Handbook 1978) 
677 (Weber et al. 1980) 
620 (20°C, Spencer 1982) 
750 (20°C, Verschueren 1983) 
750 (20°C, Hartley & Kidd 1987; Montgomery 1993) 
620 (20°C, Worthing & Walker 1987, 1991; Tomlin 1994) 
720 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations.): 
3.07 . 10–4 (20°C, extrapolated-Antoine eq. from gas saturation-GC measurements, measured range 50–130°C, 
Friedrich & Stammbach 1964) (See figure at the end of this section.) 
log (P/mmHg) = 11.911 – 4933/(T/K), temp range 50–130°C (gas saturation-GC, data presented in Antoine eq., 
Friedrich & Stammbach 1964) 
N 
N 
N 
HN 
NH 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3629 
0.00030 (20°C, Khan 1980) 
0.00031 (20°C, Ashton & Crafts 1981; Worthing & Hance 1991) 
0.00083 (Jury et al. 1984; selected, Spencer et al. 1988; Spencer & Cliath 1990; Taylor & Spencer 1990) 
0.00031 (20°C, Hartley & Kidd 1987) 
0.00031, 0.00105 (20°C, 30°C, Herbicide Handbook 1989) 
1.0 . 10–3, 3.30 . 10–2, 0.65, 8.60, 82 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 16.525 – 5817.4/(T/K); measured range 32.1–89.3°C (gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.617 – 4741.7/(T/K); measured range 92.3–140°C (gas saturation-GC, Rordorf 1989) 
0.00103 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.00031 (20°C, Montgomery 1993) 
0.000306 (20°C, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
2.50 . 10–4 (calculated-P/C, Jury et al. 1984; Spencer et al. 1988; Spencer & Cliath 1990) 
9.02 . 10–5 (20°C, calculated-P/C, Montgomery 1993) 
9.01 . 10–5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.94 (selected, Dao et al. 1983) 
1.94 (Gerstl & Helling 1987) 
2.99 (RP-HPLC-RT correlation, Finizio et al. 1991; quoted, Sangster 1993) 
2.85 (selected, Magee 1991) 
2.55 (shake flask-UV, Liu & Qian 1995) 
2.69, 2.99 (Montgomery 1993) 
2.99 (recommended, Hansch et al. 1995) 
2.82 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.18 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
1.28 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.54 (soil, Hamaker & Thompson 1972; Kenaga 1980; Kenaga & Goring 1980) 
2.04 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.61 (Jury et al. 1984; quoted, Spencer & Cliath 1990) 
2.40 (calculated-MCI ., Gerstl & Helling) 
2.48 (Spencer et al. 1988) 
2.35 (estimated as log KOM, Magee 1991) 
2.20 (soil, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
2.18 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.92–2.24 (Montgomery 1993) 
2.77 (selected, Lohninger 1994) 
2.39 (calculated-KOW, Liu & Qian 1995) 
2.50 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.60; 2.70, 2.68 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
2.47, 2.50 (soils: organic carbon OC . 0.1%, OC . 0.5%, pH 4.3–7.1, average, Delle Site 2001) 
2.81, 2.65, 2.53 (soils with organic carbon OC . 0.5% at: pH 4.3–4.9, pH 5.0–5.9, pH- 6.0, average, Delle Site 
2001) 
Environmental Fate Rate Constants, or Half-Lives, t.: 
Volatilization: estimated t. ~ 100 d (Spencer & Cliath 1990). 
Photolysis: t. = 2.25 h for 1% of 100 µg mL–1 to degrade in distilled water under 300 nm light (Tanaka et al. 
1981; quoted, Cessna & Muir 1991). 
Oxidation: 
© 2006 by Taylor & Francis Group, LLC

3630 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: selected field t. = 500 d (Wauchope et al. 1992; Hornsby et al. 1996). 
FIGURE 17.1.1.64.1 Logarithm of vapor pressure versus reciprocal temperature for prometon. 
Prometon: vapor pressure vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Friedrich & Stammbach 1964 (50 to 130 °C) 
Friedrich & Stammbach 1964 (extrapolated) 
m.p. = 91.5 °C 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3631 
17.1.1.65 Prometryn 
Common Name: Prometryn 
Synonym: Caparol, Cotton-Pro, Gesagard, G-34161, Mercasin, Mercazin, Polisin, Primatol, Prometrex, Prometrin, 
Selectin, Sesagard, Uvon 
Chemical Name: N,N.-bis(1-methylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine; 2,4-bis(isopropylamino)-6-(methylthio)-
1,3,5-triazine 
Uses: selective herbicide to control many annual grass and broadleaf weeds in celery, cotton and peas. 
CAS Registry No: 7287-19-6 
Molecular Formula: C10H19N5S 
Molecular Weight: 241.357 
Melting Point (°C): 
119 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.157 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Milne 1995) 
Molar Volume (cm3/mol): 
299.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
4.05 (pKa, Weber 1970; Pacakova et al. 1988; Somasundaram et al. 1991; Bintein & Devillers 1994) 
4.10 (pKa, 21°C, Weber et al. 1980; Willis & McDowell 1982; Worthing & Hance 1991) 
9.95 (pKb, Wauchope et al. 1992; Hornsby et al. 1996) 
4.05 (pKa, 21°C, Montgomery 1993) 
Enthalpy of Vaporization, .HV (kJ/mol): 
96.43 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
26.36 (DSC method, Plato & Glasgow 1969) 
25.4 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.120 (mp at 119°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
48 (20°C, Woodford & Evans 1963) 
48 (20°C, Bailey & White 1965; Ashton & Crafts 1973, 1981; Khan 1980) 
206, 40.3, 41.8 (26°C, shake flask-UV at pH 3.0, 7.0, 10.0, Ward & Weber 1968) 
48 (Martin & Worthing 1977; Herbicide Handbook 1978) 
40 (Weber et al. 1980) 
48 (20°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Montgomery 1993; Milne 1995) 
33 (20°C, Worthing & Walker 1987, Worthing & Hance 1991) 
33 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
33 (Tomlin 1994; selected, Lohninger 1994) 
241 (calculated-group contribution method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations.): 
1.33 . 10–4 (20°C, extrapolated-Antoine eq. from gas saturation-GC measurements, measured range 50–130°C, 
Friedrich & Stammbach 1964) (See figure at the end of this section.) 
log (P/mmHg) = 11.911 – 4933/(T/K), temp range 50–130°C (gas saturation-GC, data presented in Antoine eq., 
Friedrich & Stammbach 1964) 
N 
N 
N 
HN 
NH 
S 
© 2006 by Taylor & Francis Group, LLC

3632 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.00028 (from Friedrich & Stammbach 1964; Jury et al. 1983; 1984; Spencer & Cliath 1990) 
0.00013 (20°C, Ashton & Crafts 1973, 1981) 
0.00013 (20–25°C, Weber et al. 1980) 
0.00028 (quoted, Jury et al. 1984; Spencer & Cliath 1990) 
0.00013 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993) 
0.00010 (20°C, selected, Suntio et al. 1988) 
0.00013, 0.00053 (20, 30°C, Herbicide Handbook 1989) 
1.60 . 10–4, 6.70 . 10–3, 0.16, 2.50, 28.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 17.063 – 6215.6/(T/K); measured range 32.4–117°C (gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 14.013 – 5037.2/(T/K); measured range 129–140°C (gas saturation-GC, Rordorf 1989) 
0.00017 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.000169 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.00139 (calculated-P/C, Jury et al. 1984; quoted, Spencer & Cliath 1990) 
0.00139 (calculated-P/C, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
0.00050 (20°C, calculated-P/C, Suntio et al. 1988; quoted, Majewski & Capel 1995) 
0.00050 (20°C, calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
2.99 (selected, Dao et al. 1983) 
1.91 (RP-HPLC-k. correlation, Braumann et al. 1983) 
3.46 (selected, Yoshioka et al. 1986) 
3.51 (shake flask, Mitsutake et al. 1986) 
2.99 (Gerstl & Helling 1987) 
3.34 (RP-HPLC-RT correlation, Finizio et al. 1991) 
3.43 (selected, Magee 1991) 
3.34 (Worthing & Hance 1991; Milne 1995) 
3.34, 3.46 (Montgomery 1993) 
3.51 (recommended, Sangster 1993) 
2.93 (RP-HPLC-k. correlation, Liu & Qian 1995) 
3.51 (recommended, Hansch et al. 1995) 
3.35 (Pomona-database, Muller & Kordel 1996) 
3.25 (RP-HPLC-RT correlation, Finizio et al. 1997) 
2.99 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
1.85, 1.67 (calculated-S, KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.91 (soil, Hamaker & Thompson 1972; Kenaga 1980; Kenaga & Goring 1980) 
2.72 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.79 (Rao & Davidson 1980) 
3.17 (calculated-MCI ., Gerstl & Helling) 
2.78 (screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
2.75 (estimated as log KOM, Magee 1991) 
2.72–2.91, 2.79, 2.83 (soil, quoted values, Bottoni & Funari 1992) 
2.60 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.38 (soil, HPLC-screening method, mean value from different stationary and mobile phases, Kordel 
et al. 1993, 1995b) 
2.28–2.79 (Montgomery 1993) 
3.15 (estimated-chemical structure, Lohninger 1994) 
2.60 (soil, Tomlin 1994) 
2.63 (calculated-KOW, Liu & Qian 1995) 
2.85 (soil, calculated-QSAR MCI 1., Sabljic et al. 1995) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3633 
2.38; 2.84 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
3.54, 1.595, 1.968, 1.77, 2.67 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1998) 
3.24, 2.16, 2.86, 2.59, 2.53 (calculated-KOW; HPLC-screening method with different LC-columns, Szabo et al. 
1999) 
2.544, 2.635, 2.484, 1.816, 2.933 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
2.85, 2.89 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, Gramatica 
et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 60 d (Jury et al. 1984). 
Photolysis: 
Oxidation: 
Hydrolysis: t. = 22 d in 0.1 N hydrochloric acid solution, t. = 500 yr at pH 7 in distilled water and t. = 30 yr 
in 0.01 sodium hydroxide solution all at 25°C (Montgomery 1993). 
Biodegradation: t. = 60 d (Wauchope 1978); 
t. = 60 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Jury et al. 1987a,b; Jury & Ghodrati 1989); 
soil microbial degradation t. = 70 d (Tomlin 1994). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: completely decomposed when exposed to UV light for 3 h (Montgomery 1993). 
Ground water: reported half-lives or persistence, t. = 40–70, 60 and 94 d (Bottoni & Funari 1992) 
Sediment: 
Soil: estimated persistence of 3 months (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury 
et al. 1987a,b; Jury & Ghodrati 1989); 
t. ~ 6 months to biodegrade in flooded soils (Plimmer et al. 1970; quoted, Muir 1991); 
persistence of 2 months in soil (Wauchope 1978); 
reported t. = 40–70 d, 60 d and 94 d (Bottoni & Funari 1992); 
selected field t. = 60 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 70 d for microbial degradation in soil (Tomlin 1994). 
Biota: biochemical t. = 60 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989). 
FIGURE 17.1.1.65.1 Logarithm of vapor pressure versus reciprocal temperature for prometryn. 
Prometryn: vapor pressure vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Friedrich & Stammbach 1964 (50 to 130 °C) 
Friedrich & Stammbach 1964 (extrapolated) 
m.p. = 119 °C 
© 2006 by Taylor & Francis Group, LLC

3634 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.66 Pronamide 
Common Name: Pronamide 
Synonym: Kerb, Promamide, Propyzamide, RH-315 
Chemical Name: 3,5-dichloro-N-(1,1-dimethylpropynyl)benzamide 
Uses: herbicide. 
CAS Registry No: 23950-58-5 
Molecular Formula: C12H11Cl2NO 
Molecular Weight: 256.127 
Melting Point (°C): 
155 (Lide 2003) 
Boiling Point (°C): 321 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
270.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0530 (mp at 155°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
15 (Martin & Worthing 1977; Herbicide Handbook 1978, 1983; Worthing & Walker 1987) 
15 (15°C, Khan 1980) 
15 (Ashton & Crafts 1981) 
15 (24°C, Herbicide Handbook 1989) 
15 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
15 (Tomlin 1994; Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0113 (Khan 1980) 
0.0113 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
0.0536 (Dixon & Rissman 1985; quoted, Howard 1991) 
0.227 (Worthing & Walker 1987) 
0.0113 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.000058 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.912 (Dixon & Rissman 1985) 
0.193 (calculated-P/C as per Worthing & Walker 1987, Majewski & Capel 1995) 
0.188 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
3.26 (estimated, Lyman et al. 1982; quoted, Howard 1991) 
3.36 (selected, Magee 1991) 
3.26 (selected, Dao et al. 1983) 
2.95 (estimated-QSAR and SPARC, Kollig et al. 1993) 
3.09–3.28 (Tomlin 1994; Milne 1995) 
3.87 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Cl Cl 
O 
HN 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3635 
Bioconcentration Factor, log BCF: 
2.13 (calculated-S, Kenaga 1980) 
1.00 (calculated-KOC, Kenaga 1980) 
2.25 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1991) 
2.13 (estimated-S, Lyman et al. 1982; quoted, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
2.30 (soil, Leistra et al. 1974; Carlson et al.) 
2.30 (measured for single soil, Kenaga 1980) 
3.00 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.99 (soil, estimated-S, Lyman et al. 1982; quoted, Howard 1991) 
2.30; 2.42 (reported as log KOM, estimated as log KOM, Magee 1991) 
2.30; 3.20 (soil, quoted; calculated-MCI . and fragment contribution, Meylan et al. 1992) 
2.90 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.63 (estimated-QSAR and SPARC, Kollig 1993) 
2.54 (selected, Lohninger 1994) 
2.31 (soil, calculated-QSAR MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: based on a Henry’s law constant of 0.9118 Pa·m3/mol, t. ~ 6.6 d from a river 1-m deep flowing 
1 m/s with a wind velocity of 3 m/s (estimated, Lyman et al. 1982; quoted, Howard 1991). 
Photolysis: degraded photolytically on soil thin films, t. = 13–57 d in artificial sunlight (Tomlin 1994). 
Oxidation: photooxidation t. = 4.2 h in air, based on an estimated rate constant for the vapor-phase reaction 
with photochemically produced hydroxyl radicals in the atmosphere (Atkinson 1985; quoted, Howard 1991). 
Hydrolysis: neutral hydrolysis rate constant k < 1.5 . 10–5 h–1 with a calculated t. > 700 d in neutral solution 
and with faster hydrolysis rates in acidic and basic solutions to be expected (Ellington et al. 1987, 1988; 
quoted, Howard 1991). 
Biodegradation: depending on soil and climatic conditions, the degradation t. = 10 to 112 d, but a t. = 40 d 
may be more common under field conditions (Walker 1976,78; Zandvoort et al. 1979; quoted, Howard 1991). 
Biotransformation: second-order rate constant k = 5 . 10–14 L/organisms·h with an estimated t. ~ 580 d for 
microbial degradation in natural water (Steen & Collette 1989; quoted, Howard 1991). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 4.2 h, based on an estimated rate constant for the vapor-phase reaction with photochemically produced 
hydroxyl radicals in the atmosphere (Atkinson 1985; quoted, Howard 1991). 
Surface water: 
Ground water: 
Sediment: 
Soil: depending on soil and climatic conditions, the degradation t. = 10 to 112 d, but a t. = 40 d may be more 
common under field conditions (Walker 1976, 1978; Zandvoort et al. 1979; quoted, Howard 1991); 
selected field t. = 60 d (Wauchope et al. 1992; Hornsby et al. 1996); 
degraded photolytically on soil thin films, t. = 13–57 d in artificial sunlight (Tomlin 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3636 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.67 Propachlor 
Common Name: Propachlor 
Synonym: Albrass, Bexton, CIPA, CP 31393, Niticid, Propachlore, Prolex, Ramrod, Satecid 
Chemical Name: 2-chloro-N-(1-methylethyl)-N-phenylacetamide; 2-chloro-N-isopropyl-acetanilide 
Uses: selective pre-emergence herbicide to control most annual grasses and some broadleaf weeds in brassicas, corn, 
cotton, flax, leeks, maize, milo, onions, peas, roses, ornamental trees and shrubs, soybeans, and sugar cane. 
CAS Registry No: 1918-16-7 
Molecular Formula: C11H14ClNO 
Molecular Weight: 211.688 
Melting Point (°C): 
77 (Herbicide Handbook 1989; Worthing & Hance 1991; Tomlin 1994; Milne 1995; Lide 2003) 
Boiling Point (°C): 
110 (at 0.03 mmHg, Ashton & Crafts 1981; Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & 
Hance 1991; Montgomery 1993; Milne 1995) 
Density (g/cm3 at 20°C): 
1.13 (25°C, Ashton & Crafts 1981) 
1.242 (25°C, Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 
1995) 
1.134 (25°C, Herbicide Handbook 1989) 
Molar Volume (cm3/mol): 
231.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
27.614 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.309 (mp at 77°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
700 (Melnikov 1971; Khan 1980) 
614 (20°C, Weber 1972) 
693 (Spencer 1973, 1982) 
580 (20°C, Ashton & Crafts 1973) 
580 (Martin & Worthing 1977; Herbicide Handbook 1978) 
839 (generator column-HPLC-RI, Swann et al. 1983) 
2300 (HPLC-RT correlation, Swann et al. 1983) 
613 (Hartley & Kidd 1987; Worthing & Walker 1987, Herbicide Handbook 1989 Worthing & Hance 
1991; Tomlin 1994; Milne 1995) 
613 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
613–700 (Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.032 (20–25°C, Weber et al. 1980) 
0.0307 (24°C, Beestman & Demming 1974) 

0.0307 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
0.03 (Hartley & Kidd 1987) 
0.03 (20°C, selected, Suntio et al. 1988) 
0.0306 (Worthing & Hance 1991; Tomlin 1994) 
N 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3637 
0.0307 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.03 (Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.011 (20°C, calculated-P/C, Suntio et al. 1988) 
0.011 (20°C, calculated-P/C, Muir 1991) 
0.011 (calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
2.75 (Leo et al. 1971) 
1.61 (Rao & Davidson 1980) 
2.80 (selected, Gerstl & Helling 1987) 
2.18 (shake flask, Log P Database, Hansch & Leo 1987) 
2.18 (selected, Magee 1991) 
1.61 (Montgomery 1993) 
2.18 (recommended, Sangster 1993) 
1.62–2.30 (Tomlin 1994) 
2.18 (recommended, Hansch et al. 1995) 
2.36 (RP-HPLC-RT correlation, Finizio et al. 1997) 
2.88 ± 0.17, 2.86 ± 0.12 (isocratic RP-HPLC-k. correlation, gradient RP-HPLC-k. correlation, Paschke et al. 
2004) 
Bioconcentration Factor, log BCF: 
1.23 (calculated-S, Kenaga 1980) 
1.15 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.42 (soil, Beestman & Demming 1976; Kenaga 1980; Kenaga & Goring 1980) 
2.11 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.43 (calculated-MCI ., Gerstl & Helling 1987) 
2.62 (screening model calculations, Jury et al. 1987b) 
2.31 (estimated as log KOM, Magee 1991) 
2.45 (soil, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
1.90 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.07–2.11 (Montgomery 1993) 
2.62 (estimated-chemical structure, Lohninger 1994) 
2.42 (quoted or calculated-QSAR MCI 1., Sabljic et al. 1995) 
2.18 (soil, estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 671 d from 1 m depth of water at 20°C (Muir 1991). 
Photolysis: t. = 2.25 h in distilled water (Tanaka et al. 1981; quoted, Cessna & Muir 1991); 
1 ppb contaminated water in the presence of TiO2 and H2O2 completely photodegraded after 3 h by solar 
irradiation (Muszkat et al. 1992). 
Oxidation: 
Hydrolysis: 
Biodegradation: t. µ10–14 d for 0.001–1.0 µg/mL to biodegrade in sewage effluent lake water (Novick & 
Alexander 1985; quoted, Muir 1991); 
biochemical t. = 7 d from screening model calculations (Jury et al. 1987b). 
Biotransformation: second-order microbial rate constant k = 1.1 . 10–9 L·organisms–1 h–1 (Steen & Collette 1989). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. . 10–14 d for 0.001–1.0 µg/mL to biodegrade in sewage effluent lake water (Novick & 
Alexander 1985; quoted, Muir 1991). 
© 2006 by Taylor & Francis Group, LLC

3638 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Ground water: 
Sediment: 
Soil: persistence of 2 months (Wauchope 1978); 
t. = 7 d from screening model calculations Jury et al. 1987b); 
persists in soil for 28–42 d (Worthing & Hance 1991); 
selected field t. = 6.3 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: biochemical t. = 7 d from screening model calculations (Jury et al. 1987b). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3639 
17.1.1.68 Propanil 
Common Name: Propanils 
Synonym: Bay 30130, Chem rice, Crystal Propanil-4, DCPA, Dipram, DPA, DPA, Erban, Erbanil, Farmco propanil, 
FW-734, Grascide, Herbax technical, Prop-Job, Propanex, Propanid, Riselect, Rogue, Rosanil, S 10165, Stam F-34, 
Stampede, Stam Supernox, Strel, Supernox, Surcopur, Surpur, STAM, Synpran N, Vertac, Wham EZ 
Chemical Name: N-(3,4-dichlorophenyl)propionamide; N-(3,4-dichlorophenyl)propanamide 
Uses: selective emergence and post-emergence herbicide to control many grasses and broadleaf weeds in potatoes, rice 
and wheat. 
CAS Registry No: 709-98-8 
Molecular Formula: C9H9Cl2NO 
Molecular Weight: 218.079 
Melting Point (°C): 
92 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.25 (25°C, Ashton & Crafts 1981; Hartley & Kidd 1987; Herbicide Handbook 1989; Montgomery 1993; 
Milne 1995) 
1.41 (22°C, Tomlin 1994) 
Molar Volume (cm3/mol): 
220.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
95.1 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
20.08 (DSC method, Plato & Glasgow 1969) 
15.3 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.220 (mp at 92°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
225 (Woodford & Evans 1963; Khan 1980) 
500 (Bailey & White 1965; Ashton & Crafts 1973; Herbicide Handbook 1989) 
268 (Freed 1966) 
225 (Martin & Worthing 1977; Worthing & Walker 1987; Herbicide Handbook 1983) 
268–500 (Weber et al. 1980) 
130 (20°C, Spencer 1982) 
225 (Hartley & Kidd 1987; Milne 1995) 
130 (20°C, Worthing & Hance 1991) 
200 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
130, 225 (20°C, 25°C, Montgomery 1993) 
130 (Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.012 (60°C, Khan 1980) 
0.012 (60°C, Verschueren 1983) 
0.012 (60°C, Hartley & Kidd 1987) 
0.005 (20°C, selected, Suntio et al. 1988) 
2.50 . 10–4, 7.20 . 10–3, 0.130, 1.50, 13.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
Cl 
Cl 
HN 
O 
© 2006 by Taylor & Francis Group, LLC

3640 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (PS/Pa) = 15.201 – 5604.1/(T/K); measured range 36.4–92.6°C (gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.192 – 4863.1/(T/K); measured range 95.1–160°C (gas saturation-GC, Rordorf 1989) 
2.60 . 10–5 (20°C, Worthing & Hance 1991) 
0.00533 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.67 . 10–5 (20°C, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.0036 (20°C, calculated-P/C, Suntio et al. 1988) 
0.0036 (20°C, calculated-P/C, Montgomery 1993) 
0.00545 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.02 (Rao & Davidson 1980) 
2.80 (20 ± 2°C, shake flask-UV, Briggs 1981) 
3.12 (selected, Dao et al. 1983) 
3.07 (shake flask, Log P Database, Hansch & Leo 1987) 
2.99 (selected, Gerstl & Helling 1987) 
2.29 (Worthing & Hance 1991; Milne 1995) 
2.34 (quoted from Kenaga 1980, Bottoni & Funari 1992) 
2.73 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
2.03, 2.29 (Montgomery 1993) 
3.07 (recommended, Sangster 1993) 
2.80 (RP-HPLC-RT correlation, Saito et al. 1993) 
3.30 (Tomlin 199) 
3.07 (selected, Hansch et al. 1995) 
2.73 (RP-HPLC-RT correlation, Finizio et al. 1997) 
3.21 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
1.46 (calculated-S, Kenaga 1980) 
1.34 (calculated, Pait et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.34 (calculated-S, Kenaga 1980) 
2.23 (calculated-MCI ., Gerstl & Helling 1987) 
2.33 (selected, Trevisan et al. 1991) 
2.19 (Montgomery 1993) 
2.17 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.38–2.90 (Tomlin 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 34 d for 82% of 200 µg/mL to degrade in distilled water under sunlight (Moilanen & Crosby 
1972; quoted, Cessna & Grover 1991); 
t. = 2.25 h for 37–51% of 100 µg mL–1 to degrade in distilled water under > 300 nm light (Tanaka et al. 
1981; quoted, Cessna & Grover 1991); 
t. = 245 h for 14–81% of 15 µg mL–1 to degrade in distilled water under sunlight (Draper & Crosby 1984; 
quoted, Cessna & Grover 1991); 
photolysis t. = 12–13 h in water (Tomlin 1994). 
Oxidation: measured rate constant for reaction with hydroxyl radical, k(aq.) = 1.60 . 109 M–1 s–1 in irradiated 
field water both in the laboratory and sunlit rice paddies (Mabury & Crosby 1996). 
Hydrolysis: t. > 4 months for 4360 µg mL–1 to hydrolyze in phosphate buffers pH 5–9 at 20°C (El-dib & Aly 
1976; quoted, Muir 1991); 
hydrolysis t. >> 1 yr at pH 4, 7, 9 at 22°C (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3641 
Biodegradation: t. = 1–2 d for 30 µg mL–1 to biodegrade in flooded soil at 30°C (Kuwatsuka 1972; quoted, 
Muir 1991); 
t. . 10 d for 40 µg mL–1 to biodegrade in pond sediment (Stepp et al. 1985; quoted, Muir 1991). 
Biotransformation: second-order microbial degradation rate constant k = 5 . 10–10 L·organisms–1 h–1 (Steen & 
Collette 1989). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: hydrolysis t. >> 1 yr (pH 4, 7, 9) at 22°C and photolysis t. = 12–13 h in aqueous solution 
(Tomlin 1994). 
Groundwater: reported t. < 5 d (Bottoni & Funari 1992) 
Sediment: t. . 10 d for 40 µg mL–1 to biodegrade in pond sediment (Stepp et al. 1985; quoted, Muir 1991). 
Soil: t. = 1–2 d for 30 µg mL–1 to biodegrade in flooded soil at 30°C (Kuwatsuka 1972; quoted, Muir 1991); 
selected field t. = 1.0 d (Wauchope et al. 1992; Hornsby et al. 1996; quoted, Halfon et al. 1996); 
soil t. = 15 d (Pait et al. 1992); 
t. < 5 d (Bottoni & Funari 1992). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3642 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.69 Propazine 
Common Name: Propazine 
Synonym: G-30028, Geigy 30028, Gesamil, Maax, Milogard, Plantulin, Primatol P, Propasin, Prozinex 
Chemical Name: 6-chloro-N,N.-bis(1-methylethyl)-1,3,5-triazine-2,4-diamine; 2-chloro-4,6-bis(isopropylamino)-1,3,5- 
triazine 
Uses: selective pre-emergence herbicide to control annual grasses and broadleaf weeds in milo and sweet sorghum. 
CAS Registry No: 139-40-2 
Molecular Formula: C9H16ClN5 
Molecular Weight: 229.710 
Melting Point (°C): 
213 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.162 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
272.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
1.85 (pKa, Weber 1970; quoted, Bintein & Devillers 1994) 
1.80 (pKa, Weber et al. 1980; Willis & McDowell 1982) 
1.85 (pKa, Herbicide Handbook 1989) 
1.70 (pKa, 21°C, Worthing & Hance 1991) 
12.15 (pKb, Wauchope et al. 1992) 
1.85 (pKa, 22°C, Montgomery 1993) 
12.3 (pKb, 21°C, Tomlin 1994) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
41.84 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0143 (mp at 213°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
10 (Gysin 1962) 
8.6 (20–22°C, Bailey & White 1965; Spencer 1973; Quellette & King 1977) 
4.82, 4.60, 5.05 (26°C, shake flask-UV at pH 3.0, 7.0, 10.0, Ward & Weber 1968) 
8.60 (Martin & Worthing 1977) 
4.8–8.6 (Weber et al. 1980) 
5.0 (20°C, Spencer 1982) 
8.60 (20°C, Hartley & Kidd 1987; Herbicide Handbook 1989) 
5.0 (20°C, Worthing & Walker 1987, Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
8.60 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
8.50 (20°C, Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
3.87 . 10–6 (20°C, extrapolated-Antoine eq. from gas saturation-GC measurements, measured range 50–130°C, 
Friedrich & Stammbach 1964) (See figure at the end of this section.) 
log (P/mmHg) = 11.911 – 4933/(T/K), temp range 50–130°C (gas saturation-GC, data presented in graph and 
Antoine eq., Friedrich & Stammbach 1964) 
3.90 . 10–6 (20°C, Quellette & King 1977) 
N 
N 
N 
HN 
NH 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3643 
4.00 . 10–6 (20–25°C, Weber et al. 1980) 
3.90 . 10–6 (20°C, Ashton & Crafts 1981; Herbicide Handbook 1989) 
4.00 . 10–6 (20°C, Hartley & Kidd 1987) 
2.10 . 10–5 (30°C, Herbicide Handbook 1989) 
3.90 . 10–6 (20°C, Worthing & Hance 1991; Montgomery 1993) 
1.75 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.00 . 10–4 (20°C, selected, Suntio et al. 1988; quoted, Majewski & Capel 1995) 
1.00 . 10–3 (20°C, calculated-P/C, Montgomery 1993) 
1.04 . 10–3 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.89 (Kenaga & goring 1980; Yoshioka et al. 1986) 
2.94 (shake flask-GC or UV, Brown & Flagg 1981) 
2.59 (RP-HPLC-k. correlation, Braumann et al. 1983) 
2.93 (shake flask, Biagi et al. 1991) 
2.91 (RP-HPLC-RT correlation, Finizio et al. 1991) 
2.91, 2.94 (Montgomery 1993) 
2.77 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
2.93 (recommended, Sangster 1993; Hansch et al. 1995) 
2.89 (shake flask-UV, Liu & Qian 1995) 
3.13 (Pomona-database, Muller & Kordel 1996) 
2.77 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
2.26 (calculated-S, Kenaga 1980) 
0.903 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.20 (soil, Hamaker & Thompson 1972; Brown 1978; Kenaga 1980; Kenaga & Goring 1980; Sabljic 
1987) 
3.11 (soil, calculated-S per Kenaga & Goring 1980; Kenaga 1980) 
2.56 (Georgia’s Hickory Hill pond sediment, Brown & Flagg 1981) 
2.78 (calculated-MCI ., Gerstl & Helling 1987) 
2.34 (estimated as log KOM, Magee 1991) 
2.18 (soil, quoted, Bottoni & Funari 1992) 
2.19 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.94 (soil, HPLC-screening method, mean value from different stationary and mobile phases, Kordel 
et al. 1993, 1995b) 
1.69–2.56 (Montgomery 1993) 
2.44 (selected, Lohninger 1994) 
1.90, 2.0 (Tomlin 1994) 
2.57 (calculated-KOW, Liu & Qian 1995) 
2.40 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.94; 2.55 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
2.59, 1.93, 2.08, 1.95, 2.70 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-
HPLC/UV, Gawlik et al. 1998, 1999) 
2.18, 2.148, 2.10, 1.98, 2.58 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1999) 
2.818, 2.148, 2.100, 1.977, 2.579 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake 
flask/batch equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
2.40; 2.43, 2.84 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
2.15, 2.17 (soils: organic carbon OC . 0.1%, OC . 0.5%, pH 3.2–7.4, average, Delle Site 2001) 
© 2006 by Taylor & Francis Group, LLC

3644 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.29, 2.21, 2.03 (soil with organic carbon OC . 0.5% at: pH 4.3–5.0, pH 5.1–5.0, pH . 6.0, average, Delle Site 
2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 1 ppb contaminated water in presence of TiO2 and H2O2 completely photodegraded after 3.5 h by 
solar irradiation (Muszkat et al. 1992). 
Oxidation: 
Hydrolysis: calculated rate constant k = 9.70 . 10–6 s–1 with t. = 83 d at 20°C in a buffer at pH 5 (Burkhard & 
Guth 1981). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: reported half-lives or persistence, t. = 80–100 d (Bottoni & Funari 1992) 
Sediment: 
Soil: persistence of 18 months (Edwards 1973; quoted, Morrill et al. 1982); 
persistence of 12 months in soil (Wauchope 1978); 
t. = 62 d and 127 d in a Hatzenbuhl soil at pH 4.8 and Neuhofen soil at pH 6.5 respectively at 22°C under 
laboratory conditions (Burkhard & Guth 1981; quoted, Montgomery 1993); 
reported t. = 80–100 d (Bottoni & Funari 1992); 
selected field t. = 135 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: 
FIGURE 17.1.1.69.1 Logarithm of vapor pressure versus reciprocal temperature for propazine. 
Propazine: vapor pressure vs. 1/T 
-6.0 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP 
/ 
Friedrich & Stammbach 1964 (50 to 130 °C) 
Friedrich & Stammbach 1964 (extrapolated) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3645 
17.1.1.70 Propham 
Common Name: Propham 
Synonym: Agermin, Ban-Hoe, Beet-Kleen, Birgin, Chem-Hoe, Collavin, IFC, IFK, INPC, IPC 
Chemical Name: carbanilate acid isopropyl ester; isopropyl carbanilate; isopropyl-N-phenyl carbamate; 1-methylethyl 
phenylcarbamate 
Uses: pre-emergence and post-emergence herbicide to control annual grass weeds in peas, beans, sugar beet, lettuce, 
lucerne, clover, flax, sunflowers and lentils. 
CAS Registry No: 122-42-9 
Molecular Formula: C10H13NO2 
Molecular Weight: 179.2 16 
Melting Point (°C): 
90 (Lide 2003) 
Boiling Point (°C): 
> 150 (sublimes but decomposes, Montgomery 1993) 
Density (g/cm3 at 20°C): 
1.09 (Spencer 1982; Tomlin 1994; Hartley & Kidd 1987; Milne 1995) 
1.09 (30°C, Ashton & Crafts 1981; Herbicide Handbook 1989; Montgomery 1993) 
Molar Volume (cm3/mol): 
213.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.230 (mp at 90°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
100 (Freed 1953) 
250 (Nex & Sweezey 1954; Ashton & Crafts 1981) 
22.5–32 (Bailey & White 1965) 
250 (20°C, Spencer 1973, 1982) 
250 (Martin & Worthing 1977; Herbicide Handbook 1978, 1983, 1989; Hartley & Kidd 1987) 
250–254 (Weber et al. 1980) 
127 (selected, Gerstl & Helling 1987) 
32–250 (20–25°C, Worthing & Hance 1991; Montgomery 1993) 
250 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
250 (20°C, Tomlin 1994; Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
sublimes (rm. temp., Herbicide Handbook 1989) 
sublimes (rm. temp., Montgomery 1993; Tomlin 1994) 
Henry’s Law Constant (Pa m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
2.60 (20 ± 2°C, shake flask-UV, Briggs 1981) 
2.16 (selected, Dao et al. 1983; Gerstl & Helling 1987) 
2.27 (shake flask, Mitsutake et al. 1986) 
2.60 (recommended, Sangster 1993) 
HN
O 
O 
© 2006 by Taylor & Francis Group, LLC

3646 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioconcentration Factor, log BCF: 
1.43 (calculated-S, Kenaga 1980) 
0.301 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
1.71 (Hamaker & Thompson 1972; Kenaga 1980; Kenaga & Goring 1980) 
2.32 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
1.71 (20 ± 2°C, reported as log KOM, Briggs 1981) 
1.93 (calculated-MCI ., Gerstl & Helling 1987) 
2.30 (soil, 20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
1.71 (Montgomery 1993) 
2.30 (estimated-chemical structure, Lohninger 1994) 
Environmental Fate Rate Constants, or Half-Lives, t.: 
Volatilization: 
Photolysis: direct t. = 254 d in clear water body near the surface for a mid-summer day at latitude 40° (Wolfe 
et al. 1978) 
direct t. = 254 d in distilled water assuming for a mid-summer day at latitude 40°; t. = 2.25 h for 1% of 
100 µg/ml to degrade in distilled water under 300 nm light (Tanaka et al. 1981; quoted, Cessna & Muir 
1991). 
Oxidation: 
Hydrolysis: t. > 4 months for 3550 µg/mL to hydrolyze in phosphate buffer at pH 5–9 and 20°C (El-Dib & Aly 
1976; quoted, Muir 1991) 
k(alkaline) = 7.6 . 10–6 M–1 s–1 at 27°C, k = 5.6 . 10–5 M–1 s–1 at 50°C, k = 2.6 . 10–4 M–1 s–1 at 70°C; with 
t. > 1 . 104 d at pH 5, 7 and 9 (Wolfe et al. 1978) 
Biodegradation: t. = 190 d by 1 mg/L fungus Asperillus fumigaurs, t. = 3.2 d by bacteria (Wolfe et al. 1978) 
k = 1.5 . 10–4 L (mg M)–1 h–1 with t. = 190 d for 2–25 µg/mL fungus Aspergillus fumigatus; k = 9 . 10–2 
L (mg M)–1 h–1 with t. = 3.2 d for bacteria Pseudomonas striata to biodegrade in stream water at pH 7 
and 28°C (Muir 1991) 
t. . 30–40 d for 1–0.0004 µg/mL to biodegrade in filtered sewage water at 20–22°C and t. . 20 to 50 d 
at 29°C in filtered lake water (Wang et al. 1984; quoted, Muir 1991) 
t.(aerobic) > 4 months for 6–7 µg/mL to biodegrade in river water at 25°C (Stepp et al. 1985; quoted, Muir 
1991) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: hydrolysis t. > 1 . 104 d based on neutral and alkaline hydrolysis assuming pseudo-first order 
kinetics; direct photolysis t. = 254 d assuming a mid-summer day at altitude 40°, and biolysis t. = 190 d 
for 1 mg/L of fungus and t. = 3.2 d for bacteria at 28°C (Wolfe et al. 1978); 
t. . 30–40 d for 1–0.0004 µg/mL to biodegrade in filtered sewage water at 20–22°C and t. . 20 to 50 d 
at 29°C in filtered lake water (Wang et al. 1984; quoted, Muir 1991); 
aerobic t. > 4 months for 6–7 µg/mL to biodegrade in river water at 25°C (Stepp et al. 1985; quoted, Muir 
1991). 
Ground water: 
Sediment: 
Soil: t. ~ 15 d in soil and t. = 5 d at 16 and 29°C (Hartley & Kidd 1987; Herbicide Handbook 1989; quoted, 
Montgomery 1993; Tomlin 1994); 
selected field t. = 10 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3647 
17.1.1.71 Pyrazon 
Common Name: Pyrazon 
Synonym: chloridazon, chloridazone, Blurex, Burex, Dazon, Phenosane, Piramin, Pyramin 
Chemical Name: 5-amino-4-chloro-2-phenylpyridazin-3(2H)-one 
Uses: as pre- and post-emergence herbicide to control of annual broadleaf weeds in sugar-beet, fodder beet and beet 
root; and also used in combination with other herbicides, etc. 
CAS Registry No: 1698-60-8 
Molecular Formula: C10H8ClN3O 
Molecular Weight: 221.643 
Melting Point (°C): 
205 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.54 (Tomlin 1994) 
Molar Volume (cm3/mol): 
205.7 (calculated-Le Bas method at normal boiling point) 
143.9 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
26.59 (DSC method, Plato & Glasgow 1969) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0171 (mp at 205°C) 
0.013 (20°C, Suntio et al. 1988) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
400 (20°C, Ashton & Crafts 1973, 1981) 
300 (20°C, Khan 1980) 
400 (20°C, Spencer 1982) 
400 (20°C, Worthing & Walker 1987; Hartley & Kidd 1987; Milne 1995) 
360 (20°C, selected, Suntio et al. 1988) 
400 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
340 (20°C, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
9.86 (40°C, Ashton & Craft 1973; Spencer 1982) 
< 0.00001 (20°C, Worthing & Walker 1987; Hartley & Kidd 1987; Tomlin 1994) 
7.0 (20°C, estimated, Suntio et al. 1988) 
6.67 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
4.31 (20°C, calculated-P/C, Suntio et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
1.14 (22°C, shake flask-AS, Braumann & Grimme 1981; quoted, Sangster 1993) 
1.50 (selected, Gerstl & Helling 1987) 
1.12 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
1.19 (pH 7, Tomlin 1994) 
N 
N 
Cl 
H2N O 
© 2006 by Taylor & Francis Group, LLC

3648 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.20 (Milne 1995) 
1.14 (recommended, Hansch et al. 1995) 
1.12 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.32 (calculated-S per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
2.12, 2.18 (selected, calculated-MCI ., Gerstl & Helling 1987) 
2.74 (soil, calculated-MCI and fragments contribution method, Meylan et al. 1992) 
2.08 (soil, Wauchope et al. 1992; Hornsby et al. 1996) 
1.95–2.53 (soil, Tomlin 1994) 
Environmental Fate Rate Constants, or Half-Lives: 
Photolysis: t. = 150 h at pH 7 in simulated sunlight and t. = 47.7 h by 80000 lux, xenon lamp (Tomlin 1994). 
Half-Lives in the Environment: 
Soil: field t. = 21 d (Wauchope et al. 1992; Hornsby et al. 1996) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3649 
17.1.1.72 Simazine 
Common Name: Simazine 
Synonym: A 2079, Aktinit S, Amizine, Aquazine, Batazina, Bitemol, Cekusan, CAT, CET, DCT, Framed, G 27692, 
Gesapun, Gesaran, Gesatop, Herbazin, Herbex, Herboxy, Premazine, Primatol, Primcep, Princep, Printop, Radocon, 
Radokor, Simadex, Simanex, Sim-Trol, Tafazine, Weedex, Zeapur 
Chemical Name: 6-chloro-N,N.-diethyl-1,3,5-triazine-2,4-diamine; 2-chloro-4,6-bis(ethyl-amino)-1,3,5-triazine 
Uses: selective pre-emergence systemic herbicide to control many broadleaf weeds and annual grasses in deep-rooted 
fruit and vegetable crops. 
CAS Registry No: 122-34-9 
Molecular Formula: C7H12ClN5 
Molecular Weight: 201.657 
Melting Point (°C): 
226 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.302 (Hartley & Kidd 1987; Milne 1995) 
1.203 (Montgomery 1993) 
Molar Volume (cm3/mol): 
228.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
1.65 (pKa, Weber 1970; quoted, Bintein & Devillers 1994) 
1.60 (pKa, Weber et al. 1980; Willis & McDowell 1982) 
1.70 (pKa, 21°C, Worthing & Hance 1991; Montgomery 1993) 
2.00 (pKa, Yao & Haag 1991; Haag & Yao 1992) 
12.35 (pKb, Wauchope et al. 1992; Hornsby et al. 1996) 
12.3 (pKb, Tomlin 1994) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
43.932 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0107 (mp at 226°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
5.0 (Bailey & White 1965 Freed 1976; Wauchope 1978) 
5.8, 5.0, 5.0 (26°C, shake flask-UV at pH 3.0, 7.0, 10.0, Ward & Weber 1968) 
15.1 (26°C, Getzen & Ward 1971) 
5.0 (20°C, Weber 1972; Spencer 1973; Khan 1980) 
5.0 (20°C, Martin & Worthing 1977; Worthing & Walker 1987; Worthing & Hance 1991; Milne 1995) 
3.5 (Herbicide Handbook 1978, 1989) 
3.5 (20°C, Ashton & Crafts 1981; Hartley & Kidd 1987) 
5.0, 3.50, 7.4(20°C, quoted, exptl., calculated-Parachor & mp, Briggs 1981) 
6.2 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
3.5–5.0 (20°C), Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence): 
8.13 . 10–7 (20°C, extrapolated-Antoine eq. from gas saturation-GC measurements, measured range 50–130°C, 
Friedrich & Stammbach 1964) (See figure at the end of this section.) 
log (P/mmHg) = 11.911 – 4933/(T/K), temp range 50–130°C (gas saturation-GC, data presented in graph and 
Antoine eq., Friedrich & Stammbach 1964) 
N 
N 
N 
HN 
NH 
Cl 
© 2006 by Taylor & Francis Group, LLC

3650 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
8.10 . 10–7 (20°C, Weber 1972; Khan 1980; Ashton & Crafts 1981; Herbicide Handbook 1989) 
2.00 . 10–6 (gas saturation, Spencer & Cliath 1974) 
8.00 . 10–7 (20–25°C, Weber et al. 1980; Willis & McDowell 1982) 
8.10 . 10–7 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987; Worthing & Hance 1991; Montgomery 1993) 
8.50 . 10–6 (20°C, selected, Suntio et al. 1988) 
4.80 . 10–6 (30°C, Herbicide Handbook 1989) 
2.95 . 10–6 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.94 . 10–6 (OECD 104, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
8.40 . 10–5 (calculated-P/C, Jury et al. 1983, 1984, 1987a; Jury & Ghodrati 1989) 
3.40 . 10–4 (20°C, calculated-P/C, Suntio et al. 1988) 
8.40 . 10–5 (calculated-P/C, Taylor & Glotfelty 1988) 
3.30 . 10–5 (20°C, calculated-P/C, Muir 1991) 
3.40 . 10–4 (20°C, calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
2.19 (Kenaga & Goring 1980) 
1.94 (Rao & Davidson 1980) 
1.51 (shake flask-UV, Lord et al. 1980) 
1.51 (20 ± 2°C, shake flask-UV, Briggs 1981) 
2.16 (shake flask, Brown & Flagg 1981) 
1.96, 2.06 (RP-HPLC-k. correlation, McDuffie et al. 1981) 
2.27 (selected, Dao et al. 1983; Gerstl & Helling 1987) 
2.14 (shake flask, Mitsutake et al. 1986) 
1.50 (Nicholls 1988) 
2.18 (shake flask, Biagi et al. 1991) 
2.26, 2.20 (RP-HPLC-RT correlation, calculated, Finizio et al. 1991) 
1.96 (Worthing & Hance 1991; Milne 1995) 
2.00 (shake flask, pH 7, Baker et al. 1992) 
1.94–2.26 (Montgomery 1993) 
2.07 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
2.18 (recommended, Sangster 1993) 
2.10 (Tomlin 1994) 
2.18 (shake flask-UV, Liu & Qian 1995) 
2.18 (recommended, Hansch et al. 1995) 
2.51 (Pomona-database, Muller & Kordel 1996) 
2.07 (RP-HPLC-RT correlation, Finizio et al. 1997) 
1.83 (RP-HPLC-RT correlation, Nakamura et al. 2001) 
1.49 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
2.48 (calculated-S, Kenaga 1980) 
0.778 (calculated-KOC, Kenaga 1980) 
2.16 (earthworms, Lord et al. 1980) 
0.699 (calculated-KOW, Briggs 1981) 
Sorption Partition Coefficient, log KOC: 
2.13 (soil, Hamaker & Thompson 1972; Brown 1978; Kenaga 1980; Kenaga & Goring 1980) 
3.34 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.15 (av. soils/sediments, Rao & Davidson 1980) 
1.68 (20 ± 2°C, KOM multiplied by 1.724, Briggs 1981) 
2.33 (Georgia’s Hickory Hill pond sediment, Brown & Flagg 1981) 
3.66, 2.53, 1.77 (estimated-S, calculated-S and mp, estimated-KOW, Karickhoff 1981) 
2.14 (soil average, Jury et al. 1983) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3651 
2.20, 2.15 (selected, calculated-MCI ., Gerstl & Helling 1987) 
2.15 (screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
1.60–2.20 (Carsel 1989) 
1.92 (estimated as log KOM, Magee 1991) 
2.13–3.34, 2.15, 2.45, 2.70 (soil, quoted values, Bottoni & Funari 1992) 
2.11 (soil, 20–25°C, selected, Wauchope et al. 1991, Hornsby et al. 1996) 
3.02 (average of 12 soils, calculated-linearize Freundlich Isotherm, Sukop & Cogger 1992) 
2.14 (Montgomery 1993) 
1.78 (soil, HPLC-screening method, mean value from different stationary and mobile phases, Kordel 
et al. 1993, 1995b) 
2.37 (selected, Lohninger 1994) 
2.01–2.58 (Tomlin 1994) 
2.18 (calculated-KOW, Liu & Qian 1995) 
2.10 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.79; 2.17 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
3.07, 1.65, 1.68, 1.61, 2.48 (soil, first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1998, 1999) 
2.625, 1.90, 1.69, 1.66, 2.382 (soil, second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1999) 
2.625, 1.901, 1.689, 1.656, 2.382 (soil, second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake 
flask/batch equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
2.10; 2.10, 2.47 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
2.29, 2.29, 2.29 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, pH 3.2–8.0, average, Delle Site 2001) 
2.50, 2.34, 2.10 (soils with organic carbon OC . 0.5% at: pH 3.2–5.0, pH 5.1–5.9, pH . 6.0, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 276 d (Jury et al. 1983; quoted, Grover 1991); measured rate constant k = 600 d–1 and 
estimated rate constant k = 1000 d–1 (Glotfelty et al. 1989). 
Photolysis: 
Oxidation: 
k(aq.) = 5.9 . 109 M–1 s–1 for the reaction (photo-Fenton with reference to acetophenone) with hydroxyl 
radical in aqueous solutions at pH 3.5 and 24 ± 1°C (Buxton et al. 1988; quoted, Faust & Hoigne 1990; 
Haag & Yao 1992) 
k(aq.) = (4.8 ± 0.2) M–1 s–1 for direct reaction with ozone in water at pH 4.3 and 23°C, with t. = 1.9 h at 
pH 7 (Yao & Haag 1991). 
k(aq.) = (2.8 ± 0.2) . 109 M–1 s–1 for the reaction (photo-Fenton with reference to acetophenone) with 
hydroxyl radical in aqueous solutions at pH 3.5 and 24 ± 1°C (Haag & Yao 1992). 
Hydrolysis: calculated rate constant k = 8.32 . 10–6 s–1 with t. = 96 d at 20°C in a buffer at pH 5 (Burkhard & 
Guth 1981). 
Biodegradation: rate constant k = 0.014 d–1 by soil incubation die-away studies (Rao & Davidson 1980; quoted, 
Scow 1982); 
t. = 8–27 d for 3 µg mL–1 to biodegrade in pond sediment/water and t. > 32 d in pond water both at 25°C 
(Tucker & Boyd 1981; quoted, Muir 1991); 
t. = 75 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Rao & Davidson 1980; quoted, 
Jury et al. 1983, 1984, 1987a,b; Jury & Ghodrati 1989; Grover 1991); 
microbial degradation t. = 70–11 d in soil (Tomlin 1994). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. > 32 d for 3 µg mL–1 to biodegrade in pond water at 25°C (Tucker & Boyd 1981; quoted, 
Muir 1991); 
t. = 1–4 wk in estuarine systems (Jones et al. 1982; quoted, Meakins et al. 1994); 
© 2006 by Taylor & Francis Group, LLC

3652 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
t. ~ 30 d in ponds (Herbicide Handbook 1989); 
measured rate constant k = (4.8 ± 0.2) M–1 s–1 for direct reaction with ozone in water at pH 4.3 and 23°C, 
with t. = 1.9 h at pH 7 (Yao & Haag 1991). 
Ground water: reported half-lives or persistence, t. = 15–75, 46–174 and 56 d (Bottoni & Funari 1992) 
Sediment: t. = 8–27 d for 3 µg mL–1 to biodegrade in pond sediment/water at 25°C (Tucker & Boyd 1981; 
quoted, Muir 1991). 
Soil: estimated persistence of 12 months (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury 
et al. 1987a); 
persistence of 12 months (Wauchope 1978); 
estimated first-order t. = 49.5 d from biodegradation rate constant k = 0.014 d–1 by soil incubation die-away 
studies (Rao & Davidson 1980; quoted, Scow 1982); 
t. = 45 d in Hatzenbuhl soil at pH 4.8 and t. = 100 d in Neuhofen soil at pH 6.5 both at 22°C, respectively, 
under lab. conditions (Burkhard & Guth 1981; quoted, Montgomery 1993); 
t. = 1–6 months (Jones et al. 1982; quoted, Meakins et al. 1994); 
t. = 75 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989); 
moderately persistent in soils with t. = 20–100 d (Willis & McDowell 1982); 
degradation rate constant k = (1.51 ± 0.086) . 10–2 d–1 with t. = 45.9 d in control soil and k = (1.76 ± 0.177) 
. 10–2 d–1 with t. = 39.4 d in pretreated soil in the field; k = (0.943 ± 0.047) . 10–2 d–1 with t. = 73.5 d 
in control soil and k = (0.864 ± 0.048) . 10–2 d–1 with t. = 80.2 d in pretreated soil once only in the 
laboratory (Walker & Welch 1991); 
reported t. = 15–75 d, 46–174 d and 56 d; 29 d at 5°C and t. = 209 d at 30°C (Bottoni & Funari 1992); 
selected field t. = 60 d (Wauchope et al. 1991, 1992; quoted, Dowd et al. 1993; Richards & Baker 1993; 
quoted, Halfon et al. 1996; Hornsby et al. 1996); 
soil t. = 75 d (Pait et al. 1992); 
degradation by microorganism in biometer systems: t. = 58 d in silty sand standard laboratory conditions, 
t. = 87 d for corrected standard conditions and t. = 91 d in simulated outdoor conditions; t. = 51 d in 
silty loam standard laboratory conditions, t. = 77 d corrected standard conditions, t. = 63 d in simulated 
outdoor conditions at constant soil moisture and 20°C. Degradation by microorganism in outdoor experiments 
in small lysimeter systems: t. = 32 d outdoor fallow, t. = 35 d outdoor barley in silty sand, and 
t. = 49 d outdoor fallow, t. = 53 d outdoor barley in silty loam (Rudel et al. 1993) 
t. = 49–50 d in 0–40 cm soil cores taken from: cultivated field; from meadow t. = 32–39 d and from gravel 
track t. = 62–51 d (Hassink et al. 1994); 
degradation t. = 70–110 d (Tomlin 1994). 
Biota: biochemical t. = 75 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989). 
FIGURE 17.1.1.72.1 Logarithm of vapor pressure versus reciprocal temperature for simazine. 
Simazine: vapor pressure vs. 1/T 
-7.0 
-6.0 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Friedrich & Stammbach 1964 (50 to 130 °C) 
Friedrich & Stammbach 1964 (extrapolated) 
Spencer & Cliath 1974 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3653 
17.1.1.73 2,4,5-T 
Common Name: 2,4,5-T 
Synonym: Amine 2,4,5-T for rice, BCF-bushkiller, Brush rhap, Brush-Khap, Brushtox, Dacamine, Ded-Weed, Dinoxol, 
Envert-T, Estercide T-2 & T-245, Esterone 245, Fence rider, Forron, Fortex, Fruitone A, Gesatop, Inverton 245, 
Line rider, Phortox, Reddon, Reddox, Spontox, Super D Weedone, Tippon, Tormona, Transamine, Tributon, 
Trinoxol, Trioxone, Veon, Weddar, Weedone 
Chemical Name: 2,4,5-trichlorophenoxyacetic acid 
Uses: herbicide to control undesirable brush and woody plants; also used as plant hormone, defoliant. 
CAS Registry No: 93-76-5 
Molecular Formula: C8H5Cl3O3 
Molecular Weight: 255.483 
Melting Point (°C): 
153 (Lide 2003) 
Boiling Point (°C): 
> 200 (dec., Howard 1991) 
Density (g/cm3 at 20°C): 
1.80 (Ashton & Crafts 1981; Hartley & Kidd 1987; Montgomery 1993) 
1.80 (25°C, Que Hee et al. 1981) 
1.80 (Spencer 1982; Budavari 1989; Milne 1995) 
Molar Volume (cm3/mol): 
226.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
2.88 (potentiometric titration, Nelson & Faust 1969) 
2.85 (Cessna & Grover 1978; Somasundaram et al. 1991; Augustijn-Beckers et al. 1994) 
2.70 (Haag & Yao 1992) 
2.80–2.88 (Montgomery 1993) 
Enthalpy of Vaporization, .HV (kJ/mol): 
107.8 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
34.936 (DSC method, Plato & Glasgow 1969) 
34.2 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0555 (mp at 153°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
268 (shake flask-UV, Leopold et al. 1960) 
238 (20°C, Loos 1975) 
238 (Martin & Worthing 1977) 
238–280 (Weber et al. 1980) 
238 (30°C, Ashton & Crafts 1981; Budavari 1989) 
278 (Spencer 1982; Verschueren 1983) 
278 (20°C, Hartley & Kidd 1987) 
280 (selected, Gerstl & Helling 1987) 
150 (Worthing & Walker 1987, Worthing & Hance 1991) 
220 (20°C, Montgomery 1993) 
278 (20–25°C, selected, Augustijn-Beckers et al. 1994) 
238 (20°C, Milne 1995) 
Cl 
Cl Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

3654 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.0063 (effusion method, Hamaker & Kerlinger 1971) 
< 1.0 . 10–6 (20°C, Hartley & Kidd 1983) 
0.005 (20°C, selected, Suntio et al. 1988; Riederer 1990) 
< 1.0 . 10–5 (20°C, Hartley & Kidd 1983; 1987) 
2.30 . 10–6, 1.90 . 10–4, 8.50 . 10–3, 0.230, 4.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 19.238 – 7418.9/(T/K); measured range 80.4–145°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 15.058 – 5632.4/(T/K); measured range 80.4–145°C (liquid, gas saturation-GC, Rordorf 1989) 
7.00 . 10–7 (Worthing & Hance 1991) 
0.0040 (20°C, Montgomery 1993) 
0.0 (20–25°C at pH 7, selected, Augustijn-Beckers et al. 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
8.79 . 10–4 (Hine & Mookerjee 1975) 
0.0058 (20°C, calculated-P/C, Suntio et al. 1988) 
0.0049 (20°C, calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
3.13 (electrometric titration, Freese et al. 1979) 
0.60 (pH dependent quoted from Dow Chemical data, Kenaga & Goring 1980) 
0.85 (Rao & Davidson 1980) 
2.99 (RP-HPLC-k. correlation, Braumann et al. 1983) 
3.13 (Hansch & Leo 1985) 
3.40 (OECD 81 method, Kerler & Schonherr 1988) 
3.36 (selected, Travis & Arms 1988) 
3.31 (shake flask-HPLC/UV, Jafvert et al. 1990) 
0.60–3.40 (Montgomery 1993) 
3.13 (countercurrent LC, Ilchmann et al. 1993) 
3.13 (selected, Sangster 1993) 
3.13 (recommended, Hansch et al. 1995) 
3.31 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
–4.55 (milk biotransfer factor log Bm, correlated-KOW, Bjerke et al. 1972) 
1.18 (measured, Isensee 1976) 
–4.82 (beef biotransfer factor log Bb, correlated-KOW, Kenaga 1980) 
1.63 (fish under flowing water conditions, Kenaga & Goring 1980) 
1.45 (calculated-S, Kenaga 1980) 
0.301 (calculated-KOC, Kenaga 1980) 
1.36–1.40 (fish under static ecosystem tests, Kenaga & Goring 1980; Garten & Tralbalka 1983) 
1.41 (mosquito fish 32 d under unspecified conditions, Ang et al. 1989) 
Sorption Partition Coefficient, log KOC: 
1.72 (soil, Hamaker & Thompson 1972; Kenaga 1980; Kenaga & Goring 1980; Sabljic 1987) 
2.34 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
1.93, 2.27, 2,31, 2.31, 2.45, 2.31 (sand soil, whole soil, fine soil, coarse clay soil, medium silt soil, coarse silt 
soil, Nkedi-Kizza et al. 1983) 
2.38 (calculated-MCI ., Gerstl & Helling 1987) 
1.90 (soil, screening model calculations, Jury 1987b) 
1.72 (soil, Sabljic 1987) 
1.77; 2.63; 1.94 (Alfisol soil, Podzol soil; sediment, von Oepen et al. 1991) 
1.72, 2.27 (Montgomery 1993) 
1.90 (20–25°C at pH 7, selected, Augustijn-Beckers et al. 1994) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3655 
1.72 (estimated-chemical structure, Lohninger 1994) 
1.99 (soil, calculated-QSAR MCI 1., Sabljic et al. 1995) 
1.99 (1.63–2.35) (soils: organic carbon OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 48 h for 17–80% of 1 µg/mL to degrade in buffered aqueous solution at pH 7.8 under sunlight 
(Crosby & Wong 1973; quoted, Cessna & Muir 1991); 
t. = 15 d for < 2.6 µg/mL to degrade in distilled water under sunlight (Skurlatov et al. 1983; quoted, 
Cessna & Muir 1991); 
t. = 8.7 d for < 2.6 µg/mL to degrade in aqueous fulvic acid solution (17 mg/L) and t. = 3.5 d for < 2.6 
µg/mL to degrade in aqueous fulvic acid solution (55 mg/L) under sunlight (Skurlatov et al. 1983; quoted, 
Cessna & Muir 1991). 
Oxidation: 
photooxidation t. = 12.2–122 h in air, based on an estimated rate constant for the reaction with hydroxyl 
radical in the atmosphere (Atkinson 1987; quoted, Howard et al. 1991) 
k(aq.) = (8.9 ± 1.3) M–1 s–1 for direct reaction with ozone in water at pH 1.7–5.0 and 26°C, with t. = 1.0 h 
at pH 7 (Yao & Haag 1991) 
kOH·(calc) = 4.0 . 109 M–1 s–1 for reaction with hydroxy radical in aqueous solutions (Haag & Yao 1992). 
Hydrolysis: will not hydrolyze to any reasonable extent; however, it may undergo other abiotic transformation 
processes (Kollig 1993). 
Biodegradation: 
t.(aerobic) = 27 d for 50 µg/mL in sediment-water microcosm by long lag phase degradation (Alexander 
1974; quoted, Muir 1991) 
t.(aq. aerobic) = 240–480 h, based on unacclimated soil grab sample data (Smith 1978, 1979; quoted, 
Howard et al. 1991) 
k = 0.001 d–1 by river die-away test in aquatic systems (Lee & Ryan 1979; quoted, Scow 1982) 
k = 0.035 d–1 by soil incubation die-away studies (Rao & Davidson 1980; quoted, Scow 1982) 
k = 0.01–0.03 d–1 at 9–21°C by river die-away test in slurry sediment of aquatic systems (Lee & Ryan 1979; 
quoted, Scow 1982) 
t. = 33 d from screening model calculations (Jury et al. 1987b) 
t.(aq. anaerobic) = 672–4320 h, based on anaerobic digester sludge data (Battersby & Wilson 1989; quoted, 
Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 12.2–122 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radical in 
the atmosphere (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: estimated first-order t. = 693 d from biodegradation rate constant k = 0.001 d–1 by river die-away 
test in aquatic systems (Lee & Ryan 1979; quoted, Scow 1982); 
t. = 240–480 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991); 
extremely resistant degradation in natural water with t. = 580 d for static sediment-sea water to t. = 1400 d 
for static estuarine river water (Muir 1991); 
measured rate constant k = (8.9 ± 1.3) M–1 s–1 for direct reaction with ozone in water at pH 1.7–5.0 and 
21 ± 1°C, with t. = 3.9 h at pH 7 (Yao & Haag 1991). 
Ground water: t. = 480–4320 h, based on estimated unacclimated aqueous aerobic and anaerobic biodegradation 
half-life (Howard et al. 1991). 
Sediment: estimated first-order t. = 23–69.3 d from biodegradation rate constant k = 0.01–0.03 d–1 at 9–21°C 
by river die-away test in slurry sediment of aquatic systems (Lee & Ryan 1979; quoted, Scow 1982); 
t. = 27 d for sediment-water microcosm under aerobic conditions (quoted, Muir 1991). 
Soil: degradation t. = 24 d and 14 d in Quachita Highlands’ forest and grassland soil, respectively, t. = 21 d in 
Gross Timbers Forest soil, average t. = 17 d in 3 soils (Altom & Stritzke 1973); 
© 2006 by Taylor & Francis Group, LLC

3656 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
t. = 240–480 h, based on unacclimated soil grab sample data (Smith 1978, 1979; quoted, Howard et al. 1991); 
estimated first-order t. = 19.8 d from rate constant k = 0.035 d–1 by soil incubation die-away studies (Rao 
& Davidson 1980; quoted, Scow 1982); 
t. = 33 d from screening model calculations (Jury et al. 1987b); 
aerobic degradation t. > 25 d at 29°C, to t. = 58 d at 21°C in soil suspension from pre-incubated soil (Muir 
1991); 
selected field t. = 30 d (Augustijn-Beckers et al. 1994). 
Biota: biochemical t. = 33 d from screening model calculations (Jury et al. 1987b). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3657 
17.1.1.74 Terbacil 
Common Name: Terbacil 
Synonym: Sinbar, Turbacil 
Chemical Name: 3-tert-butyl-5-chloro-6-methyluracil 
CAS Registry No: 5902-51-2 
Uses: control of most annual grasses and broadleaf weeds, and some perennial weeds in established apples, asparagus, 
blueberries, citrus, lucerne, mint, peaches, pecans, strawberries, and sugar cane, etc. 
Molecular Formula: C9H13ClN2O2 
Molecular Weight: 216.664 
Melting Point (°C): 
176 (Lide 2003) 
Boiling Point (°C): 
sublime(below mp, Hartley & Kidd 1987; Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.34 (25°C, Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
217.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
9.0 (Wauchope et al. 1992) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0330 (mp at 176°C) 
0.027 (20°C, Suntio et al. 1988) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
710 (Ashton & Crafts 1973; 1981; Spencer 1982) 
710 (Martin & Worthing 1977; Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
600 (20°C, selected, Suntio et al. 1988) 
710 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
6.40 . 10–5 (29.5°C, Ashton & Crafts 1973; 1981) 
6.00 . 10–5 (30°C, Hartley & Kidd 1987) 
5.00 . 10–5 (20°C, selected, Suntio et al. 1988) 
6.00 . 10–5 (20°C, Montgomery 1993) 
6.25 . 10–5 (29.5°C, Tomlin 1994) 
1.91 . 10–3 (20–25°C, supercooled liquid value, quoted, Majewski & Capel 1995) 
4.13 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.80 . 10–5 (20°C, calculated-P/C, Suntio et al. 1988) 
1.82 . 10–5 (20–25°C, calculated, Montgomery 1993) 
1.53 . 10–5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.89 (Karickhoff et al. 1979) 
1.89 (Rao & Davidson 1980) 
NH 
N 
O 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

3658 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
1.89, 1.90 (quoted, Montgomery 1993) 
1.89 (recommended, Sangster 1993) 
1.91 (Tomlin 1994) 
1.89 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.18 (calculated-S, Kenaga 1980) 
1.74 (Montgomery 1993) 
Sorption Partition Coefficient, log KOC: 
1.71, 2.08 (soil: exptl., calculated, Kenaga 1980; Kenaga & Goring 1980) 
1.62, 1.98 (soil, quoted, Madhun et al. 1986) 
1.89, 1.76; 1.82, 1.04 (estimated-KOW; solubilities, Madhun et al. 1986) 
1.62 (soil, screening model calculations, Jury et al. 1987b) 
1.74 (soil, Wauchope et al. 1992; Hornsby et al. 1996) 
1.32–2.20 (soil, quoted, Montgomery 1993) 
1.66 (soil, calculated-QSAR MCI 1., Sabljic et al. 1995) 
1.58 (1.38–1.78) (soils: organic carbon OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Biodegradation: t. = 50 d (Jury et al. 1987b). 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: 
Sediment: 
Soil: moderately persistent in soil with t. = 20–100 d (Willis & McDowell 1982); 
t. ~ 5–7 months (Hartley & Kidd 1987); 
t. = 50 d from screening model calculations (Jury et al. 1987b); 
field t. = 50–175 d and the selected t. = 120 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: biochemical t. = 50 d (Jury et al. 1987b). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3659 
17.1.1.75 Terbutryn 
Common Name: Terbutryn 
Synonym: Clarosan, GS 14260, Igran, Prebane, Shortstop, Terbutrex, Terbutrin, Terbutryn 
Chemical Name: N-(1,1-dimethylethyl)-N.-ethyl-6-(methylthio)-1,3,5-triazine-2,4-diamine; 2-(tert-butylamino)-4- 
(ethylamino)-6-(methylthio)-s-triazine 
Uses: selective herbicide to control annual broadleaf and grass weeds in wheat. 
CAS Registry No: 886-50-0 
Molecular Formula: C10H19N5S 
Molecular Weight: 241.357 
Melting Point (°C): 
104 (Herbicide Handbook 1989, Lide 2003) 
Boiling Point (°C): 
154–160 (at 0.06 mmHg, Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Milne 1995) 
Density (g/cm3 at 20°C): 
1.115 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Milne 1995) 
Molar Volume (cm3/mol): 
273.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
4.30 (pKa, Worthing & Hance 1991) 
9.70 (pKb, Wauchope et al. 1992; Hornsby et al. 1996) 
4.07 (pKa, Montgomery 1993) 
Enthalpy of Vaporization, .HV (kJ/mol): 
101.4 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
22.4 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
59 (Rordorf 1989) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.168 (mp at 104°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
25 (20°C, Weber 1972; Ashton & Crafts 1973, 1981) 
58 (20°C, Quellette & King 1977) 
25 (Martin & Worthing 1977; Worthing & Walker 1987, Worthing & Hance 1991; Herbicide Handbook 
1978) 
25 (shake flask-HPLC, Ellgehausen et al. 1981) 
25 (20°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Montgomery 1993) 
22 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00013 (20°C, Weber 1972; Worthing & Walker 1987; Worthing & Hance 1991) 
0.00013 (20°C, Ashton & Crafts 1973; 1981) 
0.00013 (20°C, Hartley & Kidd 1987; Herbicide Handbook 1989) 
2.20 . 10–4, 9.10 . 10–3, 0.22, 3.40, 38.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 17.151 – 6201.4/(T/K); measured range 45–100°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 14.654 – 5297.1/(T/K); measured range 109–139°C (liquid, gas saturation-GC, Rordorf 1989) 
N 
N 
N 
HN 
NH 
S 
© 2006 by Taylor & Francis Group, LLC

3660 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.00128 (20°C, Montgomery 1993) 
0.00028 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.0013 (20°C, calculated-P/C, Suntio et al. 1988) 
0.0012 (20°C, calculated-P/C, Muir 1991) 
0.0120 (20°C, calculated-P/C, Montgomery 1993) 
0.0014 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
3.74 (shake flask-GC, Elkell & Walum 1979) 
3.72, 3.74 (shake flask, Ellgehausen et al. 1981) 
2.56 (RP-HPLC-k. correlation, Braumann et al. 1983) 
3.34 (Worthing & Walker 1987) 
3.43 (RP-HPLC-RT correlation, Finizio et al. 1991) 
3.49 (Worthing & Hance 1991; Milne 1995) 
3.43–3.73 (Montgomery 1993) 
3.34 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
3.74 (recommended, Sangster 1993) 
3.38, 3.36 (shake flask-UV, calculated-RP-HPLC-k. correlation, Liu & Qian 1995) 
3.74 (recommended, Hansch et al. 1995) 
3.44 (Pomona-database, Muller & Kordel 1996) 
3.34 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.17 (Daphnia magna, wet wt. basis, Ellgehausen et al. 1980) 
2.00, 2.00 (calculated-S, calculated-KOC, Kenaga 1980) 
1.95 (catfish Ictalurus melas, wet wt basis, Wang et al. 1996) 
Sorption Partition Coefficient, log KOC: 
2.85 (soil, Colbert et al. 1975; Gaillardon et al. 1977;, Kenaga 1980; Kenaga & Goring 1980) 
2.87 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.85–2.87 (soil, quoted values, Bottoni & Funari 1992) 
3.30 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.68 (soil, HPLC-screening method, mean value from different stationary and mobile phases, Kordel 
et al. 1993, 1995b) 
3.21–4.07 (Montgomery 1993) 
3.30 (estimated-chemical structure, Lohninger 1994) 
2.84 (calculated-KOW, Liu & Qian 1995) 
2.85 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.68; 2.80 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
4.62, 2.57, 2.90, 1.56, 3.55 soil, first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1998) 
3.554, 2.878, 2.778, 2.505, 3.054 (soil, second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake 
flask/batch equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
2.85; 2.82, 2.74 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
3.79 (3.28–4.30) (soil: organic carbon OC . 0.5%, average, Delle Site 2001) 
2.59, 2.86 (Kishon river sediments, sorption isotherm, Chefetz et al. 2004) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 4 ppb contaminated water in the presence of TiO2 and H2O2 completely photodegraded after 15 h 
by solar irradiation (Muszkat et al. 1992). 
Oxidation: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3661 
Hydrolysis: 
Biodegradation: aerobic t. = 80–240 d for 1 µg/mL to biodegrade in sediment-water and anaerobic t. > 650 d 
for 1 µg/mL to biodegrade in sediment-water both at 25°C (Muir & Yarechewski 1982; quoted, Muir 1991). 
biological degradation rate followed a first order kinetics, with t. = 8.9–18.2 d by raw water microflora 
from Rivere Nile, t. = 4.0–6.9 d by raw water microflora + sewage (El-Dib & Abou-Waly 1998) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 1.70 h–1 (Chironomus tentans larvae in pond sediment-water system, 96-h exposure, calculated by using 
first-order kinetic and concn factors, Muir et al. 1983) 
k1 = 1.9–1.5 h–1 (Chironomus tentans larvae in river sediment-water system, 96-h exposure, calculated by 
using first-order kinetic and concn factors, Muir et al. 1983) 
k1 = 3.6–2.7 h–1 (Chironomus tentans larvae in sediment (sand)-water system, 96-h exposure, calculated by 
using first-order kinetic and concn factors, Muir et al. 1983) 
k1 = 3.6–4.4 h–1 (Chironomus tentans larvae in sediment (sand)-water system, 96-h exposure, calculated by 
using initial uptake data of 0–12 h, Muir et al. 1983) 
k2 = 0.053 h–1 (Chironomus tentans larvae in pond sediment-water system, calculated by initial uptake data 
of 0–12 h, Muir et al. 1983) 
k2 = 0.043 h–1 (Chironomus tentans larvae in river water system, calculated by concentration decay curve, 
Muir et al. 1983) 
k2 = 0.040 h–1 (Chironomus tentans larvae in river sediment-water system, calculated by concentration decay 
curve, Muir et al. 1983) 
k2 = 0.040 h–1 (Chironomus tentans larvae in sediment (sand)-water system, calculated by concentration 
decay curve, Muir et al. 1983) 
k1 = 3.11 h–1, k2 = 0.0346 h–1 (catfish Ictalurus melas, Wang et al. 1996) 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 8.9–18.2 d by raw water microflora from River Nile, t. = 4.0–6.9 d by raw water 
microflora + sewage (El-Dib & Abou-Waly 1998) 
Ground water: reported half-lives or persistence, t. = 14–28 d (Bottoni & Funari 1992) 
Sediment: aerobic t. = 80–240 d for 1 µg mL–1 to biodegrade in sediment-water and anaerobic t. > 650 d for 
1 µg mL–1 to biodegrade in sediment-water both at 25°C (Muir & Yarechewski 1982; quoted, Muir 1991). 
Soil: reported t. = 14–28 d (Worthing & Hance 1991; Bottoni & Funari 1992); 
t. ~ 42 d (estimated, Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: elimination t. = 13.1 h in pond sediment-water, t. = 16.1 h in river water, t. = 17.3 h in river sedimentwater, 
t. = 17.3 in sand-water systems (Chironomus tentans larvae, Muir et al. 1983) 
© 2006 by Taylor & Francis Group, LLC

3662 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.76 Thiobencarb 
Common Name: Thiobencarb 
Synonym: benthiocarb, Bolero, Saturn, Saturno, Siacarb 
Chemical Name: S-(4-chlorophenyl)methyl diethylcarbamothioate 
Pesticide Class: herbicide; Group: carbamate 
Uses: herbicide 
CAS Registry No: 28249-77-6 
Molecular Formula: C12H16ClNOS 
Molecular Weight: 257.779 
Melting Point (°C): 
1.7 (Lide 2003) 
Boiling Point (°C): 
126–129/0.008 mmHg (Ashton & Crafts 1981) 
126–128/0.008 mmHg (Spencer 1982; Hartley & Kidd 1987; Herbicide Handbook 1989) 
Density (g/cm3 at 20°C): 
1.148–1.180 (Spencer 1982; Hartley & Kidd 1987; Herbicide Handbook 1989) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
30 (Ashton & Crafts 1981) 
30 (reported as 30 g/L, Spencer 1982) 
30 (20°C, Hartley & Kidd 1987; Herbicide Handbook 1989) 
28 (20–25°C, recommended, Wauchope et al. 1992; Hornsby et al. 1996) 
17.0 (Majewski & Capel 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
1.96 . 10–4 (20°C, Ashton & Crafts 1981) 
4.21 . 10–3 (20°C, GC-RT correlation, Kim 1985) 
2.0 . 10–4 (20°C, Hartley & Kidd 1987) 
1.97 . 10–4 (Herbicide Handbook 1989) 
2.93 . 10–3 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.78 . 10–3 (Majewski & Capel 1995) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.027 (calculated-P/C, Majewski & Capel 1995) 
0.0274 (quoted lit., Armbrust 2000) 
Octanol/Water Partition Coefficient, log KOW: 
3.42 (20°C, shake flask-GC, Kanazawa 1981) 
3.40 (shake flask-GC, Schimmel et al. 1983) 
3.98 (HPLC-RT correlation, Kawamoto & Urano 1989) 
3.42 (Gerstl 1990) 
Cl 
S N 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3663 
3.40 (recommended, Sangster 1993) 
3.93 (HPLC-RT correlation, Scibaldi & Finizio 1993) 
3.40 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
3.78 (RP-HPLC-RT correlation, Yu et al. 1997) 
4.37 (RP-HPLC-RT correlation, Nakamura et al. 2001) 
Bioconcentration Factor, log BCF or log KB: 
2.97 (Pait et al. 1992) 
1.76, 1.77 (37.2, 18.6 µg/L concn in water; carp, 3–5 d exposure, Wang et al. 1992) 
1.38, 1.0 (20.0, 2.0 µg/L concn in water; tilapia, 3–5 d exposure, Wang et al. 1992) 
1.49, 1.13 (20.0, 2.0 µg/L concn in water; loach, 3–5 d exposure, Wang et al. 1992) 
0.92, 1.08 (15.0, 7.5 µg/L concn in water; Grass carp, 3–5 d exposure, Wang et al. 1992) 
1.20, 1.26 (10.0, 5.0 µg/L concn in water; eel, 3–5 d exposure, Wang et al. 1992) 
2.57, 1.94 (5.0, 1.4 µg/L concn in water; black silver carp, 3–5 d exposure, Wang et al. 1992) 
0.46, 0.86 (200, 20 µg/L concn in water; freshwater clam, 3v5 d exposure, Wang et al. 1992) 
1.82; 2.23 (Gnathopogon aerulescens; Pseudorasbora parva, flow-through condition, quoted, Devillers et al. 
1996) 
Sorption Partition Coefficient, log KOC: 
2.83 (soil, Gerstl 1990) 
2,49, 3.02, 2.83 (soil, Bottoni & Funari 1992) 
2.95 (soil, Wauchope et al. 1992; Hornsby et al. 1996) 
3.43 (soil, calculated-., Meylan et al. 1992) 
3.27 (calculated-QSAR MCI 1., Sabljic et al. 1995) 
2.95 (quoted lit., Armbrust 2000) 
3.32, 2.75 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, Gramatica 
et al. 2000) 
Environmental Fate Rate Constants or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: stable aqueous hydrolysis rates at pH 5, 7, 9; measured hydroxy radical rate constant k = 6.8 . 1012 
M–1/h (Armbrust 2000) 
Biodegradation: t. = 2–3 wk in soil varies under aerobic conditions to t. = 6–8 months under anaerobic conditions 
(Hartley & Kidd 1987; Herbicide Handbook 1989) 
aerobic degradation rate constant k = 0.057 d–1 with t. = 12 d by aerobic activated sludge at 20°C 
(Kawamoto & Urano 1990) 
aerobic rate constant, k = 1.38 . 10–3 h–1 (Armbrust 2000). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: lost from aqueous solution by volatility and photodegradation (Herbicide Handbook 1989) 
biodegradation t. = 12 d by aerobic activated sludge at 20°C (Kawamoto & Urano 1990). 
Ground water: reported half-lives or persistence, t. = 6–7, 23–120, and 26–40 d (Bottoni & Funari 1992) 
Sediment: 
Soil: laboratory studies with Stockton adobe and Crowley silty clay loam gave t. = 2–3 wk under aerobic conditions 
to t. = 6–8 months under anaerobic conditions (Hartley & Kidd 1987; Herbicide Handbook 1989); 
reported half-lives or persistence of 6–7 d, 23–120 d, 26–40 d (Bottoni & Funari 1992); 
soil; t. = 18 d (Pait et al. 1992); 
field t. = 21 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3664 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.77 Triallate 
Common Name: Triallate 
Synonym: Avadex BW, Buckle, CP 23426, Dipthal, Far-Go 
Chemical Name: 2,3,3-trichloro-2-propene-1-thiol diisopropylcarbamate; S-(2,3,3-trichloro-allyl)diisopropyl- 
(thio-carbamate); S-(2,3,3-trichloro-2-propenyl) bis(1-methylethyl)-carbamothioate 
Uses: herbicide to control wild oats in lentils, barley, peas, and winter wheat. 
CAS Registry No: 2303-17-5 
Molecular Formula: C10H16Cl3NOS 
Molecular Weight: 304.664 
Melting Point (°C): 
29 (Lide 2003) 
Boiling Point (°C): 
148–149 (Khan 1980; Spencer 1982) 
117 (at 40 mPa, Herbicide Handbook 1989: Montgomery 1993; Milne 1995) 
Density (g/cm3 at 20°C): 
1.273 (25°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & Hance 1991; Montgomery 
1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
314.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
85.86 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
27.7 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.914 (mp at 29°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
4.0 (20°C, Weber 1972; Weber et al. 1980) 
4.0 (Ashton & Crafts 1973; Spencer 1973, 1982; Khan 1980) 
4.0 (Martin & Worthing 1977, Worthing & Walker 1983, 1987; Worthing & Hance 1991; Herbicide 
Handbook 1978, 1989) 
4.0 (Hartley & Graham-Bryce 1980; Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994; Milne 
1995) 
< 1.0 (27°C, Ashton & Crafts 1981) 
3.0 (20°C, selected, Suntio et al. 1988) 
4.0 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
0.016 (20°C, Weber 1972; Worthing & Walker 1987) 
0.016 (Ashton & Crafts 1973; Spencer 1982; quoted, Suntio et al. 1988) 
0.0276* (gas saturation-GC, measured range 20–45°C, Grover et al. 1978) 
log (P/mmHg) = 11.045 – 4401/(T/K); temp range 20–45°C (Antoine eq., gas saturation-GC, Grover et al. 1978) 
0.0265 (29.5°C, Ashton & Crafts 1981) 
0.0276 (gas saturation method, Spencer & Cliath 1983) 
6.07 . 10–3, 4.81 . 10–3 (20°C, GC-RT correlation, GC-RT correlation with mp correction, Kim 1985) 
0.016 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
0.010 (20°C, selected, Suntio et al. 1988; quoted, Majewski & Capel 1995) 
Cl 
Cl 
Cl 
S N 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3665 
0.015 (Herbicide Handbook 1989) 
0.017* (gas saturation-GC, measured range 25–125°C, Rordorf 1989) 
log (PS/Pa) = 18.124 – 5932/(T/K); measured range 32.3–150°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.395 – 4485.1/(T/K); measured range 32.3–150°C (liquid, gas saturation-GC, Rordorf 1989) 
0.026 (selected, Taylor & Spencer 1990) 
0.0147 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.016 (20°C, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.96 (calculated-P/C, Jury et al. 1983, 1984, 1987a, 1990; Jury & Ghodrati 1989) 
1.02 (20°C, calculated-P/C, Suntio et al. 1988) 
1.983 (calculated-P/C, Taylor & Glotfelty 1988) 
1.226 (20°C, calculated-P/C, Muir 1991) 
1.013 (20–25°C, calculated-P/C, Montgomery 1993) 
0.762 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.29 (Montgomery 1993) 
4.53 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
2.45 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
2.18 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.56 (Guenzi & Beard 1974) 
3.34 (soil, Grover 1974; Beestman & Demming 1976) 
3.32 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
3.56 (soil, screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
3.22 (soil, calculated-MCI . and fragments contribution, Meylan et al. 1992) 
3.38 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
3.31 (calculated, Montgomery 1993) 
3.38 (selected, Lohninger 1994) 
3.35 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.60, 3.12 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, 
Gramatica et al. 2000) 
2.70, 2.64 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 26 d (Jury et al. 1983; quoted, Grover 1991); half-life of 100 d (Jury et al. 1984; quoted, 
Spencer & Cliath 1990); 
estimated t. ~ 8 d from 1 m depth of water at 20°C (Muir 1991). 
Photolysis: 
Oxidation: calculated lifetime of 5 h for the vapor-phase reaction with OH radicals in the troposphere (Atkinson 
et al. 1992; Kwok et al. 1992). 
Hydrolysis: t. > 24 wk for 1 µg/mL to hydrolyze in aqueous buffer at pH 4, 7, and 9 in the dark at 25°C (Smith 
1969; quoted, Muir 1991). 
Biodegradation: estimated t. = 680 d at pH 6.8 and t. = 1170 d at pH 7.0, both at 25°C from biodegradation 
rate constants in aquatic systems (Smith 1969; quoted, Scow 1982); 
t. = 100 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Jury et al. 1983, 1984, 1987a,b; 
1990; Jury & Ghodrati 1989; Grover 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
© 2006 by Taylor & Francis Group, LLC

3666 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Half-Lives in the Environment: 
Air: calculated life-time of 5 h for the vapor-phase reaction with OH radicals in the troposphere (Atkinson et al. 
1992; Kwok et al. 1992). 
Surface water: t. = 680 d at pH 6.8 and t. = 1170 d at pH 7.0, both at 25°C for biodegradation in aquatic 
systems (Smith 1969; quoted, Scow 1982). 
Ground water: 
Sediment: 
Soil: biodegradation t. = 100 d from screening model calculations (Jury et al. 1984, 1987a,b; 1990; Jury & 
Ghodrati 1989; quoted, Montgomery 1993); 
selected field t. = 82 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: biochemical t. = 100 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989). 
TABLE 17.1.1.77.1 
Reported vapor pressures of triallate at various temperatures and the coefficients 
for the vapor pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Grover et al. 1978 Rordorf 1989 
gas saturation method-GC gas saturation-GC 
t/°C P/Pa t/°C P/Pa 
20 0.0133 25 0.017 
23 0.0202 50 0.59 
25 0.0276 75 12.0 
30 0.0446 100 170 
35 0.0704 125 1700 
40 0.131 for solid 
45 0.267 eq. 1 PS/Pa 
A 18.124 
eq. 1 P/mmHg B 5932 
A 11.045 for liquid 
B 4401 eq. 1 PL/Pa 
A 13.395 
mp/°C 33–33.5°C B 4485.1 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3667 
FIGURE 17.1.1.77.1 Logarithm of vapor pressure versus reciprocal temperature for triallate. 
Triallate: vapor pressure vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Grover et al. 1978 
Rordorf 1989 
Spencer & Cliath 1983 m.p. = 29 °C 
© 2006 by Taylor & Francis Group, LLC

3668 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.78 Triclopyr 
Common Name: Triclopyr 
Synonym: Garlon, Truflon, Crossbow 
Chemical Name: 3,5,6-trichloro-2-pyridinyloxyacetic acid 
CAS Registry No: 56335-06-3 
Uses: herbicide 
Molecular Formula: C7H4Cl3NO3 
Molecular Weight: 256.471 
Melting Point (°C): 
148–150 (Spencer 1982; Hartley & Kidd 1987; Worthing & Walker 1987) 
150.5 (Tomlin 1994) 
Boiling Point (°C): 
290 (dec., Hartley & Kidd 1987; Tomlin 1994) 
Density (g/cm3 at 20°C): 
Dissociation Constant pKa: 
2.68 (Spencer 1982; Worthing & Walker 1987) 
2.93 (Woodburn et al. 1993) 
3.97 (Tomlin 1994) 
Enthalpy of Vaporization, .HV (kJ/mol): 
102.5 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
31.8 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
430 (Kenaga 1980a,b) 
440 (Spencer 1982; Hartley & Kidd 1987; Worthing & Walker 1987) 
408 (20°C, Tomlin 1994) 
7690, 8100, 8220 (20°C, at pH 5, 7, and 9, Tomlin 1994) 
7618 (20–25°C, quoted as 2.97E + 01 mol/m3, Majewski & Capel 1995) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
1.6 . 10–4 (Spencer 1982) 
1.68 . 10–4 (Worthing & Walker 1987; Hartley & Kidd 1987; Tomlin 1994) 
1.90 . 10–5, 1.0 . 10–3, 0.031, 0.59, 7.80 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 17.65 – 6672.3/(T/K); measured range 85.4–145°C (gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 14.445 – 5354.8/(T/K); measured range 150–186°C (gas saturation-GC, Rordorf 1989) 
2.0 . 10–4 (vapor pressure balance, Tomlin 1994) 
2.91 . 10–3 (20–25°C, Majewski & Capel 1995) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
9.79 . 10–5 (20–25°C, calculated-P/C, Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW: 
–0.52 (Kenaga 1980a) 
0.42, –0.45, –0.96 (pH 5, 7, and 9, Tomlin 1994) 
1.30 (Isensee 1991) 
2.53 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
N 
Cl 
Cl 
Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3669 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.49, –0.22 (fish: flowing water tests, static ecosystem tests, Kenaga 1980a) 
1.30, 0 (fish: calculated-solubility, KOW, Kenaga 1980b) 
Sorption Partition Coefficient, log KOC: 
1.43 (soil, Kenaga 1980a) 
1.43, 2.204 (soil: quoted, calculated, Kenaga 1980b) 
1.43, 2.20 (soil, Bottoni & Funari 1992) 
1.43 (quoted or calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: photolysis t. < 0.4 d in sterile, pH 5-buffered water at 40°N latitude in midday, midsummer (McCall & 
Gavit 1986); 
photodecomposition t. < 12 h (Worthing 1987; Tomlin 1994); 
photodecomposition t. < 24 h (Hartley & Kidd 1987); 
aqueous photolysis pseudo-first order t.(average) = 0.5 and 1.3 d in pH 7-buffered water and natural river 
water, respectively, at 25°C under artificial lights and midsummer sunlight, 40°N latitude (Woodburn 
et al. 1993); 
aqueous photolysis rate constant, k = 8.3 . 10–2 h–1 (Armbrust 2000). 
Oxidation: 
Hydrolysis: hydrolysis t. > 3 months in darkened, sterile, buffered water at pH of 5–9 and 25°C (Woodburn 
et al. 1993); 
stable aqueous hydrolysis rates at pH 5, 7, 9; measured hydroxy radical rate constant k = 4.3 . 1012 M–1·h–1 
(Armbrust 2000). 
Biodegradation: in soil, fairly rapid degradation by microbial activity, with an average t. = 46 d depending on 
soil and climatic conditions (Spencer 1982; Tomlin 1994); 
aerobic rate constant, k = 9.03 . 10–4 h–1 (Armbrust 2000). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: stable to hydrolysis, but subject to photolysis with t. < 12 h (Spencer 1982; Worthing 1987; 
Tomlin 1994); 
photolysis t. < 0.4 d in sterile, pH 5 buffered water at 40°N latitude (McCall & Gavit 1986); 
t. ~ 3 to 4 d in natural water during summer conditions (Solomon et al. 1988); 
pseudo-first order photolysis t.(ave.) = 0.5 and 1.3 d in pH-buffered water and natural river water, respectively; 
the photodegradation pseudo-first-order half-lives in sterile, pH 7 water, midsummer sunlight at 
40°N latitude and 25°C calculated as k = 0.36 (0.33–0.39) and 0.60 (0.50–0.70) d under artificial and 
natural sunlight, respectively; t. = 0.71 (0.70–0.73) and 1.86 (1.77–1.96) d in river water under artificial 
and natural sunlight conditions, respectively, in midsummer sunlight and approximately 40°N latitude 
and 25°C (Woodburn et al. 1993); 
photodecomposition t. < 24 h (Hartley & Kidd 1987). 
Ground water: reported half-lives or persistence, t. = 40 and 46 d (Bottoni & Funari 1992). 
Sediment: 
Soil: fairly rapid degradation by microbial activity, with an average t. = 46 d depending on soil and climatic 
conditions (Spencer 1982; Tomlin 1994); 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3670 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.79 Trifluralin 
Common Name: Trifluralin 
Synonym: Agreflan, Crisalin, Digermin, Elancolan, L-36352, Nitran, Nitrofor, Olitref, Treflan, Trifluoramine, Trifurex, 
Trikepin, Trim 
Chemical Name: 2,6-dinitro-N,N-dipropyl-4-trifluoromethylaniline; 2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)- 
benzenamine 
Uses: pre-emergence herbicide to control many grass and broadleaf weeds. 
CAS Registry No: 1582-09-8 
Molecular Formula: C13H16F3N3O4 
Molecular Weight: 335.279 
Melting Point (°C): 
49 (Lide 2003) 
Boiling Point (°C): 
362 (estimated, Grain 1982) 
139–140 (at 4.2 mmHg, Hartley & Kidd 1987; Montgomery 1993; Milne 1995) 
96–97 (at 0.18 mmHg, Herbicide Handbook 1989) 
Density (g/cm3 at 20°C): 
1.294 (25°C, Montgomery 1993) 
1.36 (22°C, Tomlin 1994) 
Molar Volume (cm3/mol): 
295.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
8754 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
23.85 (DSC method, Plato & Glasgow 1969) 
23.5 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.581 (mp at 49°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
24 (27°C, Woodford & Evans 1963; Gunther et al. 1968; Spencer 1973) 
40 (29.5°C, Melnikov 1971) 
0.35 (20°C, Weber 1972; Worthing & Walker 1987) 
0.1–0.5 (Probst et al. 1975) 
0.60 (Herbicide Handbook 1978; Kenaga 1980; Kenaga & Goring 1980) 
0.05 (Wauchope 1978; Weber et al. 1980) 
< 1.0 (20°C, Khan 1980) 
8.11 (20–25°C, Kanazawa 1981) 
0.30 (Beste & Humburg 1983; Jury et al.1984; Taylor & Glotfelty 1988; Herbicide Handbook 1989) 
0.32 (generator column-HPLC-RI, Swann et al. 1983) 
0.70 (HPLC-RT correlation, Swann et al. 1983) 
4.0 (27°C, Verschueren 1983; Montgomery 1993) 
0.75 (shake flask-GC or LSC, Gerstl & Mingelgrin 1984) 
< 1.0 (27°C, Hartley & Kidd 1987; Worthing & Hance 1991; Milne 1995) 
0.30 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.184, 0.221, 0.189 (at pH 5, 7, 9, Tomlin 1994) 
N 
NO2 O2N
F F 
F 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3671 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
0.0265 (29.5°C, Probst et al. 1967; Khan 1980) 
0.0292 (29°C, effusion method, Hamaker & Kerlinger 1971) 
0.0138 (20°C, Weber 1972; Worthing & Walker 1987) 
0.0323 (30°C, from Spencer & Cliath 1973 unpublished data, Spencer et al. 1973) 
0.0065* (20°C, gas saturation-GC, measured range 20–40°C, Spencer & Cliath 1974, Spencer 1976) 
log (P/mmHg) = 17.318 – 6344/(T/K); temp range 20–40°C (Antoine eq., Spencer 1976) 
0.0262 (30°C, effusion method-pressure gauge, DePablo 1976) 
0.0137 (Worthing & Walker 1979, Worthing & Hance 1991; Hartley & Kidd 1987) 
0.0029 (20–25°C, Weber et al. 1980) 
0.0173 (Herbicide Handbook 1983) 
0.015 (20°C, Jury et al. 1983) 
0.0147 (Herbicide Handbook 1989) 
0.010* (gas saturation-GC, measured range 25–125°C, Rordorf 1989) 
log (PS/Pa) = 17.46 – 5800.6/(T/K); measured range 48.8–124°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.65 – 4573.1/(T/K); measured range 48.8–124°C (liquid, gas saturation-GC, Rordorf 1989) 
0.015 (20°C, selected, Taylor & Spencer 1990) 
0.0147 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.0147 (20°C, Montgomery 1993) 
0.0095 (Tomlin 1994) 
0.0363 (liquid PL, GC-RT correlation; Donovan 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 
16.61 (calculated-P/C, Jury et al. 1983, 1984, 1987a,b; Jury & Ghodrati 1989) 
4.02 (20°C, calculated-P/C, Suntio et al. 1988) 
16.36 (calculated-P/C, Taylor & Glotfelty 1988) 
5.206 (fog chamber-GC/ECD, Fendinger et al. 1989) 
5.95 (wetted-wall column-GC/ECD, Fendinger et al. 1989) 
16.0 (calculated-P/C, Nash 1989) 
13.27 (20°C, calculated-P/C, Muir 1991) 
4.903 (23°C, calculated-P/C, Montgomery 1993) 
15.2, 6.67, 4.02 (quoted literature values, Grover et al. 1997) 
10.31, 15.06 (20°C, distilled water, salt water 33.3% NaCl, wetted wall column-GC, Rice et al. 1997b) 
log KAW = –1546/(T/K) + 2.87; temp range 8.3–43.5°C, (distilled water, wetted-wall column-GC, Rice et al. 
1997b) 
log KAW = –1232/(T/K) + 1.94; temp range 8.3–43.5°C, (salt water solution, 33.3% NaCl, wetted-wall column- 
GC, Rice et al. 1997b) 
11.16, 11.04; 12.50 (20°C, microlayer, subsurface natural water of salinity 17% and TOC 0.4–1.0 ppm, from 
Pt. Lookout, Chesapeake Bay; estimated value adjusted to salinity, Rice et al. 1997b) 
10.97, 10.72; 12.38 (20°C, microlayer, subsurface natural water of salinity 16% and TOC 0.5–0.6 ppm, from 
Solomons, Chesapeake Bay; estimated adjusted to salinity, Rice et al. 1997b) 
10.40, 10.06; 11.82 (20°C, microlayer, subsurface natural water of salinity 12%, TOC 0.6 ppm, from Sandy 
Point, Chesapeake Bay; estimated value adjusted to salinity, Rice et al. 1997b) 
12.43, 12.70; 14.84 (20°C, microlayer, subsurface water of salinity 32%, TOC 2.2–46 ppm, ocean water from 
Bering/Chukchi Sea; estimated value adjusted to salinity, Rice et al. 1997b) 
9.49, 13.14, 19.67 (8.3, 20, 43.5°C, subsurface water from Bering Sea, TOC 2.14 ppm, wetted-wall column-GC, 
Rice et al. 1997b) 
8.504, 12.80; 19.61 (8.3, 20, 43.5°C, surface microlayer water from Bering Sea, TOC 3.14 ppm, wetted-wall 
column-GC, Rice et al. 1997b) 
8.87, 12.26, 19.69 (8.3, 20, 43.5°C, subsurface water from Chukchi Sea, TOC 3.3 ppm, wetted-wall column-GC, 
Rice et al. 1997b) 
7.95, 12.04; 19.40 (8.3, 20, 43.5°C, surface microlayer water from Chukchi Sea, TOC 45.5 ppm, wetted-wall 
column-GC, Rice et al. 1997b) 
© 2006 by Taylor & Francis Group, LLC

3672 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
6.99, 9.94, 15.85 (8.3, 20, 43.5°C, melted surface ice from the Arctic Ocean, TOC 48.8 ppm, wetted-wall 
column-GC, Rice et al. 1997b) 
log KAW = –786/(T/K) + 0.307; temp range: 8.3–43.5°C, (ocean water from the Chukchi Sea, wetted-wall 
column-GC, Rice et al. 1997b) 
log KAW = –1232/(T/K) + 1.900; temp range: 8.3–43.5°C, (subsurface microlayer of ocean water from the Chukchi 
Sea, wetted-wall column-GC, Rice et al. 1997b) 
4.026 (calculated-P/C, this work) 
9.63 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 2.870 – 1546/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
5.34 (Kenaga & Goring 1980) 
3.06 (Rao & Davidson 1980) 
5.34 (shake flask-UV, Briggs 1981) 
5.28 (shake flask, Brown & Flagg 1981) 
3.97 (shake flask-GC, Kanazawa 1981) 
4.94 (HPLC-k. correlation, McDuffie 1981) 
4.86 (shake flask, Dubelman & Bremer 1983) 
4.19 (shake flask-GC or LSC, Gerstl & Mingelgrin 1984) 
5.07 (Herbicide Handbook 1989; Worthing & Hance 1991; Milne 1995) 
5.07, 5.28, 5.34 (Montgomery 1993) 
4.88 (RP-HPLC-RT correlation, Saito et al. 1993) 
4.82 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
5.34 (recommended, Sangster 1993; Hansch et al. 1995) 
5.27 (pH 7.7–8.9, Tomlin 1994) 
5.13 (Pomona-database, Muller & Kordel 1996) 
4.82 (RP-HPLC-RT correlation, Finizio et al. 1997) 
4.98 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
3.97, 3.66 (measured, Metcalf & Sanborn 1975) 
3.51. 3.03 (fathead minnow, kinetic test, chronic exposure, Spacie & Hamelink 1979) 
3.11 (mosquito fish, correlated-S, Spacie & Hamelink 1979) 
3.01 (rainbow trout, correlated-KOW, Spacie & Hamelink 1979) 
3.26–3.76 (Spacie & Hamelink 1979) 
3.66, 3.04 (quoted exptl., calculated-KOC, Kenaga 1980) 
2.92 (calculated-S, Kenaga 1980) 
2.95 (calculated-KOW, Briggs 1981) 
3.50 (Pseudorasbora parva, Kanazawa 1981) 
3.26–3.76 (selected, Schnoor & McAvoy 1981; Schnoor 1992) 
2.67, 5.02 (dry leaf, wet leaf, Bacci et al. 1990) 
Sorption Partition Coefficient, log KOC: 
4.14 (soil, Harvey 1974; Kenaga 1980; Kenaga & Goring 1980) 
3.76 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
3.64 (av. 3 soils, McCall et al. 1980) 
4.49 (Georgia’s Hickory Hill pond sediment, Brown & Flagg 1981) 
2.70 (selected, sediment/water, Schnoor & McAvoy 1981; Schnoor 1992) 
3.78 (soil, Thomas 1982) 
3.87 (soil average, Jury et al. 1983) 
3.63 (soil slurry method, Swann et al. 1983) 
3.98 (RP-HPLC-RT correlation, Swann et al. 1983) 
3.86 (screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
5.13 (RP-HPLC-k. correlation, cyanopropyl column, Hodson & Williams 1988) 
3.59 (Nash 1988) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3673 
2.94 (average of 2 soils, Kanazawa 1989) 
3.64–4.15, 3.76–4.14 (soil, quoted values, Bottoni & Funari 1992) 
4.71, 4.44, 4.59 (No. 1 and 2 soil, No. 3 soil and No. 4 soil; Francioso et al. 1992) 
3.90 (soil, 20–25°C, selected, Wauchope et al. 1992) 
4.37 (selected, Lohninger 1994) 
3.94 (soil, HPLC-screening method, mean value from different stationary and mobile phases, Kordel 
et al. 1993, 1995a,b) 
3.93 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.94; 3.99 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
3.86 (soil, estimated-general model using molecular descriptors, Gramatica et al. 2000) 
3.53, 3.45, 3.96 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, average, Delle Site 2001) 
4.42 (average values for sediments with OC . 0.5%, Delle Site 2001) 
Sorption Partition Coefficient, log KOM: 
3.87 (Grover et al. 1978) 
3.63 (experimental, Grover et al. 1979) 
4.14 (av. soils/sediments, Kenaga & Goring 1980) 
3.90 (sorption isotherm-GC, Briggs 1981) 
1.36, 2.08, 2.98 (log KP: with first-order rate 0.52, 0.2, 8.3 . 10–3 h–1, Karickhoff & Morris 1985) 
4.14, 3.75 (selected, estimated, Magee 1991) 
2.94–4.49 (Montgomery 1993) 
4.37 (selected, Lohninger 1994) 
3.90 (soil, 20–25°C, selected, Hornsby et al. 1996) 
Adsorption Coefficient Kd (L kg–1): 
8.1 (homoionic K+-montmorillonite clay minerals, Haderlein et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: initial rate constant k = 2.6 . 10–2 h–1 and predicted rate constant k = 6.6 . 10–2 h–1 from soil with 
t. = 10.5 h (Thomas 1982); 
t. = 18 d (Jury et al. 1983; quoted, Grover 1991); 
measured rate constant k = 2–6 d–1 (Glotfelty et al. 1984; quoted, Glotfelty 1989); 
estimated rate constant k = 0.7 d–1 (Glotfelty et al. 1989); 
estimated t. ~ 1.6 d from 1 m depth of water at 20°C (Muir 1991). 
Photolysis: t. < 1 h under acidic conditions in aqueous methanolic solution (Crosby & Leitis 1973) 
k = 2.0 d–1 with t. = 22 min for direct sunlight photolysis near surface water at 40°N in the summer (Zepp & 
Cline 1977; Zepp 1980; Zepp et al. 1984) 
t.(calc) = 0.94 h for disappearance via direct sunlight photolysis in aqueous media (Zepp & Baughman 
1978; quoted, Harris 1982) 
k = 0.03 d–1 with t. = 22 d for direct sunlight near surface (Schnoor & McAvoy 1981) 
k = 0.028–0.012 min–1 corresponding to t. = 25–60 min for July, midday sunlight in an outdoor chamber 
(Mongar & Miller 1988) 
t. = 0.5 h estimated from photolysis reaction rate by direct sunlight of midday in mid-summer at 40°N near 
surface water (Zepp 1991) 
t. ~ minutes to several months depending on the substrate under sunlight in all media (summary of literature 
data, Grover et al. 1997) 
Oxidation: 
Hydrolysis: t.(calc) > 1yr buffered at pH 4, 7, 9 and incubated at 50°C (Grover et al. 1997) 
Abiotic Transformations: Degradation by abiotic reductive transformations: 
k = 1.79 . 10–3 min–1 at pH 6.5, 1.08 . 10–2 min–1 at pH 6.72–6.75, 1.64 . 10–2 min–1 at pH 6.84, 4.90 . 10–2 
min–1 at pH 6.94, 7.09 . 10–2 min–1 at pH 6.97, 0.141 min–1 at pH 7.14, 0.390 min–1 at pH 7.46, 0.566 
min–1 at pH 7.53, and 0.727 min–1 at pH 7.73 covering half-lives of 1–400 min., in reaction mixture of 
0.5 mM Fe(II) and 100 mg/L goethite solutions (Klupinski & Chin 2003) 
k = 1.88 M–1 s–1 in H2S with (mecapto)juglone (hydroquinone moiety, an abiotic reductant found in natural 
systems) solution at pH 6.65 (Wang & Arnold 2003) 
© 2006 by Taylor & Francis Group, LLC

3674 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Aqueous solutions with surface-bound Fe(II) species and their first-order rate constants as: 
k = 1.13 . 10–3 h–1 at pH 6.5, k = 1.11 . 10–2 h–1 at pH 7.0, k = 0.0251 h–1 at pH 7.4, and k = 3.40 h–1 at 
pH 7.8 for aqueous ferrous ion system; 
k = 0.361 h–1 at pH 6.5, k = 0.750 h–1 at pH 6.7, k = 2.57 h–1 at pH 7.0, and k = 6.66 h–1 at pH 7.3 for 
Fe(II)/goethite system; and 
k = 4.23 . 10–3 h–1 at pH 6.5, k = 5.38 . 10–3 h–1 at pH 7.0, k = 1.10 . 10–2 h–1 at pH 7.4 and k = 2.36 . 10–2 
h–1 at pH 7.8 for Fe(II)/clay system, all with total dissolved Fe(II) = 1 mM (Wang & Arnold 2003) 
Biodegradation: 
t. = 4–5 d for 4 µg/mL to biodegrade in flooded soils at 24.5°C and t. > 21 d at 3.3°C (Probst et al. 1967; 
quoted, Means et al. 1983; Muir 1991); 
t. > 20 d for 0.33 µg/mL to biodegrade in soil suspension at 25°C (Willis et al. 1974; quoted, Muir 1991); 
t. = 20 d for 0.5 µg/mL to biodegrade in flooded soil with 0.5–1.0 cm of water on top of the soil at 20–42°C 
(Savage 1978; quoted, Muir 1991); 
Degradation t. < 1 month in three soils, Goldsborol loamy sand, Cecil loamy sand Drummer clay loam treated 
with 1 ppm trifluralin) for 4 month under aerobic conditions, no degradation in sterile controls. (shake flask- 
TLC, Camper et al. 1980) 
t. < 1 month for 1.0 µg/mL to biodegrade in flooded soils at 25°C (derived from Camper et al. 1980; Muir 
1991) 
k = 0.008 d–1 by soil incubation die-away test and k = 0.025 d–1 by flooded soil incubation die-away test 
(Rao & Davidson 1980; quoted, Scow 1982); 
t. = 132 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Rao & Davidson 1980; quoted, 
Jury et al. 1983, 1984, 1987a,b; Jury & Ghodrati 1989; Grover 1991); 
t. = 46 wk for 2.0 µg/mL to biodegrade in flooded soils at 25°C (Brewer et al. 1982; quoted, Muir 1991); 
t. = 20 h for 0.36 µg/mL to biodegrade in sediment-water microcosm at 20°C (Spain & Van Veld 1983; 
quoted, Muir 1991); 
k = –0.00504 to –0.00730 h–1 in nonsterile sediment, k = –0.00160 to –0.00651 h–1 in sterile sediment by 
shake-tests at Range Point; k = –0.00827 to –0.01140 h–1 in nonsterile water, and k = –0.00499 to 
–0.00712 h–1 in sterile water by shake-tests at Range Point (Walker et al. 1988) 
k = –0.00621, –0.0121 h–1 in nonsterile sediment, k = –0.00476, –0.00409 h–1 in sterile sediment by shaketests 
at Davis Bayou and k = –0.00439, –0.00349 h–1 in nonsterile water, and k = –0.00299, –0.00598 h–1 
in sterile water by shake-tests at Davis Bayou (Walker et al. 1988). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: mean t. = 42 min under August conditions in California range from 21–63 min (Woodrow et al. 1978) 
t. = 25–60 min for July, midday sunlight in an outdoor chamber (Mongar & Miller 1988) 
t. = 182–193 min under fall sunlight conditions in October (Woodrow et al. 1983) 
Surface water: calculated t. = 21 min from midday direct sunlight photolysis rate constant of 2.0 h–1 (Zepp 
1978; Zepp & Cline 1977; quoted, Zepp et al. 1984); 
calculated t. = 0.94 h for disappearance via direct sunlight photolysis in aqueous media (Zepp & Baughman 
1978; quoted, Harris 1982); 
t. < 20 d for 2.5–5 cm water over flooded soils, t. ~ 20 h in water above sediment in estuarine sedimentwater 
microcosm (Muir 1991); 
t. < 9 h in buffered aqueous solution of pH 7 under Xenon lamp (quoted, Grover et al. 1997) 
t. = 1–400 min in reaction mixture of 0.5 mM and 100 mg/L goethite solution for pHs from 6.5 to 7.73 
(Klupinski & Chin 2003). 
Ground water: reported t. = 4–67, 57–126, 70, 83, and 105–132 d (Bottoni & Funari 1992) 
Sediment: degradation t. = 9 d in estuarine sediment (18o/.) system (Means et al. 1983). 
t. = 18.5 d in flooded sediment (quoted, Grover et al. 1997) 
Soil: t. = 4–5 d for 4 µg/mL to biodegrade in flooded soils at 24.5°C and t. > 21 d at 3.3°C (Probst et al. 1967; 
quoted, Means et al. 1983; Muir 1991); 
estimated persistence of 6 months in soil (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; 
Jury et al. 1987a); 
degradation t. = 93 d in soil (Parr & Smith 1973; quoted, Means et al. 1983); 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3675 
t. > 20 d for 0.33 µg mL–1 to biodegrade in soil suspension at 25°C (Willis et al. 1974; quoted, Muir 1991); 
degradation t. = 1 d (Kearney et al. 1976; quoted, Means et al. 1983); and t. = 54 d in soil (Zimdahl & 
Gwynn 1977; quoted, Means et al. 1983); 
t. = 20 d for 0.5 µg/mL to biodegrade in flooded soil with 0.5–1.0 cm of water on top of the soil at 20–42°C 
(Savage 1978; quoted, Muir 1991); 
persistence of more than 6 months (Wauchope 1978); 
t. < 21 d in flooded soil at 20–25°C (Golab et al. 1979) 
biodegradation t. < 1 month in 3 flooded soils at 25°C (Camper et al. 1980); 
estimated first-order t. ~ 86.6 d in soil from biodegradation rate constant k = 0.008 d–1 by soil incubation 
die-away test and t. = 27.7 d in anaerobic systems from rate constant k = 0.025 d–1 by flooded soil 
incubation die-away test (Rao & Davidson 1980; quoted, Scow 1982); 
t. = 2 d on Bosket silt loam, t. = 2 d on Sharkey clay for the first 3 to 5 days when sprayed onto soil 
surface, rate of loss much slower for the remainder of the 7- or 12-d sampling period with t. = 70 d on 
Bosket silt loam, t. = 50 d on Sharkey clay (Savage & Jordon 1980) 
t. = 30 d flooded soil in aquatic ecosystem (Yockim et al. 1980) 
field t. = 0.1–0.3 d in moist fallow soil (Glotfelty 1981; quoted, Nash 1983); 
Field studies: t. = 9.5 wk - 1978 first study; t. = 11.8 wk -1978 second study; t. = 12.2 wk –1979, in a 
Crowley silt loam at Stuttgart, Arkansas (Brewer et al. 1982) 
Laboratory studies: t. = 19.6 wk at 4°C, t. = 7.1 wk at 25°C for soil of field capacity moisture (27% w/w 
for Crowley silt), t. = 16.2 wk at 4°C, t. = 3.9 wk at 25°C for flooded soils, Crowley silt loam; and 
t. = 27.0 wk at 4°C, t. = 8.1 wk at 25°C for soil of field capacity moisture (34% w/w for Sharkey silty 
clay), t. = 18.6 wk at 4°C and t. = 5.4 wk at 25°C for flooded soils, Sharkey silty clay (Brewer et al. 1982) 
microagroecosystem t. = 3–4 d in moist fallow soil (Nash 1983); 
t. = 46 wk for 2.0 µg/mL to biodegrade in flooded soils at 25°C (derived from Brewer et al. 1982, Muir 1991); 
very persistent in soils with t. > 100 d (Willis & McDowell 1982); 
t. = 20 h for 0.36 µg/mL to biodegrade in sediment-water microcosm at 20°C (Spain & Van Veld 1983; 
quoted, Muir 1991); 
measured dissipation rate k = 0.69 d–1 (Nash 1983; quoted, Nash 1988); 
estimated dissipation rate k = 1.6 and 0.24 d–1 (Nash 1988); 
first-order adsorption rate constants: k = 0.52, 0.2, 8.3 . 10–3 h–1 (Karickhoff & Morris 1985; quoted, 
Brusseau & Rao 1989); 
t. ~ 22 d in submerged soils in a model ecosystem (Muir 1991); 
reported t. = 4–67 d, 57–126 d, 70 d, 83 d, 105–132 d (Bottoni & Funari 1992); 
selected field t. = 60 d (Wauchope et al. 1992; Hornsby et al. 1996; quoted, Halfon et al. 1996) 
Estimated t. ~ 25 to > 201 d under a variety of agronomic conditions in agriculture soils depending on 
depth of incorporation, soil moisture, soil temperature, sil air, and soil organic matter content (summary 
of literature data, Grover et al. 1997) 
Biota: t. = 22–31 d in river saugers, t. = 17–57 d in river shorthead redhorse, t. = 23 d in river golden redhorse, 
t. = 3 d in lab. fathead minnow (Spacie & Hamelink 1979); 
biochemical t. = 132 d (Jury et al. 1987a,b; Jury & Ghodrati 1989). 
© 2006 by Taylor & Francis Group, LLC

3676 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 17.1.1.79.1 
Reported vapor pressures of trifluralin at various temperatures and the coefficients 
for the vapor pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Spencer & Cliath 1974 Rordorf 1989 
gas saturation method gas saturation-GC 
t/°C P/Pa t/°C P/Pa 
20 0.0065 25 0.010 
30 0.0323 50 0.32 
40 0.155 75 6.30 
100 82.0 
125 780 
for solid 
eq. 1 PS/Pa 
A 17.46 
B 5800.6 
for liquid 
eq. 1 PL/Pa 
A 13.65 
B 4573.1 
FIGURE 17.1.1.79.1 Logarithm of vapor pressure versus reciprocal temperature for trifluralin. 
Trifluralin: vapor pressure vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Spencer & Cliath 1974 
Rordorf 1989 
Hamaker & Kerlinger 1971 
DePablo 1976 
m.p. = 49 °C 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3677 
17.1.1.80 Vernolate 
Common Name: Vernolate 
Synonym: PPTC, R1607, Vanalate, Vernam, Vernnolaolate 
Chemical Name: S-propyldipropylthiocarbamate; S-propyldipropylcarbamothioate 
Uses: herbicide incorporated with soil for pre-planting or pre-emergence control of broadleaf and grass weeds in 
groundnuts, soybeans, maize, tobacco, and sweet potatoes. 
CAS Registry No: 1929-77-7 
Molecular Formula: C10H21NOS 
Molecular Weight: 203.345 
Melting Point (C): liquid 
Boiling Point (°C): 
150 (at 30 mmHg, Herbicide Handbook 1989; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
149–150 (at 30 mmHg, Budavari 1989) 
Density (g/cm3 at 20°C): 
0.954 (Ashton & Crafts 1981; Herbicide Handbook 1989; Worthing & Hance 1991) 
0.952 (Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
269.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
107 (Martin & Worthing 1977) 
90 (20°C, Khan 1980; Spencer 1982; Ashton & Crafts 1981; Herbicide Handbook 1989) 
107 (21°C, Verschueren 1983) 
90 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987, Worthing & Hance 1991) 
107 (Budavari 1989; Milne 1995) 
95 (Wauchope 1989) 
108 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.84 (20°C, Hartley & Graham-Bryce 1980) 
1.386 (Khan 1980; Spencer 1982; Herbicide Handbook 1989) 
1.333 (Ashton & Crafts 1981) 
0.244 (20°C, GC-RT correlation, Kim 1985) 
1.39 (Hartley & Kidd 1987) 
0.9 (20°C, selected, Suntio et al. 1988) 
1.386 (Budavari 1989) 
1.39 (Worthing & Hance 1991; Tomlin 1994) 
1.293 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
2.05 (20°C, calculated-P/C, Suntio et al. 1988) 
2.034 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
3.84 (20°C, Worthing & Hance 1991; Tomlin 1994) 
S N 
O 
© 2006 by Taylor & Francis Group, LLC

3678 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
3.84 (20°C, Milne 1995) 
3.84 (recommended, Hansch et al. 1995) 
3.86 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.64 (calculated-S, Kenaga 1980) 
1.70 (calculated, Pait et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.52 (calculated-S, Kenaga 1980) 
2.41 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.03, 1.93 (quoted exptl.; calculated-MCI and fragment contribution method, Meylan & Howard 1992) 
2.41 (estimated-chemical structure, Lohninger 1994) 
2.33 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.33; 2.40, 2.11 (soil, quoted exptl.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Biodegradation: microbial degradation t. = 8–16 d at 27°C, t. > 64 d at 4°C in soil (Tomlin 1994). 
Half-Lives in the Environment: 
Soil: t. ~ 1.5 wk in moist loam soil at 21–27°C (Herbicide Handbook 1989); 
selected field t. = 12 d (Wauchope et al. 1992; Hornsby et al. 1996); 
soil t. = 11 d (Pait et al. 1992); 
microbial degradation t. = 8–16 d at 27°C, t. > 64 d at 4°C (Tomlin 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3679 
17.2 SUMMARY TABLES 
TABLE 17.2.1 
Common names, chemicals names and physical properties of herbicides 
Compound Synonym Chemical name 
Molecular 
formula 
Molecular 
weight, MW 
g/mol 
m.p. 
°C 
Fugacity 
ratio, F 
at 25°C* pKa pKb 
Alachlor [15972-60-8] Lasso, Metachlor .-chloro-2,6-diethyl-N-methoxymethylacetanilide 
C14H20ClNO2 269.768 40 0.713 0.62 
Ametryn [834-12-8] Evik, Gesapax 2-methylthio-4-(ethylamino)- 
6-(isopropylamino)-s-triazine 
C9H17N5S 227.330 88 0.241 4.00 
4.10 
10.07 
Amitrole [61-82-5] Amerol, 
Aminotriazole 
3-amino-1H-1,2,4-triazole C2H4N4 84.080 159 0.0484 9.83 
Atrazine Gesaprim 2-chloro-4-(ethylamino)- 
6-(isopropylamino)-s-triazine 
C8H14ClN5 215.684 173 0.0353 1.68 
1.70 
12.32 
Barban [101-27-9] Carbyne 4-chlorobut-2-ynyl-3-chlorocarbanilate C11H9Cl2NO2 258.101 75 0.323 
Benefin [1861-40-1] Balan, Bonalan 
Benfluralin 
N-butyl-N-ethyl-.,.,.-trifluoro- 
2,6-di-nitro-p-toluidine 
C13H16N3O4F3 335.279 66 0.396 
Bifenox [42576-02-3] Modown methyl-5-(2,4-dichlorophenoxy)- 
2-nitrobenzoate 
C14H9Cl2NO5 342.131 85 0.258 
Bromacil [314-40-9] Borea, Hyvar X 5-bromo-3-sec-butyl-6-methyl-uracil C9H13BrN2O2 261.115 158 0.0496 9.10 
< 7.0 
Bromacil lithium salt C9H12N2O3Li 267.0 9.27 
Bromoxynil 
[1689-84-5] 
Brominal, Buctril 3,5-dibromo-4-hydroxybenzonitrile C7H3Br2NO 276.913 190 0.0241 4.06 
4.20 
Bromoxynil butyrate 
ester [3861–41–4] 
C13H9BrNO3 307.119 4.10 
Bromoxynil octanoate 
[1689–99–2] 
2,6-dibromo-4-cyanophenyl octanoate C15H17Br2NO2 403.109 45–46 0.629 4.08 
sec-Bumeton 
[26259-45-0] 
Etazine, Sumitol N-ethyl-6-methoxy-N'-(1-methylpropyl)-
1,3,5-triazine-2,4-diamine 
C10H19N5O 225.291 87 0.246 4.40 
Butachlor 
[23184-66-9] 
Machete N-butoxymethyl-2-chloro- 
2',6'-diethylacetanilide 
C17H26ClNO2 311.847 < –5 1 
Butralin [33629-47-9] Amex, Tamex N-sec-butyl-4-tert-butyl- 
2',6'- dinitroaniline 
C14H21N3O4 295.335 60 0.454 
Butylate 
[2008-41-5] 
Sutan S-ethyl bis(2-methylpropyl) 
carbamothioate 
C11H23NOS 217.372 liquid 1 
Chloramben 
[133-90-4] 
Amiben, Amoben 3-amino-2,5-dichlorobenzoic acid C7H5Cl2NO2 206.027 200 0.0192 3.40
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3680 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 17.2.1 (Continued) 
Compound Synonym Chemical name 
Molecular 
formula 
Molecular 
weight, MW 
g/mol 
m.p. 
°C 
Fugacity 
ratio, F 
at 25°C* pKa pKb 
Chloramben salts 
[133-90-4] 
Amiben ammonium or sodium salt of chloramben C7H5Cl2NO2 206.027 
Chlorazine 6-chloro-N,N,N'N'-tetraethyl- C11H20ClN5 257.764 27 0.956 
[580–48–3] 1,3,5-triazine-2,4-diamine 
Chlorbromuron 
[13360-45-7] 
Maloran 3-(4-bromo-3-chlorophenyl)-1-methoxy-1 
-methylurea 
C9H10BrClN2O2 293.544 96 0.201 
Chlorfenac [85-34-7] Fenac (2,3,6-trichlorophenyl)acetic acid C8H5Cl3O2 239.484 161 0.046 
Chlorpropham 
[101-21-3] 
Furloe isopropyl 3-chlorocarbanilate C10H12ClNO2 213.661 41 0.697 
Chlorsufuron 
[64902-72-3] 
Glean, Telar 1-(2-chlorophenylsulfonyl)-3-(4-methoxy- 
6-methyl-1,3,5-trizaon-2-yl)urea 
C12H12ClN5O4S 357.773 176 0.0330 3.60 
Chlortoluron 
[15545-48-9] 
Dicuran 3-(3-chloro-p-tolyl)-1,1-dimethylurea C10H13ClN2O 212.675 147 0.0635 
Cyanazine 
[21725-46-2] 
Bladex, Fortrol 2-(4-chloro-6-ethylamino-1,3,5-triazin- 
2-ylamino)-2-methylpropionotrile 
C9H13ClN6 240.692 168 0.0395 1
0.63 
12.9 
2,4-D [94-75-7] Agratect, Farmco, 
Weed Tox 
2-(2,4-dichlorophenoxy)acetic acid C8H6Cl2O3 221.038 140.5 0.0736 2.64 
3.31 
2,4-D dimethylamine 
salt [2008–39–1] 
C10H13Cl2NO3 266.121 85–87 0.252 
2,4-D esters C8H6Cl2O3 (a) 221.038 2.80 
Dalapon [75-99-0] Dowpon, Radapon 2,2-dichloropropionic acid C3H4Cl2O2 142.969 liquid 1 1.74 
1.84 
Dalapon sodium salt 
[120-20-8] 
sodium 2,2-dichloropropionate C3H3Cl2Na 164.95 166.5 
dec 
2,4-DB [94-82-6] Embutox 4-(2,4-dichlorophenoxy)butyric C10H10Cl2O3 249.090 118 0.122 4.80 
2,4-DB butoxyethyl ester C16H22O4Cl2 349.249 4.80 
Diallate [2303-16-4] Avadex S-(2,3-dichloroallyl)diisopropylthiocarbamate 
C10H17Cl2NOS 270.219 
Dicamba [1918-00-9] Banvel, Dianat, 
Mediben 
3,6-Dichloro-o-anisic acid C8H6Cl2O3 221.038 115 0.131 1.91 
1.95 
Dichlobenil 
[1194-65-6] 
Casoron 2,6-dichlorobenzonitrile C7H3Cl2N 172.012 144.5 0.0672 
Dichlorophen (F.A.B) 
[97-23-4] 
Super Mosstox 4,4'-dichloro-2,2'-methylenediphenol C13H10Cl2O2 269.123 177.5 0.0320 
Dichloroprop 
[120-36-5] 
2,4-DP (RS)-2-(2,4-dichorophenoxy)- 
propionic acid 
C9H8Cl2O3 235.064 117.5 0.124 3.0 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3681 
Dichlorprop-P 
[15165-67-0] 
Cornox RK (R)-2-(2,4-dichorophenoxy)propionic 
acid 
C9H8Cl2O3 235.064 122 0.112 3.0 
2.86 
Dichlorprop ester 
Diclofop 
[40843-25-2] 
Weedone butoxyethyl ester of 
(R-2-(2,4-dichloro-2-(4-aryloxyphenoxy) 
propionic acid 
C9H8Cl2O3 
C15H12Cl2O4 
335.3 
327.159 
2.85 
Diclofop-methyl 
[51338-27-3] 
Hoelon 2-(4-(2,4-dichlorophenoxy)phenoxyl)- 
propanoic acid methyl ester 
C16H14Cl2O4 341.186 40 0.713 3.10 
Dinitramine 
[29091-05-2] 
Cobexo N,N-diethyl-2,6-dinitro-4-trifluoromethyl-
m-phenyenediamine 
C11H13N4O4F3 322.241 98 0.192 
Dinoseb [88-85-7] Antox, Aretit, 
BNP 30, DNBP 
2-sec-butyl-4,6-dinitrophenol C10H12N2O5 240.212 40 0.713 4.62 
Dinoseb salts 
[88–85–7] 
Premerge, Dinitro 2-sec-butyl-4,6-dinitrophenyl 
ammonium, amine, acetate salts 
4.50 
Diphenamid 
[957-51-7] 
Dymid, Enide N,N-dimethyldiphenylacetamide C16H17NO 239.312 135 0.0833 
Diquat [2764-72-9] Reglone, Pathclear C12H14N2 186.236 
Cleansweep, 
Weedol 
1,1'-ethylene-2,2'-dipyridine 
Diquat dibromide salt 
[85-00-7] 
C12H12Br2N2 344.1 10 
Diuron [330-54-1] DMU, Karmex 
DCMU 
3-(3,4-dichlorophenyl)- 
1,1-dimethylurea 
C9H10Cl2N2O 233.093 158 0.0496 
EPTC [759-94-4] Eptam, Eradicane S-ethyl dipropylthiocarbamate C9H19NOS 189.318 liquid 1 
Ethalfluralin 
[55283–68–6] 
Benzenamine, 
Somilan, 
Sonalan, Sonalen 
N-ethyl-N-(2-methyl-2-propenyl)- 
2,6-dinitro-(trifluoromethyl)- 
benzenamine 
C13H14F3N3O4 333.263 57 0.485 
Fenoprop (G.R.) 
[93-72-1] 
Silvex, 2,4,5-TP (±)-2-(2,4,5-trichlorophenoxy)- 
propionic acid 
C9H7Cl3O3 269.509 181.6 0.0291 
Fenuron [101-42-8] Dybar, Urab 1,1-dimethyl-3-phenylurea C9H12N2O 164.203 132 0.0892 
Fenuron-TCA 
[4482-55-7] 
1,1-dimethyl-3-phenyluronium 
trichloroacetate 
C11H13Cl3N2O3 327.592 65–68 0.392 
Fluchloralin 
[33245-39-5] 
Basalin Basalin, 
BAS-392H 
N-(2-chloroethyl) .,.,.-trifluoro- 
2,6-dinitro-N-propyl-p-toluidine 
C12H13ClF3N3O4 355.697 42 0.681 
Fluometuron 
[2164-17-2] 
Cotoran, Cottonex, 
Meturon 
N,N-dimethyl-N'-[3-trifluoromethyl)- 
phenylurea 
C10H11F3N2O 232.201 164 0.0433 
Fluorodifen 
[15457-05-3] 
Soyex 4-nitrophenyl .,.,.-trifluoro-2-nitrop-
tolyl ether 
C13H7F3N2O5 328.200 94 0.210 
Fluridone 
[59756-60-4] 
Fluridon, Pride, 
Sonar 
1-methyl-3-phenyl-5-[3-(trifluoromethyl) 
phenyl]-4-(1H)-pyridinone 
C19H14F3NO 329.315 155 0.0530 12.3 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3682 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 17.2.1 (Continued) 
Compound Synonym Chemical name 
Molecular 
formula 
Molecular 
weight, MW 
g/mol 
m.p. 
°C 
Fugacity 
ratio, F 
at 25°C* pKa pKb 
Glyphosate 
[1071-83-6] 
Roundup, Polado N-(phosphoromethyl)glycine C3H8NO5P 169.074 230 dec 0.0097 5.70 
Glyphosate-mono(isopropylammonium) 
[38641–94–0] 
C6H17N2O5P 228.2 200 0.0190 
Ioxynil [1689-83-4] Actril, Totril 4-hydroxy-3,5-di-iodobenzonitrile C7H3I2NO 370.914 201 dec 0.0190 3.96 
Ioxynil-octanoate 
[3681–47–0] 
4-cyano-2,6-iodophenyl octanoate C15H17I2NO2 497.1 59–60 0.459 
Ioxynil-sodium salt 
[2961–62–8] 
C7H2I2NNaO 392.9 360 0.00052 
Isopropalin 
[33820-53-0] 
Paralan 4-isopropyl-2,6-dinitro- 
N-dipropylaniline 
C15H23N3O4 309.362 liquid 1 
Isoproturon 
[34123-59-6] 
Alon, Arelon, 
Graminon 
3-p-cumenyl-1,1-dimethylurea C12H18N2O 206.284 155–156 0.0520 
Linuron [330-55-2] Afalon, Lorox 3-(3,4-dichlorophenyl)-1-methoxy- 
1-methylurea 
C9H10Cl2N2O2 249.093 93 0.215 
MCPA (G.R., H) 
[94-74-6] 
Metaxon, 
Agroxone, 
Agritox 
4-chlor-o-tolyloxyacetic acid C9H9ClO3 200.618 120 0.117 3.05 
3.13 
MCPA dimethylamine 
salt [94–74–6] 
C11H16ClNO3 243.7 3.12 
MCPA ester Weedone, Weedar C9H9ClO3 200.6 
MCPA sodium salt C9H8ClNaO3 222.6 
MCPA-thioethyl 
[25319–90–8] 
S-ethyl 4-chloro-o-tolyoxythioacetate C11H13ClO2S 244.7 41–42 0.689 
MCPB [94-81-5] Tropotox 4-(4-chloro-2-methylphenoxy)butyric 
acid 
C11H13ClO3 228.672 100 0.184 4.84 
4.80 
MCPB sodium salt 
[6062–26–6] 
C11H12ClNaO2 250.7 
Mecoprop 
[7085-19-0] 
Iso-Cornox, 
MCPP 
(±)-2-(4-chloro-o-tolyloxy)-propionic 
acid 
C10H11ClO3 214.645 94-95 0.208 3.78 
3.75 
Mecoprop-P 
[16484–77–8] 
(R)-2-(4-chloro-o-tolyoxy)propionic 
acid 
C10H11ClO3 214.645 95 0.206 3.78 
Metobromuron 
[3060-89-7] 
Patoran 3-(4-bromophenyl)-1-methoxy-1-methyl 
urea 
C9H11BrN2O2 259.099 95 0.206 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3683 
Metolachlor 
[51218-45-2] 
Codal, Dual, 
Primagram 
2-chloro-6'-ethyl-N-(2-methoxy- 
1-methylethyl)acet-o-toluidide 
C15H22ClNO2 283.795 liquid 1 
Metoxuron 
[19937-59-8] 
Dosanex 3-(3-chloro-4-methoxyphenyl)- 
1,1-dimethylurea 
C10H13ClN2O2 228.675 126-127 0.101 
Metribuzin 
[21087–64–9] 
Metribuzine, 
Lexone, Preview, 
Sencor 
4-amino-6-(t-butyl)-3-(methylthio)- 
1,2,4-triazin-5-(4H)-one 
C8H14N4OS 214.288 126 0.102 
Molinate [2212-67-1] Ordram S-ethyl azepane-1-carbothioate C9H17NOS 187.302 liquid 1 
Monolinuron 
[1746-81-2] 
Aresin 3-(4-chlorophenyl)-1-methoxy- 
1-methylurea 
C9H11ClN2O2 214.648 77 0.309 
Monuron [150-68-5] Telvar, Urox 1,1-dimethyl-3-(p-chloro-phenyl)-urea C9H11ClN2O 198.648 170.5 0.0374 
Napropamide 
[15299–99–7] 
Devrinol 2-(.-naphthloxy)-N,Ndiethylpropionamide 
C17H21NO2 271.355 75 0.323 2.93 
Neburon [555-37-3] Kloben 1-butyl-3-(3,4-dichlorophenyl)-1-methyl 
urea 
C12H16Cl2N2O 275.174 102-103 0.174 
Nitralin [4726-14-1] Planavin 4-(methylsulfonyl)-2,6-dinitro- 
N,N-dipropylaniline 
C13H19N3O6S 345.371 150 0.0594 
Nitrofen [1836–75–5] nitrophen, Tok, 
Tokkron 
2,4-dichloro-1-(4-nitrophenoxy)benzene C12H7Cl2NO3 284.095 70 0.362 
Norfluorazon 
[27314–13–2] 
C12H9ClF3N3O 303.666 184 0.0275 
Oryzalin [19044-88-3] Rycelan, Rycelon, 
Surflan 
4-(dipropylamino)-3,5-dinitrobenzenesulfonamide 
C12H18N4O6S 346.359 141 0.0728 9.40 
8.60 
Paraquat [4685-14-7] Cyclone, 
Gramoxone 
1,1'-dimethyl-4,4'-pyridinium C12H14N2 186.252 dec. 
Paraquat dichloride 
salt [1910–42–5] 
C12H14Cl2N2 257.2 < 4 
Pebulate [1114-71-2] Tillam s-propyl butylethylcarbamothioate C10H21NOS 203.345 liquid 1 
Pendimethalin 
[40487–42–1] 
penoxalin N-(1-ethylpropyl-3,4-dimethyl- 
2,6-dinitrobenzenamine 
C13H19N304 281.308 56 0.496 
Pentachlorophenol 
[87–86–5] 
PCP pentachlorophenol C6Cl5OH 266.336 174 0.0350 4.74 
Pentachlorophenol 
sodium salt 
(Pentacon) 
Pentanochlor 
[2307-68-8] 
Solan 3'-chloro-2-methylvaler-p-toluidide C13H18ClNO 239.741 85-86 0.255 
Picloram [1918-02-1] Tordon 4-amino-3,5,6-trichloro-picolinic acid C6H3Cl3N2O2 241.459 218.5 0.0126 1.90 
3.60
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3684 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 17.2.1 (Continued) 
Compound Synonym Chemical name 
Molecular 
formula 
Molecular 
weight, MW 
g/mol 
m.p. 
°C 
Fugacity 
ratio, F 
at 25°C* pKa pKb 
Picloram-potassium 
salt [2425–60–0] 
C6H2Cl3KN2O2 279.6 
Profluralin 
[26399-36-0] 
Pregard N-(cyclopropylmethyl)-2,6-dinitro-Npropyl-
4-(trifluoromethyl)-benzenamine 
C14H16F3N3O4 347.290 34 0.816 
Prometon [1610-18-0] Primatol, 
Gesagram 
2,4-bis(isopropylamino)-6-methoxys-
triazine 
C10H19N5O 225.291 91.5 0.223 4.28 
4.30 
9.73 
Prometryn 
[7287-19-6] 
Caparol, Gesagard N,N-1,3,5-triazine-2,4-diaminebis(
isopropylamino)-6-(methylthio) 
C10H19N5S 241.357 119 0.120 4.05 
4.10 
9.95 
Pronamide 
[23950-58-5] 
Kerb, Promamide 3,5-dichloro-N-(1,1-dimethylpropynyl)-
benzamide 
C12H11Cl2NO 256.127 155 0.0530 
Propachlor 
[1918-16-7] 
Ramrod 2-chloro-N-(1-methylethyl)- 
N-phenylacetamide 
C11H14ClNO 211.688 77 0.309 
Propanil [709-98-8] Propanex, 
Riselect, 
Stampede 3E 
N-(3,4-dichlorophenyl)-propionamide C9H9Cl2NO 218.079 92 0.220 
Propazine [139-40-2] Gesamil, Milogard 2-chloro-4,6-bis(isopropylamino)- 
s-triazine 
C9H16ClN5 229.710 213 0.0143 1.85 
1.80 
12.15 
Propham [122-42-9] IPC isopropyl carbanilate C10H13NO2 179.216 90 0.230 
Pyrazon [1698-60-8] Chloridazon 5-amino-4-chloro-2-phenyl-3(2H)- 
pyridazinone 
C10H8ClON3 221.643 205 0.0171 
Simazine [122-34-9] Gesatop, Weedex, 
Aquazine 
2-chloro-4,6-di(ethylamino)-s-triazine C7H12ClN5 201.657 226 0.0107 1.65 
1.60 
12.35 
Simetryne 
[1014-70-6] 
Gy-bon N,N'-diethyl-6-methylthio-1,3,5-triazine 
-2,4-diyldiamine 
C8H15N2S 171.283 82-83 0.273 11 
2,4,5-T [93-76-5] Gesatop 2,4,5-trichlorophenoxyacetic acid C8H5Cl3O3 255.483 153 0.0555 2.80 
2.88 
2,3,6-TBA [50-31-7] Trysben, 
Cambilene 
2,3,6-trichlorobenzoic acid C7H3Cl3O2 225.457 124.5 0.106 
Terbacil [5902-51-2] Sinbar 3-tert-butyl-5-chloro-6-methyluracil C9H13ClN2O2 216.664 176 0.0330 9.0 
Terbumeton 
[33693-04-8] 
Caragard N-tert-butyl-N'-ethyl-6-methoxy- 
1,3,5-triazine 
C10H19N5O 225.290 123-124 0.108 9.41 
Terbuthylazine 
[5915-41-3] 
Gardoprim N-tert-butyl-6-chloro-N'-ethyl- 
1,3,5-triazine-2,4-diamine 
C9H16ClN5 229.710 178 0.0320 12 
Terbutryn [886-50-0] Igran, Clarosan, 
Prebane 
N-tert-butyl-N'-ethyl-6-methyl-thio- 
1,3,5-triazine-2,4-diamine 
C10H19N5S 241.357 104 0.168 4.30 
4.07 
9.7 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3685 
Thiobencarb 
[28249-77-6] 
Benthiocarb, 
Bolero, Saturno 
S-4-chlorobenzyl-diethyl-thiocarbamate C12H16ClNOS 257.779 1.7 1 
Triallate [2303-17-5] Avadex BW, 
Far-Go 
S-(2,3,3-trichloro-2-propenyl)- 
bis(1-methylethyl)carbamothioate 
C10H16Cl3NOS 304.664 29 0.914 
Triclopyr 
[55335–06–3] 
Garlon, Truflon, 
Crossbow 
3,5,6-trichloro-2-pyridinyloxyacetic acid C7H4Cl3NO3 256.471 148–150 0.0607 2.68 
Trifluralin 
[1582-09-8] 
Treflan, Triflurex, 
Elancolan 
2,6-dinitro-N,N-dipropyl- 
4-trifluoromethylaniline 
C13H16F3N3O4 335.279 49 0.581 
Vernolate [1929-77-7] Surpass, Vernam S-propyldipropylthiocarbamate C10H21NOS 203.345 liquid 1 
Note: F.A.B. – fungicide algicide bactericide; G.R. – growth regulator 
pKa – acid dissociation constant; pKb - basicity constant 
(a) ester is quickly converted to parent acid. 
* Assuming .Sfus = 56 J/mol K. 
© 2006 by Taylor & Francis Group, LLC

3686 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 17.2.2 
Summary of selected physical-chemical properties of herbicides at 25°C 
Compound 
Selected properties 
Henry’s law constant 
H/(Pa·m3/mol) 
calcd P/C 
log KOC 
reported 
Vapor pressure Solubility 
log KOW PS/Pa PL/Pa S/(g/m3) CS/(mol/m3) CL/(mol/m3) 
Alachlor 0.0020 2.88 . 10–3 240 0.890 1.281 2.8 0.0022 2.23 
Ametryn 0.0001 3.92 . 10–4 185 0.814 3.191 2.58 1.23 . 10–4 2.59 
Amitrole 5.50 . 10–7* 1.14 . 10–5 280000 3330 68850 0.52 1.65 . 10–10 2.04 
Atrazine 4.00 . 10–5 1.19 . 10–3 30 0.139 4.140 2.75 2.88 . 10–4 2.00 
Barban 5.00 . 10–5* 1.60 . 10–4 11 0.043 0.1362 2.68 1.17 . 10–3 2.66 
Benefin 0.0088 0.0226 0.1 0.003 0.0077 5.29 29.4 3.95 
Bifenox 3.20 . 10–4 1.25 . 10–3 0.35 0.0010 0.0040 4.48 0.313 
Bromacil 4.00 . 10–5 8.46 . 10–4 815 3.121 66.018 2.11 1.28 . 10–5 1.86 
Bromacil lithium salt 4.13 . 10–5 1.51 
Bromoxynil 6.40 . 10–4 0.0307 130 0.469 22.54 < 2.0 1.36 . 10–3 
Bromoxynil octanoate 6.40 . 10–4 1.03 . 10–3 5.4 4.25 
sec-Bumeton 0.00097 3.98 . 10–3 620 2.756 11.31 3.52 . 10–4 2.30 
Butachlor 6.0 . 10–4 6.00 . 10–4 23 0.074 0.074 4.50 8.14 . 10–3 2.8 
Butralin 0.0017 3.86 . 10–3 1 0.0034 7.69 . 10–3 4.54 0.502 3.75 
Butylate 1.73 1.73 45 0.182 0.182 4.15 8.36 2.60 
Chloramben 0.93 51.19 700 3.398 187.05 1.11 0.274 1.32 
Chloramben salts 0 900000 1.18 
Chlorbromuron 5.33 . 10–5 2.69 . 10–4 50 0.170 0.858 3.13 . 10–4 2.7 
Chlorfenac 1 19.75 200 0.835 16.50 1.20 
Chlorpropham 0.001 0.001 89* 0.417 0.600 3.51 2.40 . 10–3 2.85, 2.8 
Chlorsufuron 6.13 . 10–4* 0.019 7000 19.56 609.4 –1.0 3.13 . 10–5 1.6 
Chlortoluron 1.70 . 10–5 2.80 . 10–4 70 0.329 5.418 2.38 5.17 . 10–5 2.81 
Cyanazine 2.13 . 10–7 5.41 . 10–6 171 0.710 18.03 2.22 3.00 . 10–7 2.3 
2,4-D 8.0 . 10–5* 1.11 . 10–3 400 1.810 25.12 2.81 4.42 . 10–5 1.68-2.73 
2,4-D (a) 0.001 0.0139 890 4.026 55.92 2.81 2.48 . 10–4 
2,4-D DMA salt 0 796000 2991 12000 1.3 
2,4-D esters 100 2.00 
Dalapon 1.0 . 10–5* 1.0 . 10–5 502000 3510 3510 0.78 2.85 . 10–9 0.48, 2.13 
Dalapon sodium salt 900000 5455 0 
2,4-DB 0 46 0.185 1.539 3.53 2.64 
2,4-DB butoxyethyl ester 0.00001 8 2.7 
2,4-DB DMA salt 0 709000 1.30 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3687 
Diallate 0.02 0.0224 50* 0.185 0.207 5.23 0.108 2.70 
Dicamba 0.0045* 0.0349 4500 20.36 158.1 2.21 2.21 . 10–4 0.342, –0.4 
Dicamba salt 400000 1646 0.301 
Dichlobenil 0.07* 1.076 18 0.105 1.609 2.74 0.669 2.91 
Dichlorophen (F.A.B) 1.30 . 10–8 4.24 . 10–7 30 0.111 3.635 1.17 . 10–7 
Dichloroprop 0.0004 3.25 . 10–3 350 1.489 12.099 3.43 2.69 . 10–4 3.0 
Dichlorprop-P 6.20 . 10–5 5.65 . 10–4 590 2.510 22.855 1.95 2.47 . 10–5 2.23 
Dichlorprop(2,4-DP)ester 1.0 . 10–5 50 0.149 3.00 
Diclofop-methyl 4.67 . 10–4* 6.57 . 10–4 0.8 2.34 . 10–3 3.30 . 10–3 4.58 0.199 4.2 
Dinitramine 0.00048 2.59 . 10–3 1 0.0031 0.017 4.30 0.155 3.6 
Dinoseb 0.01* 0.0141 50 0.208 0.293 3.56 0.048 2.85 
Diphenamid 4.0 . 10–6* 4.95 . 10–5 260 1.087 13.46 1.92 3.68 . 10–6 2.31 
Diquat 1.30 . 10–5 0.0170 700000 3800 4.96 . 106 –3.05* 3.42 . 10–9 
Diquat dibromide 0 718000 2087 
Diuron 9.2 . 10–5* 1.9 . 10–3 40 0.172 3.630 2.78 6.83 . 10–4 2.6 
EPTC 2* 2.0 370 1.954 1.954 3.2 1.023 2.3 
Fenopro (H., G.R.) 1.33 . 10–5* 4.54 . 10–4 140 0.519 17.73 2.56 . 10–5 2.48 
Fenuron 0.0267 0.305 3800 23.14 264.7 0.98 1.15 . 10–3 1.43 
Fenuron-TCA 4800 14.65 38.13 
Fluchloralin 0.004 6.03 . 10–3 1 0.00281 0.0042 4.60* 1.343 3.50 
Fluometuron 6.70 . 10–5 1.61 . 10–3 90 0.388 9.292 2.42 1.73 . 10–4 2.24 
Fluridone 1.3 . 10–5 2.5 . 10–4 12 0.036 0.7039 2.98 0.357 2.544-3.04 
Fluorodifen 9.5 . 10–6 4.47 . 10–6 2 0.0061 0.0293 3.65 3.13 
Glyphosate 4.0 . 10–5* 2.15 . 10–3 12000 70.96 3818.4 –1.6 5.64 . 10–7 3.43-3.69 
Ioxynil 0.001 0.066 50 0.135 8.904 7.42 . 10–3 
Ioxynil-octanoate 0.0037 8.21 . 10–3 
Isopropalin 0.0019 0.0019 0.11 3.56 . 10–4 3.56 . 10–4 4.71 5.34 4.0 
Isoproturon 3.30 . 10–6 6.52 . 10–5 55 0.267 5.266 2.25 1.24 . 10–5 1.86 
Linuron 0.023* 6.74 . 10–2 75 0.301 1.449 3.0 7.54 . 10–2 2.91 
MCPA (H., G.R.) 0.0002 1.70 . 10–3 1605 8.001 68.05 2.69* 2.50 . 10–5 2.03-2.07 
MCPA dimethylamine salt 1.30 
MCPA ester 0.0002 5.0 3.00 
MCPA-thioethyl 0.021 0.0309 2.3 0.0094 0.0138 2.234 
MCPB 5.77 . 10–5* 3.18 . 10–4 41 0.179 0.989 3.43 3.22 . 10–4 
MCPB sodium salt 0 200000 798 1.30 
Mecoprop 3.1 . 10–4 1.53 . 10–3 620 2.89 14.23 3.94 7.43 . 10–5 
Mecoprop-P 4.0 . 10–4 1.97 . 10–3 860 4.007 19.73 9.98 . 10–5 
Metobromuron 4.0 . 10–4 2.02 . 10–3 330 1.274 6.416 2.41 3.14 . 10–4 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3688 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 17.2.2 (Continued) 
Compound 
Selected properties 
Henry’s law constant 
H/(Pa·m3/mol) 
calcd P/C 
log KOC 
reported 
Vapor pressure Solubility 
PS/Pa PL/Pa S/(g/m3) CS/(mol/m3) CL/(mol/m3) log KOW 
Metolachlor 0.0042* 4.20 . 10–3 430 1.80 1.80 3.13 2.33 . 10–3 2.26 
Metoxuron 0.0043 0.0439 678 2.965 30.26 1.6 1.45 . 10–3 
Molinate 0.75 0.750 970 5.179 5.179 3.21 0.145 1.92 
Monolinuron 0.02 0.0732 735 3.425 12.54 2.30 5.84 . 10–3 2.3 
Monuron 6.66 . 10–5 2.12 . 10–3 230 1.007 32.08 1.94 6.62 . 10–5 2.00 
Neburon 4.8 0.017 0.1031 3.8 3.36 
Nitralin 0.2 3.526 0.5 0.0014 0.0255 138.2 
Oryzalin 1.30 . 10–6 1.87 . 10–5 2.4 0.0069 0.0995 3.73 1.88 . 10–4 2.78 
Paraquat < 0.0001 ~700000 
Paraquat dichloride salt 0 620000 6.0 
Pebulate 1.2* 1.20 92* 0.452 0.452 3.84 2.653 2.63 
Pentanochlor 8 0.033 0.134 
Picloram 6.0 . 10–5* 4.98 . 10–3 430 1.781 147.7 0.3 3.37 . 10–5 1.23 
Picloram-potassium salt 1430.6 1.20 
Profluralin 0.009 0.0116 0.10 2.88 . 10–4 3.7 . 10–4 6.34 31.35 4.0 
Prometon 0.0003 1.38 . 10–3 750 3.329 15.31 2.99 9.01 . 10–5 2.54 
Prometryn 0.0001 8.70 . 10–4 48 0.199 1.730 3.51 5.03 . 10–4 2.60 
Pronamide 0.011 0.208 15 0.059 1.105 3.26 0.188 2.90 
Propachlor 0.03 0.0958 600 2.834 9.055 2.18 0.011 1.90 
Propanil 0.005* 0.0230 200 0.917 4.218 3.07 5.45 . 10–3 2.17 
Propazine 3.90 . 10–6 2.89 . 10–4 8.6 0.037 2.766 2.90 1.04 . 10–3 2.19 
Propham sublime 250 1.395 5.804 2.60 1.71 
Propyzamide 5.80 . 10–5 1.15 . 10–3 15 0.059 1.157 3.28 9.90 . 10–4 2.90 
Pyrazon (chloridazon) 7* 441.8 360 1.625 102.5 1.14 4.309 2.08 
Simazine 8.50 . 10–6 8.27 . 10–4 5 0.025 2.412 2.18 3.43 . 10–4 2.11 
Simetryne 9.47 . 10–5 3.55 . 10–4 450 2.110 7.904 4.49 . 10–5 2.30 
2,4,5-T 0.005* 0.0922 220 0.861 15.89 3.13 5.81 . 10–3 1.72 
2,3,6-TBA 7700 34.15 340.6 4.34 
Terbacil 5.0 . 10–5 1.56 . 10–3 710 3.277 102.1 1.89 1.53 . 10–5 1.74 
Terbumeton 2.70 . 10–4 2.57 . 10–3 130 0.577 5.500 3.04 4.68 . 10–4 
Terbuthylazine 1.50 . 10–4 4.89 . 10–3 8.5 0.037 1.206 3.04 4.05 . 10–3 2.21-2.44 
Terbutryn 0.00013* 8.04 . 10–4 22 0.091 0.564 3.74 1.43 . 10–3 2.85 
Thiobencarb 2.2 2.20 19.1 0.074 0.0741 3.42 29.69 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3689 
Triallate 0.015 0.0164 4 0.013 0.0144 4.29 1.14 3.38 
Trifluralin 0.026* 0.0259 0.5* 1.49 . 10B3 2.57 . 10B3 5.34 10.08 4.14 
Vernolate 0.90 0.90 90 0.443 0.443 3.84 2.034 2.414 
Note: F.A.B. – fungicide algicide bactericide; G.R. – growth regulator, H - herbicide 
2,4-D(a) physical-chemical properties modified from values used in Vol. IV. 
* The reported values for this quantity vary considerably, whereas this selected value represents the best judgment 
of the authors. The reader is cautioned that it may be subject to large error. 
© 2006 by Taylor & Francis Group, LLC

3690 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 17.2.3 
Suggested half-life classes of herbicides in various environmental compartments 25°C 
Compound Air class Water class Soil class Sediment class 
Atrazine 1 8 6 6 
2,4-D 2 3 5 6 
Dalapon 5 6 6 6 
2,4-DB 3 4 4 5 
Diallate 2 6 6 7 
Dicamba 3 5 5 6 
Diuron 2 5 6 7 
EPTC 2 4 4 6 
Glyphosate 4 6 6 7 
Isopropalin 2 5 6 7 
Linuron 2 5 6 7 
Mecoprop 2 4 4 6 
Metolachlor 4 6 6 7 
Simazine 3 5 6 7 
2,4,5-T 3 5 5 6 
Triallate 4 6 4 5 
Trifluralin 4 6 6 7 
Class Mean half-life (hours) Range (hours) 
1 5 < 10 
2 17 (~ 1 day) 10–30 
3 55 (~ 2 days) 30–100 
4 170 (~ 1 week) 100–300 
5 550 (~ 3 weeks) 300–1,000 
6 1700 (~ 2 months) 1,000–3,000 
7 5500 (~ 8 months) 3,000–10,000 
8 17000 (~ 2 years) 10,000–30,000 
9 55000 (~ 6 years) > 30,000 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3691 
17.3 REFERENCES 
Abernethy, J.R., Davidson, J.M. (1971) Effect of calcium chloride on prometryne and fluometuron adsorption in soil. Weed Sci. 19, 
517–521. 
Abu-Qare, A.Q., Duncan, H.J. (2002) Photodegradation of the herbicide EPTC and the safener dichlormid, alone and in combination. 
Chemospere 1183–1189. 
Agrochemicals Handbook (1989) The Agrochemicals Handbook, The Royal Society of Chemistry, Nottingham, England. 
Alexander, M. (1973) Nonbiodegradable and other recalcitrant molecules. Biotech. Bioeng. 15, 611–647. 
Alexander, M. (1974) Microbial formation of environmental pollutants. Appl. Environ. Microbiol. 15, 611–647. 
Alexander, M., Aleem, M.I.H. (1961) Effect of chemical structure on microbial decomposition of aromatic herbicides. J. Agric. Food 
Chem. 9, 44–47. 
Altom, J.D., Stritzke, J.F. (1973) Degradation of dicamba, picloram, and few phenoxy herbicides in soils. Weed Sci. 21, 556–560. 
Anderson, J.P.E., Domsch, K.H. (1976) Microbial degradation of thiocarbamate herbicide diallate in soils and by pure cultures of 
soil microorganisms. Arch. Environ. Contam. Toxicol. 4, 1–7. 
Ang, C., Meleady, K., Wallace L. (1989) Pesticide residues in drinking water in the north coast region of New South Wales, Australia. 
Bull. Environ. Contam. Toxicol. 42, 595–602. 
Aquasol Database (1994) Aquasol Database. 5th Edition, Yalkowsky, S.H., Dannenfelzer, R.M., Editors, University of Arizona, 
Arizona. 
Armbrust, K.L. (2000) Pesticide hydroxyl radical rate constants: measurements and estimates of their importance in aquatic environments. 
Environ. Toxicol. Chem. 19, 2175–2180. 
Armstrong, D.E., Chesters, G., Harris, R.R. (1967) Atrazine hydrolysis in soil. Soil Sci. Am. Proc. 31, 61–66. 
Ashton, F.M., Crafts, A.S. (1973) Mode of Action of Herbicides. John Wiley & Sons, New York. 
Ashton, F.M., Crafts, A.S. (1981) Mode of Action of Herbicides. John Wiley & Sons, New York. 
Atkinson, R. (1985) Kinetics and mechanisms of gas-phase reactions of hydroxyl radicals with organic compounds under atmospheric 
conditions. Chem. Rev. 85, 69–201. 
Atkinson, R. (1987) Structure-activity relationship for estimation of rate constants for the gas-phase reactions of OH radicals with 
organic compounds. Int’l. J. Chem. Kinetics 19, 799–828. 
Atkinson, R., Carter, W.P.L. (1984) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under 
atmospheric conditions. Chem. Rev. 84, 437–470. 
Atkinson, R., Kwok, E.S.C., Arey, J. (1992) Photochemical processes affecting the fate of pesticides in the atmosphere. Brighton 
Crop Prot. Conf.-Pests Dis. (2), 469–476. 
Attaway, H.H., Camper, N.D., Paynter, M.J.B. (1982a) Anaerobic microbial degradation of diuron by pond sediment. Pest. Biochem. 
Physiol. 17, 96. 
Attaway, H.H., Paynter, M.J.B., Camper, N.D. (1982b) Degradation of selected phenylurea herbicides by anaerobic pond sediment. 
J. Environ. Sci. Health B17, 683–689. 
Augustijn-Beckers, P.W.M., Hornsby, A.G., Wauchope, R.D. (1994) The SCS/ARS/CES pesticides database for environmental 
decision-making. II. Additional compounds. Rev. Environ. Contam. Toxicol. 137, 1–82. 
Bacci, E., Calamari, D., Gaggi, C., Vighi, M. (1990) Bioconcentration of organic chemical vapors in plant leaves: Experimental 
measurements and correlation. Environ. Sci. Technol. 24, 885–889. 
Bahnick, D.A., Doucette, W.J. (1988) Use of molecular connectivity indices to estimate soil sorption coefficients for organic chemicals. 
Chemosphere 17, 1703–1715. 
Bailey, G.W., White, J.L. (1965) Herbicides - A compilation of their physical, chemical and biological properties. Res. Rev. 10, 1–97. 
Baker, E.A., Hayes, A.L., Butler, R.C. (1992) Physicochemical properties of agrochemicals: their effects on foliar penetration. Pestic. 
Sci. 34, 167–182. 
Ballantine, L.G., Newby, L.C., Simoneaux, B.J. (1978) Fate of atrazine in a marine environment. 4th International Congress of 
Pesticide Chemistry. Abstract No. V-528. IUPAC, Zurich, Switzerland. 
Banks, P.A., Ketchersid, M.L., Merkle, M.G. (1979) The persistence of fluridone in various soils under field conditions and controlled 
conditions. Weed Sci. 27, 631. 
Barak, E., Dinoor, A., Jacoby, B. (1983) Adsorption of systemic fungicides and a herbicide by some components of plant tissues, in 
relation to some physicochemical properties of the pesticides. Pestic. Sci. 14, 213–219. 
Barnsley, G.E., Rosher, P.H. (1961) The relationship between the herbicidal effect of 2,6-dichlorobenzonitrile and its persistence in 
soil. Weed Res. 1, 147–158. 
Battersby, N.S. (1990) A review of biodegradation kinetics in the aquatic environments. Chemosphere 21(10/11), 1243–1284. 
Battersby, N S., Wilson, V. (1989) Survey of the anaerobic biodegradation potential of organic chemicals in digesting sludge. Appl. 
Environ. Microbiol. 55, 433–439. 
Baur, J.R., Bovey, R. (1974) Ultraviolet and volatility loss of herbicides. Arch. Environ. Contam. Toxicol. 2, 275–288. 
Beestman, G.B., Demming, J.M. (1974) Dissipation of acetamide herbicides from soils. Agron. J. 66, 308–544. 
Beestman, G.B., Demming, J.M. (1976) Triallate mobility in soils. Weed Sci. 24, 541–544. 
Behrendt, H., Bruggemann, R. (1993) Modelling the fate of organic chemicals in the soil plant environment: model study of root 
uptake of pesticides. Chemosphere 27, 2325–2332. 
© 2006 by Taylor & Francis Group, LLC

3692 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Belluck, D., Felsot, A. (1981) Bioconcentration of pesticides by egg masses of the caddisfly, Triaenodes tardus milne. Bull. Environ. 
Contam. Toxicol. 26, 299–306. 
Benoit-Guyod, J.L., Crosby, D.G., Bowers, J.B. (1986) Degradation of MCPA by ozone and light. Water Res. 20, 67–72. 
Beste, C.E., Humburg, N.E. (1983) Herbicide Handbook of the Weed Science Society of America. 5th Edition, Weed Science Society, 
Champaign, Illinois. 
Beynon, K.I., Stoydin, G., Wright, A.N. (1972) The breakdown of the triazine herbicide cyanazine in soils and maize. Pest. Sci. 3, 
293–305; 379–401. 
Beynon, K.I., Stoydin, G., Wright, A.N. (1972) Comparison of the breakdown of the triazine herbicides cyanazine, atrazine and 
simazine in soils and in maize. Pest. Biochem. Physiol. 2, 153–161. 
Beynon, K.I., Wright, A.N. (1972) The fates of herbicides chlorthiamid and dichlobenil in relation to residues in crops, soils and 
animals. Res. Rev. 43, 23–53. 
Biagi, G.L., Guerra, M.C., Barbaro, A.M., Recanatini, M., Borea, P.A., Sapone, A. (1991) Lipophilicity for s-triazine herbicides. 
In: QSAR in Environmental Toxicology IV. Hermens, J.L., Opperhuizen, A., Editors, pp. 33–40, Elsevier, Amsterdam, The 
Netherlands. 
Bintein, S., Devillers, J. (1994) QSAR for organic chemical sorption in soils and sediments. Chemosphere 28(6), 1171–1188. 
Bjerke, E.L., Herman, J.L., Miller, P.W., Wetters, J.H. (1972) Residue study of phenoxy herbicides in milk and cream. J. Agric. Food 
Chem. 20, 963–967. 
Bottoni, P., Funari, E. (1992) Criteria for evaluating the impact of pesticides on groundwater quality. Sci. Total Environ. 123/124, 581–590. 
Bouchard, D C., Wood, A.L. (1988) Pesticides sorption on geologic material of varying organic carbon content. Toxicol. Ind. Health 
4, 341–349. 
Bowman, B.T. (1990) Mobility and persistence of alachlor, atrazine and metolachlor in plain field sand, and atrazine and isazofos 
in honeywood silt loam, using lysimeters. Environ. Toxicol. Chem. 9, 453–461. 
Bowman, B.T., Sans, W.W. (1979) The aqueous solubility of twenty-seven insecticides and related compounds. J. Environ. Sci. Health 
B14(6), 625–634. 
Bowman, B.T., Sans, W.W. (1983a) Further water solubility determination of insecticidal compounds. J. Environ. Sci. Health B18(2), 
221–227. 
Bowman, B.T., Sans, W.W. (1983b) Determination of octanol-water partitioning coefficients (KOW) of 61 organophosphorous and 
carbamate insecticides and their relationship to respective water solubility (S) values. J. Environ. Sci. Health B18(6), 667–683. 
Braumann, T., Grimme, L.H. (1981) Determination of hydrophobic parameters for pyridazinone herbicides by liquid-liquid partition 
and reversed-phase high-performance liquid chromatography. J. Chromatogr. 206(1), 7–15. 
Braumann, T., Weber, G., Grimme, H. (1983) Quantitative structure-activity relationship for herbicides. Reversed-phase liquid 
chromatographic retention parameter log kw versus liquid-liquid partition coefficient as a model of the hydrophobicity of 
phenylureas s-triazines and phenoxycarbonic acid derivatives. J. Chromatogr. 261, 329–343. 
Brewer, F., Lavy, T.L., Talbert, R.E. (1982) Effects of flooding on dinitroaniline persistence in soybean (Glycine max)-rice (Oryza 
sativa) rotation. Weed Sci. 30, 531–539. 
Briggs, G.G. (1969) Molecular structure of herbicides and their sorption by soils. Nature 223, 1288. 
Briggs, G.G. (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water 
solubilities, bioconcentration factors, and the parachor. J. Agric. Food Chem. 29, 1050–1059. 
Brooke, D., Nielsen, I., De Bruijn, J., Hermens, J. (1990) An interlaboratory evaluation of the stir-flask method for the determination 
of octanol water partition coefficients. (LOG POW). Chemosphere 21, 119–133. 
Broto, P., Moreau, G., Vandycke, C. (1984) Molecular structure: Perception, autocorrelation descriptor and SAR studies. System of 
atomic contribution for the calculation of the n-octanol/water partition coefficients. Eur. J. Med. Chem. Chim. Term. 19, 71–78. 
Brown, D.F., McDonough, L.M., McCool, D.K., Papendick, R.I. (1984) High performance liquid chromatographic determination of 
bromoxynil octanoate and metribuzin in runoff water from wheat fields. J. Agric. Food Chem. 32, 195–200. 
Brown, D.S., Flagg, E.W. (1981) Empirical prediction of organic pollutant sorption in natural sediments. J. Environ. Qual. 10, 382–386. 
Brusseau, M.L., Rao, P.S.C. (1989) The influence of sorbate-organic matter interactions of sorption nonequilibrium. Chemosphere 
18, 1691–1706. 
Brust, H.F. (1966) A summary of chemical and physical properties of Dursban. Down to Earth 22(3), 21–22. 
Budavari, S., Editor (1989) The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals. 11th Edition, Merck and Co., 
Rahway, New Jersey. 
Burkhard, N., Eberle, D.O., Guth, J.A. (1975) Model systems for studying the environmental behaviour of pesticides. Environ. Quality & 
Safety Supplement VIII, 204–213. 
Burkhard, N., Guth, J.A. (1976) Photodegradation of atrazine, altraton and ametryne in aqueous solution with acetone as a photosensitizer. 
Pest. Sci. 7, 65–71. 
Burkhard, N., Guth, J.A. (1981) Rate of volatilization of pesticides from soil surfaces; comparison of calculated results with those 
determined in a laboratory model system. Pest. Sci. 12, 37–44. 
Burkhard, N., Guth, J.A. (1981) Chemical hydrolysis of 2-chloro-4,6-bis(alkylamino)-1,3,5-triazine herbicides and their breakdown 
in soil under the influence of adsorption. Pest. Sci. 12(1), 45–52. 
Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B. (1988) Critical review of rate constants for reactions of hydrated electrons, 
hydrogen atoms and hydroxyl radicals (-OH/-O–) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886. 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3693 
Bysshe, S.E. (1982) Chapter 5, Bioconcentration factor in aquatic organisms. In: Handbook on Chemical Property Estimation Methods, 
Environmental Behavior of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, McGraw-Hill, Inc., 
New York. 
Call, D.J., Brooke, L.T., Kent, R.J., Poirier, S.H., Knuth, M.L., Shubat, P.J., Slick, E J. (1984) Toxicity, uptake, and elimination of 
the herbicides alachlor and dinoseb in freshwater fish. J. Environ. Qual. 13, 493–498. 
Call, D.J., Brooke, L.T., Kent, R.J., Knuth, M.L., Poirier, S.H., Huot, J.M., Lima, A.R. (1987) Bromacil and diuron herbicides: 
Toxicity, uptake, and elimination in freshwater fish. Arch. Environ. Contam. Toxicol. 16, 607–613. 
Camper, N.D., Stralka, K., Skipper, H.D. (1980) Aerobic and anaerobic degradation of profluralin and trifluralin. J. Environ. Sci. 
Health B15, 457–473. 
Capel, P.D., Larson, S.J. (1995) A chemodynamic approach for estimating losses of target organic chemicals from water during 
sample holding time. Chemosphere 30, 1097–1107. 
Carlson, W.C., Lignowski, E.M., Hopen, H.J. (1975) Mode of action of pronamide. Weed Sci. 23, 155–161. 
Carringer, R.D., Weber, J.B., Monaco, T.J. (1975) Adsorption-desorption of selected pesticides by organic matter and montmorillonite. 
J. Agric Food Chem. 23, 568–572. 
Carsel, R.F. (1989) Hydrologic processes affecting the movement of organic chemicals in soils. In: Reactions and Movement of 
Organic Chemicals in Soils. SSSA Special Publication No. 22, Sawhney, B.L., Brown, K., Eds., pp. 439–445, Soil Science 
Society of America and Society of Agronomy, Madison, Wisconsin. 
Caux. P.-Y., Kent, R.A., Tache, M., Grande, C., Fan, G.T., MacDonald, D.D. (1993) Environmental fate and effects of dicamba: 
A Canadian perspective. Rev. Environ. Contam. Toxicol. 133, 1–58. 
Celis, R., Barriuso, E., Houot, S. (1998) Effect of liquid sewage sludge addition on atrazine sorption and desorption by soil. 
Chemosphere 37, 1091–1107. 
Cessna, A.J., Grover, R. (1978) Spectrophotometric determination of dissociation constants of selected acidic herbicides. J. Agric. 
Food Chem. 26, 289–293. 
Cessna, A.J., Muir, D.C.G. (1991) Photochemical transformations. In: Environmental Chemistry of Herbicides. Vol. II, Grover, R., 
Cessna, A.J., Editors, Chapter 6, pp. 199–264, CRC Press, Boca Raton, Florida. 
Chaumat, E., Chamel, A., (1991) Sorption and permeation to phenylurea herbicides of isolated cuticles of fruit and leaves. Effect of 
cuticular characteristics and climatic parameters. Chemosphere 22, 85–97. 
Chau, A.S.Y., Thomson, K. (1978) Investigation of the integrity of seven herbicidal acids in water samples. J. Assoc. Off. Anal. Chem. 
61, 481–485. 
Chefetz, B., Bilkis, Y.I., Polubesova, T. (2004) Sorption-desorption behavior of triazine and phenylurea herbicides in Kishon river 
sediments. Water Res. 38, 4383–4394. 
Chen, Y-L., Chen, J-S. (1979) Degradation and dissipation of herbicide butachlor in paddy fields. J. Pest. Sci. 4, 431. 
Chen, Y.-L., Lo, C.-C., Wong, Y.-S. (1982) Photodecomposition of herbicide butachlor in aqueous solution. J. Pest. Sci. 7, 41. 
Cheung, M.W., Biggar, J.W. (1974) Solubility and molecular structure of 4-amine-3,5,6-trichloropicolinic acid in relation to pH and 
temperature. J. Agric. Food Chem. 22, 202–206. 
Chung, K.H., Ro, K.S., Roy, D. (1996) Fate and enhancement of atrazine biotransformation in anaerobic wetland sediment. Water 
Res. 30, 341–346. 
Colbert, F.O., Volk, V.V., Appleby, A.P. (1975) Sorption of atrazine, terbutryn and GS-14254 on natural and lime-amended soils. 
Weed Sci. 23, 390–394. 
Comfort, S.D., Inskeep, W.P., Macut, R.E. (1992) Degradation and transport of dicamba in a clay soil. J. Environ. Qual. 21, 653–658. 
Corbin, F.T., Upchurch, R.P. (1967) Influence of pH on detoxification of herbicides in soils. Weeds 15, 370–377. 
Corwin, D.L., Farmer, W.J. (1984) Non-single-valued adsorption-desorption of bromacil and diquat by freshwater sediments. Environ. 
Sci. Technol. 18, 507–514. 
Crosby, D.G., Leitis, E. (1973) The photodecomposition of trifluralin in water. Bull. Environ. Contam. Toxicol. 10, 237. 
Crosby, D.G., Tang, C.-S. (1969) Photodecomposition of 3-(p-chlorophenyl)-1,1-dimethylurea (monuron). J. Agric. Food. Chem. 17, 
1041–1043. 
Crosby, D.G., Wong, A.S. (1973) Photodecomposition of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in water. J. Agric. Food. Chem. 
21, 1052. 
Cunningham, J.J., Kemp, W.M., Stevenson, J.C., Boynton, W.R., Means, J.C. (1981) Stress effects of agricultural herbicides on 
submerged macrophytes in estuarine microcosms. pp. 147–182. In: Submerged aquatic vegetation in Chesapeake Bay. Annual 
Report to USEPA, UMCEES, Horn Point Environmental Laboratories, Cambridge, Maryland. 
Dao, T.H., Lavy, T.L., Sorensen, R.C. (1979) Atrazine degradation and residue distribution in soil. Soil Sci. Soc. Am. J. 43, 
1129–1134. 
Dao, T.H., Lavy, T.L., Dragun, J. (1983) Rationale of the solvent selection for soil extraction of pesticide residues. Res. Rev. 87, 
91–104. 
Davidson, J.M., McDougal, J.R. (1973) Experimental and predicted movement of three herbicides in a water-saturated soil. J. Environ. 
Qual. 2, 428–433. 
Davidson, J.M. et al. (1980) Adsorption, Movement and Biological Degradation of Large Concentration of Selected Pesticides in 
Soils. U.S. EPA-600/2-80-124. 
Day, B.E., Jordon, L.S., Russell, R.C. (1963) Persistence of dalapon residues in California soils. Soil Sci. 95, 326–330. 
© 2006 by Taylor & Francis Group, LLC

3694 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Day, K.E. (1991) Pesticide transformation products in surface waters. Effects on aquatic biota. pp. 217–241. In: Pesticide Transformation 
Products. Fate and Significance in the Environment. ACS Sym. series 457, Somasundaram, L., Coats, J.R., Editors, 
Chapter 16, American Chemical Society, Washington DC. 
Dean, J.D., Editor (1985) Lange’s Handbook of Chemistry. 13th Edition, McGraw-Hill, New York. 
Delle Site, A. (1997) The vapor pressure of environmentally significant organic chemicals: A review of methods and data at ambient 
temperature. J. Phys. Chem. Ref. Data 26, 157–193. 
Delle Site, A. (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for 
selected pollutants. A review. J. Phys. Chem. Ref. Data 30, 187–439. 
DePablo, R.S. (1976) Determination of saturated vapor pressure in range 10–1–10–4 torr by effusion method. J. Chem. Eng. Data 21, 
141–143. 
Deuel, L.E., Turner, F.T., Brown, K.W., Price, J.D. (1978) Persistence and factors affecting dissipation of molinate under flooded 
rice culture. J. Environ. Quality 7, 373. 
Devillers, J., Bintein, S., Domine, D. (1996) Comparison of BCF models based on log P. Chemosphere 33(6), 1047–1065. 
Di Guardo, A., Calamari, D., Zanin, G., Consalter, A., Mackay, D. (1994) A fugacity model of pesticide runoff to surface water: 
development and validation. Chemosphere 28, 511–531. 
Dixon, D., Rissman, E. (1985) Physical-Chemical Properties and Categorization of RCRA Wastes According to Volatility. U.S. EPA 
Report No. 450/3-85-007. NTIS PB 85-404527, Springfield, Virginia. 
Dobbs, A.J., Cull, M.R. (1982) Volatilization of chemicals-relative loss rates and the estimation of vapor pressures. Environ. Pollut. 
(series B) 3, 289–298. 
Dobbs, A.J., Hart, G.F., Parsons, A.H. (1984) The determination of vapour pressures from relative volatilization rates. Chemosphere 
13, 687–692. 
Donati, L., Keizer, J., Bottoni, P., Scenati, R., Funar, E. (1994) Koc estimation of diethylatrazine, diisopropylatrazine, hexazionone, 
and terbuthylazine by reversed phase chromatography and sorption isotherms. Toxicol. Environ. Chem. 44(1–2), 1–10. 
Donovan, S.F. (1996) New method for estimating vapor pressure by the use of gas chromatography. J. Chromatogr. A, 749, 123–129. 
Donovan, S.F., Pescatore, M.C. (2002) Method for measuring the logarithm of the octanol-water partition coefficient by using short 
octadecyl-poly(vinyl alcohol) high-performance liquid chromatography columns. J. Chromatog. A, 952, 47–61. 
Dorfler, U., Alder-Kohler, R., Schneider, P., Scheunert, I., Korte, F. (1991) A laboratory model system for determining the volatility 
of pesticides from soil and plant surfaces. Chemosphere 23(4), 485–496. 
Dousset, C., Mouvet, C., Schiavon, M. (1994) Sorption of terbuthylazine and atrazine in relation to the physicochemical properties 
of three soils. Chemosphere 28, 467–476. 
Dowd, J.F., Bush, P.B., Neary, D.G., Taylor, J.W., Berisford, Y.C. (1993) Modeling pesticide movement in forested watersheds: Use 
of PRZM for evaluating pesticide options in loblolly pine stand management. Environ. Toxicol. Chem. 12, 429–439. 
Doyle, R.C., Kaufman, D.D., Burt, G.W. (1978) Effect of dairy manure and sewage sludge on 14C-pesticide degradation in soil. 
J. Agric. Food Chem. 26, 987–989. 
Draper, W.M., Crosby, D.G. (1984) Solar photooxidation of pesticides in dilute hydrogen peroxide. J. Agric. Food Chem. 32, 231. 
Duah-Yentumi, S., Kuwatsuka, S. (1980) Effect of organic matter and chemical fertilizers on the degradation of benthiocarb and 
MCPA herbicides in the soil. Soil Sci. Plant Nutr. 26, 541. 
Dubelman, S., Bremer, M.J. (1983) Determination of the octanol/water partition coefficient of MAPC products. Report No. MSL- 
3219, Monsanto Company Agricultural Research Division, St. Louis. 
Eadsforth, C.V., Moser, P. (1983) Assessments of reversed phase chromatographic methods for determining partition coefficients. 
Chemosphere 12, 1459–1475. 
Edwards, C.A. (1973) Persistent Pesticides in the Environment. 2nd Edition, CRC Press, Cleveland, Ohio. 
Edwards, C.A. (1977) Nature and origins of pollution of aquatic systems by pesticides. In: Pesticides in Aqatic Environments. 
Khan, M.A.Q., Editor, Plenum Press, New York. 
Eichelberger, J.W., Lichtenberg, J.J. (1971) Persistence of pesticides in river water. Environ. Sci. Technol. 5, 541–544. 
Eisler, R. (1985) Atrazine Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service Biological 
Rep. 53pp. 
El-Dib, M.A., Aly, O.M. (1976) Persistence of some phenylamide pesticides in the aquatic environment. I. Hydrolysis. Water Res. 
10, 1047. 
El-Dib, M.A., Abou-Waly, H.F. (1998) Biodegradation of some triazines and phenylureas in surface waters. Water Res. 32, 
1881–1887. 
Elgar, K.E. (1983) Pesticide residues in water-An appraisal. In: International Union of Pure and Applied Chemistry. Pesticide 
Chemistry: Human Welfare and the Environment. Vol. 4, Miyamoto, J., Kearney, P.C., Editors, Pergamon Press, Oxford, 
England. 
Ellgehausen, H., Guth, J.A., Esser, H.O. (1980) Factors determining bioaccumulation potential of pesticides in the individual 
compartments of aquatic food chains. Ecotoxicol. Environ. Saf. 4, 134–157. 
Ellgehausen, H., D’Hondt, C., Fuerer, R. (1981) Reversed-phase chromatography as a general method for determining octanol/water 
partition coefficients. Pest. Sci. 12, 219. 
Ellington, J.J., Stancil, F.E., Payne, W.D. (1987) Measurement of Hydrolysis Rate Constants for Evaluation of Hazardous Waste 
Land Disposal. Volume 1, Data on 32 chemicals. U.S. EPA-600/3-86/043, Washington, DC. 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3695 
Ellington, J.J., Stancil, F.E., Payne, W.D. (1987) Measurement of Hydrolysis Rate Constants for Evaluation of Hazardous Waste 
Land Disposal. Volume 2, Data on 54 chemicals. U.S. EPA, EPA-600/53-87/019, Washington, DC. 
Ellington, J.J., Stancil, F.E., Payne, W.D., Trusty, C.D. (1988) Measurement of Hydrolysis Rate Constants for Evaluation of Hazardous 
Waste Land Disposal. Volume 3, Data on 70 chemicals. U.S. EPA, EPA-600/3-88/028, NTIS PB 88-234042, Springfield, Virginia. 
Ellis, P.A., Camper, N.D. (1982) Aerobic degradation of diuron by aquatic microorganisms. J. Environ. Sci. Health B17, 277–290. 
Erkell, L., Walum, E. (1979) Differentiation of cultured neuroblastoma cells by urea derivatives. Febs Letters 104, 401. 
Evelyne, C., Andre, C., Georges, T., Michel, T. (1992) Quantitative relationships between structure and penetration of phenylurea 
herbicides through isolated plant cuticles. Chemosphere 24(2), 189–200. 
Farmer, W.J. (1976) A Literature Survey of Benchmark Pesticides. Science Communication Division of Dept. of Medical and Public 
Affairs, Medical Center of George Washington University, Washington DC. 
Faust, B.C., Hoigne, J. (1990) Photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmos. 
Environ. 24A, 79–89. 
Feigenbrugel, V., Le Calve, S., Mirabel, P. (2004) Temperature dependence of Henry’s law constants of metolachlor and diazinon. 
Chemosphere 57, 319–327. 
Fendinger, N.J., Glotfelty, D.E. (1988) A laboratory method for the determination of air-water Henry’s law constants for several 
pesticides. Environ. Sci. Technol. 22, 1289–1293. 
Fendinger, N.J., Glotfelty, D.E., Freeman, H.P. (1989) Comparison of two experimental techniques for determining air-water Henry’s 
law constants. Environ. Sci. Technol. 23(12), 1528–1531. 
Finizio, A., Di Guardo, A., Arnoldi, A., Vighi, M., Fanelli, R. (1991) Different approaches for the evaluation of KOW for s-triazine 
herbicides. Chemosphere 23, 801–812. 
Finizio, A., Vighi, M., Sandroni, D. (1997) Determination of n-octanol/water partition coefficient (KOW) of pesticide. Critical review 
and comparison of methods. Chemosphere 34, 131–161. 
Foy, C.L. (1976) The chlorinated aliphatic acid. In: Herbicides: Chemistry, Degradation and Mode of Action. Marcel Dekker, 
New York. 
Francioso, O., Bak, E., Rossi, N., Sequi, P. (1992) Sorption of atrazine and trifluralin in relation to the physico-chemical characteristics 
of selected soils. Sci. Total Environ. 123/124, 503–512. 
Frank, R., Clegg, B.S., Patni, N.K. (1991) Dissipation of cyanazine and metolachlor on a clay loam, Ontario, Canada, 1987–1990. 
Arch. Environ. Contam. Toxicol. 21, 253–262. 
Freed, V.H. (1953) Herbicides mechanisms – Mode of action other than aryloxyalkyl acids. J. Agric. Food Chem. 1, 47–51. 
Freed, V.H. (1966) Chemistry of herbicides. In: Pesticides and Their Effects on Soils and Water. Breth, S.A., Editor, pp. 28–39, Soil 
Science Society of America. 
Freed, V.H. (1976) Solubility, hydrolysis, dissociation constants and other constants of benchmark pesticides. In: A Literature Survey 
of Benchmark Pesticides. pp. 1–18, Medical Center of George Washington University, Washington DC. 
Freed, V.H., Burschel, P. (1957) The relationship of water solubility to dosage of herbicides. Z. Pflanzenkrankh, µ. Pflanzenschutz 
64, 477. 
Freed, V.H., Haque, R. (1973) Chapter 10, Adsorption, movement, and distribution of pesticides in soil. In: Pesticide Formulations. 
Van Valkenburg, Editor, pp. 441–459, Marcel Dekker, New York. 
Freed, V.H., Haque, R., Vernetti, J. (1967) Thermodynamic properties of some carbamates and thiocarbamates in aqueous solutions. 
J. Agric. Food Chem. 15, 1121–1123. 
Freese, E., Levin, B.C., Pearce, R., Sreevalson, T., Kaufman, J.J., Koski, W.S., Semo, N.M. (1979) Correlation between the growth 
inhibitory effects, partition coefficients and teratogenic effects of lipophilic acids. Teratology 20(3), 413–440. 
Freiberg, M.B., Crosby, D.G. (1986) Loss of MCPA from simulated spray droplets. J. Agric. Food Chem. 34, 92–95. 
Freitag, D., Balhorn, L., Geyer, H., Korte, F. (1985) Environmental hazard profile of organic chemicals. An experimental method 
for the assessment of the behaviour of chemicals in the ecosphere by simple laboratory tests with C-14 labelled chemicals. 
Chemosphere 14, 1589–1616. 
Freitag, D., Geyer, H., Kraus, A., Viswanathan, R., Kotzias, D., Attar, A., Klein, W., Korte, F. (1982) Ecotoxicological profile analysis. 
VII. Screening chemicals for their environmental behavior by comparative evaluation. Ecotoxicol. Environ. Saf. 6, 60–81. 
Freitag, D., Lay, J.P., Korte, F. (1984) Environmental hazard profile - Test results to structure and translation into the environment. 
In: QSAR in Environmental Toxicology. Kaiser, K.L.E., Editor, pp. 111–136, D. Reidel Publishing Company, Dordrecht, The 
Netherlands. 
Friedrich, K., Stammbach, K. (1964) Gas chromatographic determination of small vapour pressures. Determination of the vapour 
pressures of some triazine herbicides. J. Chromatogr. 16, 22–28. 
Fujita, T., Iwasa, J., Hansch, C. (1964) A new substituent constant derived from partition coefficients. J. Am. Chem. Soc. 86(23), 
5175–5180. 
Funderburk, Jr., H.H., Bozarth, G.A. (1967) Review of the metabolism and decomposition of diquat and paraquat. J. Agric. Food 
Chem. 15(4), 563–567. 
Funderburk, Jr., H.H., Negi, N.S., Lawrence, J.M. (1960) Photochemical decomposition of diquat and paraquat. Weeds. 14, 240. 
Furmidge, C.G., Osgerby, J.M. (1967) Persistence of herbicides in soil. J. Sci. Food Agric. 18, 269. 
Gao, J.P., Maguhn, J., Spitzauer, P., Kettrup, A. (1997) Distribution of pesticides in the sediment of the small Teufelsweiher pond 
(Southern Germany). Wat. Res. 31, 2811–2819. 
© 2006 by Taylor & Francis Group, LLC

3696 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Gao, J.P., Maguhn, J., Spitzauer, P., Kettrup, A. (1998) Sorption of pesticides in the sediment of the Teufelsweiher pond (Southern 
Germany). I: Equilibrium assessments, effect of organic carbon content and pH. Wat. Res. 32, 1662–1672. 
Gaillardon, P., Calvert, R., Terce, M. (1977) Adsorption and desorption of terbutryne by a calcium-montmorerillonite and humic acid 
alone or in combination. Weed Res. 17, 41–48. 
Garten, Jr., C.T., Trablka, J.R. (1983) Evaluation of models for predicting terrestrial food chain behavior of xenobiotics. Environ. 
Sci. Technol. 17, 590–595. 
Gautier, C. Le Calve, C., Miabel, P. (2003) Henry’s law constants measurements of alachlor and dichlorvos between 283 and 298 
K. Atmos. Environ. 37, 2437–2453. 
Gawlik,. B.M., Feicht, E.A., Karcher, W., Kettup, A., Mujntau, H. (1998) Application of the European reference soil set (EUROSOILS) 
to a HPLC-screening method for the estimation of soil adsorption coefficients of organic compounds. Chemosphere 36, 
2903–2919. 
Gawlik, B.M., Bo, F., Kettrup, A., Muntau, H. (1999a) Characterisation of a second generation of European reference soils for 
sorption studies in the framework of chemical testing - Part I: chemical composition and pedological properties. Sci. Total 
Environ. 229, 99–107. 
Gawlik, B.M., Kettrup, A., Muntau, H. (1999b) Characterisation of a second generation of European reference soils for sorption studies 
in the framework of chemical testing - Part II: soil adsorption behaviour of organic chemicals. Sci. Total Environ. 229, 109–120. 
Gawlik, B.M., Kettrup, A., Muntau, H. (2000) Estimation of soil adsorption coefficients of organic compounds by HPLC screening 
using the second generation of the European reference soil set. Chemosphere 41,7–1347. 
Geller, A. (1980) Studies on degradation of atrazine by bacterial communities enriched from various biotypes. Arch. Environ. Contam. 
Toxicol. 9, 289. 
GEMS (1986) Graphical Exposure Modeling Systems. Fate of atmospheric pollutants (FAP) database. Office of Toxic Substances, 
U.S. Environmental Protection Agency. 
Gerstl, Z. (1990) Estimation of organic chemical sorption by soils. J. Contam. Hydrology 6, 367–375. 
Gerstl, Z., Helling, C.S. (1987) Evaluation of molecular connectivity as a predictive method for the adsorption of pesticides by soils. 
J. Environ. Sci. Health B22, 55–69. 
Gerstl, Z., Kilger, L. (1990) Fractionation of the organic matter in soils and sediments and their contribution to the sorption of 
pesticides. J. Environ. Sci. Health 825, 729–741. 
Gerstl, Z, Mingelgrin, U. (1984) Sorption of organic substances by soils and sediments. J. Environ. Sci. Health B19(3), 297–312. 
Getzen, F.W., Ward, T.M. (1971) Influence of water structure on aqueous solubility. Ind. Eng. Chem. Prod. Res. Develop. 10, 
122–132. 
Geyer, H., Kraus, A.G., Klein, W., Richter, E., Korte, F. (1980) Relationship between water solubility and bioaccumulation potential 
of organic chemicals in rats. Chemosphere 9, 277–291. 
Geyer, H., Politzki, G., Freitag, D. (1984) Prediction of ecotoxicological behaviour of chemicals: Relationship between n-octanol/water 
partition coefficient and bioaccumulation of organic chemicals by alga Chlorella. Chemosphere 13, 269–284. 
Geyer, H., Scheunert, I., Bruggemann, R., Steinberg, C., Korte, F., Kettrup, A. (1991) QSAR for organic chemical bioconcentration 
in daphnia, algae, and mussels. Sci. Total Environ. 109/110, 387–394. 
Geyer, H., Sheenhan, P., Kotzias, D., Freitag, D., Korte, F. (1982) Prediction of ecotoxicological behaviour of chemicals: relationship 
between physicochemical properties and bioaccumulation of organic chemicals in the mussel mytilus edulis. Chemosphere 
11, 1121–1134. 
Geyer, H., Visvanathan, R., Freitag, D., Korte, F. (1981) Relationship between water solubility of organic chemicals and their 
bioaccumulation by the alga Chlorella. Chemosphere 10, 1307–1313. 
Ghossemi, M., Fargo, L., Painter, P., Quinlivan, S., Scofield, R., Takata, A. (1981) Environmental fates and impacts of major forest 
use pesticides and toxic substances. A-149 (Citing glyphosate registration data). Washington DC. 
Ghosh, P.K., Philip, L. (2004) Atrazine degradation in anaerobic environment by a mixed microbial consortium. Wat. Res. 38, 
2276–2283. 
Gingerich, L.L., Zimdahl, R.L. (1976) Soil persistence of isopropalin and oryzalin. Weed Sci. 24, 431–434. 
Gish, T.J., Sadeghi, A., Wienhold, B.J. (1995) Volatilization of alachlor and atrazine as influenced by surface litter. Chemosphere 
31, 2971–2982. 
Glass, B.L. (1975) Photosensitization and luminescence of picloram. J. Agric. Food Chem. 23, 1109. 
Glotfelty, D.E. (1981) Atmospheric dispersion of pesticides from treated fields. Ph.D. Thesis of University of Maryland, College 
Park, Maryland. 
Glotfelty, D.E., Taylor, A.W., Turner, B.C., Zoller, W.H. (1984) Volatilization of surface-applied pesticides from fallow soils. J. Agric. 
Food Chem. 32, 638–643. 
Glotfelty, D E., Leech, M.M., Jersey, J., Taylor, A.W. (1989) Volatilization and wind erosion of soil surface applied atrazine, simazine, 
alachlor, and toxaphene. J. Agric. Food Chem. 37, 546–551. 
Golab, T., Althaus, W.A., Wooten, H.L. (1979) Fate of 14C trifluralin in soil. J. Agric. Food Chem. 27, 163–179. 
Goodman, M.A. (1997) Vapor pressure of agrochemicals by the Knudsen effusion method using a quartz crystal microbalance. 
J. Chem. Eng. Data 42, 1227–1231. 
Gorge, G., Nagel, R. (1990) Kinetics and mechanism of 14C-lindane and 14C-atrazine in early life stages of zebra fish (Brachdanio 
rerio). Chemosphere 21, 1125–1137. 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3697 
Goswami, K.P., Green, R.E. (1971) Microbial degradation of the herbicide atrazine and its 2-hydroxy analog in submerged soils. 
Environ. Sci. Technol. 5, 426. 
Grain, C.F. (1982) Chapter 14, Vapor pressure. In: Handbook on Chemical Property Estimation Methods. Environmental Behavior 
of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, McGraw-Hill, New York. 
Gramatica, P., Corradi, M., Consonni, V (2000) Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides 
by molecular descriptors. Chemosphere 41, 762–777. 
Grayson, B.T., Fosbracey, L.A. (1982) Determination of the vapor pressure of pesticides. Pest. Sci. 13, 269–278. 
Grayson, B.T., Kleiser, D.A. (1990) Phloem mobility of xenobiotics. IV. Modeling of pesticide movement in plants. Pestic. Sci. 30, 
67–79. 
Grover, R. (1974) Adsorption and desorption of trifluralin, triallate and diallate by various adsorbents. Weed Sci. 22(4), 405–408. 
Grover, R. (1991) Chapter 2, Nature transport, and fate of airborne residues. In: Environmental Chemistry of Herbicides. Vol. II., 
Grover, R., Cessna, A.J., Editors, pp. 90–117, CRC Press, Boca Raton, Florida. 
Grover, R., Cessna, A.J., Editors (1991) Environmental Chemistry of Herbicides. Volume II, CRC Press, Boca Raton, Florida. 
Grover, R., Cessna, A.J., Banting, J.D., Morse, P.M. (1979) Adsorption and bioactivity of diallate, triallate and trifluralin. Weed Res. 
19, 363–369. 
Grover, R., Spencer, W.F., Farmer, W., Shoup, T.D. (1978) Triallate vapor pressure and volatilization from glass surfaces. Weed Sci. 
26, 505–508. 
Grover, R., Wolt, J.D., Cessna, A.J., Schiefer, H.B. (1997) Environmental fate of trifluralin. Rev. Environ. Contam. Toxicol. 153, 1–64. 
Guenzi, W.D., Beard, W.E. (1974) In: Pesticides in Soil and Water. Guenzi, W.D., Editor, American Soil Science Society, Madison, 
Wisconsin. pp. 108–122. 
Gunkel, G., Streit, B. (1980) Mechanisms of bioaccumulation of a herbicide (atrazine, s-triazine) in a freshwater mollusc (Ancylus 
fluviatilis mull) and a fish (Coregonus fera jurine). Wat. Res. 14, 1573–1584. 
Gunther, F.A., Westlake, W.E., Jaglan, P.S. (1968) Reported solubilities of 738 pesticide chemicals in water. Res. Rev. 20, 1–148. 
Gustafson, D.I. (1989) Groundwater ubiquity score: A simple method for assessing pesticide leachability. Environ. Toxicol. Chem. 
8, 339–357. 
Guzik, F.F. (1978) Photolysis of isopropyl 3-chlorocarbanilate in water. J. Agric. Food. Chem. 26, 53. 
Gysin, H. (1962) Triazine herbicides - their chemistry, biological properties and mode of action. Chem. Ind. 31, 1393. 
Haag, W.R., Yao, C.C.D. (1992) Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. 
Sci. Technol. 26, 1005–1013. 
Haderlein, S B., Weissnahr, K.W., Schwarzenbach, R.P. (1996) Specific adsorption of nitro-aromatic explosives and pesticides to 
clay minerals. Environ. Sci. Technol. 30, 612–622. 
Hahn, R.R., Burnside, O.C., Lavy, T.L. (1969) Dissipation and phytotoxicity of dicamba. Weed Sci. 17, 3–8. 
Halfon, E., Galassi, S., Bruggermann, R., Provini, A. (1996) Selection of priority properties to assess environmental hazard of 
pesticides. Chemosphere 33(8), 1543–1562. 
Hall, R.C., Giam, C.S., Merkle, M.G. (1968) The photolytic degradation of picloram. Weed Res. 8, 292. 
Hamaker, J.W. (1972) Decomposition: Quantitative aspects. In: Organic Chemicals in the Soil Environment. Goring, C.A.I., Hamaker, 
J.W., Editors, pp. 253–341, Marcel Dekker, New York. 
Hamaker, J.W. (1975) The interpretation of soil leaching experiments. In: Environmental Dynamics of Pesticides. Haque, R., Freed, 
V.H., Editors, pp. 115–133, Plenum Press, New York. 
Hamaker, J.W., Karlinger, H.G. (1971) Vapor pressure of pesticides. In: Pesticidal Formulation Research: Physical and Colloidal 
Chemical Aspects. Gould, R.F., Ed., pp. 39–54, Adv. Chem. Ser. 86, Am. Chem. Soc., Washington, DC. 
Hamaker, J.W., Thompson, J.M. (1972) Adsorption. In: Organic Chemicals in the Soil Environment. Volume I. Goring, C.A.I., 
Hamaker, J.W., Editors, pp. 49–143, Marcel Dekker, New York. 
Hance, R.J. (1969) Decomposition of herbicides in soil. J. Sci. Food Agric. 20(3), 144–145. 
Hance, R.J. (1974) Soil organic matter and the adsorption and decomposition of the herbicides atrazine and linuron. Soil Biol. 
Biochem. 6, 39–42. 
Hance, R.J. (1976) Adsorption of glyphosate by soils. Pest. Sci. 7, 363–366. 
Hance, R.J. (1979) Effect of pH on the degradation of atrazine, dichlorprop, linuron and propyzamide in soil. Pest. Sci. 10, 83–86. 
Hance, R.J., Haynes, R.A. (1981) The kinetics of linuron and metribuzin decomposition in soil using different laboratory systems. 
Weed Res. 21, 87–92. 
Hansch, C., Anderson, S.M. (1967) The effect of intramolecular hydrophobic boding on partition coefficients. J. Org. Chem. 32, 
2583–2586. 
Hansch, C., Leo, A. (1979) Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley, New York, New York. 
Hansch, C., Leo, A. (1985) Medchem. Project Issue No. 26, Pomona College, Claremont, California. 
Hansch, C., Leo, A. (1987) Medchem. Project Issue No. 28, Pomona College, Claremont, California. 
Hansch, C., Leo, A., Hoekman, D. (1995) Exploring QSAR. Hydrophobic, Electronic, and Steric Constants. ACS Professional 
Reference Book, American Chemical Society, Washington, DC. 
Harris, J.C. (1982) Chapter 8, Rate of aqueous photolysis. In: Handbook on Chemical Property Estimation Methods. Environmental 
Behavior of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, McGraw-Hill, New York. 
Harris, C.I., Warren, G.F. (1964) Detection of phosphorus fixation capacity in organic soil. Weeds 12, 120–126. 
© 2006 by Taylor & Francis Group, LLC

3698 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Hartley, D., Kidd, H. (1983) The Agrochemicals Handbook. Royal Society of Chemistry, Union Brothers Ltd., Old Working Surrey, 
England. 
Hartley, D., Kidd, H. (1987) The Agrochemicals Handbook. 2nd Edition, Royal Society of Chemistry, Union Brothers Ltd., Old 
Working Surrey, England. 
Hartley, G.S., Graham-Bryce, I.J. (1980) Physical Principles of Pesticide Behaviour. Academic Press, New York. 
Harvey, Jr., J., Pease, H.L. (1973) Decomposition of methomyl in soil. J. Agric. Food Chem. 21, 784–786. 
Harvey, R.G. (1974) Soil adsorption and volatility of dinitroaniline herbicides. Weed Sci. 22, 120–124. 
Hassink, J., Klein, A., Kordel, W., Klein, W. (1994) Behaviour of herbicides in non-cultivated soils. Chemosphere 28, 285–295. 
Hay, J.V. (1990) Chemistry of sulfonyl herbicides. Pestic. Sci. 29, 247–261. 
Hedlund, R.T., Youngson, C.R. (1972) The rates of photodecomposition of picloram in aqueous systems. In: Fate of Organic Pesticides 
in the Aquatic Environment. Advances in Chemistry Series No. 111, Faust, S., Editor, p. 159, American Chemical Society, 
Washington, DC. 
Heller, S.R., Scott, K., Bigwood, D.W. (1989) The need for data evaluation of physical and chemical properties of pesticides: The 
ARS pesticide properties database. J. Chem. Inf. Comput. Sci. 29, 159–162. 
Helling, C.S. (1976) Dinitroaniline herbicides in soils. J. Environ. Qual. 5, 1–15. 
Hemond, H.F., Fechner, E.J. (1994) Chemical Fate and Transport in the Environment. Academic Press, New York. 
Herbicide Handbook (1974) Herbicide Handbook. 3rd Edition, Weed Science Society of America, Champaign, Illinois. 
Herbicide Handbook (1978) Herbicide Handbook. 4th Edition, Weed Science Society of America, Champaign, Illinois. 
Herbicide Handbook (1983) Herbicide Handbook. 5th Edition, Beste, C.E., Editor, Weed Science Society of America, Champaign, 
Illinois. 
Herbicide Handbook (1989) Herbicide Handbook. 6th Edition, Weed Science Society of America, Champaign, Illinois. 
Herrmann, M., Kotzias, D., Korte, F. (1985) Photochemical behaviour of chlorsulfuron in water and in adsorbed phase. Chemosphere 14, 3. 
Hiltibran, R.C. (1972) Fate of diquat in the aquatic environment. Research Report No. 52, Water Resources Center, University of 
Illinois, Urbana, Illinois. 
Hine, J., Mookerjee, P K. (1975) The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural 
contributions. J. Org. Chem. 40, 292–298. 
Hinman, M.L., Klaine, S.J. (1992) Uptake and translocation of selected organic pesticides by the rooted aquatic plant Hydrilla 
verticillata royale. Environ. Sci. Technol. 26, 609–613. 
Hodge, H.C., Downs, W.L., Panner, B.S., Smith, D.W., Maynard, E.A. (1967) Fed. Cosmet. Toxicol. 5, 513–531. 
Hodgman, C.R., Editor (1952) Handbook of Chemistry and Physics. 34th Edition, Chemical Rubber Publishing Co., Cleveland, 
Ohio. 
Hodson, J., Williams, N.A. (1988) The estimation of the adsorption coefficient (KOC) for soils by high performance liquid chromatography. 
Chemosphere 17, 67–77. 
Hormann, W.D., Eberle, D.O. (1972) The aqueous solubility of 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine (atrazine) 
obtained by an improved analytical method. Weeds Res. 12, 199–202. 
Hornsby, A.G., Wauchope, R.D., Herner, A.E. (1996) Pesticide Properties in the Environment. Springer-Verlag, New York. 
Horowitz, M., Herzlinger, G. (1974) Soil conditions affecting the dissipation of diuron, flumeturon and propham from the soil surface. 
Weed Res. 14, 257. 
Howard, P.H., Editor (1989) Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Volume I. Large Production 
and Primary Pollutants. Lewis Publishers, Chelsea, Michigan. 
Howard, P.H., Editor (1991) Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Volume III. Pesticides. 
Lewis Publishers, Chelsea, Michigan. 
Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., Michalenko, E.M. (1991) Handbook of Environmental Degradation Rates. 
Lewis Publishers, Chelsea, Michigan. 
Huber, G., Gemes, E. (1981) Decomposition of urea herbicide linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea) in water of 
Lake Balaton. Hungar. J. Ind. Chem. 9, 113. 
Hurle, R.J., Freed, V.H. (1972) Effect of electrolytes on the solubility of some 1,3,5-triazines and substituted ureas and their adsorption 
of soil. Weeds Res. 12, 1–10. 
Ilchmann, A., Wienke, G., Meyer, T., Gmehling, J. (1993) Concurrent liquid/liquid chromatography - A reliable method for determination 
of partition coefficients. Chem.-Ing.-Tech. 65(1), 72–75. 
Isensee, A.R. (1976) Variability of aquatic model ecosystem-derived data. Inst. J. Environ. Studies 10, 35. 
Isensee, A.R. (1991) Chapter 5, Bioaccumulation and food chain accumulation. In: Environmental Chemistry of Herbicides. Vol. II, 
Grover, R., Cessna, A.J., Editors, pp. 188–198, CRC Press, Boca Raton, Florida. 
Jafvert, C T., Westall, J.C., Grieder, E., Schwarzenbach, R P. (1990) Distribution of hydrophobic ionogenic organic compounds 
between octanol and water: organic acids. Environ. Sci. Technol. 24(12), 1795–1803. 
Johnson, W.W., Julin, A M. (1974) A Review of the Literature on the Use of Diuron in Fisheries. Bureau of Sport Fish and Wildlife. 
PB 235446, U.S. Dept. of Interior, Columbia, Missouri. 
Jones, T.W., Kemp, W.M., Stevenson, J.C., Means, J.C. (1982) Degradation of atrazine in estuarine water/sediments systems and 
soils. J. Environ. Qual. 11(4), 632–638. 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3699 
Jury, W.A., Farmer, W.J., Spencer, W.F. (1984) Behavior assessment model for trace organics in soil: II. Chemical classification and 
parameter sensitivity. J. Environ. Qual. 13, 567–572. 
Jury, W.A., Farmer, W.J., Spencer, W.F. (1984) Behavior assessment model for trace organics in soil: III. Application of screening 
model. J. Environ. Qual. 13, 573–579. 
Jury, W.A., Spencer, W.F., Farmer, W.J. (1983) Use of models for assessing relative volatility, mobility, and persistence of pesticides 
and other trace organics in soil systems. In: Hazard Assessment of Chemicals: Recent Developments. Vol. 2, Saxena, J., 
Editor, Academic Press, New York. 
Jury, W.A., Focht, D.D., Farmer, W.J. (1987b) Evaluation of pesticide groundwater pollution potential from standard indices of soilchemical 
adsorption and biodegradation. J. Environ. Qual. 16, 422–428. 
Jury, W.A., Ghodrati, M. (1989) Overview of organic chemical environmental fate and transport modeling approaches. In: Reactions 
and Movement of Organic Chemicals in Soils. SSSA Special Publication No. 22, Sawhney, B.L., Brown, K., Editors, 
pp. 271–304, Soil Science Soceity of America and Society of Agronomy, Madison, Wisconsin. 
Jury, W.A., Russo, D., Streile, G., El Abd, H. (1990) Evaluation of volatilization by organic chemicals residing below the soil surface. 
Water Resources Res. 26(1), 13–20. 
Jury, W.A., Winer, A.M., Spencer, W F., Focht, D.D. (1987a) Transport and trans-formations of organic chemicals in the soil-airwater 
ecosystem. Rev. Environ. Contam. Toxicol. 99, 120–164. 
Kanazawa, J. (1981) Measurement of the bioconcentration factors of pesticides by fresh-water fish and their correlation with 
physicochemical properties of acute toxicities. Pest. Sci. 12, 417–424. 
Kanazawa, J. (1989) Relationship between the soil sorption constants for pesticides and their physicochemical properties. Environ. 
Toxicol. Chem. 8, 477–484. 
Karcher, W., Devillers, J. (1990) SAR and QSAR in environmental chemistry and toxicology: Scientific tool or wishful thinking? 
In: Practical Applications of Quantitative-Structure Relationships (QSAR) in Environmental Chemistry and Toxicology, 1–12. 
Karcher, W., Devillers, J., Editors, ECSC, EEC, EAEC, Brussels and Luxembourg. 
Karickhoff, S.K. (1981) Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 
10, 833–846. 
Karickhoff, S.K., Morris, K.R. (1985) Sorption dynamics of hydrophobic pollutants in sediment suspensions. Environ. Toxicol. Chem. 
4, 469–479. 
Karickhoff, S.W., Brown, D.S., Scott, T.A. (1979) Sorption of hydrophobic pollutants on natural water sediments. Water Res. 13, 
241–248. 
Kaufman, D.D. (1966) Microbial degradation of herbicide combinations: Amitrole and dalapon. Weeds 14, 130–134. 
Kaufman, D.D. (1976) Soil degradation and persistence. In: A Literature Survey of Benchmark Pesticides. pp. 19–71. The George 
Washington University Medical Center, Dept. of Medical and Public Affairs, Science Communication Division, Washington DC. 
Kaufman, D.D., Doyle, R.D. (1977) Biodegradation of organics. National Conf. Composting Municipal Residues Sludges. 75 pp. 
Kawamoto, K., Urano, K. (1989a) Parameters for predicting fate of organochlorine pesticides in the environment. (I) Octanol-water 
and air-water partition coefficients. Chemosphere 18, 1987–1996. 
Kawamoto, K., Urano, K. (1989b) Parameters for predicting fate of organochlorine pesticides in the environment. (II) Adsorption 
constant to soil. Chemosphere 19(8/9), 1223–1231. 
Kawamoto, K., Urano, K. (1990) Parameters for predicting fate of organochlorine pesticides in the environment. (III) Biodegradation 
rate constants. Chemosphere 21(10–11), 1141–1152. 
Kearney, P.C., Kaufman, D.D. (1975) Herbicides: Chemistry, Degradation and Mode of Action. 2nd Edition, Vol. 2, Marcel Dekker, 
New York. 
Kearney, P.C., Nash, R.G., Isensee, A.R. (1969) Persistence of pesticides in soil. In: Chemical Fallout: Current Research on Persistence 
Pesticides. Chapter 3, pp. 54–67, Miller, M.W., Berg, C.C., Editors, Charles C. Thomas, Springfield, Illinois. 
Kearney, P.C., Plimmer, J.R., Wheeler, W.B., Konston, A. (1976) Persistence and metabolism of dinitroaniline herbicides in soils. 
Pestic. Biochem. Physiol. 6, 229–238. 
Kenaga, E.E. (1974) Toxilogical and residue data useful in the environmental safety evaluation of dalapon. Res. Rev. 53, 109–151. 
Kenaga, E.E. (1975) In: Environmental Dynamics of Pesticides. Haque, R., Freed, V.H., Editors, Plenum Press, New York. pp. 217–273. 
Kenaga, E.E. (1980) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol. 
Environ. Saf. 4, 26–38. 
Kenaga E.E., Goring, C.A.I. (1980) Relationship between water solubility, soil sorption, octanol-water partitioning, and concentration 
of chemicals in biota. In: Aquatic Toxicology. ASTM STP 707, Eaton, J.G., Parrish, P.R., Hendricks, A.C., Editors, pp. 78–115, 
American Soc. for Testing and Materials, Philadelphia, Pennsylvania. 
Kerler, F., Schonherr, J. (1988) Accumulation of lipophilic chemicals across plant cuticles: prediction from octanol/water partition 
coefficients. Arch. Environ. Contam. Toxicol. 17, 1–6. 
Khan, S.U. (1978) Kinetics of hydrolysis atrazine in aqueous fulvic acid solution. Pest. Sci. 9, 39–45. 
Khan, S.U. (1980) Pesticides in the Soil Environment, Fundamental Aspects of Pollution Control and Environmental Series 5. Elsevier, 
Amsterdam, The Netherlands. 
Kim, Y.H. (1985) Evaluation of a gas chromatographic method for estimating vapor pressures with organic pollutants. Ph.D. Thesis, 
University of California, Davis, California. 
© 2006 by Taylor & Francis Group, LLC

3700 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Kim, Y.H., Woodrow, J.E., Seiber, J.N. (1984) Evaluation of a gas chromatographic method for calculating vapor pressures with 
organophosphorous pesticides. J. Chromatogr. 314, 37–53. 
Kirkland, K., Frayer, J.D. (1972) Degradation of several herbicides in soil previously treated with MCPA. Weed Res. 12, 90–95. 
Klecka, G. (1985) Biodegradation. In: Environmental Exposure from Chemicals. Volume I., Neely, W.B., Blau, G.E., Editors, Chapter 
6, pp. 110–155, CRC Press, Boca Raton, Florida. 
Klein, W., Geyer, H., Freitag, D., Rohleder, H. (1984) Sensitivity of schemes for ecotoxicological hazard ranking of chemicals. 
Chemosphere 13(1), 203–211. 
Klein, W., Kordel, W., Wei., M., Poremski, H.J. (1988) Updating of the OECD test guideline 107 “Partition coefficient n-octanol/water”: 
OECD laboratory intercomparison test on HPLC method. Chemosphere 17, 361–386. 
Klupinski, T.P., Chin, Y.-P. (2003) Abiotic degradation of trifluralin by Fe(II): Kinetics and transformation pathways. Environ. Sci. 
Technol. 37, 1311–1318. 
Kochany, J. (1992) Effects of carbonates on the aquatic photodegradation rate of bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) 
herbicide. Chemosphere 24, 1119–1126. 
Kollig, H.P., Editor (1993) Environmental Fate Constants for Organic Chemicals under consideration for EPA’s Hazardous Waste 
Identification Projects. EPA/600/R-93/132. Environmental Research Laboratory, U.S. EPA, Athens, Georgia. 
Kollig, H.P., Ellington, J.J., Hamrick, K.J., Jafverts, C.T., Weber, E.J., Wolfe, N.L. (1987) Hydrolysis Rate Constants, Partition 
Coefficients, and Water Solubilities for 129 Chemicals. A Summary of Fate Constants Provided for the Concentration-Based 
Listing Program. U.S. EPA, Environmental Research Lab., Office of Research and Development, Athens, Georgia. 
Kolpin, D.W., Kalkhoff, S.J. (1993) Atrazine degradation in a small stream in Iowa. Environ. Sci. Technol. 27, 134–139. 
Kordel, W., Stuffe, J., Kotthoff, G. (1993) HPLC-screening method for the determination of the adsorption-coefficient on soil. 
Comparison of different stationary phases. Chemosphere 27, 2341–2352. 
Kordel, W., Kotthoff, G., Muller, J. (1995a) HPLC-screening method for the determination of adsorption coefficient on soil-results 
of a ring-test. Chemosphere 30, 1373–1384. 
Kordel, W., Stutte, J., Kotthoff, G. (1995b) HPLC-screening method to determine the adsorption coefficient in soil-comparison of 
immobilized humic acid and clay mineral phases for cyanopropyl columns. Sci. Total Environ. 162, 119–125. 
Korte, F., Freitag, D., Geyer, H., Klein, W., Kraus, A.G., Lahaniatis, E. (1978) Ecotoxicologic profile analysis: A concept for 
establishing ecotoxicologic priority lists for chemicals. Chemosphere 1, 79–102. 
Kotzias, D., Klein, W., Korte, F. (1974) Beitrage zur okologischen chemie. LXXXIX. Reaktionen von buturon und monolinuron in 
fester und flussiger phase bei UV-bestrahlung. Chemosphere 3, 161. 
Kruger, E.L., Somasundaram, L., Kanwar, R.S. (1993) Persistence and degradation of [14C]atrazine and [14C]deisopropylatrazine as 
affected by soil depth and moisture conditions. Environ. Toxicol. Chem. 12, 1959–1967. 
Kuhne, R., Ebert, R.-U., Kleint, F., Schmidt, G., Schuurmann, G. (1995) Group contribution methods to estimate water solubility of 
organic chemicals. Chemosphere 30, 2061–2077. 
Kulshrestha, G., Mukerjee, S.K. (1986) The photochemical decomposition of the herbicide isoproturon. Pest. Sci. 17, 489. 
Kulshrestha, G., Singh, S.B. (1992) Influence of soil moisture and microbial activity on pendimethalin degradation. Bull. Environ. 
Contam. Toxicol. 48, 269–274. 
Kulshrestha, G., Yaduraju, N.T. (1987) Persistence of pendimethalin in soil following pre-emergence application to wheat. Indian 
J. Agron. 32, 271–274. 
Kuwatsuka, S. (1972) Degradation of several herbicides in soils under different conditions. In: Environmental Toxicology of Pesticides. 
Matsumura, F., Boush, G.M., Misato, T., Editors, pp. 385, Academic Press, New York. 
Kwok, E.S.C., Atkinson, R., Arey, J. (1992) Gas-phase atmospheric chemistry of selected thiocarbamates. Environ. Sci. Technol. 
26(9), 1798–1807. 
Lane, L.J., Morton, H.L., Wallace, D.E., Wilson, R.E., Martin, R.D. (1977) Nonpoint source pollutants to determine runoff source 
areas. Hydrology and Water Resources in Arizona and the Southwest 7, 89. 
Lartiges, S.B., Garrigues, P.P. (1995) Degradation kinetics of organophosphorus and organonitrogen pesticides in different waters 
under various environmental conditions. Environ. Sci. Technol. 29, 1246–1254. 
Lee, L.S., Bellin, C.A., Pinal, R., Rao, P.S.C. (1993) Cosolvent effects on sorption of organic acids by soils from mixed solvents. 
Environ. Sci. Technol. 27, 165–171. 
Lee, R.F., Ryan, C. (1979) Microbial degradation of organochlorine compounds in estuarine waters and sediments. In: Proceedings 
of the Workshop: Microbial Degradation of Pollutants in Marine Environments. EPA 600/9-79-012, Washington DC. 
Lee, Y.-C., Myrdal, P.B., Yalkowsky, S.H. (1996) Aqueous functional group activity coefficients (AQUAFAC). 4: Applications to 
complex organic compounds. Chemosphere 33(11), 2129–2144. 
Leistra, M., Smelt, J.H., Verlaat, J.G., Zandvoort, R. (1974) Measured and computed concentration patterns of propyzamide in field 
soils. Weed Res. 14, 87–95. 
Leo, A., Hansch, C., Elkins, D. (1971) Partition coefficients and their uses. Chem. Rev. 71, 525–616. 
Leopold, A.C., van Schaik, P., Neal, M. (1960) Molecular structure and herbicide adsorption. Weeds 8, 48. 
Li, G.C., Felbeck, Jr., G.T. (1972) Atrazine hydrolysis as catalyzed by humic acids. Soil Sci. 114, 201–208. 
Lichtner, F.T. (1983) Amitrole absorption by bean (Phaseolus vulgaris L. cv “Red Kidney” roots. Plant Physiol. 71, 307–312. 
Lide, D.R., Editor (2003) Handbook of Chemistry and Physics. 84th Edition, CRC Press, Boca Raton, Florida. 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3701 
Liu, D., Strachan, W.M J., Thomson, K., Kwasniewska, K. (1981) Determination of the biodegradability of organic compounds. 
Environ. Sci. Technol. 15, 788–793. 
Liu, J., Qian, C. (1995) Hydrophobic coefficients of s-trazine and phenylurea herbicides. Chemosphere 31(8), 3951–3959. 
Lohninger, H. (1994) Estimation of soil partition coefficients of pesticides from their chemical structure. Chemosphere 29, 1611–1626. 
Loos, M.A. (1975) Phenoxyalkanoic acids. In: Herbicides, Chemistry, Degradation and Mode of Action. Vol. I, 2nd Edition, Kearney, P.C., 
Kaufmann, D.D., Editors, Marcel Dekker, New York. 
Lopez-Avila, V., Hirata, P., Kraska, S., Flanagan, M., Taylor, J.H., Hern, S.C., Melanon, S., Pollard, J.P. (1989) Movement of selected 
pesticides and herbicides through columns of sandy loam. In: Evaluation of Pesticides in Ground Water. Garner, W.Y., 
Honeycutt, R.C., Editors, American Chemical Society, Washington DC. 
Lord, K.A., Briggs, G.C., Neale, M.C., Manlove, R. (1980) Uptake of pesticides from water and soil by earthworms. Pestic. Sci. 11, 
401–408. 
Lund-Hoie, K., Friestad, H.O. (1986) Photodegradation of the herbicide glyphosate in water. Bull. Environ. Contam. Toxicol. 36, 
723–729. 
Lyman, W.J. (1985) Chapter 2, Estimation of physical properties. In: Environmental Exposure from Chemicals. Vol. 1, Neely, W.B., 
Blau, G E., Editors, pp. 13–48, CRC Press, Boca Raton Florida. 
Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors (1982) Handbook on Chemical Property Estimation Methods. Environmental 
Behavior of Organic Compounds. McGraw-Hill, New York. 
Lynch, T.R., Johnson, H.E., Adams, W.J. (1982) The fate of atrazine and a hexachlorophenyl isomer in naturally-derived model 
stream ecosystems. Environ. Toxicol. Chem. 1, 179–192. 
Mabey, W., Mill, T. (1978) Critical review of hydrolysis of organic compounds in water under environmental conditions. J. Phys. 
Chem. Ref. Data 7, 383–415. 
Mabury, S., Crosby, D.G. (1996) Pesticide reactivity toward hydroxyl and its relationship to field persistence. J. Agric, Food Chem. 
44, 1920–1924. 
Mackay, D. (1982) Correlation of bioconcentration factors. Environ. Sci. Technol. 16, 274–278. 
Mackay, D., Stiver, W. (1991) Chapter 8, Predicatability and environmental chemistry. In: Environmental Chemistry of Herbicides. 
Vol. II, Grover, R., Cessna, A.J., Editors, pp. 281–297, CRC Press, Boca Raton, Florida. 
Madhun, Y.A., Freed, V.H. (1987) Degradation of herbicides bromacil, diuron, and chlortoluron in soil. Chemosphere 16, 1003–1011. 
Madhun, Y.A., Freed, V.H., Young, J.L., Fang, S.C. (1986) Sorption of bromacil, chlortoluron, and diuron by soils. Soil Sci. Soc. 
Am. J. 50, 1467–1471. 
Magee, P.S. (1991) Complex factors in hydrocarbon/water, soil/water and fish/water partitioning. Sci. Total Environ. 109/110, 155–178. 
Majewski, M.S., Capel, P.D. (1995) Pesticides in the Atmosphere. Distribution, Trends, and Governing Factors. Vol. 1 of the series 
Pesticide in the Hydrologic System. Gilliom, R.J., Editor, Ann Arbor Press Chelsea, Michigan. 
Mansour, M., Feicht, E., Meallier, P. (1989) Improvement of the photostability of selected substances in aqueous medium. Toxicol. 
Environ. Contam. 20–21, 139–147. 
Martin, H. (1961) Guide to the Chemicals used in Crop Protection. 4th Edition, Canadian Dept. of Agriculture Publication 1093, 
Ottawa, Ontario. 
Martin, H., Worthing, C R., Editors (1977) Pesticide Manual. 5th Edition, British Crop Protection Council, United Kingdom. 
Martin, R.A., Edgington, L.V. (1981) Comparative systemic translocation of several xenobiotics and sucrose. Pestic. Biochem. Physiol. 
16, 87–96. 
Massad, W., Criado, S., Bertolotti, S., Pajares, A., Gianotte, J., Escalada, J.P., Amat-Guerri, F., Carcia, N.A. (2004) Photodegradation 
of the herbicide norflurazon sensitised by riboflavin. A kinetic and mechanistic study. Chemosphere 57, 455–461. 
Massini, P. (1961) Movement of 2,6-dichlorobenzonitrile in soils and in plants in relation to its physical properties. Weed Res. 1, 
142–146. 
McCall, P.J., Agin, G.L. (1985) Desorption kinetics of picloram as affected by residence time in the soil. Environ. Toxicol. Chem. 4, 
37–44. 
McCall, P.J., Gavit, P.D. (1986) Aqueous photolysis of triclorpyr and its butoxyethyl ester and calculated environmental photodecomposition 
rates. Environ. Toxicol. Chem. 5(10), 879–885. 
McCall, P.J., Swann, R.L., Laskowski, D.A., Unger, S.M., Vrona, S.A., Dishburger, H.J. (1980) Estimation of chemical mobility in 
soil from liquid chromatographic retention times. Bull. Environ. Contam. Toxicol. 24, 190–195. 
McCall, P.J., Swann, R.L., Laskowski, D.A., Vrona, S.A., Unger, S.M., Dishburger, H.J. (1981) Prediction of chemical mobility in soil 
from sorption coefficients. In: Aquatic Toxicology and Hazard Assessment. ASTM STP 737, Branson, D.R., Dickson, K.L., 
Editors, pp. 49–58, Am. Soc. for Testing and Materials, Philadelphia, Pennsylvania. 
McCall, P.J., Vrona, S.A., Kelley, S.S. (1981) Fate of uniformly carbon-14 ring labelled 2,4,5-trichlorophenoxyacetic acid and 2,4- 
dichlorophenoxyacetic acid. J. Agric. Food Chem. 29, 100–107. 
McDuffie, B. (1981) Estimation of octanol/water partition coefficients for organic pollutants using reverse-phase HPLC. Chemosphere 
10, 73–83. 
Meakins, N.C., Bubb, J.M., Lester, J.N. (1994) The behaviour of the s-triazine herbicides, atrazine and simazine, during primary and 
secondary biological waste water treatment. Chemosphere 28, 1611–1622. 
Means, J.C., Wijayaratne, R.D. (1982) Role of natural colloids in the transport of hydrophobic pollutants. Science 215, 968. 
© 2006 by Taylor & Francis Group, LLC

3702 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Means, J.C., Wijayaratne, R.D., Boynton, W.R. (1983) Fate and transport of selected herbicides in an estuarine environment. Can. 
J. Fish Aquat. Sci. 40 (Suppl. 2), 337–345. 
Melnikov, N.N. (1971) Chemistry of pesticides. Res. Rev. 36, 1–447. 
Mersie, W., Seybold, C. (1996) Adsorption and desorption of atrazine, deethylatrazine, deisopropylatrazine, and dydroxyatrazine on 
Levy wetland soil. J. Agric. Food Chem. 44, 1925–1929. 
Metcalf, R.L., Sanborn, J.R. (1975) Pesticides and environmental quality in Illinois. Illinois Natural History Survey Bulletin 31, 
381–436. 
Meylan, W., Howard, P.H. (1991) Bond contribution method for estimating Henry’s law constants. Environ. Toxicol. Chem. 10, 
1283–1293. 
Meylan, W., Howard, P.H., Boethling, R.S. (1992) Molecular topology/fragment contribution method for predicting soil sorption 
coefficients. Environ. Sci. Technol. 26, 1560–1567. 
Milne, G.W.A., Editor (1995) CRC Handbook of Pesticides. CRC Press, Boca Raton, Florida. 
Mingelgrin, U., Gerstl, Z. (1983) Reevaluation of partitioning as a mechanism of nonionic chemicals adsorption in soils. J. Environ. 
Qual. 12(1), 1–11. 
Mitsutake, K.-I., Iwasmura, H., Shimizu, R., Fujita, T. (1986) Quantitative structure-activity relationships of photosystem II inhibitors 
in chloroplasts and its link to herbicidal action. J. Agric. Food Chem. 34, 725–732. 
Miyazaki, S., Sikka, H.C., Lynch, R.S. (1975) Metabolism of dichlobenil by microorganism in the aquatic environment. J. Agric. 
Food Chem. 23, 365. 
Moilanen, K.W., Crosby, D.G. (1972) Photodecomposition of 3.,4.-dichloropropionanilide (propanil). J. Agric. Food Chem. 20, 
950–953. 
Mongar, K., Miller, G.C. (1988) Vapor phase photolysis of trifluralin in an outdoor chamber. Chemosphere 17, 2183–2188. 
Montgomery, J.H. (1993) Agrochemicals Desk Reference. Environmental Data. Lewis Publishers, Chelsea, Michigan. 
Morrill, L.G., Mahilum, B.C., Mohiuddin, S.H. (1982) Organic Compounds in Soils. Ann Arbor Science Publishers, Inc., Ann Arbor, 
Michigan. 
Mosier, A.R., Guenzi, W.D. (1973) Picloram photolytic decomposition. J. Agric. Food Chem. 21, 835–837. 
Moyer, J.R.R., Hance, R.J., McKone, C.E. (1972) The effect of adsorption of adsorbents on the rate of degradation of herbicides 
incubated with soil. Soil. Biol. Biochem. 4, 307–311. 
Muir, D.C.G. (1991) Dissipation and transformation in water and sediment. In: Environmental Chemistry of Herbicides. Vol. II, 
Grover, R., Cessna, A.J., Editors, Chapter 1, pp. 1–88, CRC Press, Boca Raton, Florida. 
Muir, D.C.G., Grift, N.P. (1982) Fate of fluoridone in sediment and water in laboratory and field experiments. J. Agric. Food Chem. 
30, 238. 
Muir, D.C.G., Grift, N.P., Blouw, A.P., Lockhart, W.L. (1980) Persistence of fluridone in small ponds. J. Environ. Qual. 9, 151–156. 
Muir, D.C.G., Teixeira, C, Wania, F. (2004) Empirical and modeling evidence of regional atmospheric transport of current-use 
pesticides. Environ. Toxicol. Chem. 23, 2421–2432. 
Muir, D.C.G., Townsend, B.E., Lockhart, W.L. (1983) Bioavailability of six organic chemicals to Chironomus tentans larvae in 
sediment and water. Environ. Toxicol. Chem. 2, 269–281. 
Muir, D.C.G., Yarechewski, A.L. (1982) Degradation of terbutryn in sediments and water under various redox conditions. J. Environ. 
Sci. Health B17, 363. 
Muller, M., Kordel, W. (1996) Comparison of screening methods for the estimation of adsorption coefficients on soil. Chemosphere 
32, 2493–2504. 
Muller, M.D., Buser, H.-R. (1995) Environmental behavior of acetamide pesticide stereoisomers. 2. Stereo- and enantioselective 
degradation in sewage sludge and soil. Environ. Sci. Technol. 29, 2031–2037. 
Muszkat, L., Halmann, M., Raucher, D., Bir, L. (1992) Solar photodegradation of xenobiotic contaminants in polluted well water. 
J. Photochem. Photobiol. A: Chem. 65, 409–417. 
Nakamura, M., Suzuki, T., Amano, K., Yamada, S. (2001) Relation of sorption behavior of agricultural chemicals in solid-phase 
extraction with their n-octanol/water partition coefficients evaluated by high-performance liquid chromatography (HPLC). 
Anal. Chim. Acta 428, 219–226. 
Nandihalli, U.B., Duke, M.V., Duke, S.O. (1993) Prediction of RP-HPLC log P from semiempirical molecular properties of diphenyl 
ether and phenopylate herbicides. J. Agric. Food Chem. 41, 582–587. 
Nash, R.G. (1980) Dissipation rate of pesticides from soils. In: CREAMS. Vol. 3, Niesel, W.G., Editor, pp. 560–594, U.S. Dept. of 
Agriculture, Washington DC. 
Nash, R.G. (1983) Distribution of butylate, heptachlor, lindane, and dieldrin emulsifiable concentrated and butyrated microencapsulated 
formulations in microagroecosystem chambers. J. Agric. Food Chem. 31, 1195. 
Nash, R.G. (1983) Comparative volatilization and dissipation rates of several pesticides from soil. J. Agric. Food Chem. 31, 210. 
Nash, R.G. (1983) Determining environmental fate of pesticides with microagroecosystems. Res. Rev. 85, 199–215. 
Nash, R.G. (1988) Chapter 5, Dissipation from soil. In: Environmental Chemistry of Herbicides. Vol. I, Grover, R., Editors, pp. 
131–169, CRC Press, Boca Raton, Florida. 
Nash, R.G. (1989) Models for estimating pesticide dissipation from soil and vapor decline in air. Chemosphere 18(11/12), 2375–2381. 
Nash, R.G., Beall, M.L. (1980) Distribution of silvex, 2,4-D, and TCDD applied to turf in chambers and field plots. J. Agric. Food 
Chem. 28, 614. 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3703 
Neary, D.G., Bush, P.B., Michael, J.L. (1993) Fate, dissipation and environmental effects of pesticides in southern forests: A review 
of a decade of research progress. Environ. Toxicol. Chem. 12, 411–428. 
Neely, W.B., Blau, G.E. (1985) Chapter 1, Introduction to environmental exposure from chemicals. In: Environmental Exposure From 
Chemicals. Volume I, Neely, B.W., Blau, G.E., Editors, pp. 1–11. CRC Press, Boca Raton, Florida. 
Nelson, N.H., Faust, S.D. (1969) Acidic dissociation constants of selected aquatic herbicides. Environ. Sci. Technol. 3, 1186–1188. 
Nesbitt, H.J., Watson, J.R. (1980a) Degradation of the herbicide 2,4-D in river water-I. Description of study area and survey of rate 
determining factors. Water Res. 14, 1683–1688. 
Nesbitt, H.J., Watson, J.R. (1980b) Degradation of the herbicide 2,4-D in river water-II, the role of suspended sediment. Nutrients 
and water temperature. Water Res. 14, 1689–1694. 
Newsome, H.C., Woods, W.G. (1973) Photolysis of the herbicide dinitramine (N3, N3-diethyl-2,4-dinitro-6-trifluromethyl-m-phenylenediamine). 
J. Agric. Food Chem. 21, 598. 
Nex, R W., Swezey, A.W. (1954) Some chemical and physical properties of weed killers. Weeds 3, 241–253. 
Nicholls, P.H. (1988) Factors influencing entry of pesticides into soil water. Pestic. Sci. 22, 123–137. 
Nilles, G.P., Zabik, M.J. (1974) Photochemistry of bioactive compounds. Multiphase photodegradation of basalin. J. Agric. Food 
Chem. 22, 684–688. 
Nkedi-Kizza, P., Rao, P.S C., Johnson, J.W. (1983) Adsorption of diuron and 2,4,5-T on soil particle-size separates. J. Environ. Qual. 
12, 195–197. 
Nkedi-Kizza, P., Rao, P.S.C., Hornsby, A.G. (1985) Influence of organic cosolvents on sorption of hydrophobic organic chemicals 
by soils. Environ. Sci. Technol. 19, 975–979. 
Nomura, N.S., Hilton, H.W. (1977) The adsorption and degradation of glyphosate in five Hawaiian sugarcane soils. Weed Res. 17, 
113–121. 
Novick, N.J., Alexander, M. (1985) Cometabolism of low concentration of propachlor, alachlor and cycloate in sewage and lake 
water. Appl. Environ. Microbiol. 49, 737. 
Nyholm, N., Jacobsen, B.N., Pedersen, B.M., Poulsen, O., Damboroj, A., Schultz, B. (1992) Removal of organic micro pollutants at 
ppb levels in laboratory activated sludge reactors under various operating conditions: Biodegradation. Water Res. 26, 339–353. 
OECD (1981) OECD Guidelines for Testing of Chemicals. Section 1: Physical-Chemical Properties. Organization for Economic Cooperation 
and Development. OECD, Paris. 
Oehler, D.D., Ivie, G.W. (1980) Metabolic fate of the herbicide dicamba in a lactating cow. J. Agric. Food Chem. 28, 685–689. 
Ohyama, H., Kawatsuka, S. (1978) Degradation of bifenox, a diphenylether herbicide, methyl-5-(2,4-dichlorophenoxy)-2-nitrobenzoate, 
in soils. J. Pest. Sci. 3, 401. 
Otto, S., Riello, L., During, R.-A., Hummel, H.E. (1997) Herbicide dissipation and dynamics modelling in three different tillage 
system. Chemosphere 34, 163–178. 
Pacakova, V., Stulik, K., Prihoda, M. (1988) High performance liquid chromatography of s-triazines and their degradation products 
using ultraviolet photometric and amperometric detection. J. Chromatogr. 442, 147–156. 
Pait, A.S., De Souza, A.E., Farrow, D.R.G. (1992) Agricultural Pesticide Use in Coastal Areas: A National Summary, National 
Oceanic and Atmospheric Administration, Rockville, Maryland. 
Paris, D.F., Steen, W.C., Baughman, G.L. (1978) Prediction of microbial transformation of pesticides in natural waters. (unpublished), 
presented before the American Chemical Society, Division of Pesticide Chemistry, Anaheim, California, Environmental 
Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia. 
Paris, D.F., Steen, W.C., Baughman, G.L., Barnett, Jr., J.T. (1981) Second-order model to predict microbial degradation of organic 
compounds in natural waters. Appl. Environ. Microbiol. 41, 603–609. 
Parr, J.F., Smith, S. (1973) Degradation of trifluralin under laboratory conditions and soil anaerobiosis. Soil Sci. 115, 55–63. 
Paschke, A., Neitzel, P.L., Walther, W., Schuurumann. G. (2004) Octanol/water partition coefficient of selected herbicides: determination 
using shake-flask method and reversed-phase high performance liquid chromatography. J. Chem. Eng. Data 49, 1639–1642. 
Patchett, G.G., Batchelder, G.H., Menn, J.J. (1964) In: Analytical Methods for Pesticides and Plant Growth Regulators. Vol. 4, Zweig, 
G., Editor, New York, Academic Press, pp. 117–123. 
Patchett, G.G., Gray, R.A., Reed, A., Hyzak, D.L. (1983) Thiocarbamate sulfoxides protected against dry soil deactivation. U.S. 
Patent 4,389,237. 
Patil, G.S. (1994) Prediction of aqueous solubility and octanol-water partition coefficient for pesticides based on their molecular 
structure. J. Hazard. Materials 36, 35–43. 
Pavel, E.W., Lopez, A.R., Berry, D.F., Smith, E.P., Reneau, Jr., R.B., Mostagimi,. S. (1999) Anaerobic degradation of dicamba and 
metribuzin in riparian wetlands soils. Water Res. 33, 87–94. 
Peck, D.E., Corwin, D.L., Farmer, W.J. (1980) Adsorption-desorption of diuron by fresh water sediments. J. Environ. Qual. 9, 101–106. 
Pieuchot, M., Perrin-Ganier, C., Portal, J.M., Schiavon, M. (1996) Study on the mineralization and degradation of isoproturon in 
three soils. Chemosphere 33, 467–478. 
Pinsuwan, S., Li, A., Yalkowsky, S.H. (1995) Correlation of octanol/water solubility ratios and partition coefficients. J. Chem. Eng. 
Data 40, 623–626. 
Plato, C. (1972) Differential scanning calorimetry as a general method for the determining purity and heat of fusion of high-purity 
organic chemicals. Application to 64 compounds. Anal. Chem. 44(8), 1531–1534. 
© 2006 by Taylor & Francis Group, LLC

3704 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Plato, C., Glasgow, A.R., Jr. (1969) Differential scanning calorimetry as a general method for the determining purity and heat of 
fusion of high-purity organic chemicals. Application to 95 compounds. Anal. Chem. 41(2), 330–336. 
Plimmer, J.R., Kearney, P.C., Chisaka, H. (1970) Microbial conversion of 14C labelled propanil in Japanese soils. Weed Sci. Soc. Am., 
Abst. No. 167. 
Plimmer, J.R., Klingebiel, U I. (1974) Photochemistry of N-sec-butyl-4-tert-butyl-2,6-dinitroaniline. J. Agric. Food Chem. 22, 
689–693. 
Probst, G.W., Golab, T., Wright, W.L. (1975) Dinitroanilines. In: Herbicides, Chemistry, Degradation and Mode of Action. Vol. 1, 
Kearney, P.C., Kaufman, D.D., Editors, Marcel Dekker, New York. 
Probst, G.W., Golab, T., Herberg, R.J., Holser, F.J., Parka, S.J., Van der Schans, C., Tepe, J.B. (1967) Fate of trifluralin in soils and 
plants. J. Agric. Food Chem. 15, 592–599. 
Que Hee, S., Sutherland, R.G. (1981) The Phenoxyalkanoic Herbicides. Volume 1: Chemistry, Analysis, and Environmental Pollution. 
CRC Press, Inc., Boca Raton, Florida. 
Quellette, R.P., King, J.A. (1977) Chemical Week. Pesticide Register. McGraw-Hill, New York. 
Ramesh, A., Maheswari, S.T. (2004) Dissipation of alachlor in cotton plant, soil and water and its bioaccumulation in fish. 
Chemosphere 54, 647–652. 
Rao, P.S.C., Davidson, J.M. (1979) Adsorption and movement of selected pesticides at high concentrations in soils. Water Res. 13, 
375–380. 
Rao, P.S.C., Davidson, J.M. (1980) Estimation of pesticide retention and transformation parameters required in nonpoint source 
pollution models. In: Environmental Impact of Nonpoint Source Pollution. Overcash, M.R., Davidson, J.M., Editors, Ann 
Arbor Science Publishers, Ann Arbor, Michigan. 
Rao, P.S.C., Davidson, J.M. (1982) Retention and Transformation of Selected Pesticides and Phosphorus in Soil Water System: 
A Critical Review. U.S. EPA, EPA-600/3-82-060. 
Reinert, K.H. (1989) Environmental behavior of aquatic herbicides in sediments. In: Reactions and Movement of Organic Chemicals 
in Soils. SSSA Special Publ. No.22, pp. 335–348, Soil Science Society of Ameroca and Society of Argonomy, Madison, 
Wisconsin. 
Reinert, K.H., Rogers, J.H. (1984) Influence of sediment types on the sorption of endothall. Bull. Environ. Contam. Toxicol. 32, 
557–564. 
Reinert, K.H., Rogers, J.H. (1987) Fate and persistence of aquatic herbicides. Rev. Environ. Contam. Toxicol. 98, 69–91. 
Reinhold, K.A. et al. (1979) Adsorption of Energy Related Organic Pollutants. U.S. EPA, EPA-600/3-79-086. p. 103. 
Rekker, R.F. (1977) The Hydrophobic Constants; Its Derivation and Application; A Means of Characterizing Membrane Systems. 
Elsevier Scientific Publishing Company, New York. 
Ribo, J.M. (1988) The octanol/water partition coefficient of the herbicide chlorsulfuron as a function of pH. Chemosphere 17, 709–715. 
Rice, C., P., Chernyek, S.M., Hapeman, C.J., Bilboulian, S (1997) Air-water distribution of the endosulfan isomers. J. Environ. Qual. 
26, 1101–1106. 
Rice, C.P., Chernyak, S.M., McConnell, L.L. (1997) Henry’s law constants for pesticides measured as a function of temperature and 
salinity. J. Agric. Food Chem. 45, 2291–2298. 
Richards, R.P., Baker, D.B. (1993) Pesticide concentration patterns in agricultural drainage networks in the Lake Erie basin. Environ. 
Toxicol. Chem. 12, 13–26. 
Riederer, M. (1990) Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system: Discussion of a 
fugacity-based model. Environ. Sci. Technol. 24, 829–837. 
Riise, G., Salbu, B. (1992) Mobility of dichlorprop in the soil-water system as a function of different environmental factors. I. A batch 
experiment. Sci. Total Environ. 123/124, 399–409. 
Roberts, T.R. (1974) The fate of WL-6361 in a static aquatic system. Proc. European Weed Res. Council, 4th Int’l Symp. Aquat. 
Weeds, Vienna, Austria. pp. 232. 
Romero, E., Dios, G., Mingorance, M.D., Matallo, M.B., Pena, A., Sanchez-Rasero, F. (1998) Photodegradation of mecoprop and 
dichlorprop on dry, moist and amended soil surfaces exposed to sunlight. Chemosphere 37, 577–589. 
Rordorf, B.F. (1989) Unpublished data, private communication. 
Rosen, J.D., Strusz, R.F., Still, C.C. (1969) Photolysis of phenylurea herbicides. J. Agric. Food Chem. 17, 206–207. 
Roy, W.R., Krapac, I.G. (1994) Adsorption and desorption of atrazine and diethylatrazine by low organic carbon geologic materials. 
J. Environ. Qual. 23, 549–556. 
Rudel, H., Schmidt, S., Kordel, W., Klein, W. (1993) Degradation of pesticides in soil: comparison of laboratory experiments in a 
biometer system and outdoor lysimeter experiments. Sci. Total Environ. 132, 181–200. 
Rueppel, M., Brightwell, B.B., Schaefer, J., Marvel, J.T. (1977) Metabolism and degradation of glyphosate in soil and water. J. Agric. 
Food Chem. 25, 517–528. 
Ruzo, L.O., Casida, J.E. (1985) Photochemistry of thiocarbamate herbicides: Oxidative and free radical processes of thiobencarb and 
diallate. J. Agric. Food Chem. 33, 272. 
Sabljic, A. (1984) Prediction of the nature and strength of soil sorption of organic pollutants by molecular topology. J. Agric. Food 
Chem. 32, 243–246. 
Sabljic, A. (1987) On the prediction of soil sorption coefficients of organic pollutants from molecular structure: Application of 
molecular topology model. Environ. Sci. Technol. 21, 358–366. 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3705 
Sabljic, A., Gusten, H., Verhaar, H., Hermens, J. (1995) QSAR modelling of soil sorption, improvement and systematics of log KOC 
vs. log KOW correlations. Chemosphere 31, 4489–4514. 
Sagebiel, J.C., Seiber, J.N., Woodrow, J.E. (1992) Comparison of headspace and gas-stripping methods for determining the Henry’s 
law constant (H) for organic compounds of low to intermediate H. Chemosphere 25(12), 1763–1768. 
Saito, S., Koyasu, J., Yoshida, K., Shigeoka, T., Koike, S. (1993) Cytotoxicity of 109 chemicals to goldfish GFS cells and relationships 
with 1-octanol/water partition coefficients. Chemosphere 26(5), 1015–1028. 
Sanborn, J.R., Francis, B.M., Metcalf, R.L. (1977) The Degradation of Selected Pesticides in Soil: A Review of the Published Literature. 
Prepared for the U.S. Environmental Protection Agency, Cincinnati, Ohio. Publication No. U.S. EPA-600/9-77-022. 
Sanders, D.G., Mosier, J.W. (1983) Photolysis of the aquatic herbicide fluridone in aqueous solution. J. Agric. Food Chem. 31, 237–241. 
Sangster, J. (1993) LOGKOW Data Bank. Sangster Research Laboratory, Montreal, Canada. 
Sattar, M.A., Paasivirta, J. (1980) Fate of the herbicide MCPA in soil. Analysis of the residues of MCPA by an internal standard 
method. Chemosphere 9, 365–375. 
Savage, K E. (1978) Persistence of several dinitroaniline herbicides as affected by soil moisture. Weed Sci. 26, 465. 
Savage, K.E., Jordan, T.N. (1980) Persistence of three dinitroaniline herbicides on the soil surface. Weed Sci. 28, 105–110. 
Savage, K.E., Wauchope, R.D. (1974) Flumeturon adsorption-desorption equilibria in soil. Weed Sci. 22, 106–110. 
Schimmel, S.C., Garnas, R.L., Patrick, Jr., J.M., Moore, J. C. (1983) Acute toxicity, bioconcentration, and persistence of AC 222,705, 
benthiocarb, chlorpyrifos, fenvalerate, methyl parathion, and permethrin in the estuarine environment. J. Agric. Food Chem. 
31, 104–113. 
Schliebe, K A., Burnside, O.C., Lavy, T.L. (1965) Dissipation of amiben. Weeds 13, 321. 
Schmidt, G. (1975) Von problematik der verhaltensprufung von pflanzenschtzmitteln im ober-flachenwasser, schriftenr. des Ver 
Wasser-, Boden-, Lufthyg. Berlin-Dahlem 46, 155. 
Schnoor, J.L., Editor (1992) Fate of Pesticides and Chemicals in the Environment. John Wiley & Sons, New York. 
Schnoor, J.L. (1992) Chemical fate and transport in the environment. In: Fate of Pesticides and Chemicals in the Environment. 
Schnoor, J.L., Editor, pp. 1–24, John Wiley & Sons, New York. 
Schnoor, J.L., McAvoy, D.C. (1981) Pesticide transport and bioconcentration model. J. Environ. Eng. Div. (Am. Soc. Civ. Eng.) 
107(EE6), 1229–1246. 
Schnoor, J.L., Rao, N.B., Cartwright, K.J., Noll, R.M. (1982) In: Modeling the Fate of Chemicals in the Aquatic Environment. 
Dickson, K.L., Maki, A.W., Cairns, Jr., J., Editors, pp. 145, Ann Arbor Science, Ann Arbor, Michigan. 
Schwartz, H.J. (1967) Microbial degradation of pesticides in aqueous solutions. J. Water Pollut. Control Fed. 39, 1701. 
Scifres, C.J., Allen, T.J., Leinweber, C.L., Pearson, K.H. (1973) Dissipation and phototoxicity of dicamba residues in water. J. Environ. 
Qual. 2, 306. 
Scow, K.M. (1982) Rate of biodegradation. In: Handbook on Chemical Property Estimation Methods. Environmental Behavior of 
Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, Chapter 9, McGraw-Hill, New York. 
Segal, H.S., Sutherland, M.L. (1967) Amiben. In: Analytical Methods for Pesticides, Plant Growth Regulators, and Food Additives. 
Vol. VI., Zweig, G., Editor, pp. 321–334, Academic Press, New York. 
Seiber, J.N., McChesney, M.M. (1987) Measurement and computer model simulation of the volatilization flux of molinate and methyl 
parathion from a flooded rice field. Final Report to the Department of Food and Agriculture, Sacramento, California. 
Seiber, J.N., McChesney, M.M., Sanders, P.F., Woodrow, J.E. (1986) Models for assessing the volatilization of herbicides applied to 
flooded rice fields. Chemosphere 15, 127–138. 
Seiber, J.N., McChesney, M.M., Sanders, P.F., Woodrow, J.E. (1989) Air borne residues resulting from use of methyl parathion, 
molinate and thiobencarb on rice in the Sacramento Valley, California. Environ. Toxicol. Chem. 8, 577–588. 
Senseman, S.A., Lavy, T.L., Daniel, T.C. (1997) Monitoring groundwater for pesticides at selected mixing/loading sites in Arkansas. 
Environ. Sci. Technol. 31, 283–288. 
Senseman, S.A., Lavy, T.L., Matice, J.D., Gbur, E.E. (1995) Influenced of dissolved humic acid and Ca-montmorilloinite clay on 
pesticide extraction efficiency from water using solid-phase extraction disks. Environ. Sci. Technol. 29, 2647–2653. 
Sheets, T.J. (1963) Photochemical alteration and inactivation of amiben. Weeds 11, 186. 
Shirmohammadi, A., Magette, W.L., Brinsfield, R.B., Staver, K. (1989) Ground water loading of pesticides in the Atlantic Coastal 
Plain. Ground Water Monitor Rev. 9, 141–148. 
Shiu, W.Y., Ma, K.C., Mackay, D. (1990) Solubilities of pesticides in water. Part 1, Environmental physical chemistry and Part 2, 
Data compilation. Rev. Environ. Contam. Toxicol. 115, 1–187. 
Sicbaldi, F., Finizio, A. (1993) KOW estimation by combination of RP-HPLC and molecular connectivity indexes for a heterogeneous 
set of pesticide. In: Proceedings IX Symposium Pesticide Chemistry, Mobility and Degradation of Xenobiotics. Oct. 1993, 
Piacenza, Italy. 
Sieber, J., Gottschild, D., Nolting, H.-G. (1994) Pesticides in precipitation in Northern Germany. Chemosphere 28, 1559–1570. 
Simsiman, G.V., Chesters, G. (1976) Persistence of diquat in the aquatic environment. Water Res. 10, 105. 
Skurlatov, Y I., Zepp, R.G., Baughman, G.L. (1983) Photolysis rates of (2,4,5-trichloro-phenoxy)acetic acid and 4-amino-3,5,6- 
trichloropicolinic acid in natural waters. J. Agric. Food Chem. 31, 1065–1071. 
Slade, P., Smith, A.E. (1967) Photochemical degradation of diquat. Nature 213, 919. 
Smalling, K.L., Aelion, C.M. (2004) Distribution pf atrazine into three chemical fractions: impart of sediment depth and organic 
carbon content. Environ. Toxicol. Chem. 23, 1164–1171. 
© 2006 by Taylor & Francis Group, LLC

3706 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Smith, A.E. (1969) Factors affecting the loss of tri-allate from soils. Weeds Res. 9, 306. 
Smith, A.E. (1970) Degradation, adsorption, and volatility of di-allate and tri-allate in prairie soils. Weed Res. 10, 331–339. 
Smith, A.E. (1973) Degradation of dicamba in prairie soils. Weed Res. 13, 373–378. 
Smith, A.E. (1978) Relative persistence of di- and tri-chlorophenoxyalkanoic acid herbicides in Saskatchewan soils. Weed Res. 18, 
275–279. 
Smith, A.E. (1979) Soil persistence experiments with (14C) 2,4-D in herbicidal mixtures and field persistence studies with triallate 
and trifluralin both singly and combined. Weed Res. 19, 165–170. 
Smith, A.E., Biggs, G.G. (1978) The fate of the herbicide chlortoluron and its possible degradation products in soils. Weed Res. 18, 1–7. 
Smith, A.E., Grove, J. (1969) Photochemical degradation of diquat in dilute aqueous solution and on silica gel. J. Agric. Food Chem. 
17, 609–613. 
Smith, A.E., Hayden, B.J. (1981) Relative persistence of MCPA and mecoprop in Saskatchewan soils and the identification of MCPA 
in MCPB-treated soil. Weeds Sci. 21, 179–183. 
Soderquist, C.J., Bowers, J.B., Crosby, D.G. (1977) Dissipation of molinate in a rice field. J. Agric. Food Chem. 25, 940. 
Soderquist, C.J., Crosby, D.G. (1975) Dissipation of 4-chloro-2-methyl-phneoxyacetic acid (MCPA) in a rice field. Pest. Sci. 6, 17. 
Solomon, K.R., Baker, D.B., Richards, R.P., Kixon, K., Klaine, S.J., La Point, T.W., Kendall, R., Weisskopf, C.P., Giddings, J.M., 
Giesy, P., Hall, L.W., Williams, W.M. (1996) Ecological risk assessment of atrazine in North American surface waters. 
Environ. Toxicol. Chem. 15, 31–76. 
Solomon, K.R., Bowhey, C.S., Liber, K., Stephenson, G.R. (1988) Persistence of hexazinone (Velpar), triclopyr (Garlon) and 2,4-D 
in a northern Ontario aquatic environment. J. Agric. Food Chem. 36, 1314–1318. 
Somasundaram, L., Coats, J.R., Racke, K.D. (1991) Mobility of pesticides and their hydrolysis metabolites in soil. Environ. Toxicol. 
Chem. 10, 185–194. 
Spacie, A., Hamelink, J.L. (1979) Dynamics of trifluralin accumulation in river fishes. Environ. Sci. Technol. 13(7), 817–822. 
Spain, J.C., Van Veld, P.A. (1983) Adaptation of natural microbial communities to degradation of xenobiotic compounds: Effects of 
concentration, exposure time, inoculum and chemical structure. Appl. Environ. Microbiol. 45, 428. 
Spencer, E.Y., Editor (1973) Guide to the Chemicals Used in Crop Protection. 6th edition, Research Branch Agriculture Canada, 
Ontario, Canada. 
Spencer, E.Y., Editor (1981) Guide to the Chemicals Used in Crop Protection. 7th edition, Research Branch Agriculture Canada, 
Ontario, Canada. 
Spencer, E.Y., Editor (1982) Guide to the Chemicals Used in Crop Protection. 8th edition, Research Branch Agriculture Canada, 
Ontario, Canada. 
Spencer, W.F. (1976) Vapor pressure and vapor losses of benchmark pesticides. In: A Literature Survey of Benchmark Pesticides. pp. 
72–165. The George Washington University Medical Center, Dept. of Medical and Public Affairs, Science Communication 
Division, Washington, DC. 
Spencer, W.F., Cliath, M.M. (1990) Movement of pesticides from soil to the atmosphere. In: Long Range Transport of Pesticides. 
Kurtz, D.A., Editor, Chapter 1, Lewis Publishers, Ann Arbor, Michigan. 
Spencer, W.F., Cliath, M.M. (1974) Factors affecting vapor loss of trifluralin from soil. J. Agric. Food Chem. 22, 987–991. 
Spencer, W., Cliath, M.M. (1983) Measurement of pesticide vapor pressures. Res. Rev. 85, 57–71. 
Spencer, W.F., Cliath, M.M., Jury, W.A., Zhang, L.Z. (1988) Volatilization of organic chemicals from soil as related to their Henry’s 
law constants. J. Environ. Qual. 17(3), 504–509. 
Spencer, W.F., Farmer, W.J., Cliath, M.M. (1973) Pesticide volatilization. Res. Rev. 49, 1–47. 
Sprankle, P., Meggitt, W.F., Penner, D. (1975) Adsorption, mobility and microbial degradation of glyphosate in the soil. Weed Sci. 
23, 229–234. 
Spurlock, F.C. (1992) Thermodynamics of organic chemical partition in soils. Ph.D. Thesis, University of California at Davis, 
California. 
Spurlock, F.C., Biggar, J.W. (1994a) Thermodynamics of organic chemical partition in soils. 2. Nonlinear partition of substituted 
phenylureas from aqueous solution. Environ. Sci. Technol. 28, 996–1002. 
Spurlock, F.C., Biggar, J.W. (1994b) Thermodynamics of organic chemical partition in soils. 3. Nonlinear partition from watermiscible 
cosolvent solutions. Environ. Sci. Technol. 28, 1003–1009. 
Staudinger, J., Roberts, P.V. (2001) A critical compilation of Henry’s law constant temperature dependence relations for organic 
compounds in dilute aqueous solutions. Chemosphere 44, 561–576. 
Steen, W.C., Collette, T.W. (1989) Microbial degradation of seven amides by suspended bacterial populations. Appl. Environ. 
Microbiol. 55, 2545–2549. 
Steen, W.C., Paris, D.F., Baughman, G.L. (1979) Effects of sediment sorption on microbial degradation of toxic substances. in Proc. 
177th National Meeting of American Chemical Society, April 1979, Honolulu, Hawaii. 
Steen, W.C., Paris, D.F., Baughman, G.L. (1982) Effects of sediment sorption on microbial degradation of toxic substances. In: 
Contaminants and Sediments: Fate and Transport, Case Studies, Modeling, Toxicity. Vol. l, Baker, R.A., Editor, p. 477, Ann 
Arbor Science, Ann Arbor, Michigan. 
Stephenson, R.M., Malanowski, S. (1987) Handbook of the Thermodynamics of Organic Compounds. Elsevier Science Publishing 
Co., Inc., New York. 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3707 
Stepp, T.A., Camper, N.D., Paynter, M.J.B. (1985) Anaerobic microbial degradation of selected 3,4-dihalogenated aromatic compounds. 
Pest. Biochem. Physiol. 23, 256. 
Stevens, P.J.G., Baker, E.A., Anderson, N.H. (1988) Factors affecting the foliar absorption and redistribution of pesticides. 2. 
Physicochemical properties of the active ingredient and the role of surfactant. Pestic. Sci. 24, 31–53. 
Stewart, D.K.R., Gaul, S.O. (1977) Persistence of 2,4-D dichlorophenoxyacetic acid, 2,4,5-T, and dicamba in a Dykeland soil. Bull. 
Environ. Contam. Toxicol. 18, 210. 
Subba-Rao, R.V., Rubin, H.E., Alexander, M. (1982) Kinetics and extent of mineralization of organic chemicals at trace levels in 
freshwater and sewage. Appl. Environ. Microbiol. 43, 1139. 
Sukop, M., Cogger, C.G. (1992) Adsorption of carbofuran, metalaxyl, and simazine: KOC evaluation and relation to soil transport. 
J. Environ. Sci. Health B27(5), 565–590. 
Suntio, L.R., Shiu, W.Y., Mackay, D., Seiber, J.N., Glotfelty, D. (1988) Critical review of Henry’s law constants. Rev. Environ. 
Contam. Toxicol. 103, 1–59. 
Swann, R.L., Laskowski, D.A., McCall, P., Vanderkuy, K., Dishburger, H. (1983) A rapid method for the estimation of the environmental 
parameters octanol/water partition coefficient, soil sorption constant, water to air ratio, and water solubility. Residue 
Rev. 85, 17–28. 
Szabo, G., Guczi, J., Kordel, Zsonay, A., Major, V., Keresztes, P. (1999) Comparison of different HPLC stationary phases for 
determination of soil-water distribution coefficient. KOC, values of organic chemicals in RP-HPLC system. Chemosphere 39, 
431–442. 
Swezey, A.W., Nex, R.W. (1961) Some physical and chemical properties of weed killers. Suppl. I Weeds 9, 209. 
Takahashi, M., Kawamura, S., Miyakado, M., Sanemitsu, Y., Tanaka, S. (1993) Uptake and translocation of bleaching herbicidal 
compounds in radish seedlings. Pestic. Sci. 39, 159–177. 
Tanaka, F.S., Wien, R.G., Mansager, E.R. (1979) Effects of nonionic surfactants on the photochemistry of 3-(4-chlorophenyl)-1,1- 
dimethylurea in aqueous solution. J. Agric. Food Chem. 27, 774–779. 
Tanaka, F.S., Wien, R.G., Mansager, E.R. (1981) Survey for surfactant effects on the photodegradation of herbicides in aqueous 
media. J. Agric. Food Chem. 29, 227–230. 
Tanaka, F.S., Wien, R.G., Mansager, E.R. (1982) Photolytic demethylation of monuron and demethylmonuron in aqueous solution. 
Pest. Sci. 13, 287. 
Tanaka, F.S., Wien, R.G., Zaylskie, G. (1977) Photolysis of 3-(4-chlorophenyl)-1,1-dimethylurea in dilute aqueous solution. J. Agric. 
Food Chem. 25, 1068. 
Taylor, A.W., Glotfelty, D.E. (1988) Evaporation from soils and crops. In: Environmental Chemistry of Herbicides. Vol. I, Grover, R., 
Editor, Chapter 4, pp. 89–130, CRC Press, Boca Raton, Florida. 
Taylor, A.W., Spencer, W.F. (1990) Volatilization and vapor transport processes. In: Pesticides in the Soil Environment: Processes, 
Impacts, and Modeling. Cheng, H.H., Editor, Soil Science Society of America, Inc., Madison, Wisconsin. 
Thomas, R.G. (1982) Chapter 15: Volatilization from water and Chapter 16: Volatilization from soil. In: Handbook on Chemical Property 
Estimation Methods, Environmental Behavior of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, 
McGraw-Hill, Inc., New York. 
Thomas, V.M., Holt, C.L. (1980) The degradation of [14C]-molinate in soil under flooded and non-flooded conditions. J. Environ. 
Sci. Health B15, 475. 
Tomlin, C. (1994) The Pesticide Manual. (A World Compendium). 10th Edition. The British Crop Protection Council, Surrey, England 
and The Royal Society of Chemistry, Cambridge, England. 
Traub-Eberhard, U., Kordel, W., Klein, W. (1994) Pesticide movement into subsurface drains on a loamy silt soil. Chemosphere 28, 
273–284. 
Travis, C.C., Arms, A.D. (1988) Bioconcentration of organics in beef, milk, and vegetation. Environ. Sci. Technol. 22, 271–274. 
Trevisan, M., Montepiani, C., Ghebbioni, C., Del Re, A.A.M. (1991) Evaluation of potential hazard of propanil to groundwater. 
Chemosphere 22, 637–643. 
Tucker, C.S., Boyd, C.E. (1981) Relationships between pond sediments and simazine loss from waters of laboratory systems. J. Aquat. 
Plant Manag. 19, 55. 
Urosol, N.J., Hance, R.J. (1974) The effect of temperature and water contents on the rate of decomposition of the herbicide linuron. 
Weed Sci. 16, 19–21. 
Ursin, C. (1985) Degradation of organic chemicals at trace levels in sea water and marine sediment. The effect of concentration on 
the initial fractional turnover rate. Chemosphere 14, 1539. 
USDA (1989) Final environment impact statement, vegetation management in the Piedmont and Coastal Plain. Southern Region 
Management Bulletin R8-MB-23. U.S. Dept. of Agriculture, Forest Service, Atlanta, Georgia. 
USEPA (1975) Substitute Chemical Program – Initial Scientific and Minieconomic Review of Bromocil. U.S. EPA-540/1-75-006. 
U.S. Government Printing Office, Washington DC. 
USEPA (1988) Graphical Exposure Modeling System. (GEMS), CLOGP3, U.S. Environmental Protection Agency. 
Van Zwieten, L., Kennedy, I.R. (1995) Rapid degradation of atrazine by Rhodococcus Sp. NI86/21 and by and atrazind-perfused soil. 
J. Agric. Food Chem. 43, 1377–1382. 
Veeh, R.H., Inskeep, W.P., Camper, A.K. (1996) Soil depth and temperature effects on microbial degradation of 2,4-D. J. Environ. 
Qual. 25, 5–12. 
© 2006 by Taylor & Francis Group, LLC

3708 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Veith, G.D., Defoe, D.L., Bergstedt, B.V. (1979) Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish 
Res. Board Can. 26, 1040–1048. 
Veith, G.D., Kosian, P. (1982) In: Physical Behavior of PCBs in the Great Lakes. Chapter 15, pp. 269–282, Ann Arbor Science, 
Michigan. 
Veith, G.D., Macek, K.J., Petrocelli, S.R., Caroll, J. (1980) An evaluation of using partition coefficient and water solubilities to 
estimate bioconcentration factors for organic chemicals in fish. In: Aquatic Toxicology. Eaton, J.G., Parrish, P.R., Hendricks, 
A.C., Editors, ASTM STP 707, American Society for Testing and Materials. pp. 116–129. 
Verloop, A. (1972) Fate of the herbicide diclobenil in plants and soil in relation to its biological activity. Res. Rev. 43, 55–103. 
Verschueren, K. (1983) Handbook of Environmental Data on Organic Chemicals. 2nd. Edition, Van Nostrand Reinhold, New York, 
New York. 
Virtanen, M., Hattula, M.L., Arstila, A.U. (1979) Behavior and fate of 4-chloro-2-methylphenoxyacetic acid (MCPA) and 2,6-dichloroo-
cresol as studied in an aquatic-terrestrial model ecosystem. Chemosphere 8, 431. 
von Oepen, B., Kordel, W., Klein, W. (1991) Sorption of nonpolar and polar compounds to soils: Processes, measurements and 
experiences with the applicability of the modified OECD-guideline 106. Chemosphere 22, 285–304. 
Vroumsia, T., Steiman, R., Seigle-Murandi, F., Benoit-Guyod, J.-L., Khadrani, A. (1996) Biodegradation of three substituted 
phenylurea herbicides (chlortolruon, diuron, and isoproturon) by soil fungi. A comparative study. Chemosphere 33, 
2045–2056. 
Yu, C.-C., Hansen, D.J., Booth, G.M. (1975) Fate of dicamba in a model ecosystem. Bull. Environ. Contamin. Toxicol. 13, 280–283. 
Walker, A. (1976) Simulation of herbicide persistence in soil. III Propyzamide in different soil types. Pest. Sci. 7, 59–64. 
Walker, A. (1978) Simulation of the persistence of eight soil applied herbicides. Weed Res. 18, 305–313. 
Walker, A., Bond, W. (1977) Persistence of the herbicide AC-92, 553, N-(1-ethylpropyl)-2,6-dinitro-3,4-xylidine in soils. Pestic. Sci. 
8, 359–369. 
Walker, A., Brown, P.A. (1985) The relative persistence in soil of five acetanilide herbicides. Bull. Environ. Contam. Toxicol. 34, 
143–149. 
Walker, A., Cotterill, E.G., Welch, S.J. (1989) Adsorption and degradation of chlorsulfuron and metsulfuron-methyl in soils from 
different depths. Weed Res. 29, 281–287. 
Walker, A., Welch, S.J. (1991) Enhanced degradation of some soil-applied herbicides. Weed Res. 31, 49–57. 
Walker, A., Welch, S.J. (1992) Further studies of the enhanced biodegradation of some soil-applied herbicides. Weed Res. 32, 19–27. 
Walker, A., Zimdahl, R.L. (1981) Simulation of the persistence of atrazine, linuron and metocholor in soil at different sites in U.S.A. 
Weed Res. 21, 255–265. 
Walker, W.W. (1978) Insecticide persistence in natural seawater as affected by salinity, temperature and sterility. EPA-600/3-78-044. 
U.S. Environmental Protection Agency, Gulf Breeze, Florida. 
Walker, W.W., Cripe, C.R., Pritchard, P.H., Bourquin, A.W. (1988) Biological and abiotic degradation of xenobiotic compounds in 
in vitro estuarine water and sediment/water systems. Chemosphere 17, 2255–2270. 
Wang, S., Arnold, W.A. (2003) Abiotic reduction of dinitroaniline herbicides. Water Res. 37, 4191–4201. 
Wang, Y.-S., Jaw, C.-G., Tang, H.-C., Lin, T.-S., Chen, Y.-L. (1992) Accumulation and release of herbicides butachlor, thiobencarb, 
and chlomethoxyfen by fish, clam, and shrimp. Bull. environ. Contam. Toxicol. 48, 474–480. 
Wang, Y.-S., Madsen, E.L., Alexander, M. (1985) Microbial degradation by mineralization or cometabolism determined by chemical 
concentration and environment. J. Agric. Food Chem. 33, 495. 
Wang, Y.-S., Subba-Rao, R.V., Alexander, M. (1984) Effect of substrate concentration and organic and inorganic compounds on the 
occurrence and rate of mineralization and cometabolism. Appl. Environ. Microbiol. 47, 1195. 
Wang, X., Harada, S., Watanabe, M., Koshikawa, H., Geyer, P.R. (1996) Modelling the bioconcentration of hydrophobic organic 
organisms. Chemosphere 32, 1783–1793. 
Ward, T.M., Weber, J.B. (1968) Aqueous solubility of alkylamino-s-triazines as a function of pH and molecular structure. J. Agric. 
Food Chem. 16, 959–961. 
Wauchope, R.D. (1978) The pesticide content of surface water draining from agricultural fields – A review. J. Environ. Qual. 7, 
459–472. 
Wauchope, R.D. (1989) ARS/SCS Pesticides Properties Database. Version 1.9, preprint, August, 1989. 
Wauchope, R.D., Buttler, T.M., Hornsby, A.G., Augustijn-Beckers, P.W.M., Burt, J.P. (1992) The SCS/ARS/SCS Pesticides Properties 
Database for Environmental Decision-Making. Rev. Environ. Contam. Toxicol. 123, 1–164. 
Wauchope, R.D., Hornsby, A G., Goss, D.W., Burt, J.P. (1991) The SCS/ARS/SCS Pesticides Properties Database: A set of parameter 
values for first-tier comparative water pollution risk analysis. Proceedings, National Pesticide Conference, Brookfield, 
Virginia, November 8–9, 1990, pp. 455–470. 
Wauchope, R.D., Myers, R.S. (1985) Adsorption-desorption kinetics of atrazine and linuron in freshwater-sediment aqueous slurries. 
J. Environ. Qual. 14, 132–137. 
Weber, J.B. (1970) Mechanisms of adsorption of s-trazines by clay colloids and factors affecting plant availability. Res. Rev. 32, 93–130. 
Weber, J.B. (1972) Interaction of organic pesticides with particulate matter in aquatic and soil systems. In: Fate of Organic Pesticides 
in the Aquatic Environment. Adv. Chem. Ser. 111. American Chemical Society, Washington, DC. p. 55. 
Weber, J.B., Peter, C.J. (1982) Adsorption, bioactivity, and evaluation of soil tests for alachlor, acetochlor, and metolachlor. Weed 
Sci. 30, 14–20. 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3709 
Weber, J.B., Shea, P.J., Strek, H.J. (1980) An evaluation of nonpoint sources of pesticide pollution in runoff. In: Environmental Impact 
of Nonpoint Source Pollution. Overcash, M., Davidson, J., Editors, Ann Arbor Science Publishers, Ann Arbor, Michigan. 
Wiedemann, H.G. (1972) Applications of thermogravimetry of vapor pressure determination. Thermochim. Acta 3, 355–366. 
Weidner, C.W. (1974) Degradation in ground water and mobility of herbicides. Report prepared for the Office of Water Research 
and Technology, U.S. Environmental Protection Agency, Washington DC. PB 239242. 
Weinhold, B.J., Gish, T.J. (1994) Chemical properties influencing rate of release of starch encapsulated herbicides: Implications for 
modifying environmental fate. Chemosphere 28(5), 1035–1046. 
Weinhold, B.J., Sadeghi, A.M., Gish, T.J. (1993) Organic chemicals in the environment. Effect of starch encapsulation and temperature 
on volatilization of atrazine and alachlor. J. Environ. Qual. 22, 162–166. 
West, S.D., Burger, R.O., Poole, G.M., Mowrey, O.H. (1983) Bioconcentration and field dissipation of the aquatic herbicide fluridone 
and its degradation products in aquatic environments. J. Agric. Food Chem. 31, 579–585. 
West, S.D., Day, E.W., Jr., Burger, R.O. (1979) Dissipation of the experimental aquatic herbicide fluridone from lakes and ponds. 
J. Agric. Food Chem. 27, 1067. 
Willis, G.H., McDowell, L.L. (1982) Pesticides in agricultural runoff and their effects on downstream water quality. Environ. Toxicol. 
Chem. 1, 267–279. 
Willis, G.H., Wander, R.C., Southwick, L.M. (1974) Degradation of trifluralin in soil suspensions as related to redox potential. 
J. Environ. Qual. 3, 262–265. 
Wilson, R.G., Jr., Cheng, H.H. (1978) Fate of 2,4-D in a Naff silt loam soil. J. Environ. Qual. 7, 281. 
Windholz, M., Editor (1983) The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals. 10th Edition. The Merck & 
Co. Inc., Rahway, New Jersey. 
Winkelmann, D.A., Klaine, S.J. (1991) Degradation and bound residue formation of atrazine in a western Tennessee soil. Environ. 
Toxicol. Chem. 10, 335–345. 
Wolt, J.D. (1997) Environmental fate of ethalfluralin. Rev. Environ. Contam. Toxicol. 153, 65–90. 
Wolf, D.C., Jackson, R.L. (1982) Atrazine degradation, sorption, and bioaccumulation in water systems. Arkansas Water Resources 
Center. NTIS PB83-150151. 
Wolfe, N.L., Zepp, R.G., Baughman, G.L., Fincher, R.C., Gordon, J.A. (1976) Chemical and photochemical transformation of selected 
pesticides in aquatic systems. U.S. Environmental Protection Agency, Athens, Georgia. EPA-600/3-76-067. 
Wolfe, N.L., Zepp, R.G., Paris, D.F. (1978) Carbaryl, propham, and chloropropham: A comparison of the rates of hydrolysis and 
photolysis with the rate of biolysis. Water Res. 12, 565–571. 
Wood, A, Davidson, J.M. (1975) Soil Science Society of America Proceedings 39, 820–825. 
Wood, M.J. et al. (1991) In: Pesticides in Soil and Water: Current Perspectives. Walker, A., Editor, (BCPC Monograph), 47, 175–182. 
Woodburn, K.B., Batzer, F.R., White, F.H., Schultz, M.R. (1993) The aqueous photolysis of triclopyr. Environ. Toxicol. Chem. 12, 
45–55. 
Woodford, E.K., Evans, S.A., Editors (1963) Weed Control Handbook: Properties of Herbicides. Blackwell Scientific, Oxford, 
England. 
Woodrow, J.E., Crosby, D.G., Mast, T., Moilanen, K.W., Seiber, J.N. (1978) Rates of transformation of trifluralin and parathion 
vapors in air. J. Agric. Food Chem. 26, 1312–1316. 
Woodrow, J.E., Crosby, D.G., Seiber, J.N. (1983) Vapor-phase photochemistry of pesticides. Residue Rev. 85, 111–125. 
Worthing, C.R., Editor (1983) The Pesticide Manual. (A World Compendium). 7th Edition, The British Crop Protection Council, 
Croydon, England. 
Worthing, C.R., Walker, S.B., Editors (1987) The Pesticide Manual. (A World Compendium). 8th Edition, The British Crop Protection 
Council, Croydon, England. 
Worthing, C.R., Hance, R., Editors (1991) The Pesticide Manual. (A World Compendium). 9th Edition, The British Crop Protection 
Council, Croydon, England. 
Xu, F., Liang, X.-M., Su, F., Zhang, Z., Lin, B.-C., Wu, W.-Z., Yediler, A., Kettrup, A. (1999) A column method for determination 
of soil organic partition coefficients of eight pesticides. Chemosphere 39, 787–794. 
Yalkowsky, S.H., Valvani, S.C., Kun, W.-Y., Dannenfelser, R.M., Editors (1987) Arizona Database of Aqueous Solubility for Organic 
Compounds. College of Pharmacy, University of Arizona, Tucson, Arizona. 
Yao, C.C.D., Haag, W.R. (1991) Rate constants for direct reactions of ozone with several drinking water contaminants. Water Res. 
25, 761–773. 
Yockim, R.S., Isensee, A.R., Walker, E.A. (1980) Behavior of trifluralin in aquatic model ecosystems. Bull. Environ. Contamin. 
Toxicol. 24, 134–141. 
Yoshioka, Y., Mizuno, T., Ose, Y., Sato, T. (1986) The estimation for toxicity of chemicals on fish by physico-chemical properties. 
Chemosphere 15(2), 195–203. 
Yu, C-C., Hansen, D.J., Booth, G.M. (1975) Fate of dicamba in a model ecosystem. Bull. Environ. Contam. Toxicol. 13, 280–283. 
Zandvoort, R., Van Dord, D.C., Leistra, M., Verlaat, J.G. (1979) The decline of propyzamide in soil under field conditions in the 
Netherlands. Weed Res. 19, 157. 
Zepp, R.G. (1978) Quantum yields for reactions of pollutants in dilute aqueous solution. Environ. Sci. Technol. 12, 327–329. 
Zepp, R.G. (1980). Assessing the photochemistry of organic pollutants in aquatic environments. In: Dynamics, Exposure and Hazard 
Assessment of Toxic Chemicals. Haque, R., Editor, pp. 60–110, Ann Arbor Science Publishers, Ann Arbor, Michigan. 
© 2006 by Taylor & Francis Group, LLC

3710 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Zepp, R.G. (1991) Photochemical fate of agrochemicals in natural waters. In: Pesticide Chemistry. Advances in International Research, 
Development, and Legislation. Frehse, H., Editor, pp. 329–345, VCH, New York, New York. 
Zepp, R.G., Baughman, G.L. (1978) Prediction of photochemical transformation of pollutants in aquatic environment. In: Aquatic 
Pollutants: Transformation and Biological Effects. Hutzinger, O., Van Lelyveld, I.H., Zoeteman, B.C.J., Editors, pp. 237–264, 
Pergamon Press, Oxford, England. 
Zepp, R.G., Cline, D.M. (1977) Rates of direct photolysis in aqueous environment. Environ. Sci. Technol. 11, 359–366. 
Zepp, R.G., Schlotzhauer, P.F., Simmons, M.S., Miller, G.C., Baughman, G.L., Wolfe, N.L. (1984) Dynamics of pollutant photoreactions 
in the hydrosphere. Fresenius Z. Anal. Chem. 319, 119–125. 
Zepp, R.G., Wolfe, N.L., Gordon, J.A., Baughman, G.L. (1975) Dynamics of 2,4-D esters in surface waters. Hydrolysis, photolysis 
and vaporization. Environ. Sci. Technol. 9, 1144. 
Zhao, H., Jaynes, W.F., Vance, G.F. (1996) Sorption of the ionizable organic compound, dicamba (3,6-dichloro-2-methoxy benzoic 
acid), by organo-clays. Chemosphere 33, 2089–2100. 
Zimdahl, R.L., Clark, S.K. (1982) Degradation of three acetanilide herbicides in soil. Weed Sci. 30, 545. 
Zimdahl, R.L., Gwynn, S.M. (1977) Soil degradation of three dinitroanilines. Weed Sci. 25, 247–251. 
Zitko, V., McLeese, D.W., Carson, W.G., Welch, H.E. (1976) Toxicity of alkyl-dinitrophenols to some aquatic organisms. Bull. 
Environ. Contam. Toxicol. 16, 508–515. 
© 2006 by Taylor & Francis Group, LLC

18 Insecticides 
CONTENTS 
18.1 List of Chemicals and Data Compilations . 3715 
18.1.1 Insecticides . 3715 
18.1.1.1 Acephate . . . . . . . . . . . 3715 
18.1.1.2 Aldicarb . . . . . . . . . . . 3717 
18.1.1.3 Aldrin . . . . . . . . . . . . . 3721 
18.1.1.4 Aminocarb . . . . . . . . . 3728 
18.1.1.5 Azinphos-methyl . . . . 3729 
18.1.1.6 Bendiocarb . . . . . . . . . 3732 
18.1.1.7 Bromophos . . . . . . . . . 3734 
18.1.1.8 Bromophos-ethyl . . . . 3736 
18.1.1.9 Carbaryl . . . . . . . . . . . 3738 
18.1.1.10 Carbofuran . . . . . . . . . 3742 
18.1.1.11 Carbophenothion . . . . 3746 
18.1.1.12 Carbosulfan . . . . . . . . 3748 
18.1.1.13 Chlordane . . . . . . . . . . 3750 
18.1.1.14 Chlorfenvinphos . . . . . 3758 
18.1.1.15 Chlorpyrifos . . . . . . . . 3760 
18.1.1.16 Chlorpyrifos-methyl . . 3765 
18.1.1.17 Crotoxyphos . . . . . . . . 3767 
18.1.1.18 Cyhalothrin . . . . . . . . 3769 
18.1.1.19 Lambda-cyhalothrin . . 3770 
18.1.1.20 Cypermethrin . . . . . . . 3772 
18.1.1.21 DDD . . . . . . . . . . . . . . 3774 
18.1.1.22 DDE . . . . . . . . . . . . . . 3779 
18.1.1.23 DDT . . . . . . . . . . . . . . 3785 
18.1.1.24 Deltamethrin . . . . . . . . 3798 
18.1.1.25 Demeton . . . . . . . . . . . 3800 
18.1.1.26 Dialifor . . . . . . . . . . . . 3802 
18.1.1.27 Diazinon . . . . . . . . . . . 3804 
18.1.1.28 Dichlorvos . . . . . . . . . 3811 
18.1.1.29 Dicrotophos . . . . . . . . 3816 
18.1.1.30 Dieldrin . . . . . . . . . . . 3819 
18.1.1.31 Diflubenzuron . . . . . . 3827 
18.1.1.32 Dimethoate . . . . . . . . . 3829 
18.1.1.33 Disulfoton . . . . . . . . . 3832 
18.1.1.34 Endosulfan . . . . . . . . . 3835 
18.1.1.35 Endrin . . . . . . . . . . . . . 3840 
18.1.1.36 Ethiofencarb . . . . . . . . 3845 
18.1.1.37 Ethion . . . . . . . . . . . . . 3847 
18.1.1.38 Ethoprop . . . . . . . . . . . 3849 
18.1.1.39 Fenitrothion . . . . . . . . 3851 
© 2006 by Taylor & Francis Group, LLC

3712 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.40 Fenoxycarb . . . . . . . . . 3854 
18.1.1.41 Fenpropathrin . . . . . . . 3855 
18.1.1.42 Fensulfothion . . . . . . . 3857 
18.1.1.43 Fenthion . . . . . . . . . . . 3859 
18.1.1.44 Fenvalerate . . . . . . . . . 3862 
18.1.1.45 Flucythrinate . . . . . . . 3865 
18.1.1.46 Fonofos . . . . . . . . . . . . 3867 
18.1.1.47 .-HCH . . . . . . . . . . . . 3869 
18.1.1.48 .-HCH . . . . . . . . . . . . 3876 
18.1.1.49 .-HCH . . . . . . . . . . . . 3881 
18.1.1.50 Heptachlor . . . . . . . . . 3885 
18.1.1.51 Heptachlor epoxide . . 3890 
18.1.1.52 Kepone . . . . . . . . . . . . 3893 
18.1.1.53 Leptophos . . . . . . . . . . 3896 
18.1.1.54 Lindane (.-HCH) . . . . 3898 
18.1.1.55 Malathion . . . . . . . . . . 3912 
18.1.1.56 Methiocarb . . . . . . . . . 3916 
18.1.1.57 Methomyl . . . . . . . . . . 3918 
18.1.1.58 Methoxychlor . . . . . . . 3920 
18.1.1.59 Mevinphos . . . . . . . . . 3925 
18.1.1.60 Mirex . . . . . . . . . . . . . 3927 
18.1.1.61 Monocrotophos . . . . . 3930 
18.1.1.62 Naled . . . . . . . . . . . . . 3932 
18.1.1.63 Oxamyl . . . . . . . . . . . . 3934 
18.1.1.64 Parathion . . . . . . . . . . 3936 
18.1.1.65 Parathion-methyl . . . . 3942 
18.1.1.66 Pentachlorophenol . . . 3947 
18.1.1.67 Permethrin . . . . . . . . . 3953 
18.1.1.68 Phenthoate . . . . . . . . . 3957 
18.1.1.69 Phorate . . . . . . . . . . . . 3959 
18.1.1.70 Phosmet . . . . . . . . . . . 3962 
18.1.1.71 Pirimicarb . . . . . . . . . . 3964 
18.1.1.72 Propoxur . . . . . . . . . . . 3966 
18.1.1.73 Ronnel . . . . . . . . . . . . 3969 
18.1.1.74 Terbufos . . . . . . . . . . . 3971 
18.1.1.75 Thiodicarb . . . . . . . . . 3973 
18.1.1.76 Toxaphene . . . . . . . . . 3975 
18.1.1.77 Trichlorfon . . . . . . . . . 3980 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3713 
18.1. List of Chemicals and Data Compilations (by Functional Group): 
Organophosphorus compounds: 
a) Phosphates: 
Chlorfenvinphos . . . . 3758 
Crotoxyphos . . . . . . . 3767 
Dichlorvos . . . . . . . . 3811 
Dicrotophos . . . . . . . 3816 
Mevinphos . . . . . . . . 3925 
Monocrotophos . . . . 3930 
Naled . . . . . . . . . . 3932 
b) Phosphorothioates: 
Acephate . . . . . . . . . . 3715 
Bromophos . . . . . . . . 3734 
Bromophos-ethyl . . . 3736 
Chlorpyrifos . . . . . . . 3760 
Chlorpyrifos-methyl . 3765 
Demeton . . . . . . . . . . 3800 
Diazinon . . . . . . . . . . 3804 
Fenitrothion . . . . . . . 3851 
Fensulfothion . . . . . . 3857 
Fenthion . . . . . . . . . . 3859 
Leptophos . . . . . . . . . 3896 
Parathion . . . . . . . . . 3936 
Parathion-methyl . . . 3942 
Ronnel . . . . . . . . . . 3969 
Trichlorfon . . . . . . . . 3980 
c) Phosphorodithioates (Phosphorothiolothionates): 
Azinphos-methyl . . . 3729 
Carbophenothion . . . 3746 
Dialifor . . . . . . . . . . 3802 
Dimethoate . . . . . . . . 3829 
Disulfoton . . . . . . . . . 3832 
Ethion . . . . . . . . . . 3847 
Ethoprop . . . . . . . . . . 3849 
Fonofos . . . . . . . . . . 3867 
Malathion . . . . . . . . . 3912 
Phenthoate . . . . . . . . 3957 
Phorate . . . . . . . . . . 3959 
Phosmet . . . . . . . . . . 3962 
Terbufos . . . . . . . . . . 3971 
Carbamates: 
Aldicarb . . . . . . . . . . 3717 
Aminocarb . . . . . . . . 3728 
Bendiocarb . . . . . . . . 3732 
Carbaryl . . . . . . . . . . 3738 
Carbofuran . . . . . . . . 3742 
Carbosulfan . . . . . . . 3748 
Ethiofencarb . . . . . . . 3845 
Fenoxycarb . . . . . . . . 3854 
Methiocarb . . . . . . . . 3916 
Methomyl . . . . . . . . . 3918 
Oxamyl . . . . . . . . . . 3934 
Pirimicarb . . . . . . . . . 3964 
Propoxur . . . . . . . . . . 3966 
Thiodicarb . . . . . . . . 3973 
© 2006 by Taylor & Francis Group, LLC

3714 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Organochlorines: 
Aldrin . . . . . . . . . . 3721 
Chlordane 3750 
DDD . . . . . . . . . . 3774 
DDE . . . . . . . . . . 3779 
DDT . . . . . . . . . . 3785 
Dieldrin . . . . . . . . . . 3819 
Endrin . . . . . . . . . . 3840 
.-HCH . . . . . . . . . . 3869 
.-HCH . . . . . . . . . . 3876 
.-HCH . . . . . . . . . . 3881 
Heptachlor . . . . . . . . 3885 
Heptachlor epoxide . 3890 
Kepone . . . . . . . . . . 3893 
Lindane (.-HCH) . . . 3898 
Methoxychlor . . . . . . 3920 
Mirex . . . . . . . . . . 3927 
Toxaphene . . . . . . . . 3975 
Phenols: 
Pentachlorophenol (PCP) . . . . . . . . . . . . . . 3947 
Synthetic pyrethroids: 
Cypermethrin . . . . . . 3772 
Cyhalothrin . . . . . . . . 3769 
Lambda-cyhalothrin . 3770 
Deltamethrin . . . . . . . 3798 
Fenpropathrin . . . . . . 3855 
Fenvalerate . . . . . . . . 3862 
Permethrin . . . . . . . . 3953 
Miscellaneous: 
Diflubenzuron . . . . . 3827 
Endosulfan . . . . . . . . 3835 
Flucythrinate . . . . . . 3865 
18.2 Summary Tables . . . . 3982 
18.3 References . . . . . . . . 3992 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3715 
18.1 LIST OF CHEMICALS AND DATA COMPILATIONS 
18.1.1 INSECTICIDES 
18.1.1.1 Acephate 
Common Name: Acephate 
Synonym: Chevron RE 12420, ENT 27822, Orthene, Ortho 12420, Ortran, Ortril, RE 12420, 75 SP, Tornado 
Chemical Name: acetylphosphoramidothioic acid O,S-dimethyl ester; O,S-dimethyl acetylphosphoramidothioate; 
N-[methoxy(methylthio)phosphinoyl]acetamide 
Uses: systemic insecticide with contact and stomach action to control a wide range of chewing and sucking insects in 
fruit, cotton, hops, vines, soybeans, olives, groundnuts, beet, brassicas, celery, potatoes, rice ornamentals, forestry 
and other crops; also used as cholinesterase inhibitor. 
CAS Registry No: 30560-19-1 
Molecular Formula: C4H10NO3PS 
Molecular Weight: 183.166 
Melting Point (°C): 
88 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.35 (Spencer 1982; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
135.7 (calculated from density) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.241 (mp at 88°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
650000 (Spencer 1973, 1982; Martin & Worthing 1977; Worthing& Walker 1987, Worthing & Hance 1991) 
> 5000 (20°C, shake flask-GC, Bowman & Sans 1983a) 
790000 (20°C, Hartley & Kidd 1987) 
818000 (Wauchope 1989) 
818000 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
790000 (20°C, Montgomery 1993; Tomlin 1994; Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
2.26 . 10–4 (20°C, Hartley & Kidd 1987) 
2.26 . 10–4 (24°C, Worthing & Walker 1987, Worthing & Hance 1991; Tomlin 1994) 
2.27 . 10–4 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.27 . 10–4 (20°C, Montgomery 1993) 
0.513; 0.759, 0.457 (gradient GC method; estimation using modified Watson method: Sugden’s parachor, 
McGowan’s parachor, Tsuzuki 2000) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
5.27 . 10–8 (20–25°C, calculated-P/C, Montgomery 1993) 
6.37 . 10–8 (20–25°C, calculated-P/C as per Worthing & Walker 1987, Majewski & Capel 1995) 
5.06 . 10–8 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
–0.85 (shake flask, Log P Database, Hansch & Leo 1987) 
–1.87 (calculated, Montgomery 1993) 
S 
P 
NH 
O O 
O 
© 2006 by Taylor & Francis Group, LLC

3716 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
–0.85 (recommended, Sangster 1993) 
–0.886 (Tomlin 1994) 
1.12 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
–0.523 (calculated-S, Kenaga 1980) 
0.053 (wet wt. basis, rainbow trout, Geen et al. 1984) 
Sorption Partition Coefficient, log KOC: 
0.477 (calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
0.30 (soil, 20–25°C, selected, Wauchope et al. 1992; Dowd et al. 1993; Hornsby et al. 1996) 
0.48 (Montgomery 1993) 
0.30 (estimated-chemical structure, Lohninger 1994) 
3.50, 3.00 (soil, estimated-class-specific model, estimated-general model, Gramatica et al. 2000) 
Environmental Fate Rate Constants or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: calculated rate constant k ~ 51 . 10–12 cm3/molecules for the vapor phase reaction with hydroxyl 
radical in air (Winer & Atkinson 1990). 
Hydrolysis: persistent to hydrolysis between pH 4.0 and 6.0 under laboratory condition at 20 and 30°C regardless 
of temperature while strongly affected by temperature at pH 8.2; and more persistent in pond than creek 
water (Szeto et al. 1979) 
t. = 60 h at pH 9 and t. = 710 h at pH 3 both at 40°C (Montgomery 1993). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: resistant to hydrolysis in distilled, buffered water at pH 4.0 to 6.9, but not at pH 8.2; and more 
persistent in pond than creek water, 45% found after 50 d when incubated at 9°C in creek water (Szeto 
et al. 1979) 
Ground water: 
Sediment: degradation increased greatly when treated samples were incubated in the presence of sediments, 
~ 20% recovered after 42 d and ~ 28% recovered after 58 d after incubating acephate-treated pond and creek 
water with their respective sediments (Szeto et al. 1979) 
Soil: selected field t. = 3.0 d (Wauchope et al. 1992; Dowd et al. 1993; Hornsby et al. 1996); 
t. = 7–10 d in soil (Tomlin 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3717 
18.1.1.2 Aldicarb 
Common Name: Aldicarb 
Synonym: Ambush, Carbanolate, ENT 27093, NCI-C08640, matadan, OMS 771, Pounce, Temik, Union Carbide 21149 
Chemical Name: 2-methyl-2-(methylthio)propionaldehyde O-(methylcarbamoyl) oxime; 2-methyl-2-(methylthio)propanal 
O-(methylamino)carbonyl) oxime 
Uses: systemic insecticide, acaricide, and nematocide with contact and stomach action; also used as cholinesterase 
inhibitor. 
CAS Registry No: 116-06-3 
Molecular Formula: C7H14N2O2S 
Molecular Weight: 190.263 
Melting Point (°C): 
99 (Lide 2003) 
Boiling Point (°C): 
100 (decomposes above this temp., Howard 1991) 
Density (g/cm3 at 20°C): 
1.195 (25°C, Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
224.3 (calculated-Compiled method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
25.94 (DSC method, Plato & Glasgow 1969) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.188 (mp at 99°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
4000 (24°C, shake flask-GC, Felsot & Dahm 1979) 
7800 (Kenaga 1980a; Kenaga & Goring 1980) 
6000 (Khan 1980; Verschueren 1983) 
6016, 6000 (exptl., corrected-mp, Briggs 1981) 
6000 (20°C, shake flask-GC, Bowman & Sans 1983b) 
6000 (Hartley & Kidd 1987; Worthing & Walker 1987, Worthing & Hance 1991; Budavari 1989; 
Montgomery 1993; Milne 1995) 
5730 (Seiber 1987) 
6000 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
4930 (20°C at pH 7, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations.): 
6.67 (20°C, Khan 1980) 
0.00707 (20°C, selected exptl. value, Kim 1985) 
0.102, 0.016 (20°C, GC-RT correlation, GC-RT correlation with mp correction, Kim 1985) 
0.013 (20°C, Hartley & Kidd 1987; Tomlin 1994) 
0.013 (selected, Suntio et al. 1988) 
0.013 (Worthing & Hance 1991) 
0.004 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.0046 (Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
2.48 . 10–4 (Jury et al. 1987a, Jury & Ghodrati 1989) 
3.20 . 10–4 (calculated-P/C, Suntio et al. 1988) 
S 
N
O N
H 
O 
© 2006 by Taylor & Francis Group, LLC

3718 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
1.47 . 10–4 (20–25°C, calculated-P/C, Montgomery 1993) 
1.27 . 10–4 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
0.85 (shake flask, Felsot & Dahm 1979) 
1.10 (Hansch & Leo 1979) 
1.57 (shake flask-UV, Lord et al.1980) 
0.70 (Rao & Davidson 1980) 
1.57 (20°C, shake flask-UV, Briggs 1981) 
1.13 (20°C, shake flask-GC, Bowman & Sans 1983b) 
1.13 (Hansch & Leo 1985) 
0.70, 1.13 (Montgomery 1993) 
1.13 (recommended, Sangster 1993) 
1.13 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.62 (fish in static water, Metcalf & Sanborn 1975; Kenaga & Goring 1980) 
0.85 (vegetation, correlated-KOW, Iwata et al. 1977; Maitlen & Powell 1982) 
0.602 (calculated-S, Kenaga 1980; quoted, Howard 1991) 
1.64 (earthworm, Lord et al. 1980; quoted, Connell & Markwell 1990) 
1.00, 1.18 (log BCFlipid, log BCFprotein, Briggs 1981) 
Sorption Partition Coefficient, log KOC: 
1.36–1.57 (Felsot & Dahm 1979) 
0.91, 1.20 (Bromilow & Leistra 1980) 
1.51 (calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
1.39 (reported as log KOM, Briggs 1981) 
1.51 (estimated, Kenaga 1980; quoted, Howard 1991) 
1.30–1.40 (Bilkert & Rao 1985; quoted, Howard 1991) 
1.56 (soil, screening model calculations, Jury et al. 1987a, b; Jury & Ghodrati 1989) 
1.48 (soil, 20–25°C, selected, Wauchope et al. 1992; Dowd et al. 1993; Hornsby et al. 1996) 
0.85–1.67 (Montgomery 1993) 
1.48 (estimated-chemical structure, Lohninger 1994) 
1.50 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.40, 1.97 (estimated-class-specific model, estimated-general model, Gramatica et al. 2000) 
1.30 (soil: organic carbon OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
photooxidation t. = 1–9.5 h, based on an estimated rate constant for vapor-phase reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991) 
t. = 1.7–12 d in soil for pH 1–10 with little change in rate between pH 4.4–10 (Lemley et al. 1988; quoted, 
Howard 1991) 
k(aq.) = 5.9 . 109 M–1 s–1 for the reaction (Fenton with reference to acetophenone) with hydroxyl radical 
in aqueous solutions at pH 3.5 and at 24 ± 1°C (Buxton et al. 1988; quoted, Faust & Hoigne 1990; Haag 
& Yao 1992) 
k(aq.) = (4.4 ± 0.1) . 104 M–1 s–1 for direct reaction with ozone in water at pH 2.1; k = (4.3 ± 0.2) . 105 M–1 
s–1 at pH 7.0 and 24 ± 1°C, with t. = 0.08 s at pH 7 (Yao & Haag 1991). 
k(aq.) = (8.1 ± 1.1) . 109 M–1 s–1 for the reaction (Fenton with reference to acetophenone) with hydroxyl 
radical in aqueous solutions at pH 3.5 and at 24 ± 1°C (Haag & Yao 1992) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3719 
Hydrolysis: t. = 23 d at pH 7.2 (Smelt et al. 1978; quoted, Howard 1991) 
t. = 9.9 d at pH 6.3–7.0 at 15°C (Bromilow & Leistra 1980; quoted, Howard 1991) 
t. = 4580 d, based on a first-order k = 1.51 . 10–4 d–1 at pH 5.5 and 5°C (Hansen & Spiegel 1983; quoted, 
Howard et al. 1991) 
t. = 4.0 min at pH 12.9, t. = = 1.3 min at pH 13.39 and 15°C (Lemley & Zhong 1983) 
t. = 0.4–3.2 d in soil at pH 4.5–4.9 and 25°C (Rao et al. 1984; quoted, Howard 1991) 
Pseudo-first order k = 5.3 . 10–3 d–1 with t. = 131 d–1 at pH 3.95, k = 1.3 . 10–3 d–1 with t. = 559 d at pH 
6.02, k = 2.1 . 10–3 d–1 with t. = 324 d at pH 7.96, k = 1.3 . 10–2 d–1 with t. = 55 d at pH 8.85 in period 
of 89 d; and k = 1.2 . 10–1 d–1 with t. = 6 d at pH 9.85 for period of 15 days at 20°C in pH-buffered 
distilled water (Given & Dierberg 1985; Mink et al. 1989) 
For pH buffered distilled water at 20°C: t. = 131 d at pH 3.95, t. = 559 d at pH 6.02, t. = 324 d at pH 
7.96, t. = 55 d at pH 8.85, and t. = 6 d at pH 9.85 (Montgomery 1993) 
t. = 16 d in aqueous montmorillonite suspensions (10 g/L) at pH 3.7 (Wei et al. 2001). 
Biodegradation: 
k = 0.000222 h–1 for discharge rate of 30 cm/year and k = 0.000233 h–1 for discharge rate of 61 cm/year 
with t. = 30 d (Jones & Back 1984) 
Aerobic mineralization k = (1.93–34.2) . 10–3 d–1 with t. = 20–361 d in surface soils and 
k = 2.97–5.28) . 10–3 d–1 with t. = 131–233 d in subsurface soils; anaerobic mineralization 
k = (8.09–31.1) . 10–4 d–1 with t. = 223–1130 d in surface soils after 63 d incubation (Ou et al. 1985) 
t. = 70 d in 0–10 cm depth of soil (Jury et al. 1987a, b; Jury & Ghodrati 1989). 
t.(aq. aerobic) = 480–8664 h, based on unacclimated aerobic soil grab sample data; t.(aq anaerobic) = 
1488–15240 h, based on anaerobic ground water grab sample data (Howard et al. 1991) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 1–9.5 h, based on an estimated rate constant for vapor-phase reaction with hydroxyl radicals in air 
(Atkinson 1987; quoted, Howard 1991; Howard et al. 1991). 
Surface water: t. = 5 d in pond water, t. = 6 d in lake water (Moorefield 1974; Mink et al. 1989) 
Hydrolysis t. = 6 to 131 d in pH-buffered distilled water at 20°C (Given & Dierberg 1985) 
t. = 480–8664 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991); 
t. = 0.08 s for direct reaction with ozone in water at pH 7 and 24 ± 1°C (Yao & Haag 1991) 
Ground water: t. = 960–15240 h, based on estimated aqueous aerobic biodegradation half-life and water grab 
sample data (Miles & Delfino 1985; quoted, Howard et al. 1991). 
Sediment: 
Soil: t. = 9, 7, and 12 d in clay, silty clay loam and fine sandy loam at an application rate of 20 ppm (Coppedge 
et al. 1967; quoted, Montgomery 1993); 
hydrolysis t. = 23 d at pH 7.2 (Smelt et al. 1978; quoted, Howard 1991), 
t. = 9.9 d at pH 6.3–7.0 at 15°C (Bromilow et al. 1980; Bromilow & Leistra 1980; quoted, Howard 1991; 
Montgomery 1993); 
t. = 0.4–3.2 d at pH 4.5–4.9 and 25°C (Rao et al. 1984; quoted, Howard 1991); 
degradation rate constants k = 0.000222 h–1 for discharge rate of 30 cm/year and k = 0.000233 h–1 for 
discharge rate of 61 cm/yr with t. = 30 d (Jones & Back 1984); 
Mineralization t. = 20–361 d in surface soils and t. = 131–233 d in surface soils under aerobic condition, 
anaerobic t. = 223–1130 d in surface soils after 63 d incubation (Ou et al. 1985) 
reported t. = 70 d from screening model calculations (Jury et al. 1987a, b; Jury & Ghodrati 1989; quoted, 
Montgomery 1993); 
oxidation t. = 1.7–12 d for pH 1–10 with little change in rate between pH 4.4–10 (Lemley et al. 1988; 
quoted, Howard 1991); 
Rapidly oxidized to sulfoxide with t. ~ 7 d in some soils, much more slowly to sulfone, pH dependent with 

t. varying from a few minutes at a pH of > 12 to ~ 560 d at a pH of 6.0. t. from 2 to > 8 wk in laboratory 
experiment, and t. < 1 wk in field studies (Mink et al. 1989) 
t. . 2 wk, field study over 218–d period in the unsaturated zone beneath a citrus grove (Hornsby et al. 
1990) 
© 2006 by Taylor & Francis Group, LLC

3720 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
t. = 480–8664 h, based on unacclimated aerobic soil grab sample data (Howard 1991); 
selected field t. = 30 d (Wauchope et al. 1992; Dowd et al. 1993; Hornsby et al. 1996); 
t. between 0.3 and 3.5 months in surface soils (Jones & Norris 1998); 
t. = 12.0 d in sterile soil, t. = 2.7 d in non–sterile soil; t. = 1.6, 1.4 and 1.7 d in soil grown with corn, 
mung bean and cowpea, respectively (Sun et al. 2004) 
Biota: biochemical t. = 70 d from screening model calculations (Jury et al. 1987a, b; Jury & Ghodrati 1989). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3721 
18.1.1.3 Aldrin 
Common Name: Aldrin 
Synonym: Aldrec, Aldrex, Aldrite, Aldrosol, Altox, Compound 118, Drinox, ENT 15949, HHDN, NA 2761, NA 2762, 
Octalene, Seedrin 
Chemical Name: 1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro-1,4-endoexo-5,8-dimethano-naphthalene 
Uses: Insecticide/Fumigant 
CAS Registry No: 309-00-2 
Molecular Formula: C12H8Cl6 
Molecular Weight: 364.910 
Melting Point (°C): 
104 (Lide 2003) 
Boiling Point (°C): 
145 (at 2 mmHg, Hartley & Kidd 1987; Montgomery 1993; Milne 1995) 
Density (g/cm3 at 20°C): 
1.70 (Montgomery 1993) 
Molar Volume (cm3/mol): 
316.8 (calculated-Le Bas method at normal boiling point) 
214.7 (calculated-density) 
Dissociation Constant, pKa: 
80.20 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
16.19 (Ruelle & Kesselring 1997) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.168 (mp at 104°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
0.20* (shake flask-GC/UV, measured range 25–45°C, Richardson & Miller 1960) 
0.20 (Stephen & Stephen 1963) 
0.027 (25–29°C, shake flask-GC/ECD, Park & Bruce 1968) 
0.013*, 0.14*, 0.18* (particle size: 0.01, 0.05 and 5.0µ, shake flask-GC/ECD, Biggar & Riggs 1974) 
0.017 (generator column-GC/ECD, Weil et al. 1974) 
0.027 (Martin & Worthing 1977) 
0.01–0.2 (20–25°C, Wauchope 1978; Willis & McDowell 1982) 
0.013 (Kenaga 1980a, b; Kenaga & Goring 1980; Garten & Trabalka 1983) 
0.027 (27°C, Spencer 1982; Worthing & Walker 1987) 
< 0.05 (rm. temp., Hartley & Kidd 1987, Milne 1995) 
0.017–0.18 (Montgomery 1993) 
0.027 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
1.06, 0.985 (supercooled liquid: LDV derivation of literature-derived value, FAV final-adjusted value, Shen & 
Wania 2005) 
log [CL/(mol m–3)] = –1480/(T/K) + 2.42 (supercooled liquid, linear regression of literature data, Shen & Wania 
2005) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
0.00308 (Porter 1964a) 
log (P/mmHg) 2,351 – 2035.35/(T/K); temp range 20–50°C (Porter 1964a) 
Cl Cl 
Cl Cl
Cl Cl 
© 2006 by Taylor & Francis Group, LLC

3722 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.0008 (Gunther & Gunther 1971) 
0.0031 (20°C, Martin 1972) 
0.075 (20°C, Khan 1980) 
0.001 (20°C, estimated-relative volatilization rate, Dobbs & Cull 1982) 
0.0086* (20°C, extrapolated, gas saturation-GC, measured range 35.5–70°C, Grayson & Fosbracey 1982) 
ln (P/Pa) = 32.9 – 11044/(T/K); temp range 35.5–70°C (Antoine eq., gas saturation-GC, Grayson & Fosbraey 
1982) 
0.023, 0.033 (PGC by GC-RT correlation, different stationary phases, Bidleman 1984) 
0.105 (supercooled liquid PL, converted from literature PS with .Sfus Bidleman 1984) 
0.0092, 0.0071 (20°C, gas saturation-GC, gas saturation-mixed bed-GC, Kim 1985) 
log (P/mmHg) = 10.4514 – 4281.065/(T/K); temp range 25–45°C (gas saturation, Kim 1985) 
0.0086 (20°C, Hartley & Kidd 1987) 
0.0010 (20°C, Budavari 1989) 
0.0081* (gas saturation-GC, measured range 25–125°C, Rordorf 1989) 
log (PS/Pa) = 15.561 – 5262.3/(T/K); measured range 45–65.2°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 12.489 – 4189.8/(T/K); measured range 105–181°C (liquid, gas saturation-GC, Rordorf 1989) 
0.105, 0.0757 (supercooled PL, converted from literature PS with different .Sfus values, Hinckley et al. 1990) 
0.0231, 0.0202 (PGC by GC-RT correlation with different reference standards, Hinckley et al. 1990) 
log (PL/Pa) = 12.04 – 3924/(T/K) (GC-RT correlation, Hinckley et al. 1990) 
0.0031 (20°C, Montgomery 1993) 
0.0009 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
0.061, 0.064 (supercooled liquid PL: LDV literature derived value, FAV final adjusted value, Shen & Wania 2005) 
log (PL/Pa) = –4106/(T/K) + 12.56 (supercooled liquid, linear regression of literature data, Shen & Wania 2005) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.418 (calculated-P/C, Thomas 1982) 
50.25 (20°C, gas stripping-GC, Warner et al. 1987) 
91.23 (20°C, calculated-P/C, Suntio et al. 1988) 
39.2 (calculated-bond contribution method LWAPC, Meylan & Howard 1991) 
50.25 (calculated-P/C, Montgomery 1993) 
50.8 (quoted from Howard 1989–1991, Capel & Larson 1995) 
91.23 (calculated-P/C, this work) 
4.46 (wetted wall column-GC, Altschuh et al. 1999) 
15, 23 (LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
Octanol/Water Partition Coefficient, log KOW: 
3.01 (Lu & Metcalf 1975) 
5.67 (Callahan et al. 1979) 
5.66 (calculated, Kenaga 1980a, b) 
7.50 (RP-TLC-RT correlation, Lord et al. 1980) 
7.40 (extrapolated from RP-TLC, Briggs 1981) 
5.66 (shake flask, Geyer et al. 1984) 
6.496 ± 0.035 (shake flask/slow-stirring-GC, De Bruijn et al. 1989) 
5.17–7.40 (Montgomery 1993) 
5.74 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
6.50 (selected, Hansch et al. 1995) 
5.74, 5.49, 5.39 (RP-HPLC-RT correlation, CLOGP, calculated-S, Finizio et al. 1997) 
6.50, 6.24 (LDV literature-derived value, FAV final-adjusted value, Shen & Wania 2005) 
Octanol/Air Partition Coefficient, log KOA at 25°C and reported temperature dependence equation. Additional data 
at other temperatures designated * are compiled at the end of this section: 
8.08* (gas saturation-GC/MS, calculated, measured range 5–25°C, Shoeib & Harner 2002) 
log KOA = –4.37 + 3709/(T/K), temp range: 5–25°C (gas saturation-GC, Shoeib & Harner 2002) 
8.08, 8.26 (LDV literature derived value, FAV final adjusted value, Shen & Wania 2005) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3723 
Bioconcentration Factor, log BCF: 
0.398 (bioaccumulation factor log BF, adipose tissue in female Albino rats, Quaife et al. 1967) 
3.56–4.88 (earthworms, Wheatley & Hardman 1968) 
2.80 (lake bacteria, Leshniowsky et al. 1970) 
4.36; 4.50; 5.15 (Diptera; Epemeoptera; Cladocera; non-steady-state, Johnson et al. 1971) 
4.55 (Daphnia magna, wet wt. basis, Johnson et al. 1971) 
3.56–4.60 (Oedogonium sp., Metcalf et al. 1973) 
3.50 (Metcalf 1974) 
3.11 (Anabaena cylindrica, Schauberger & Wildman 1977) 
2.30 (Acacystis nidulans, Schauberger & Wildman 1977; quoted, Baughman & Paris 1981) 
2.99 (Acacystis nidulans, Schauberger & Wildman 1977; quoted, Baughman & Paris 1981) 
4.03, 3.50 (fish: flow water, static water; Kenaga 1980b) 
3.85, 1.34 (calculated-S, KOC, Kenaga 1980a) 
0.431 (average beef fat diet, Kenaga 1980b) 
4.10 (Chlorella fusca, Geyer et al. 1981) 
3.59 (golden orfe, Freitag et al. 1982) 
4.10 (algae, Freitag et al. 1982) 
4.26 (activated sludge, Freitag et al. 1982, 1984) 
4.03 (Garten & Trabalka 1983; quoted, Howard 1991) 
4.13 (clam fat, 60-d expt., Hartley & Johnson 1983) 
4.09 (Chlorella fusca, Geyer et al. 1984) 
4.09, 3.44, 4.26 (algae, golden ide, activated sludge, Freitag et al. 1985) 
3.66 (molluscs, Hawker & Connell 1986; quoted, Howard 1991) 
–1.07 (beef biotransfer factor log Bb, correlated-KOW from Radeleff et al. 1952 & Kenaga 1980; Travis & 
Arms, 1988) 
–1.62 (milk biotransfer factor log Bm, correlated-KOW from Saha 1969; Travis Arms 1988) 
–1.67 (vegetation, correlated-KOW from Lichtenstein 1960 & Weisgerber et al. 1974; Travis & Arms, 1988) 
4.09, 4.79 (algae Chlorella: wet wt basis, dry wt basis, Geyer et al. 2000) 
4.55, 6.55 (Daphnia: wet wt basis, lipid wt basis, Geyer et al. 2000) 
3.66, 5.66 (mussel Mytilus edulis: wet wt basis, lipid wt basis, Geyer et al. 2000) 
Sorption Partition Coefficient, log KOC: 
2.61 (soil, Hamaker & Thompson 1972; quoted, Kenaga 1980a, b; Kenaga & Goring 1980) 
4.68 (calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
4.69 (soil, sorption isotherm, converted from KOM multiplied by 1.724, Briggs 1981) 
4.36 (calculated-KOW as per Kenaga & Goring 1980, Chapman 1989) 
4.69 (derived from exptl., Meylan et al. 1992) 
5.02 (calculated-MCI ., Meylan et al. 1992) 
6.18 (estimated by QSAR & SPARC, Kollig 1993) 
2.61, 4.69 (Montgomery 1993) 
3.70 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
4.69; 4.68 (soil, quoted exptl.; estimated-general model, Gramatica et al. 2000) 
6.50; 4.70 (soil, calculated-universal solvation model; quoted exptl., Winget et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: half-life of a few hours to a few days (Callahan et al. 1979); 
calculated t. = 68 h from water (Thomas 1982). 
Photolysis: 
Oxidation: photooxidation t. = 0.9–9.1 h, based on an estimated rate constant for vapor-phase reaction with 
hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: not readily hydrolyzable with t. > 4 yr (Callahan et al. 1979); 
first-order t. = 760 d, based on a first-order rate constant k = 3.8 . 10–5 h–1 at pH 7.0 and 25°C (Ellington 
et al. 1987, 1988; quoted, Howard et al. 1991); 
no disappearance in sealed glass ampoules after two weeks at pH 11 and 85°C (Kollig 1993) 
t. = 760 d at pH 7 and 25°C (Montgomery 1993) 
© 2006 by Taylor & Francis Group, LLC

3724 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
t. = 760 d at pH 7 in natural waters (Capel & Larson 1995). 
Biodegradation: aqueous aerobic t. = 504–14200 h, based on unacclimated aerobic river die-away test data and 
soil field test data (Lichtenstein et al. 1971; quoted, Howard et al. 1991); 
rate constant k = 0.013 d–1 by soil incubation studies from die-away tests (Rao & Davidson 1980; quoted, 
Scow 1982); 
aqueous anaerobic t. = 24–168 h, based on soil and freshwater mud grab sample data (Maule et al. 1987; 
quoted, Howard et al. 1991); 
t. = 43–63 d in a sandy loam soil incubated in the dark (McLean et al. 1988; quoted, Howard 1991) 
t.(aerobic) = 21 d, t.(anaerobic) = 1 d in natural waters (Capel & Larson 1995). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: estimated t. ~ 35.5 min for the vapor phase reaction with hydroxyl radical in air (GEMS 1986; quoted, 
Howard 1991); 
t. = 0.9–9.1 h, based on an estimated rate constant for vapor-phase reaction with hydroxyl radical in air 
(Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 504–14200 h, based on unacclimated aerobic river die-away test data (Eichelberger & 
Lichtenberg 1971; quoted, Howard et al. 1991) and soil field test data (Lichtenstein et al. 1971; quoted, 
Howard et al. 1991). 
Biodegradation t.(aerobic) = 21 d, t.(anaerobic) = 1 d, hydrolysis t. = 760 d at pH 7 in natural waters 
(Capel & Larson 1995) 
Ground water: t. = 24–28400 h, based on estimated aqueous aerobic and anaerobic biodegradation half-lives 
(Howard et al. 1991). 
Sediment: 
Soil: t. = 5–10 yr persistence in soil (Nash & Woolson 1967); 
t. = 504–14200 h, based on unacclimated aerobic river die-away test data (Eichelberger & Lichtenberg 
1971; quoted, Howard et al. 1991) and soil field test data (Lichtenstein et al. 1971; quoted, Howard 
et al. 1991); 
persistence of 2 yr (Edwards 1973; quoted, Morrill et al. 1982); 
more than 24 months of persistence in soil (Wauchope 1978); 
estimated first-order k = 0.013 d–1 with t. = 53.3 d from biodegradation by soil incubation studies from 
die-away tests (Rao & Davidson 1980; quoted, Scow 1982); 
moderately persistent with a t. = 20–100 d (Willis & McDowell 1982; quoted, Howard 1991); 
t. = 43–63 d in a sandy loam soil incubated in the dark (McLean et al. 1988; quoted, Howard 1991); 
selected field t. = 365 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
t. = 5–9 d (Geyer et al. 2000) 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3725 
TABLE 18.1.1.3.1 
Reported aqueous solubilities and octanol-air partition coefficients of aldrin at various temperatures 
Aqueous solubility log KOA 
Richardson & Miller 1960 Biggar & Riggs 1974 Shoeib & Harner 2002 
shake flask-UV spec. shake flask-GC generator column-GC/MS 
t/°C S/g·m–3 t/°C S/g·m–3 S/g·m–3 S/g·m–3 t/°C log KOA 
particle size 0.01µ 0.05µ 5.0µ 
25 0.20 15 0.0055 0.052 0.105 5 9.0091 
35 0.39 25 0.0135 0.140 0.180 10 8.6780 
45 0.79 35 0.030 0.235 0.350 15 8.5419 
45 0.065 0.455 0.600 20 8.2987 
25 8.0801 
25 8.080 
log KOA = A + B/(T/K) 
A –4.366 
B 3709 
enthalpy of phase change 
.HOA/(kJ mol–1) = 71.0 
FIGURE 18.1.1.3.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for aldrin. 
Aldrin: solubility vs. 1/T 
-24.0 
-23.0 
-22.0 
-21.0 
-20.0 
-19.0 
-18.0 
-17.0 
-16.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
x 
nl 
Richardson & Miller 1960 
Biggar & Riggs 1974 (0.01 µ particle size) 
Biggar & Riggs 1974 (0.05 µ particle size) 
Biggar & Riggs 1974 (5.0 µ particle size) 
Weil et al. 1974 
© 2006 by Taylor & Francis Group, LLC

3726 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 18.1.1.3.2 Logarithm of KOA versus reciprocal temperature for aldrin. 
TABLE 18.1.1.3.2 
Reported vapor pressures of aldrin at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Grayson & Fosbracey 1982 Rordorf 1989 
gas saturation-GC gas saturation-GC 
t/°C P/Pa t/°C P/Pa 
35.5 0.063 25 0.0081 
41.0 0.101 50 0.19 
41.6 0.112 75 2.80 
45.6 0.163 100 29.0 
50.8 0.329 125 220 
63.3 1.033 
70.0 2.213 eq. 1 PS/Pa 
20 0.0086 A 15.561 
B 5262.3 
eq. 1a P/Pa 
A 11044 for liquid 
B 32.9 eq 1 PL/Pa 
A 12.489 
B 4189.8 
Aldrin: KOA vs. 1/T 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 
10.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
AO 
Shoeib & Harner 2000 
Shoeib & Harner 2002 (interpolated) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3727 
FIGURE 18.1.1.3.3 Logarithm of vapor pressure versus reciprocal temperature for aldrin. 
Aldrin: vapor pressure vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Grayson & Fosbracey 1982 
Rordorf 1989 
Kim 1985 
m.p. = 104 °C 
© 2006 by Taylor & Francis Group, LLC

3728 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.4 Aminocarb 
Common Name: Aminocarb 
Synonym: A 363, Bay 44646, Bayer 5080, ENT 25784, Matacil, Mitacil 
Chemical Name: 4-dimethylamino-m-tolyl methylcarbamate, 4-dimethylamino-3-methylphenol methylcarbamate 
Uses: nonsystemic, broad-spectrum insecticide used to control the spruce budworm in forests and also as molluscicide. 
CAS Registry No: 2032-59-9 
Molecular Formula: C11H16N2O2 
Molecular Weight: 208.257 
Melting Point (°C): 
94 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
250.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.210 (mp at 94°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
915 (20°C, shake flask-GC, Bowman & Sans 1983a, b) 
915, 1360 (20°C, 30°C, Montgomery 1993) 
915 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C): 
0.00227 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
5.17 . 10–4 (20–25°C, calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.74 (Zitko & McLeese 1980) 
1.73 (20°C, shake flask-GC, Bowman & Sans 1983b) 
1.90 (22°C, shake flask-GC, pH 9, Bowman & Sans 1983b) 
0.91, 1.90 (pH 5, pH 9, shake flask-GC, Weinberger & Greenhalgh 1983) 
1.70 (Richardson & Qadri 1986) 
1.73 (Montgomery 1993) 
1.90 (recommended, Sangster 1993) 
1.90 (pH 9, selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
0.690 (mussel, McLeese et al. 1980) 
Sorption Partition Coefficient, log KOC: 
1.92 (calculated, Montgomery 1993) 
2.00 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
2.52, 1.94 (soil, estimated-class-specific model, estimated-general model, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Soil: selected field t. = 6 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
NH 
O 
O 
N 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3729 
18.1.1.5 Azinphos-methyl 
Common Name: Azinphos-methyl 
Synonym: Bay or Bayer 9027, Bay 17147, Carfene, Cotnion, Cotnion methyl, Crysthion 21, DBD, ENT 23233, Gothnion, 
Guthion, Gusathion, Metiltriazotion, R 1582 
Chemical Name: O,O-dimethyl-S-[-4-oxo-1,2,3-benzotriazin-3(4H)-yl)methyl)] phosphorodithioate; O,O-dimethyl- 
S-[3,4-dihydro-4-keto-1,2,3-benzotriazinyl-3-methyl) dithiophosphate 
Uses: nonsystemic insecticide and acaricide for control of insects and pests in blueberry, grape, maize, vegetable, cotton, 
and citrus crops. 
CAS Registry No: 86-50-0 
Molecular Formula: C10H12N3O3PS2 
Molecular Weight: 317.324 
Melting Point (°C): 
73 (Lide 2003) 
Boiling Point (°C): 
> 200 (dec., Montgomery 1993) 
Density (g/cm3 at 20°C): 
1.518 (Tomlin 1994) 
1.44 (Milne 1995; Montgomery 1993) 
Molar Volume (cm3/mol): 
270.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
96.65 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
30.96 (DSC method, Plato & Glasgow 1969) 
20.5 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
59 (Rordorf 1989) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.338 (mp at 73°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
33 (rm. temp., Spencer 1973; Worthing 1979; Khan 1980; Budavari 1989) 
30 (20°C, Melnikov 1971; Spencer 1982) 
33 (20–25°C, Willis & McDowell 1982) 
20.9 (20°C, shake flask-GC, Bowman & Sans 1983a, b) 
29 (Hartley & Kidd 1987; Lohninger 1994) 
28 (20°C, Worthing & Hance 1991; Tomlin 1994) 
29 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
30 (Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
2.93 . 10–5 (20°C, Melnikov 1971) 
0.0510 (20°C, Khan 1980) 
1.00 . 10–6 (20°C, Worthing & Walker 1983) 
1.11 . 10–5 (20°C, GC-RT correlation without mp correction, Kim et al. 1984; Kim 1985) 
3.10 . 10–6 (20°C, GC-RT correlation with mp correction, Kim et al. 1984; Kim 1985) 
< 0.0010 (20°C, Hartley & Kidd 1987) 
3.00 . 10–5 (20°C, selected, Suntio et al. 1988) 
7.80 . 10–7, 3.0 . 10–5, 6.90 . 10–4, 0.010, 0.11 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
N 
N
N 
O 
S 
P 
O 
S 
O 
© 2006 by Taylor & Francis Group, LLC

3730 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (PS/Pa) = 14.416 – 6119.2/(T/K); measured range 80.3–145°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 11.327 – 5048.6/(T/K); measured range 80.3–145°C (liquid, gas saturation-GC, Rordorf 1989) 
<1.8 . 10–4 (20°C, Worthing & Hance 1991) 
1.80 . 10–4 (20°C, Tomlin 1994) 
2.67 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.13 . 10–4 (20°C, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0032 (20°C, calculated-P/C, Suntio et al. 1988) 
1.52 . 10–5 (calculated-P/C, Howard 1991) 
3.17 . 10–4 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.99 (Callahan et al. 1979) 
2.69 (20°C, shake flask-GC, Bowman & Sans 1983b) 
2.75 (Hansch & Leo 1985) 
2.43 (HPLC-RT correlation, Moody et al. 1987) 
2.69, 2.75 (Montgomery 1993) 
2.75 (recommended, Sangster 1993) 
2.96 (Tomlin 1994) 
2.75 (recommended, Hansch et al. 1995) 
2.62 (Pomona-database, Muller & Kordel 1996) 
Bioconcentration Factor, log BCF: 
1.96 (calculated-S as per Kenaga 1980, this work) 
1.86 (calculated-KOW, Lyman et al. 1982; quoted, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
2.61 (calculated-S, Lyman et al. 1982; quoted, Howard 1991) 
2.28 (Frobe et al. 1989) 
1.30 (selected, USDA 1989; Neary et al. 1993) 
2.28 (derived from exptl., Meylan et al. 1992) 
1.84 (calculated-MCI ., Meylan et al. 1992) 
3.00 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.47–3.53 (Montgomery 1993) 
2.95 (soil, HPLC-screening method, mean value of different stationary and mobile phases, Kordel et al. 
1993, 1995) 
2.28 (soil, calculated- QSAR MCI 1., Sabljic et al. 1995) 
2.95; 1.84 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
3.67, 3.69, 2.73, 2.74, 2.91 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-
HPLC/UV, Gawlik et al. 1998, 1999) 
3.30, 2.89, 2.75, 2.799, 3.231 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1999) 
2.69 (sandy loam soil, column equilibrium method, 20°C, Xu et al. 1999) 
3.299, 2.894, 2.755, 2.799, 3.231 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, HPLC-k. correlation, 
Gawlik et al. 2000) 
2.28; 1.80, 2.04 (soil, quoted exptl.; estimated-class specific model, estimated-general model, Gramatica et al. 
2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3731 
Oxidation: photooxidation t. = 1.3 h, based on an estimated rate constant for the vapor-phase reaction with 
hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: first-order t. = 36.4, 27.9, 7.2 d in water at pH 8.6 and 6°C, 25°C and 40°C (Heuer et al. 1974; 
quoted, Howard 1991); 
t. = 27.9 d at pH 8.6 and 25°C (Montgomery 1993); 
t. = 87 d at pH 4, t. = 50 d at pH 7, and t. = 4 d at pH 9 at 22°C (Tomlin 1994). 
Biodegradation: studies with aquatic water/sediment microorganisms at 5 mg/L and pH 6.7 indicate t. = 3.3 d 
in microcosms compared to t. = 2.7 d in field studies (Portier 1985; quoted, Howard 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 1.3 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radical in air 
(Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 415 d at 6°C, t. = 115 d at 22°C in darkness for Milli-Q water; t. = 278 d at 6°C, t. = 42 d 
at 22°C in darkness, 8 d under sunlight conditions for river water at pH 7.3; t. = 506 d at 6°C, t. = 35 d 
at 22°C in darkness for filtered river water at pH 7.3; t. = 26 d at 22°C in darkness, t. = 11 d under sunlight 
conditions for seawater at pH 8.1 (Lartiges & Garrigues 1995). 
Ground water: 
Sediment: 
Soil: for dry soil with 2–3% moisture, t. = 484, 88, and 32 d at 6, 25, and 40°C, respectively; while for moist 
soil with 50% moisture content, half-lives were much shorter: 64, 13, and 5 d at 6, 25, and 40°C, respectively 
(Yaron et al. 1974; quoted, Montgomery 1993); 
selected field t. = 10 d (Wauchope et al. 1992; Hornsby et al. 1996); 
average t. = 40 d (Dowd et al. 1993); 
half-life in soil ranges from a few days to many weeks, depending on soil type (Tomlin 1994); 
t. = 10 d (selected, Halfon et al. 1996). 
Biota: average t. = 30 d in forest (selected, USDA 1989; quoted, Neary et al. 1993). 
© 2006 by Taylor & Francis Group, LLC

3732 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.6 Bendiocarb 
Common Name: Bendiocarb 
Synonym: Bencarbate, Dycarb, Ficam, Garvox, Multamat, Multimet, NC 6897, Niomil, Rotate, Seedox, Tatto, Turcam 
Chemical Name: 2,3-isopropylidenedioxyphenyl methylcarbamate; 2,2-dimethyl-1,3-benzodioxol-4-yl methyl-carbamate 
Uses: contact insecticide used to control beetles, wireworms, flies, wasps, and mosquitoes in beets and maize. 
CAS Registry No: 22781-23-3 
Molecular Formula: C11H13NO4 
Molecular Weight: 223.226 
Melting Point (°C): 
130 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.25 (Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
231.7 (calculated-Le Bas method at normal boiling point) 
178.6 (calculated-density) 
Dissociation Constant, pKa: 
8.80 (Worthing & Hance 1991; Wauchope et al. 1992; Montgomery 1993; Tomlin 1994) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0933 (mp at 130°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
40 (Spencer 1973, 1982) 
40 (Martin & Worthing 1977; Worthing & Walker 1987; Kenaga 1980;) 
40 (20°C, Hartley & Kidd 1987; Montgomery 1993; Milne 1995) 
40 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
40 (Lohninger 1994) 
280 (20°C at pH 7, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
6.6 . 10–4 (Hartley & Kidd 1987) 
0.00467 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
6.6 . 10–4 (20°C, Montgomery 1993) 
0.0046 (quoted, gas saturation-GC, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.365 (20°C, calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
5.29 (selected, Dao et al. 1983) 
1.70 (Worthing & Hance 1991; Montgomery 1993; Milne 1995) 
1.72 (at pH 6.55, Tomlin 1994) 
1.70 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.89 (calculated-S, Kenaga 1980) 
NH 
O 
O 
O
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3733 
Sorption Partition Coefficient, log KOC: 
2.76 (calculated-S, Kenaga 1980) 
2.76 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.76 (Montgomery 1993) 
2.76 (estimated-chemical structure, Lohninger 1994) 
1.45–1.60 (Tomlin 1994) 
1.30, 1.83 (soil, estimated-class-specific model, estimated-general model, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: t. = 4 d at pH 7 and 25°C (Spencer 1982; Montgomery 1993; Tomlin 1994). 
Half-Lives in the Environment: 
Air: 
Surface water: hydrolysis half-life of 4 d at 25°C and pH 7 under EPA guidelines (Spencer 1982) 
Ground water: 
Sediment: 
Soil: half-life of several days to a few weeks (Hartley & Kidd 1987; quoted, Montgomery 1993); 
selected field t. = 5.0 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3734 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.7 Bromophos 
Common Name: Bromophos 
Synonym: Nexion, S-1942, Omexan, Brofene 
Chemical Name: o-4-bromo-2,5-dichlorophenyl O,O-dimethyl phosphorothioate 
CAS Registry No: 2104-96-3 
Uses: insecticide 
Molecular Formula: C8H8BrCl2PS 
Molecular Weight: 317.999 
Melting Point (°C): 
54 (Lide 2003) 
Boiling Point (°C): 
140–142 at 0.01 mmHg (Hartley & Kidd 1987; Worthing & Walker 1987) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.519 (mp at 54°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
40 (Kenaga 1980b; Spencer 1982; Hartley & Kidd 1987) 
0.30 (20°C, shake flask-GC, Bowman & Sans 1979) 
0.652 (20°C, correlated, Bowman & Sans 1983b) 
0.70 (20°C, Worthing & Walker 1987) 
Vapor Pressure (Pa at 25°C): 
0.017 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
4.88 (shake flask-concn ratio-GC, Bowman & Sans 1983b) 
5.208 ± 0.009 (slow stirring-GC, De Bruijn et al. 1989; De Bruijn & Hermens 1991) 
4.88 (recommended, Sangster 1993) 
5.21 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.89 (calculated, Kenaga 1980b) 
4.65 ± 0.06 (guppy, calculated on an extractable liquid wt basis, De Bruijn & Hermens 1991) 
Sorption Partition Coefficient, log KOC: 
2.76 (calculated-solubility, Kenaga 1980b) 
Cl 
Br 
O 
P
S 
O
O
Cl 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3735 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: hydrolyzed in alkaline media (Worthing 1987). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 0.01307 mL g–1 d–1; k2 = 0.33 d–1 (guppy, De Bruijn & Hermens 1991) 
k2 = 12 d–1 (guppy, calculated-KOW, De Bruijn & Hermens 1991) 
Half-Lives in the Environment: 
© 2006 by Taylor & Francis Group, LLC

3736 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.8 Bromophos-ethyl 
Common Name: Bromophos-ethyl 
Synonym: Nexagan, Filariol 
Chemical Name: O-(4-bromo-2,5-dichlorophenyl) O,O-diethyl phosphorothioate 
CAS Registry No: 4824-78-6 
Uses: insecticide, acaricide 
Molecular Formula: C10H12Cl2O3PS 
Molecular Weight: 394.049 
Melting Point (°C): 
colorless liquid (Spencer 1982) 
Boiling Point (°C): 
122–123 (at 0.001 mmHg, Hartley & Kidd 1987; Worthing & Walker 1987) 
Density (g/cm3 at 20°C): 
1.52–1.55 (Hartley & Kidd 1987; Worthing & Walker 1987) 
Molar Volume (cm3/mol): 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
2.0 (Kenaga 1980b; Spencer 1982; Hartley & Kidd 1987) 
0.44 (20°C, Bowman & Sans 1983b) 
0.14 (20°C, Worthing & Walker 1987) 
Vapor Pressure (Pa at 25°C): 
6.1 . 10–3 (30°C, Spencer 1982; Hartley & Kidd 1987; Worthing & Walker 1987) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
5.68 (shake flask-concn-ration, Bowman & Sans 1983b) 
6.149 ± 0.019 (slow-stirring-GC; De Bruijn et al. 1989) 
5.68 (recommended, Sangster 1993) 
6.15 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
2.62 (fish, calculated, Kenaga 1980b) 
Sorption Partition Coefficient, log KOC: 
3.48 (soil, calculated-solubility, Kenaga 1980b) 
Cl 
Br 
O 
P
S 
O
O
Cl 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3737 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: at room temp., stable in aqueous suspension at pH < 9, hydrolysed at pH > 9, particularly at higher 
temperature (Worthing & Walker 1987). 
Half-Lives in the Environment: 
© 2006 by Taylor & Francis Group, LLC

3738 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.9 Carbaryl 
Common Name: Carbaryl 
Synonym: Arylam, Atoxan, Caproline, Carbamine, Carbatox, Carpolin, Carylderm, Cekubaryl, Crag sevin, Denapon, 
Devicarb, Dicarbam, ENT 23969, Gamonil, Germain’s, Hexavin, Karbaspray, Karbatox, Karbosep, OMS 29, 
naphthyl carbamate, Panam, Ravyon, Rylam, Seffein, Septene, Sevimol, Sevin, Sok, Tercyl, Toxan, Union Carbide 
7744 
Chemical Name: carbamic acid, methyl-, 1-naphthyl ester; 1-naphthalenol, methyl carbamate; 1-naphthyl-N-methyl 
carbamate; 1-naphthyl methylcarbamate; 1-naphthalenyl methylcarbamate 
Uses: contact insecticide used to control most insects on fruits, vegetables, and ornamentals; also used as growth regulator 
for fruit thinning of apples. 
CAS Registry No: 63-25-2 
Molecular Formula: C12H11NO2 
Molecular Weight: 201.221 
Melting Point (°C): 
145 (Lide 2003) 
Boiling Point (°C): dec. on distillation 
Density (g/cm3 at 20°C): 
1.232 (Spencer 1982; Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994; Milne 1995) 
0.52–0.61 (Worthing & Hance 1991) 
Molar Volume (cm3/mol): 
218.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
24.27 (DSC method, Plato & Glasgow 1969) 
Entropy of Fusion .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0665 (mp at 145°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
40 (shake flask, David et al. 1960) 
40 (30°C, Spencer 1973; Worthing & Hance 1991) 
40 (Martin & Worthing 1977) 
34 (20–25°C, shake flask-GC, Kanazawa 1981) 
50 (20°C, Spencer 1982) 
104 (20°C, shake flask-GC, Bowman & Sans 1983a, b) 
82.6 (generator column-GC, Swann et al. 1983) 
590 (RP-HPLC-RT correlation, Swann et al. 1983) 
120 (30°C, Hartley & Kidd 1987; Worthing & Walker 1987; Tomlin 1994) 
120 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
104, 130 (20°C, 30°C, Montgomery 1993) 
40, 1000 (Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 0.665 (26°C, Melnikov 1971) 
2.80 . 10–3 (20°C, Hartley & Graham-Bryce 1980) 
< 0.133 (20–25°C, Weber et al. 1980) 
1.81 . 10–4 (Ferreira & Seiber 1981) 
7.75 . 10–3, 5.39 . 10–4 (20°C, GC-RT correlation, GC-RT correlation with mp correction, Kim 1985) 
O 
O 
NH 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3739 
< 0.665 (26°C, Hartley & Kidd 1987) 
< 0.0053 (Worthing & Hance 1991) 
1.60 . 10–4 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
8.77 . 10–4 (Montgomery 1993) 
2.00 . 10–4 (23.5°C, Tomlin 1994) 
Henry’s Law Constant (Pa m3/mol): 
0.0013 (calculated-P/C, Suntio et al. 1988;) 
4.41 . 10–4 (calculated-P/C as known LWAPC, Meylan & Howard 1991) 
3.18 . 10–4 (calculated-bond contribution method LWAPC, Meylan & Howard 1991) 
1.287 (20°C, calculated-P/C, Montgomery 1993) 
< 0.010 (estimated, Mabury & Crosby 1996) 
4.48 . 10–5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.36 (shake flask-UV, Fujita et al. 1974) 
2.36 (Freed et al. 1976) 
2.81 (Hansch & Leo 1979; Rao & Davidson 1980) 
2.32 (shake flask-UV, Lord et al. 1980) 
2.32 (20°C, shake flask-UV, Briggs 1981) 
2.29 (20°C, shake flask-GC, Kanazawa 1981) 
2.36 (Lyman et al. 1982; Magee 1991; Trapp & Pussemier 1991) 
2.31 (22°C, shake flask-GC, Bowman & Sans 1983b) 
2.36 (Hansch & Leo 1985) 
2.14 (RP-HPLC-RT correlation, Trapp & Pussemier 1991) 
2.63 (HPLC-RT correlation, average, Hu & Leng 1992) 
2.31–2.81 (Montgomery 1993) 
1.99 (RP-HPLC-RT correlation, Saito et al. 1993) 
1.59 (Tomlin 1994) 
2.36 (recommended, Hansch et al. 1995) 
2.24 (RP-HPLC-RT correlation, Nakamura et al. 2001) 
Bioconcentration Factor, log BCF: 
< 0.0 (fish in static water, Metcalf & Sanborn 1975; Freed et al. 1976) 
1.89 (calculated-S, Kenaga 1980) 
1.08 (calculated-KOC, Kenaga 1980) 
1.64 (earthworm, Lord et al. 1980) 
0.95 (Pseudorasbora parva, Kanazawa 1981) 
1.86 (algae, Freitag et al. 1982) 
1.53 (golden orfe, Freitag et al. 1982) 
1.95 (activated sludge, Freitag et al. 1982, 1984) 
0.954 (topmouth gudgeon, Kanazawa 1983) 
1.45 (golden ide, Freitag et al. 1984) 
1.85, 1.48, 1.95 (algae, golden ide, activated sludge, Freitag et al. 1985) 
Sorption Partition Coefficient, log KOC: 
2.36 (soil, Leenheer & Atrichs 1971; LaFleur 1976) 
2.36 (Kenaga 1980; Kenaga & Goring 1978) 
2.76 (calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
2.49 (average of 3 soils, McCall et al. 1980) 
2.49 (average of 3 soils, HPLC-RT correlation, McCall et al. 1980) 
2.02 (soil slurry/shake flask-UV method, converted form reported as log KOM of 1.78, Briggs. 1981) 
3.04, 2.50, 2.42 (estimated-S, calculated-S and mp, estimated-KOW, Karickhoff 1981) 
© 2006 by Taylor & Francis Group, LLC

3740 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.76, 2.66 (estimated-S, KOW, Lyman 1982) 
2.59 (soil slurry method, Swann et al. 1983) 
2.57 (reverse phase HPLC-RT correlation, Swann et al. 1983) 
2.14 (calculated- MCI ., Gerstl & Helling 1987) 
2.36 (soil, screening model calculations, Jury et al. 1987b) 
2.23 (calculated-MCI ., Bahnick & Doucette 1988) 
2.30 (RP-HPLC-k. correlation, cyanopropyl column, Hodson & Williams 1988) 
2.04 (estimated as log KOM, Magee 1991) 
2.48 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.30 (soil, Dowd et al. 1993) 
2.02–2.59 (Montgomery 1993) 
2.71 (estimated-chemical structure, Lohninger 1994) 
2.40 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.21, 2.39 (soil, estimated-class-specific model, estimated-general model, Gramatica et al. 2000) 
2.49–2.62 (sediments of San Diego Creek and Bonita Creek, shake flask-GC, Bondarenko & Gan 2004) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 3000 d estimated from Henry’s law constant for a body of water 1 m deep, flowing at 1 m/s 
and with a wind speed of 3 m/s (Howard 1991). 
Photolysis: t. = 6.6 d for a mid-summer day at latitude 40°, photolysis is about 4 times faster than in the winter 
months (Wolfe et al. 1978) 
t.(air) = 52–200 h in the atmosphere, based on aqueous photolysis data; t.(aq.) = 52–200 h, based on 
reported photolysis half-life for summer and winter sunlight at 40°N (Howard et al. 1991) 
k(aq.) = 6.4 . 10–4 h–1 (Armbrust 2000) 
k(aq.) = (5.6 ± 0.3) . 10–5 s–1 in the presence of UV light, a 30 ppm carbaryl solution at 298 K; in the 
presence of silver-doped zeolite Y catalyst with 2.42% Ag by weight, the photodecomposition rate 
becomes 80 times faster. The addition of Suwannee River natural organic matter had a minimal effect 
on this system, increases or decreases the catalytic photodecomposition rate by a factor of 3 at most 
(Kanan et al. 2003). 
Oxidation: photooxidation t. = 4.5–7.4 h, based on estimated rate constant for the vapor-phase reaction with 
hydroxyl radical in air (Howard et al. 1991) 
kOH(aq.) = 3.40 . 109 M–1 s–1 in irradiated field water both in the laboratory and sunlit rice paddies and the 
field dissipation t. = 8.8 h (Mabury & Crosby 1996). 
Hydrolysis: k(alkaline) = (5.02 ± 0.03) M–1 h–1 with t. = 1500 d at pH 5, t. = 15 d at pH 7 and t. = 0.15 d at 
pH 9 and 28°C (Wolfe et al. 1978) 
t. = 312 h, based on base rate constant at pH 7 and 25°C (Howard et al. 1991) 
t. = 1500 d at pH 5, t. = 15 d at pH 7, and t. = 0.15 d at pH 9 at 27°C (Montgomery 1993) 
t. = 12 d at pH 7 and t. = 3.2 h at pH 9 (Tomlin 1994) 
t. = 1500 d at pH 2, t. = 13 d at pH 7 and t. = 0.00013 d at pH 12 in natural waters (Capel & Larson 1995) 
k = 0.066 d–1 at pH 7, k = 5.2 d–1 at pH 9; dissipation by hydrolysis from a simulated aquatic system after 
30 d: 53.9%, 59.1% of depth of 10 cm, 1 m, respectively, at pH 6; 64.2%, 70.7% of depth of 10 cm, 
1 m, respectively, at pH 7; and 85.7%, 81.0% of depth of 10 cm, 1 m, respectively, at pH 7 (Armbrust 
2000) Biodegradation: 
t.(aerobic) = 40–720 h, based on unacclimated aerobic river die-away test data and freshwater grab sample 
data (Eichelberger & Lichtenberg 1971; quoted, Howard et al. 1991) 
t. > 3 . 104 d, assuming a bacterial population of 0.1 mg/L (Wolfe et al. 1978b) 
k(aq.) = 2.4 . 10–10 mL cell–1 d–1 in aquatic system (Scow 1982) 
t.(anaerobic) = 160–2880 h, based on unacclimated aerobic biodegradation (Howard et al. 1991) 
t.(aerobic) = 1.7 d, t.(anaerobic) = 6.7 d in natural waters (Capel & Larson 1995) 
k(aerobic) = 1.70 . 10–3 h–1 (Armbrust 2000) . 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3741 
Half-Lives or Fate Rate Constants in the Environment: 
Air: t. = 12.6 h, based on estimated rate constant for the vapor-phase reaction with photochemically produced 
hydroxyl radical in the atmosphere (Howard 1991); 
t. = 4.5–7.4 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl radical in air 
(Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be <1 d (Kelly et al. 1994). 
Surface water: hydrolysis t. = 1500 d at pH 5, t. = 15 d at pH 7 and t. = 0.15 d at pH 9; direct photolysis 
t. = 6.6 d; and biolysis t. > 3 . 104 d assuming a bacterial population of 0.1 mg/L (Wolfe et al. 1978b); 
18–20% recovered from pond water after 42 d, 37–42% recovered after 50 d from creek water (Szeto et al. 
1979) 
t. = 3.2–200 h, based on aqueous hydrolysis half-life at pH 9 and 28°C and photolysis half-life for winter 
sunlight at 40°N (Howard et al. 1991) 
Biodegradation t.(aerobic) = 1.7 d, t.(anaerobic) = 6.7 d, hydrolysis t. = 1500 d at pH 2, t. = 13 d at pH 
7 and t. = 0.00013 d at pH 12 in natural waters (Capel & Larson 1995) 
t. = 37 d at 22°C for Milli-Q water at pH 6.1; t. = 31 d at 6°C, t. = 11 d at 22°C in darkness, t. = 9 d 
under sunlight conditions for river water at pH 7.3; t. = 45 d at 6°C, t. < 2 d at 22°C in darkness for 
filtered river water at pH 7.3; t. = 22 d at 6°C, t. < 2 d at 22°C in darkness and t. = 13 d under sunlight 
conditions for seawater at pH 8.1 (Lartiges & Garrigues 1995); 
dissipation by hydrolysis from a simulated aquatic system after 30 d, 53.9%, 59.1% of depth of 10 cm, 1 m, 
respectively, at pH 6, 64.2%, 70.7% of depth of 10 cm, 1 m, respectively, at pH 7 and 85.7%, 81.0% of 
depth of 10 cm, 1 m, respectively, at pH 7 (Armbrust 2000). 
Ground water: t. = 3.2–1440 h, based on aqueous hydrolysis half-life at pH 9 and 28°C, and unacclimated 
aerobic biodegradation half-life (Howard et al. 1991). 
Sediment: ~ 55% recovered after 50 d in autoclaved water and sediment samples (Szeto et al. 1979) 
first-order degradation k = 0.392 d–1 with t. = 1.8 d under aerobic conditions, k = 0.005 d–1 with t. = 125 d 
under anaerobic conditions in sediment from San Diego Creek, Orange County, CA; first-order degradation 
k = 0.141 d–1 with t. = 4.9 d under aerobic conditions, k = 0.0009 d–1 with t. = 746 d under 
anaerobic conditions in sediment from Bonita Creek, Orange County, CA (Bondarendo & Gan 2004) 
Soil: t. = 97–251 h in dry soil and 4458–688 h in wet or saturated soil (Hautala 1978; quoted, Howard 1991); 
persistence of less than one month (Wauchope 1978); 
t. = 3.2–720 h, based on aqueous hydrolysis half-life at pH 9 and 28°C and unacclimated aerobic biodegradation 
half-life (Howard et al. 1991); 
biodegradation rate constant k = 0.037 d–1 in soil by die-away test (Rao & Davidson 1980; quoted, Scow 
1982); 
moderately persistent in soils with t. = 20–100 d (Willis & McDowell 1982); 
t. = 22 d from screening model calculations (Jury et al. 1987b); 
selected field t. = 10 d (Wauchope et al. 1992; Dowd et al. 1993; Hornsby et al. 1996); 
t. = 8 d (Pait et al. 1992); 
degradation t. = 7–14 d in a sandy loam and t. = 14–28 d in a clay loam under aerobic conditions for 
concn. at 1 ppm (Tomlin 1994); 
t. = 10 d (selected, Halfon et al. 1996) 
Field dissipation t. = 8.8 h (Mabury & Crosby 1996) 
t. = 14 d in an aerobic soil, t. = 72 d in an anaerobic aquatic soil (quoted, Bondarenko & Gan 2004) 
Biota: biochemical t. = 22 d from screening model calculations (Jury et al. 1987b). 
© 2006 by Taylor & Francis Group, LLC

3742 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.10 Carbofuran 
Common Name: Carbofuran 
Synonym: Bay 70143, Curaterr, ENT 27164, Furadan, NIA 10242, Niagara 10242, Yaltox 
Chemical Name: 2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate; 2,3-dihydro-2,2-dimethyl-7-benzo-furanyl 
methylcarbamate 
Uses: broad-spectrum systemic insecticide, nematocide and acaricide applied in soil to control insects and nematodes; 
also to control insects and mites on foliage. 
CAS Registry No: 1563-66-2 
Molecular Formula: C12H15NO3 
Molecular Weight: 221.252 
Melting Point (°C): 
151 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.18 (Hartley & Kidd 1987; Trotter et al. 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
240.8 (calculated-Le Bas method at normal boiling point) 
187.5 (calculated-density) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0580 (mp at 151°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
700 (Spencer 1973, 1982; Khan 1980; Weber et al. 1980) 
250 (Caro et al. 1976) 
415 (Martin & Worthing 1977; Herbicide Handbook 1978, 1983) 
320 (19°C, shake flask-GC, Bowman & Sans 1979, 1983b) 
700 (Verschueren 1983; Windholz 1983, Budavari 1989) 
480 (generator column-HPLC/RI, Swann et al. 1983) 
670 (RP-HPLC-RT correlation, Swann et al. 1983) 
700 (Hartley & Kidd 1987; Worthing & Walker 1987; Milne 1995) 
351 (20–25°C, selected, Wauchope 1989; Wauchope et al. 1992; Hornsby et al. 1996) 
320 (20°C, Montgomery 1993; Tomlin 1994; Milne 1995) 
375 (30°C, Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
1.12 . 10–3 (Knudsen effusion method, Cook 1973) 
1.11 . 10–3 (Caro et al. 1976; Fuhrmann & Lichtenstein 1980) 
8.67 . 10–4 (20°C, Hartley & Graham-Bryce 1980) 
2.70 . 10–3 (33°C, Khan 1980) 
2.67 . 10–3 (20–25°C, Weber et al. 1980) 
2.70 . 10–4 (Thomas 1982) 
2.20 . 10–3, 1.08 . 10–4 (20°C, GC-RT correlation, GC-RT correlation with mp correction, Kim 1985) 
2.70 . 10–3 (33°C, Hartley & Kidd 1987) 
8.00 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
3.10 . 10–5, 7.20 . 10–5 (20, 25°C, Tomlin 1994) 
O 
O 
O 
HN 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3743 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
3.95 . 10–4 (calculated-P/C, Lyman et al. 1982; quoted, Howard 1991) 
7.69 . 10–4 (Jury et al. 1984) 
9.42 . 10–6 (Jury et al. 1987a, b; Jury & Ghodrati 1989) 
5.10 . 10–4 (calculated-P/C, Suntio et al. 1988) 
7.69 . 10–4 (calculated-P/C, Taylor & Glotfelty 1988) 
< 0.010 (estimated, Mabury & Crosby 1996) 
5.04 . 10–5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.32 (Hansch & Leo 1979, 1985) 
1.60 (from Dow Chemical data, Kenaga & Goring 1980) 
2.88 (Belluck & Felsot 1981) 
2.07 (quoted, Karickhoff 1981) 
1.60 (calculated, Lyman 1982) 
1.82 (RP-HPLC-RT correlation, Trapp & Pussemier 1991) 
1.60–2.32 (Montgomery 1993) 
1.60 (RP-HPLC-RT correlation, Saito et al. 1993) 
2.32 (recommended, Sangster 1993) 
1.52 (20°C, Tomlin 1994) 
1.23–1.42 (Milne 1995) 
2.32 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.00 (estimated-log KOW, Neely et al. 1974) 
1.32 (calculated-S, Kenaga 1980) 
0.60 (Triaenodes tardus, Belluck & Felsot 1981) 
1.00 (selected, Schnoor & McAvoy 1981;, Schnoor 1992) 
1.53 (calculated-log KOW, Lyman et al. 1982; quoted, Howard 1991) 
1.18 (calculated-S, Lyman et al. 1982; quoted, Howard 1991) 
2.07 (Tilapia nilotica, Tejada & Magallona 1985) 
1.00 (Pila luzonica, Tejada & Magallona 1985) 
2.07 (paddy field fish, Tejada 1995) 
Sorption Partition Coefficient, log KOC: 
2.20 (calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
1.67 (calculated values for 6 samples while high organic carbon >15% were omitted from calculation 
by Felsot & Wilson 1980) 
1.78–2.20 (3 soils of org. content 0.68–2.01, McCall et al. 1980) 
2.02 (average of 3 soils, McCall et al. 1980) 
1.46 (soil/sediments, Rao & Davidson 1980) 
2.46; 1.51; 1.68 (estimated-S; estimated-S and mp; estimated-KOW, Karickhoff 1981) 
2.70 (selected, sediment/water, Schnoor & McAvoy 1981; Schnoor 1992) 
2.25 (calculated-S, Lyman 1982) 
1.47 (average of 5 different soils, Rao & Davidson 1982) 
2.11 (retention times of RP-HPLC-RT correlation, Swann et al. 1983) 
2.00 (soil slurry/shake flask method, Swann et al. 1983; quoted, Howard 1991) 
1.45 (soil, screening model calculations, Jury et al. 1987a, b; Jury & Ghodrati 1989) 
1.73 (calculated-Freund isotherm linearized for 12 samples, Sukop & Cogger 1992) 
0.903 (selected, USDA 1989) 
1.34 (soil, 20–25°C, selected, Wauchope et al. 1992; Tomlin 1994; Hornsby et al. 1996) 
1.98–2.32 (Montgomery 1993) 
1.80, 2.01 (soil, estimated-class specific model, estimated-general model, Gramatica et al. 2000) 
© 2006 by Taylor & Francis Group, LLC

3744 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
1.63, 1.64 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
1.55 (sediment: organic carbon OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: initial rate constant k = 1.2 . 10–3 h–1 and a predicted rate constant k = 2.9 . 10–4 h–1 from soil 
with t. = 2390 h (Thomas 1982). 
Photolysis: near surface direct sunlight photolysis rate constant k = 0.003 d–1 with t. ~ 200 d (Schnoor & McAvoy 
1981; Schnoor 1992); 
t. ~ 2, 6, 12 h for degradation in river, lake and seawater, respectively, from Greece which were irradiated 
with sunlight (Samanidou et al. 1988; quoted, Howard 1991) 
Photodegradation (. > 290 nm) half-lives in aqueous carbofuran solutions: t. ~ 50 min with TiO2 (160 
mg/L) + O2, t. ~ 40 min with H2O2 (6 . 10–3 mg/L); t. ~ 30 min with O3 (10–3 mg/L) and t. ~ 65 h in 
water/oil suspension. (Mansour et al. 1997) 
Oxidation: photooxidation t. = 4.6 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991) 
k(aq.) = (620 ± 60) M–1 s–1 for direct reaction with ozone in water at pH 3.7 and 21°C, with t. = 54 s at 
pH 7 (Yao & Haag 1991). 
k(aq.) = 7 . 109 M–1 s–1 for the reaction with hydroxyl radical in aqueous solutions at 24 ± 1°C (Haag & 
Yao 1992); 
kOH(aq.) = 2.20 . 109 M–1 s–1 in irradiated field water both in the laboratory and sunlit rice paddies with 
field dissipation t. = 16.3 h (Mabury & Crosby 1996). 
Hydrolysis: aqueous hydrolysis t. = 5.1 wk at pH 7.0 and at 27°C and t. = 1.2 h at pH 10 (Seiber et al. 1978; 
quoted, Howard 1991); 
alkaline chemical hydrolysis rate constant k = 6 . 10–5 M–1·s–1 with t. > 10,000 d (Schnoor & McAvoy 1981; 
Schnoor 1992); 
t. = 690, 8.2, and 1.0 wk in water at 25°C and pH 6.0, 7.0 and 8.0, respectively (Chapman & Cole 1982; 
quoted, Howard 1991); 
hydrolysis rate constants: k = (30.6 ± 0.6) L min–1 mol–1 at 15°C, k = (67.0 ± 0.4) L/min·mol at 25°C and 
k = (163 ± 1.0) L min–1 mol–1 at 35°C (Trotter et al. 1991); 
t. = 170 wk at pH 4.5, t. = 690 wk at pH 5–6, t. = 8.2 wk at ph 7 and t. = 1 wk at pH 8.0 at 25°C 
(Montgomery 1993); 
t. > 1 yr at pH 4, t. = 121 d at pH 7, and t. = 31 d at pH 9 at 22°C (Tomlin 1994); 
rate constant k = 5.0 . 10–3 M–1 h–1 at 24°C; t. = 737 h at pH 7.0, t. = 93.7 h at pH 8.0 and t. = 1.17 h at 
pH 10.0 in aqueous solutions; t. = 630 d at pH 7, t. = 133 d at pH 8, and t. = 0.87 d at pH 10 in aqueous 
solutions with montmorillonite suspensions (23.9 g/L); t. = 937 d at pH 7, t. = 76.2 d at pH 8, t. = 0.98 
d at pH 10 in aqueous solutions with beidellite suspensions (4.9 g/L); t. = 889 d at pH 7, t. = 113 d at 
pH 8, t. = 0.78 d at pH 10 in aqueous solutions with illite suspensions (9.2 g/L); and t. = 753 d at pH 7, 
t. = 80.6 d at pH 8, t. = 0.91 d at pH 10 in aqueous solutions with vermiculite suspensions (8.5 g/L) 
with an initial carbofuran concentration of 1.0 . 10–4 M (Wei et al. 2001). 
Biodegradation: rate constants k = 0.047 d–1 from soil incubation studies and k = 0.026 d–1 in anaerobic system 
from flooded soil incubation studies both by die-away test (Rao & Davidson 1980; quoted, Scow 1982); 
t. = 40 d in 0 to 10 cm depth of soil (Rao & Davidson 1980; quoted, Jury et al. 1983, 1984, 1987a, b; 
Jury & Ghodrati 1989) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 4.6 h, based on estimated rate constant for the vapor-phase reaction with photochemically produced 
hydroxyl radical in the atmosphere (Atkinson 1987; quoted, Howard 1991). 
Surface water: average t. = 57 h in rice paddy water, but pH dependent, e.g., t. = 1.2 h at pH 10 and t. = 864 h 
at pH 7; t. = 48 and 55 h for two farm ponds (Seiber et al. 1978); 
t. = 2, 6, 12 h for degradation in river, lake and seawater, respectively, from Greece which were irradiated 
with sunlight (Samanidou et al. 1988; quoted, Howard 1991); 
measured rate constant k = (620 ± 60) M–1 s–1 for direct reaction with ozone in water at pH 3.7 and 21°C, 
with t. = 54 s at pH 7 (Yao & Haag 1991). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3745 
Ground water: 
Sediment: 
Soil: persistence of less than one month (Wauchope 1978); 
t. = 11–13 d at pH 6.5, and t. = 60–75 d for a granular formulation (Ahmad et al. 1979; quoted, Montgomery 
1993); 
estimated first-order t. = 15 d in soil from biodegradation rate constant k = 0.047 d–1 by die-away test from 
soil incubation studies and t. = 26 d from biodegradation rate constant k = 0.026 d–1 in anaerobic system 
from flooded soil incubation studies by die-away test (Rao & Davidson 1980; quoted, Scow 1982); 
moderately persistent in soils with t. = 20–100 d (Willis & McDowell 1982); 
t. = 1–2 months (Hartley & Kidd 1987; quoted, Montgomery 1993); 
t. = 40 d from screening model calculations (Jury et al. 1987a, b; Jury & Ghodrati 1989); 
selected field t. = 50 d (Wauchope et al. 1992; Dowd et al. 1993; Hornsby et al. 1996); 
soil t. = 81 d (Pait et al. 1992); 
t. = 30 d for soil depth <5 cm, t. = 60 d for soil depth 5–20 cm and t. = 120 d for soil depth > 20 cm 
(Dowd et al. 1993); 
t. = 60 d in forest soil (Neary et al. 1993); 
t. = 42.4 d in loam and t. = 95.5 d in sand (Behrendt & Bruggemann 1993); 
t. = 30–60 d in soil (Tomlin 1994) 
Disappearance rate constants k = (1.33–5.16) . 10–2 h–1 and k = (0.36–1.13) . 10–2 h–1 in non-sterile soil 
suspensions; k = (1.20–5.07) . 10–2 h–1 in sterile soil suspension at 30°C for 5 Spanish soils. Kinetic 
profiles in 3 consecutive steps assumed as sorption and fast and slow degradation. Disappearance t. = 24 h 
at 30 and t. = 5 h at 40°C for all 5 soil suspensions; t. = 48 h at 30°C and t. = 12 h at 40°C in Soil 3 
(Mora et al. 1996) 
First order rate constants for photolytic decline in sandy soil: k = 1.88 . 10–3 h–1 with t. = 370 h irradiated 
in moisture-maintained soil, k = 0.86 . 10–3 h–1 with t. = 800 h, irradiated in air-dried soil, 
k = 1.15 . 10–3 h–1 with t. = 600 h in dark control moist sandy soil, but not degraded in the dark control 
air-dry system. The photolytic k = 7.31 . 10–4 h–1 with t. = 950 h in moist soil and the contribution of 
moisture to irradiated metabolism k = 1.02 . 10–3 h–1 with t. = 680 h (Graebing & Chib 2004) 
Biota: biochemical t. = 40 d from screening model calculations (Jury et al. 1987a, b; Jury & Ghodrati 1989); 
t. = 4 d in wheat/barley (Behrendt & Bruggemann 1993); 
average t. = 60 d in the forest (USDA 1989; quoted, Neary et al. 1993) 
© 2006 by Taylor & Francis Group, LLC

3746 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.11 Carbophenothion 
Common Name: Carbophenothion 
Synonym: Carbofenotion, Acarithion, Akarithion, Trithion, Garrathion, Nephocarb, Dagadip 
Chemical Name: S-chlorophenylthio methyl O,O-diethyl phosphorothioate 
Uses: insecticide/acaricide 
CAS Registry No: 786-19-6 
Molecular Formula: C11H16ClO2PS3 
Molecular Weight: 342.866 
Melting Point (°C): 
colorless liquid (Spencer 1982, Hartley & Kidd 1987, Tomlin 1994) 
< 25 (Montgomery 1993) 
Boiling Point (°C): 
82 (at 0.01 mmHg, Spencer 1982; Hartley & Kidd 1987; Montgomery 1993; Milne 1995) 
Density (g/cm3): 
1.274 (Spencer 1982) 
1.271 (20°C, Hartley & Kidd 1987; Montgomery 1993, Milne 1995) 
Acid Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C, F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
< 2.0 (Martin 1961; Spencer 1982) 
0.34 (Gunther et al. 1968; Kenaga 1980b; Kenaga & Goring 1980) 
< 40 (Verschueren 1983) 
0.63 (20°C, shake flask-GC, Bowman & Sans 1983a, b) 
< 1.0 (room temp., Hartley & Kidd 1987, Worthing & Walker 1987) 
0.61, 0.63, 0.73 (10, 20, 30°C, Montgomery 1993) 
0.34 (selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
40, < 1 (Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.40 (Menn et al. 1964) 
4.13 . 10–5 (20°C, Eichler 1965) 
4.07 . 10–5 (20°C, Melnikov 1971) 
4.0 . 10–5 (20°C, Hartley & Graham-Bryce 1980) 
1.07 (Spencer 1982) 
7.73 . 10–5 (20°C, GC-RT correlation, Kim et al. 1984, Kim 1985) 
1.07 . 10–3 (Hartley & Kidd 1987; Montgomery 1993) 
1.107 . 10–3 (selected, Augustijn-Beckers et al. 1994, Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
0.046 (20°C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
4.53 (Callahan et al. 1979) 
5.12 (shake flask-concn ratio-GC, Bowman & Sans 1983b) 
Cl 
S S 
P 
O
O 
S 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3747 
5.66 (shake flask-GC, De Bruijn et al. 1989) 
5.50 (recommended, 1993) 
5.33 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
3.07, 3.63 (calculated-solubility, KOW, Kenaga 1980b) 
Sorption Partition Coefficient, log KOC: 
4.66 (Kenaga & Goring 1980) 
3.90 (calculated, Kenaga 1980b) 
4,98, 4.72, 3.92, 4.48 (Elkhorn sandy loam at pH 6.0, Hugo gravelly sandy loam at pH 5.5, Sweeney sandy clay 
loam at pH 6.3 and Tierra clay loam at pH 6.2, Rao & Davidson 1982) 
3.56 (calculated-MCI ., Gerstl & Helling 1987) 
3.92–4.98 (Montgomery 1993) 
5.10, 4.66, 5,07, 4.76, 5.09, 4.69, 4.90 (mg/L, quoted, Augustijn-Beckers et al. 1994) 
4.70 (recommended, soil, Augustijn & Beckers 1994; Hornsby et al. 1996) 
4.66 (calculated-MCI 1., Sabljic et al. 1995) 
4.47, 4.08 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, Gramatica 
et al. 2000) 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Volatilization: 
Photolysis: 
Photooxidation: 
Hydrolysis: 
Biodegradation: 
Biotransformation: t. . 100 d in soil (Verschueren 1983; quoted, Montgomery 1993). 
Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 
Half-Lives in the Environment: 
Soil: t. . 100 d (Verschueren 1983; quoted, Montgomery 1993); 
field t. = 30 d (selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

3748 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.12 Carbosulfan 
Common Name: Carbosulfan 
Synonym: Marshal, Adventage, Posse, FMC 35001 
Chemical Name: 2,3-dihydro-2,2-dimethylbenzofuran-7-yl(dibutylaminothio) methylcarbamate 
Uses: insecticide/acarrcide/nematicide 
CAS Registry No: 55285-14-8 
Molecular Formula: C20H32N2O3S 
Molecular Weight: 380.544 
Melting Point (°C): 
viscous brown liquid (Hartley & Kidd 1987) 
Boiling Point (°C): 
124–128 (Tomlin 1994; Milne 1995) 
Density (g/cm3): 
1.056 (20°C, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
Acid Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C, F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
0.30 (Hartley & Kidd 1987; Tomlin 1994) 
0.03 (Milne 1995) 
Vapor Pressure (Pa at 25°C): 
0.041 . 10–3 (Hartley & Kidd 1987, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
3.30 (Tomlin 1994) 
2.20 (Milne 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, and Half-Lives. t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: hydrolyzed in aqueous media with t. < 1 h in pure water at pH 4; t. = 22 h at pH 6, t. = 7.6 d at 
pH 7, t. = 14.2 d at pH 8 and t. > 58.3 d at pH 9 (Haretly & Kidd 1987; Tomlin 1994) 
O 
O 
N 
O
S 
N 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3749 
Biodegradation: in soil, rapidly degraded under both aerobic and anaerobic conditions with t. = 2–3 d (Hartley 
& Kidd 1987). 
Biotransformation: 
Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 
Half-Lives in the Environment: 
Air: 
Surface water: hydrolyzed in aqueous media with half-lives at 25°C are, t. < 1 h in pure water at pH 4; t. = 22 h 
at pH 6, t. = 7.6 d at pH 7, t. = 14.2 d at pH 8 and t. > 58.3 d at pH 9 (Hartley & Kidd 1987; Tomlin 1994) 
Ground water: 
Sediment: 
Soil: rapidly degraded under both aerobic and anaerobic conditions with t. = 2–3 d (Hartley & Kidd 1987). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3750 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.13 Chlordane 
Common Name: Chlordane 
Synonym: A 1068, Aspon-chlordane, Belt, beta-chlordane, CD-68, Chlorindan, Chlor-Kill, Chlortox, Corodane, 
Cortilan-neu, Dichlorochlordene, Dowchlor, ENT 9932, ENT 25552, HCS 3260, Kypchlor, M 140, Octachlor, 
Octaterr, Orthoklor, Shell SD 5532, Synklor, Tat chlor 4, Topichlor, Toxichlor, Velsicol 
Chemical Name: 1,2,4,5,6,7,8,8-octachloro-3a,4,7,7a-tetrahydro-4,7-methano-1H-indane; 1,2,4,5,6,7,8,8-octa-chloro- 
3a,4,7,7a-tetrahydro-4,7-methanoindane 
Uses: nonsystemic insecticide with contact, stomach, and respiratory action and also used as fumigant. 
CAS Registry No: 57-74-9 (nonstereospecific chlordane); 5103-71-9 (cis- or .-isomer); 5103-74-2 (trans- or .-isomer); 
5564-34-7 (.-isomer); 12789-03-6 (technical grade chlordane) 
Molecular Formula: C10H6Cl8 
Molecular Weight: 409.779 
Melting Point (°C): 
107–108.8 (cis-isomer, Callahan et al. 1979; Howard 1991) 
103–105 (trans-isomer, Callahan et al. 1979; Howard 1991) 
106–107, 104–105 (cis-isomer, trans-isomer, Hartley & Kidd 1987; Tomlin 1994) 
Boiling Point (°C): 
175 (at 2 mmHg, Roark 1951; Callahan et al. 1979; Howard 1991; Montgomery 1993) 
262, 363, 365 (estimated from structure, Tucker et al. 1983) 
175 (at 1 mmHg, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
1.59–1.63 (25°C, Worthing & Walker 1987, Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
1.59–1.63 (Montgomery 1993) 
Molar Volume (cm3/mol): 
340.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
77.22, 80.26, 82.92 (mixture, .-chlordane, .-chlordane, Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
28.033 (cis-isomer, DSC method, Plato 1972) 
16.45 (trans-isomer, DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
56.4 (Passivirta et al. 1999) 
Fugacity Ratio at 25°C, F: 
0.162 (assuming .Sfus = 56 J/mol K, Mackay et al. 1986) 
0.140 (20°C, assuming .Sfus = 56 J/mol K, Suntio et al. 1988) 
Water Solubility (g/m3 or mg/L at 25°C and reported temperature dependence equations): 
1.850 (generator column-GC/ECD, Weil et al. 1974) 
0.056 (shake flask-LSC, Sanborn et al. 1976) 
0.056 (Martin & Worthing 1977) 
0.10 (Hartley & Kidd 1987; Worthing & Walker 1987, 1991) 
0.56 (Agency for Toxic Substances and Disease Registry 1988; quoted, Burmaster et al. 1991) 
0.05 (20°C, selected, Suntio et al. 1988) 
0.032; 0.009–0.056 (shake flask-LSC; lit. range, Johnson-Logan et al. 1992) 
1.83 (selected, Yalkowsky & Banerjee 1992) 
0.056 (Montgomery 1993) 
0.06 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Cl 
Cl 
Cl Cl 
Cl 
Cl 
Cl Cl 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3751 
0.127 (calculated-group contribution fragmentation method, Kuhne et al. 1995) 
0.10 (Tomlin 1994; Milne 1995) 
0.061, 0.002 (calculated-molar volume, mp and mobile order thermodynamics, Ruelle & Kesselring 1997) 
log [SL/(mol/L)] = –0.880 – 1124/(T/K) (liquid, cis-isomer, Passivirta et al. 1999) 
log [SL/(mol/L)] = –0.880 – 1118/(T/K) (liquid, trans-isomer, Passivirta et al. 1999) 
0.451, 0.402 (cis-chlordane, supercooled liquid: LDV derivation of literature-derived value, FAV final-adjusted 
value, Shen & Wania 2005) 
0.451, 0.615 (trans-chlordane, supercooled liquid: LDV derivation of literature-derived value, FAV final-adjusted 
value, Shen & Wania 2005) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
0.0013 (Martin 1972, Spencer 1973, 1982) 
0.0013 (SRI International 1980; Tucker et al. 1983) 
0.00227, 1.6 . 10–5, 1.3 . 10–5 (estimated-bp, Tucker et al. 1983) 
2.9 . 10–3, 3.86 . 10–3 (cis-, trans-chlordane, 20°C, supercooled liquid PL, Bidleman et al. 1986) 
0.0013 (Hartley & Kidd 1987) 
0.0011 (20°C, selected, Suntio et al. 1988) 
0.0613, 0.00133 (technical, refined, Worthing & Walker 1987) 
0.00293, 0.00040 (cis-isomer, GC-RT correlation, supercooled liquid PL, solid crystal PS, Foreman & Bidleman 
1987) 
0.00387, 0.00052 (trans-isomer, GC-RT correlation, supercooled liquid PL, solid crystal PS, Foreman & Bidleman 
1987) 
0.0013 (Agency for Toxic Substances and Disease Registry 1988) 
0.027, 0.31, 2.40, 14.0, 69.0 (25, 50, 70, 100, 125°C, chlordane mixture, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 11.968 – 4033.7/(T/K); measured range 70.4–115°C (chlordane mixture, liquid, gas saturation-GC, 
Rordorf 1989) 
0.0080, 0.011, 0.98, 6.70, 36 (.-chlordane, 25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 12.435 – 4332.5/(T/K); measured range 50.1–135°C (.-chlordane, liquid, gas saturation-GC, 
Rordorf 1989) 
0.013, 0.16, 1.40, 9.30, 48 (.-chlordane, 25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 12.318 – 4235.5/(T/K); measured range 50/1–135°C (.-chlordane, liquid, gas saturation-GC, 
Rordorf 1989) 
log (PL/Pa) = 13.396 – 4803.6/(T/K); measured range 49.5–140°C (gas saturation-GC, Rordorf 1989) 
4.5 . 10–3, 5.1 . 10–3, 4.8 . 10–3 (cis-chlordane, GC-RT correlation, supercooled liquid PL, Hinckley et al. 1990) 
6.3 . 10–3, 6.9 . 10–3, 6.7 . 10–3 (trans-chlordane, GC-RT correlation, supercooled liquid PL, Hinckley et al. 1990) 
log (PL/Pa) = 12.04 – 4284/(T/K) (cis-chlordane, supercooled liquid PL, GC-RT correlation, Hinckley et al. 1990; 
quoted, Passivirta et al. 1999) 
log (PL/Pa) = 11.95 – 4216/(T/K) (trans-chlordane, supercooled liquid PL, GC-RT correlation, Hinckley et al. 
1990) 
0.0013 (refined grade, Worthing & Hance 1991; Tomlin 1994) 
0.0610 (technical grade, Worthing & Hance 1991) 
0.00269, 0.00813 (cis-chlordane, supercooled liquid PL at 20°C, 30°C, calculated from Hinckley et al. 1990; 
Cotham & Bidleman 1992) 
0.000133 (20°C, Montgomery 1993) 
0.00133 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
4.59 . 10–4 (quoted as mean of cis and trans forms from Howard 1991, Mortimer & Connell 1995) 
4.68 . 10–3, 4.15 . 10–3; 6.57 . 10–4 (cis-chlordane, supercooled liquid PL: calculated, GC-RT correlation; converted 
to solid PS with fugacity ratio F, Passivirta et al. 1999) 
6.58 . 10–3, 5.84 . 10–3; 9.66 . 10–4 (trans-chlordane, supercooled liquid PL: calculated, GC-RT correlation; 
converted to solid PS with fugacity ratio F, Passivirta et al. 1999) 
log (PS/Pa) = 14.99 – 5407/(T/K) (cis-chlordane, solid, Passivirta et al. 1999) 
log (PS/Pa) = 14.91 – 5333/(T/K) (trans-chlordane, solid, Passivirta et al. 1999) 
0.080, 0.0073 (cis-chlordane, supercooled liquid PL: LDV literature derived value, FAV final adjusted value, 
Shen & Wania 2005) 
© 2006 by Taylor & Francis Group, LLC

3752 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.013, 0.010 (trans-chlordane, supercooled liquid PL: LDV literature derived value, FAV final adjusted value, 
Shen & Wania 2005) 
log (PL/Pa) = – 4238/(T/K) + 12.32 (cis-chlordane, supercooled liquid PL: linear regression, Shen & Wania 2005) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 
2.92–9.5 (Callahan et al. 1979) 
4.92 (gas stripping-GC, Warner et al. 1980) 
112 (batch stripping, average of cis- and trans- isomers, Atlas et al. 1982) 
87.7, 134 (exptl,: .-chlordane, .-chlordane, Atlas et al. 1982;) 
9.12 (Mabey et al. 1982) 
3.44 (estimated-group method of Hine & Mookerjee 1975, Tucker et al. 1983) 
9.64 (calculated-P/C, Mackay et al. 1986) 
0.248 (calculated-P/C, Jury et al. 1990) 
4.86 (gas stripping-GC, Warner et al. 1987) 
9.02 (20°C, calculated-P/C, Suntio et al. 1988; quoted, Cotham & Bidleman 1991; Majewski & Capel 1995) 
9.66 (Ryan et al. 1988) 
0.97 (Agency for Toxic Substances and Disease Registry 1988; quoted, Burmaster et al. 1991) 
4.91 (technical chlordane, Howard 1991) 
8.37 (23°C, .-chlordane, wetted-wall column-GC/ECD, Fendinger et al. 1989) 
5.66, 5.91 (22–24°C, .-chlordane, fog chamber-GC/ECD, Fendinger et al. 1989) 
0.87 (0°C, selected, Cotham & Bidleman 1991) 
7.12 (calculated-bond contribution method, Meylan & Howard 1991) 
9.02 (20°C), 140, 570 (23°C), 9.64 (25°C) (trans-chlordane, quoted, Iwata et al. 1993) 
9.02 (20°C), 89, 420 (23°C), 9.64, 11.2 (25°C) (cis-chlordane, quoted, Iwata et al. 1993) 
8.42 (.-chlorane, wetted-wall column-concn ratio-GC/ECD, Fendinger et al. 1989) 
5.45 (.-chlorane, fog chamber-concn ratio-GC/ECD, Fendinger et al. 1989) 
8.11 (calculated-bond contribution, Meylan et al. 1991) 
log [H/(Pa m3/mol)] = 12.92 – 3160/(T/K) (cis-chlordane, Passivirta et al. 1999) 
log [H/(Pa m3/mol)] = 12.84 – 3098/(T/K) (trans-chlordane, Passivirta et al. 1999) 
6.0, 5.7 (cis-chlordane, LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
6.0, 6.8 (trans-chlordane, LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
Octanol/Water Partition Coefficient, log KOW: 
2.78 (shake flask-LSC, Sanborn et al. 1976) 
6.00 (Veith et al. 1979, 1980; Veith & Kosian 1983) 
5.16 (calculated, Kenaga 1980a, b) 
3.32 (Rao & Davidson 1980) 
5.89 (selected, Dao et al. 1983) 
5.54 (CLOGP 1986; Thor 1989; Howard 1991) 
2.78, 5.48 (Schnoor et al. 1987) 
5.9, 6.1 (cis-, trans-chlordane, Kawano et al. 1988) 
6.21 (estimated by QSAR & SPARC, Kollig 1993) 
5.16; 2.78. 3.32; 5.08, 6.00 (quoted lit. exptl. values; Sangster 1993) 
6.00 (Montgomery 1993; Devillers et al. 1996) 
5.08 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
5.80 (LOGSTAR or CLOGP, Sabljic et al. 1995) 
5.66, 5.62, 5.44, 6.10, 6.22 (.-, .-, .-, cis-, trans-chlordane, shake flask/slow stirring-GC, Simpson et al. 1995) 
5.08, 5.80, 4.75 (RP-HPLC-RT correlation, ClogP, calculated-S, Finizio et al. 1997) 
6.10, 6.20 (cis-chlordane, LDV literature-derived value, FAV final-adjusted value, Shen & Wania 2005) 
6.23, 6.27 (trans-chlordane, LDV literature-derived value, FAV final-adjusted value, Shen & Wania 2005) 
Octanol/Air Partition Coefficient, log KOA at 25°C and reported temperature dependence equation. Additional data 
at other temperatures designated * are compiled at the end of this section: 
8.70 (cis-chlordane, calculated-KOW/KAW, Wania & Mackay 1996) 
8.50 (trans-chlordane, calculated-KOW/KAW, Wania & Mackay 1996) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3753 
9.027*, 8.916 (cis-chlordane, gas saturation-GC/MS interpolated, measured range 5–25°C, Shoeib & Harner 2002) 
log KOA = –8.29 + 5217/(T/K), temp range 5–25°C (cis-chlordane, gas saturation-GC, Shoeib & Harner 2002) 
8.967*, 8.872 (trans-chlordane, gas saturation-GC/MS, interpolated, measured range 5–25°C, Shoeib & Harner 
2002) 
log KOA = –8.03 + 5036/(T/K), temp range 5–25°C (trans-chlordane, gas saturation-GC, Shoeib & Harner 2002) 
8.3887*, 8.387 (oxychlordane, gas saturation-GC/MS, interpolated, measured range 5–25°C, Shoeib & Harner 
2002) 
log KOA = –5.636 + 4179/(T/K), temp range: 5–25°C (oxychlordane, gas saturation-GC, Shoeib & Harner 2002) 
8.91, 8.85 (cis-chlordane, LDV literature-derived value, FAV final-adjusted value, Shen & Wania 2005) 
8.86, 8.85 (trans-chlordane, LDV literature-derived value, FAV final-adjusted value, Shen & Wania 2005) 
Bioconcentration Factor, log BCF at 25°C or as indicated: 
3.51–3.92; 3.60–3.78; 3.28–3.36; 4.10–4.27 (wet wt. basis 96-h test, eastern oysters; pink shrimp; grass shrimp; 
pin fish, Parrish et al. 1976) 
4.69 (Oedogonium cardiacum, Sanborn et al. 1976) 
3.66 (spot fish, 24-h flow system, trans-chlordane, Schimmel et al. 1976) 
3.57–4.23 (96 h exposures of trans-chlordane to whole marine fish, Schimmel et al. 1976) 
4.11–4.34 (186-d chronic exposures, trans-chlordane to sheephead minnow, Parrish et al. 1978) 
3.85–4.46 (exposures trans-chlordane to 28-d old second generation sheephead minnow, Parrish et al. 1978) 
4.58 (fathead minnows, 32-d exposure, Veith et al. 1979, 1980; Veith & Kosian 1983) 
4.01 (green algae, Glooschenko et al. 1979) 
4.06, 3.92 (fish: flowing water, static ecosystem, Kenaga 1980a, b; Kenaga & Goring 1980) 
3.50 (calculated-S, Kenaga 1980a) 
–0.523 (average beef fat diet, Kenaga 1980b) 
2.08, 4.32 (estimated-S, KOW, Bysshe 1982) 
3.68, 3.64 (.-, .-chlordane, clam fat, 60-d expt., Hartley & Johnson 1983) 
4.06–4.58 (fish, Bysshe 1987) 
5.04–5.88 (earthworms, Gish & Hughes 1982;) 
3.57–4.20 mean 4.20; 3.36–4.34 mean 4.34 (.-chlordane, rainbow trout, 15°C, steady-state BCF on 7- to 96-d 
laboratory study in 2 tanks with different water concn, Oliver & Niimi 1985) 
33.30–4.18 mean 4.18; 3.26–4.30 mean 4.30 (.-chlordane, rainbow trout, 15°C, steady-state BCF on 7- to 96-d 
laboratory study in 2 tanks with different water concn, Oliver & Niimi 1985) 
4.23, 4.26 (.-, .-chlordane, rainbow trout, steady-state BCF-concentration ratio., Oliver & Niimi 1985) 
4.45, 4.20 (.-, .-chlordane, rainbow trout, kinetic state BCF-ratio of rate const., Oliver & Niimi 1985) 
6.15, 4.88 (.-, .-chlordane, rainbow trout, Lake Ontario field BCF., Oliver & Niimi 1985) 
4.58; 4.33, 4.40 (measured for fathead minnow; calculated-KOW for sheepshead minnows, Zaroogian et al. 1985) 
4.58; 3.90, 3.92 (measured for fathead minnow; calculated-KOW for pinfish, Zaroogian et al. 1985) 
4.58; 4.33, 4.40 (measured for fathead minnow; calculated-KOW for oyster, Zaroogian et al. 1985) 
3.70 (oyster, Hawker & Connell 1986) 
6.73, 6.99 (total chlordanes, zooplankton, thick-billed murre, Kawano et al. 1986) 
3.78, 4.30 (juvenile and adult sheepshead minnow, 28–129 d exposure, Parrish et al. 1978) 
6.0–7.0 (zooplankton and Chum salmon, Kawano et al. 1988) 
5.57 (Markwell et al. 1989) 
3.52, 2.60 (large mouth bass, clams, 106–127 d exposure, NRC 1974) 
3.86 (eastern oyster, 10-d exposure, NRC 1974) 
3.74 (white sucker and redhorse, Roberts et al. 1977) 
2.03, 2.51, 3.0 (frogs, bluegills, goldfish, Verschueren 1983) 
6.73, 7.89, 6.99 (total chlordane: zooplankton, Dall’s porpoise, thick-billed murre, Kawano et al. 1986) 
4.58 (estimated-S and KOW, Isnard & Lambert 1988) 
–2.13 (beef biotransfer factor log Bb, correlated-KOW from Kenaga 1980, Travis & Arms 1988) 
–3.43 (milk biotransfer factor log Bm, correlated-KOW from Dorough & Hemken 1973, Travis & Arms 
1988) 
–1.81 (vegetation, correlated-KOW from Dorough & Pass 1973; Tafuri et al. 1977; Travis & Arms 1988) 
3.03 (Hydrilla, Hinman & Klaine 1992) 
4.01, 3.50; 2.80 (estimated: fish-based, duckweed-based, Hinman & Klaine 1992) 
© 2006 by Taylor & Francis Group, LLC

3754 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
3.117, 3.098 (cis-, trans-chlordane, goldfish, Park & Erstfeld 1997) 
>4.58, >5.56 (fathead minnow, uptake 32-d: wet wt basis, lipid wt basis, Geyer et al. 2000) 
4.38, 5.20 (Daphnia: wet wt basis, lipid wt basis, .-chlordane, Geyer et al. 2000) 
4.45, 5.58 (fathead minnow: wet wt basis, lipid wt basis, .-chlordane, Geyer et al. 2000) 
5.26, 6.31 (Chum salmon, 91% lipid: wet wt basis, lipid wt basis, .-chlordane, Geyer et al. 2000) 
3.04, 3.74 (algae: wet wt basis, dry wt basis, .-chlordane, Geyer et al. 2000) 
3.04, 3.74 (Daphnia: wet wt basis, lipid wt basis, .-chlordane, Geyer et al. 2000) 
4.21, 5.35 (fathead minnow: wet wt basis, lipid wt basis, .-chlordane, Geyer et al. 2000) 
5.04, 6.18 (chum salmon, 9.2% lipid: wet wt basis, lipid wt basis, .-chlordane, Geyer et al. 2000) 
3.68; 3.67 (Oncorhynchus mykiss, wet wt. basis: quoted exptl.; calculated-QSAR model based on quantum 
chemical parameters, Wei et al. 2001) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
4.33 (calculated-S as per Kenaga & Goring 1978, Kenaga 1980a, b) 
1.58 (screening model calculations, Jury et al. 1987b) 
4.64, 4.09 (calculated-KOW as per Kenaga & Goring 1980, Chapman 1989) 
5.50, 5.60 (.-chlordane: field sediment trap material, calculated-KOW, Oliver & Charlton 1984) 
5.40, 5.60 (.-chlordane, field sediment trap material, calculated-KOW, Oliver & Charlton 1984) 
4.58 (soil, screening model calculations, Jury et al. 1987b, 1990) 
4.39, 4.19 (calculated-KOW and solubility, Howard 1991) 
4.77, 4.94 (.-chlordane: quoted, calculated-MCI ., Meylan et al. 1992) 
5.45, 4.40–4.86 (Aldrich humic acid, soil, Johnson-Logan et al. 1992) 
5.90 (estimated by QSAR and SPARC, Kollig 1993) 
4.85–5.57 (Montgomery 1993) 
4.30 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
5.15 (soil, calculated-MCI ., Sabljic et al. 1995) 
4.33, 4.42 (log KP, cis-, trans-chlordane, Park & Erstfeld 1997) 
5.15; 5.03 (soil, quoted exptl.; estimated-general model, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: the volatilization t. ~ 7.3 and 7.9 h for .- and .- chlordane, respectively, from a model river 1 
m deep flowing 1 m/s with a wind velocity of 3 m/s (Lyman et al. 1982, Howard 1991); and t. ~ 18–26, 
3.6–5.2, 14.4–20.6 d from a model environmental pond (2 m deep), river (3 m deep) and lake (5 m deep), 
respectively, (Lyman et al. 1982; Howard 1991); t. ~ 43 h from a model river 1-m deep flowing 1 m/s 
based, on the Henry’s law constant of technical chlordane (Lyman et al. 1982, Howard 1991); 
measured rate constant k = 0.3 d–1 (Glotfelty et al. 1984; Glotfelty et al. 1989); 
calculated rate constant k = 1.0 d–1 (Glotfelty et al. 1989). 
Photolysis: 
Oxidation: t. = 5.2–51.7 h in air, based on estimated photooxidation half-life in air (Atkinson 1987; quoted, 
Howard et al. 1991); 
kOH(aq.) = 8 . 108 M–1 s–1 for the reaction (photo-Fenton with reference to lindane) with hydroxyl radical 
in aqueous solutions at pH 3.3 and at 24 ± 1°C (Buxton et al. 1988; quoted, Faust & Hoigne 1990; Haag 
& Yao 1992) 
k(aq.) < 0.04- > 300 M–1 s–1 for direct reaction with ozone in water at pH 6.2–6.4 and 19 ± 2°C, with 2 min > 
t. > 10 d at t pH 7 (Yao & Haag 1991). 
k(aq.) = (6–170) . 108 M–1 s–1 for the reaction (photo-Fenton with reference to acetophenone) with hydroxyl 
radicals in aqueous solutions at pH 3.3 and at 24 ± 1°C (Haag & Yao 1992). 
Hydrolysis: t. > 4 yr (Callahan et al. 1979); 
first-order t. > 197000 yr, based on base rate constant k = 4.3 . 10–3 M–1 h–1 at pH 7.0 and 25°C (Ellington 
et al. 1987, 1988; quoted, Howard et al. 1991). 
t. = 7.2 . 107 d at pH 7 and t. = 670 d at pH 12 in natural waters (Capel & Larson 1995) 
Biodegradation: aqueous aerobic t. = 5712–33264 h, based on unacclimated aerobic river die-away test data 
(Eichelberger & Lichtenberg 1971; quoted, Howard et al. 1991) and reported soil grab sample data (Castro 
& Yoshida 1971; quoted, Howard et al. 1991); 
k = 0.0024 d–1 with a biodegradation t. = 1214 d under field conditions (Rao & Davidson 1980); 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3755 
aqueous anaerobic t. = 24–168 h, based on soil and freshwater mud grab sample data for aldrin, dieldrin, 
endrin and heptachlor epoxide (Maule et al. 1987; quoted, Howard et al. 1991); 
t. = 100 d in soil (Jury et al. 1990) 
t.(aerobic) = 240 d, t.(anaerobic) = 1 d in natural waters (Capel & Larson 1995) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 340 d–1 (.-, .-chlordane, rainbow trout, Oliver & Niimi 1985) 
k2 = 1.92 d–1 (.-chlordane, rainbow trout, Oliver & Niimi 1985) 
k2 = 0.021 d–1 (.-chlordane, rainbow trout, Oliver & Niimi 19850 
k2 = 0.0974 d–1 (.-chlordane from rats, Dearth & Hites 1991) 
k2 = 0.1170 d–1 (.-chlordane from rats, Dearth & Hites 1991) 
Half-Lives in the Environment: 
Air: t. = 5.2–51.7 h, based on estimated photooxidation half-life in air (Atkinson 1987; quoted, Howard et al. 
1991; Mortimer & Connell 1995); 
atmospheric transformation lifetime was estimated to be >1 d (Kelly et al. 1994); 
t. = in the Great Lake’s atmosphere. 16 ± 5.7 yr at Eagle Harbor, 10 ± 2.3 yr at Sleeping Bear Dunes and 
6.8 ± 0.8 yr at Sturgeon Point (Buehler et al. 2004). 
Surface water: t. = 5712–33264 h, based on unacclimated aerobic river die-away test data (Eichelberger & 
Lichtenberg 1971; quoted, Howard et al. 1991; Mortimer & Connell 1995) and reported soil grab sample 
data (Castro & Yoshida 1971; quoted, Howard et al. 1991; Mortimer & Connell 1995) 
measured rate constant k < 0.04- > 300 M–1 s–1 for direct reaction with ozone in water at pH 6.2–6.4 and 
19 ± 2°C, with a half-life, 2 min > t. > 10 d at pH 7 (Yao & Haag 1991) 
Biodegradation t.(aerobic) = 240 d, t.(anaerobic) = 1 d; hydrolysis t. = 7.2 . 107 d at pH 7 and t. = 670 d 
at pH 12 in natural waters (Capel & Larson 1995) 
Ground water: t. = 11424–66528 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
Sediment: t. = 20000 h (quoted mean value from Howard et al. 1991, Mortimer & Connell 1995). 
Soil: t. ~ 6 yr persistence in soil (Nash & Woolson 1967); 
estimated persistence of 5 yr in soil (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury 
et al. 1987); 
t. = 5712–33264 h, based on unacclimated aerobic river die-away test data (Eichelberger & Lichtenberg 
1971; quoted, Howard et al. 1991) and reported soil grab sample data (Castro & Yoshida 1971; quoted, 
Howard et al. 1991); 
rate constant k = 0.0024 d–1 with a biodegradation t. = 1214 d under field conditions (Rao & Davidson 1980); 
field t. = 9 d in fallow soil (Glotfelty 1981; quoted, Nash 1983); 
persistent with t. > 100 d (Willis & McDowell 1982); 
microagroecosystem t. = 10–13 d in moist fallow soil (Nash 1983); 
t. ~ 1 yr in soil (Hartley & Kidd 1987; quoted, Montgomery 1993); 
t. = 3500 d from screening model calculations (Jury et al. 1987b); 
t. > 50 d when subject to plant uptake via volatilization (Ryan et al. 1988); 
degradation t. = 100 d in soil (Jury et al. 1990); 
mean t. = 3.3 yr under field conditions (Howard 1991); 
estimated field t. ~ 350 d (Augustijn-Beckers et al. 1994; Tomlin 1994; Hornsby et al. 1996); 
t. = 1–20 yr in soil, t. = 5015 yr in the environment (Geyer et al. 2000) 
t. = 240 and 7.2 yr for control and sludge-amended Luddington soils, respectively, for cis-chlordane and 
t. = 12.9 and 9.2 yr for control and sludge-amended Luddington soils, respectively, for trans-chlordane 
(Meijer et al. 2001). 
Biota: t. = 1 d for daphinds and t. = 60 d for fish (Callahan et al. 1979; quoted, Wilcock et al. 1993); 
elimination t. ~ 60 d for .-chlordane and t. = 33 d for .-chlordane in rainbow trout (Oliver & Niimi 1985); 
biochemical t. = 3500 d from screening model calculations (Jury et al. 1987b); 
depuration t. = 7.1 d for .-chlordane, and t. = 5.9 d for .-chlordane (rats, Dearth & Hites 1991); 
t. = 12 d for elimination from T. liliana (Wilcock et al. 1993). 
© 2006 by Taylor & Francis Group, LLC

3756 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 18.1.1.13.1 
Reported octanol-air partition coefficients of chlordane at various temperatures 
cis-chlordane trans-chlordane oxychlordane 
Shoeib & Harner 2002 Shoeib & Harner 2002 Shoeib & Harner 2002 
generator column-GC/MS generator column-GC/MS generator column-GC/MS 
t/°C log KOA t/°C log KOA t/°C log KOA 
5 10.2162 5 10.1292 5 9.4204 
10 9.7963 10 9.7568 10 9.0757 
15 9.4916 15 9.4375 15 8.9090 
20 9.0896 20 9.0500 20 8.6184 
25 9.0271 25 8.9671 25 8.3887 
25 8.916 25 8.872 25 8.387 
log KOA = A + B/(T/K) log KOA = A + B/(T/K) log KOA = A + B/(T/K) 
A –8.289 A –8.027 A –5.636 
B 5127 B 5036 B 4179 
enthalpy of phase change enthalpy of phase change enthalpy of phase change 
.HOA/(kJ mol–1) = 97.5 .HOA/(kJ mol–1) = 96.4 .HOA/(kJ mol–1) = 80.0 
FIGURE 18.1.1.13.1A Logarithm of KOA versus reciprocal temperature for cis-chlordane. 
cis -Chlordane: KOA vs. 1/T 
8.0 
8.5 
9.0 
9.5 
10.0 
10.5 
11.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
AO 
Shoeib & Harner 2000 
Shoeib & Harner 2002 (interpolated) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3757 
FIGURE 18.1.1.13.1B Logarithm of KOA versus reciprocal temperature for trans-chlordane. 
FIGURE 18.1.1.13.1C Logarithm of KOA versus reciprocal temperature for oxychlordane. 
trans -Chlordane: KOA vs. 1/T 
8.0 
8.5 
9.0 
9.5 
10.0 
10.5 
11.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
AO 
Shoeib & Harner 2000 
Shoeib & Harner 2002 (interpolated) 
Oxychlordane: KOA vs. 1/T 
7.5 
8.0 
8.5 
9.0 
9.5 
10.0 
10.5
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K 
gol 
A 
O 
Shoeib & Harner 2000 
Shoeib & Harner 2002 (interpolated) 
© 2006 by Taylor & Francis Group, LLC

3758 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.14 Chlorfenvinphos 
Common Name: Chlorfenvinphos 
Synonym: Apachlor, Birlane, Clofenvenfos, GC 4092, Sapecron, SD 7859 
Chemical Name: 2-chloro-1-(2,4-dichlorophenyl)vinyl diethyl phosphate; 2-chloro-1-(2,4-dichlorophenyl)ethenyl 
diethyl phosphate 
Uses: soil application of insecticide to control root flies, root worms and other soil insects in vegetables; foliar application 
to control Colorado beetles on potatoes; scale insects and mite eggs on citrus fruit; stem borers and leafhoppers on 
rice, maize and sugar cane; and white flies on cotton; aside from control of mosquito larvae, it is also used as 
acaricide and animal ectoparasiticide. 
CAS Registry No: 470-90-6 (Z)-isomer, 18708-87-7 (E)-isomer or cis-chlorfenvinphos, 18708-86-6 trans-chlorfenvinphos 
Molecular Formula: C12H14Cl3O4P 
Molecular Weight: 359.569 
Melting Point (°C): 
–19 (Lide 2003) 
Boiling Point (°C): 
167–170 (at 0.5 mmHg, Hartley & Kidd 1987; Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.36 (Hartley & Kidd 1987; Tomlin 1994) 
Molar Volume (cm3/mol): 
321.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
96.34 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
145 (20°C, Melnikov 1971) 
145 (Martin & Worthing 1977; Milne 1995) 
145 (23°C, Khan 1980) 
146 (20°C, Briggs 1981) 
124 (20°C, shake flask-GC, Bowman & Sans 1983a, b) 
145 (23°C, Hartley & Kidd 1987; Worthing & Walker 1987, 1991; Tomlin 1994) 
130 (20°C, selected, Suntio et al. 1988) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00053 (20°C, Khan 1980) 
2.7 . 10–5 (Verschueren 1983) 
0.0010 (Hartley & Kidd 1987; Tomlin 1994) 
0.00010 (20°C, selected, Suntio et al. 1988) 
8.20 . 10–4, 1.70 . 10–2, 0.22, 2.0, 14.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.794 – 5032.8/(T/K); measured range 36.9–129°C (liquid, gas saturation-GC, Rordorf 1989) 
0.00053 (20°C, Worthing & Hance 1991) 
8.91 . 10–4; 1.35 . 10–3, 0.0038 (gradient GC method; estimation using modified Watson method: Sugden’s 
parachor, McGowan’s parachor, Tsuzuki 2000) 
Cl Cl 
O 
P 
O
O 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3759 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 
0.00028 (20°C, calculated-P/C, Suntio et al. 1988) 
0.00029 (calculated-P/C, this work) 
0.324 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 0.173 – 1187/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
3.23 (shake flask-UV, Lord et al. 1980) 
3.10 (20°C, shake flask-GC, Briggs 1981) 
3.81 (shake flask-GC, Bowman & Sans 1983) 
3.84 (shake flask, Eadsforth & Moser 1983) 
3.79 (HPLC-RT correlation method, Eadsforth & Moser 1983) 
3.56 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
3.81 (recommended, Sangster 1993) 
3.85, 4.22 (Z) isomer, (E) isomer, Tomlin 1994) 
3.10 (recommended, Hansch et al. 1995) 
3.56 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.57 (calculated-S, Kenaga 1980) 
2.30 (earthworms, Lord et al. 1980; quoted, Connell & Markwell 1990) 
Sorption Partition Coefficient, log KOC: 
2.45 (calculated-S, Kenaga 1980) 
2.47 (soil, sorption isotherm, converted from reported log KOM of 2.23, Briggs 1981) 
2.77 (soil, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
2.47 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.47; 2.42, 3.04 (soil, cis-chlorfenvinphos, quoted exptl.; estimated-class-specific model, estimated-general 
model, Gramatica et al. 2000) 
2.47; 2.40, 3.11 (soil, trans-chlorfenvinphos, quoted exptl.; estimated-class-specific model, estimated-general 
model, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: at 38°C: t. > 700 h at pH 1.1 and t. > 400 h at pH 9.1; t. = 1.28 h at pH 13 and 20°C (Tomlin 1994). 
Half-Lives in the Environment: 
Soil: t. > 24 wk in sterile sandy loam and t. < 1.0 wk in nonsterile sandy loam; t. > 24 wk in sterile organic 
soil and t. = 1.0 wk in nonsterile organic soil (Miles et al. 1979). 
© 2006 by Taylor & Francis Group, LLC

3760 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.15 Chlorpyrifos 
Common Name: Chlorpyrifos 
Synonym: Brodan, Chlorpyrifos-ethyl, Detmol UA, Dowco 179, Dursban, ENT 27311, Eradex, Killmaster, Lorsban, 
NA 2783, OMS 971, Pyrinex 
Chemical Name: O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate; O,O-diethyl O-(3,5,6-trichloro-2-pyridinyl) 
phosphorothioate 
Uses: insecticide used to control insects on a wide variety of crops including fruits, vegetables, ornamentals and trees. 
CAS Registry No: 2921-88-2 
Molecular Formula: C9H11Cl3NO3PS 
Molecular Weight: 350.586 
Melting Point (°C): 
42 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
298.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
25.94 (DSC method, Plato & Glasgow 1969) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.681 (mp at 42°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.40, 0.47 (23, 25°C, Brust 1966) 
2.0 (Spencer 1973; Windholz 1983; Hartley & Kidd 1987; Worthing & Walker 1987, Worthing & Hance 
1991; Milne 1995) 
1.12 (shake flask-GC, Felsot & Dahm 1979) 
0.70. 0.73 (19, 20°C, shake flask-GC, Bowman & Sans 1979) 
0.30 (23°C, Kenaga 1980a, b) 
0.30 (Dow Chemical Data, Kenaga & Goring 1980) 
2.00 (35°C, Khan 1980) 
2.00 (20–25°C, Willis & McDowell 1982) 
0.40 (Verschueren 1983) 
0.73 (20°C, shake flask-GC, Bowman & Sans 1983a, b) 
1.07, 0.42 (generator column, RP-HPLC-RT correlation, Swann et al. 1983) 
0.30 (Kanazawa 1989) 
0.40 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.93 (Racke 1993) 
0.73, 1.30 (20°C, 30°C, Montgomery 1993) 
1.40 (Tomlin 1994) 
1.18 (quoted lit., Armbrust 2000) 
1.61, 1.94 (supercooled liquid SL: literature-derived value LDV, final adjusted value FAV, Muir et al. 2004) 
Vapor Pressure (Pa at 25°C at 25°C or as indicated): 
0.00145 (20°C, Eichler 1965; Wolfdietrich 1965) 
0.0025 (Brust 1966; Neely & Blau 1977) 
0.0037 (Hamaker 1975) 
0.00253 (Melnikov 1971) 
0.0104 (30°C, NIEHS 1975) 
0.0012 (20°C, Hartley & Graham-Bryce 1980) 
N 
Cl Cl 
Cl O 
P 
O 
S 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3761 
0.00088 (20°C, GC-RT correlation without mp correlation, Kim et al. 1984; Kim 1985) 
0.00052 (20°C, GC-RT with mp correction, Kim et al. 1984; Kim 1985) 
0.0025 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993) 
0.0015 (20°C, selected, Suntio et al. 1988) 
0.0067 (supercooled liquid PL, GC-RT correlation method, Hinckley et al. 1990) 
0.0022; 0.0040 (liquid PL, GC-RT correlation; quoted lit., Donovan 1996) 
0.0023 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.0022 (gradient GC method, Tsuzuki 2000) 
2.18 . 10–3; 1.86 . 10–3, 0.00407 (gradient GC method; estimation using modified Watson method: Sugden’s 
parachor, McGowan’s parachor, Tsuzuki 2000) 
0.0038, 0.0031 (supercooled liquid PL: literature-derived value LDV, final adjusted value FAV, Muir et al. 2004) 
Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): 
1.0 (Mackay 1985) 
1.75 (20°C, calculated-P/C, Suntio et al. 1988) 
0.418 (calculated-P/C, Fendinger & Glotfelty 1990; Fendinger et al. 1990) 
7.902 (calculated-P/C, Howard 1991) 
4.06 . 10–3 (calculated-bond contribution method LWAPC, Meylan & Howard 1991) 
0.421 (23°C, quoted, Schomburg et al. 1991) 
0.421 (calculated-P/C, Montgomery 1993) 
0.317, 0.492 (20°C, distilled water, salt water 33.3l, wetted wall column-GC, Rice et al. 1997b) 
log KAW = –1187.0/(T/K) + 0.173; temp range 8.3–43.5°C, (distilled water, wetted-wall column-GC, Rice et al. 
1997b) 
log KAW = –916.0/(T/K) – 0.674; temp range 8.3–43.5°C, (salt water solution, 33.3l NaCl, wetted-wall column- 
GC, Rice et al. 1997b) 
0.366, 0.366; 0.390 (20°C, microlayer, subsurface natural water of salinity 17l and TOC 0.4–1.0 ppm, from Pt. 
Lookout, Chesapeake Bay; estimated value adjusted to salinity, Rice et al. 1997b) 
0.341, 0.390; 0.390 (20°C, microlayer, subsurface natural water of salinity 16l and TOC 0.5–0.6 ppm, from 
Solomons, Chesapeake Bay; estimated adjusted to salinity, Rice et al. 1997b) 
0.317, 0.341; 0.366 (20°C, microlayer, subsurface natural water of salinity 12l, TOC 0.6 ppm, from Sandy Point, 
Chesapeake Bay; estimated value adjusted to salinity, Rice et al. 1997b) 
0.366, 0.414; 487 (20°C, microlayer, subsurface water of salinity 32l, TOC 2.2–46 ppm, ocean water from 
Bering/Chukchi Sea; estimated value adjusted to salinity, Rice et al. 1997b) 
0.340, 0.414, 0.869 (8.3, 20, 43.5°C, subsurface water from Bering Sea, TOC 2.14 ppm, wetted-wall column- 
GC, Rice et al. 1997b) 
0.284, 0.356; 0.738 (8.3, 20, 43.5°C, surface microlayer water from Bering Sea, TOC 3.14 ppm, wetted-wall 
column-GC, Rice et al. 1997b) 
0.337, 0.424, 0.782 (8.3, 20, 43.5°C, subsurface water from Chukchi Sea, TOC 3.3 ppm, wetted-wall column- 
GC, Rice et al. 1997b) 
0.294, 0.369; 0.750 (8.3, 20, 43.5°C, surface microlayer water from Chukchi Sea, TOC 45.5 ppm, wetted-wall 
column-GC, Rice et al. 1997b) 
0.224, 0.268, 0.674 (8.3, 20, 43.5°C, melted surface ice from the Arctic Ocean, TOC 48.8 ppm, wetted-wall 
column-GC, Rice et al. 1997b) 
log KAW = –872/(T/K) – 0.775; temp range 8.3–43.5°C, (ocean water from the Chukchi Sea, wetted-wall column- 
GC, Rice et al. 1997b) 
log KAW = –633/(T/K) – 1.665; temp range 8.3–43.5°C, (surface microlayer of ocean water from the Chukchi 
Sea, wetted-wall column-GC, Rice et al. 1997b) 
0.74 (quoted lit., Armbrust 2000) 
1.090 (calculated-P/C, this work) 
0.472, 0.568 (literature-derived value LDV, final adjusted value FAV, Muir et al. 2004) 
Octanol/Water Partition Coefficient, log KOW: 
5.11 (20°C, shake flask-GC, Chiou et al. 1977; Freed et al. 1977, 1979) 
4.99 (Kenaga 1980b; Kenaga & Goring 1980) 
4.82 (Veith et al. 1979) 
© 2006 by Taylor & Francis Group, LLC

3762 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
4.67, 4.77 (RP-HPLC correlation, McDuffie 1981) 
4.96 (22°C, shake flask-GC, Bowman & Sans 1983b) 
5.20 (shake flask-GC, Schimmel et al. 1983) 
4.77 (HPLC-RT correlation, De Kock & Lord 1987) 
5.14 (HPLC-RT correlation, Liu & Qian 1988) 
5.267 (shake flask/slow-stirring method, De Bruijn et al. 1989) 
4.70 (Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
3.31–5.27 (Montgomery 1993) 
4.73 (RP-HPLC, Saito et al. 1993) 
3.99 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
4.96 (recommended, Sangster 1993) 
5.25 (shake flask-HPLC, Ankley et al. 1994) 
5.27 (recommended, Hansch et al. 1995) 
4.96 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
5.11 (literature-derived value LDV, Muir et al. 2004) 
Octanol/Air Partition Coefficient, log KOA: 
8.75 (final adjusted value FAV, Muir et al. 2004) 
Bioconcentration Factor, log BCF: 
2.67 (rainbow trout, Neely & Blau 1977; quoted, McLeese et al. 1976) 
2.67 (mosquito fish for 35-d exposure, Veith et al. 1979; Veith & Kosian 1983) 
2.65, 2.51 (fish: flowing water, static water; Kenaga 1980b; Kenaga & Goring 1980) 
3.09; 3.04 (calculated-S; calculated-KOC, Kenaga 1980a) 
–1.70 (average beef fat diet, Kenaga 1980b) 
2.67 (mosquito fish for 30-d exposure, Veith et al. 1980) 
2.65; 2.38 (quoted exptl., calculated-KOW, Briggs 1981) 
3.54 (estimated-regression from log KOW, Lyman et al. 1982) 
3.08 (estimated-regression from S, Lyman et al. 1982; quoted, Howard 1991) 
3.50 (calculated-KOW, Mackay 1982) 
2.67 (mosquito fish, Veith & Kosian 1983) 
–3.55 (beef biotransfer factor log Bb, correlated-KOW from Kenaga 1980, Travis & Arms 1988) 
–4.73 (milk biotransfer factor log Bm, correlated-KOW from McKellar et al. 1976, Travis & Arms 1988) 
2.67; 2.51 (rainbow trout; mosquito fish, wet wt. basis, De Bruijn & Hermens 1991) 
4.32 (stickleback, lipid-based lab data, Deneer 1994) 
2.68 (Pait et al. 1992) 
Sorption Partition Coefficient, log KOC: 
4.13 (soil, quoted from Dow Chemical Data, Kenaga 1980a, b; Kenaga & Goring 1980) 
3.93 (calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
3.78 (average of 3 soils, HPLC-RT correlation, McCall et al. 1980) 
3.96, 4.87 (estimated-S, calculated-S and mp, Karickhoff 1981) 
2.92, 4.43, 4.72 (estimated-KOW, Karickhoff 1981) 
4.11 (soil, Thomas 1982; quoted, Nash 1988) 
3.79, 4.0 (soil slurry method, RP-HPLC, Swann et al. 1983) 
1.61 (av. value calculated from Freundlich coeffs. without Baldwin Lake site data, Corwin & Farmer 
1984) 
3.35 (calculated-MCI ., Gerstl & Helling 1987) 
3.78 (soil, screening model calculations, Jury et al. 1987b) 
3.27 (average of 2 soils, Kanazawa 1989) 
3.78 (soil, 20–25°C, selected, Wauchope et al. 1992) 
3.77–4.13 (Montgomery 1993) 
3.93 (average, Racke 1993) 
4.37 (selected, Lohninger 1994) 
3.70 (soil, calculated-MCI 1., Sabljic et al. 1995) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3763 
3.46 (sediment, estimated, Paraiba et al. 1999) 
3.78 (soil, 20–25°C, recommended, Hornsby et al. 1996) 
4.00 (quoted lit., Armbrust 2000) 
3.70; 3.83, 3.76 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
3.62, 3.63 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
3.46–4.23 (sediments of San Diego Creek and Bonita Creek, shake flask-GC, Bondarenko & Gan 2004) 
Sorption Partition Coefficient, log KOM: 
3.42 (Felsot & Dahm 1979) 
3.78 (average of 3 soils, McCall et al. 1980) 
3.90 (exptl., Briggs 1981) 
3.10–4.31 (Mingelgrin & Gerstl 1983) 
4.24 (quoted, Karickhoff 1985; Neely & Blau 1985) 
4.50 (best estimate at low sediment concn., Karickhoff 1985) 
4.13, 3.74 (selected, estimated, Magee 1991) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: based on Henry’s law constant, t. ~ 9.0 d for a model river 1 m deep, flowing 1 m/s with a wind 
velocity of 3 m/s (Howard 1991); 
initial k = 8.8 . 10–2 h–1 and predicted k = 1.3 . 10–3 h–1 from soil with t. = 533 h (Thomas 1982); 
t. = 0.3–3.2 d for disappearance from an inert surface at 25°C (Meikle et al. 1983). 
Photolysis: t.(exptl) = 22 d determined under midday summer sunlight in California (Meikle et al. 1983; quoted, 
Howard 1991) 
kP = (2.19 ± 0.17) . 10–2 h–1, (2.09 ± 0.17) . 10–2 h–1 at different initial solute concentrations in aqueous 
solution at pH 7.0 and 25°C irradiated with a 450-W Hanovia mercury arc lamp. Under various environmental 
conditions, the estimated t. = 31 d at a depth of 0.001 cm, t. = 43 d at a depth of 1-m pure 
water, t. = 2.7 yr at 1-m depth river water for midsummer conditions; t. = 345 d at a depth of 1-m pure 
water under midwinter surface conditions, all at pH 2 at 40°N latitude, with average light attenuation 
(Dilling et al. 1984; quoted, Howard 1991; Montgomery 1993) 
Oxidation: photooxidation t. = 6.34 h for the vapor phase reaction with OH radical in air (Howard 1991). 
Hydrolysis: 
t. = 53 d at pH 7.4 and 20°C (NIEHS 1975; quoted, Freed et al. 1977, 1979); 
t. = 120 d at pH 6.1 and t. = 53 d at pH 7.4 in water and soil at 20°C as per Ruzicka et al. 1967 using 
GC-RT correlation for hydrolysis rates determination (Freed et al. 1979; quoted, Montgomery 1993) 
k(alkaline) = 0.1 M–1 s–1, k(neutral) = 1 . 10–7 s–1, 10–7–10–9 M in aqueous buffer at 20°C (Harris 1982) 
k = (1.08 – 2.0) . 10–3 h–1 corresponding to half-lives of 13–27 d at pH 7 buffer solution and 25°C (Dilling 
et al. 1984) 
t. = 78 d relatively independent of pH 1 to 7 (Macalady & Wolfe 1983; quoted, Howard 1991) 
t. = 1.5 d in water at pH 8 and 25°C (Worthing & Hance 1991; Tomlin 1994) 
Hydrolytic k(acidic) < 0.008 d–1 in acidic soils with pH . 7.0, corresponding to t. = 92–341 d and k(alkaline) 
= (0.006 – 0.063) d–1 in alkaline soils corresponding to t. = 11–200 d in abiotic hydrolysis in 37 different 
soils with pH 3.8–8.5. (Racke et al. 1996) 
k = 0.0009 d–1 at pH 5, k = 0.023 d–1 at pH 7, k = 0.044 d–1 at pH 9; measured hydroxy radical rate constant 
for chlorpyrifos 1.3 . 1013 M–1 h–1 (Armbrust 2000). 
Biodegradation: 
k = 0.014 d–1 in soil at 28°C (Miles et al. 1979; quoted, Klecka 1985) 
k = 0.008–0.025 d–1 in soil at 25°C (Getzin 1981; quoted, Klecka 1985) 
k = (–000945 to –0.00243) h–1 in nonsterile sediment and k = (–0.000562 to –0.00151) h–1 in sterile sediment 
by shake-tests at Range Point and also k = (–0.00109 to –0.00231) h–1 in nonsterile water and 
k = (–0.00144 to –0.00197) h–1 in sterile water by shake-tests at Range Point (Walker et al. 1988) 
t. = 39–51 d in loamy and clay soils under anaerobic conditions, t. = 150–200 d in anaerobic pond sediments 
(Racke 1993) 
k(aerobic) = 9.47 . 10–4 h–1 for exposure analysis (Armbrust 2000). 
© 2006 by Taylor & Francis Group, LLC

3764 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
elimination t. = 3.3 d in channel catfish (Barron et al. 1991) 
k1 = 7000 ± 2000) L kg–1 d–1 (guppy, lipid-based modeling data, Deneer 1993) 
k2 = (0.40 ± 0.11) d–1 (guppy, lipid-based modeling data, Deneer 1993) 
k1 = (26 ± 8.0) . 103 L kg–1 d–1 (stickleback, lipid-based lab data, Deneer 1994). 
k2 = (1.2 ± 0.4) d–1 (stickleback, lipid-based lab data, Deneer 1994). 
Half-Lives in the Environment: 
Air: t. = 6.34 h for the vapor phase reaction with hydroxyl radicals in air (Atkinson 1987; quoted, Howard 1991); 
reaction rate k = 4.77 . 10–4 min–1 in air (Paraiba et al. 1999). 
Surface water: based on Henry’s law constant, volatilization t. ~ 9.0 d for a model river 1-meter deep, flowing 
1 m/s with a wind velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1991); 
half-lives of a 100 mL pesticide-seawater solution containing 10 g of sediment were: t.< 2.0 d, indoor at 
25°C with 12-h photo-period white fluorescent light, t. = 4.6 d, outdoor-light (stoppered, Pyrex flasks 
exposed to ambient sunlight with temperature 22–45°C), t. = 7.1 d, outdoor-dark (foil-covered flasks) 
and t. = 24 d in an estuary (Schimmel et al. 1983; quoted, Montgomery 1993) 
t. = 120 d in water at pH 6.1, 20°C (quoted, Lartiges & Garrigues 1995); 
reaction rate k = 3.80 . 10–4 min–1 in water (Paraiba et al. 1999). 
Ground water: 
Sediment: t. = 24 d in 10 g untreated sediment/100 mL of a pesticide-seawater solution and t. > 28 d in 10 g 
sterile sediment/100 mL of a pesticide-seawater solution (Schimmel et al. 1983) 
t. = 150–200 d in anaerobic pond sediments (Racke 1993) 
reaction rate k = 2.85 . 10–5 min–1 in sediment (Paraiba et al. 1999) 
First-order degradation k = 0.034 d–1 with t. = 20.3 d under aerobic conditions, k = 0.003 d–1 with t. = 223 
d under anaerobic conditions in sediment from San Diego Creek, Orange County, CA; first-order 
degradation k = 0.029 d–1 with t. = 23.7 d under aerobic conditions, k = 0.012 d–1 with t. = 57.6 d under 
anaerobic conditions in sediment from Bonita Creek, Orange County, CA (Bondarendo & Gan 2004) 
Soil: t. = 17.0 wk in sterile sandy loam and t. < 1.0 wk in nonsterile sandy loam; t. > 24 wk in sterile organic 
soil and t. = 2.5 wk in nonsterile organic soil (Miles et al. 1979); 
t. = 12 and 24 wk in a silt loam and clay loam, t. = 24 wk while in sterilized soils; however, temperature 
also had noticeable effects on decomposition as t. = 25, 13, and 6 wk for soil samples incubated at 15, 
25, and 35°C, respectively (Getzin 1981a; quoted, Montgomery 1993); 
hydrolysis t. = 8 d in Sultan silt loam (Getzin 1981b; quoted, Montgomery 1993); 
t. = 80–100 d slowly degraded in soil (Hartley & Kidd 1987; quoted, Montgomery 1993); 
t. = 63 d from screening model calculations (Jury 1987b); 
persists in soil for 60–120 d (Worthing & Hance 1991); 
Selected field t. = 30 d (Wauchope et al. 1992; quoted, Dowd et al. 1993; Richards & Baker 1993; Hornsby 
et al. 1996); 
t. = 30 d (Pait et al. 1992); 
Field dissipation t. = 39–51 d in loamy and clay soils under anaerobic conditions; and aerobic solid 
degradation t. = 5–141 d (Racke 1993) 
t. = of 60–120 d (Tomlin 1994) 
Dissipation t. . 7 d when applied to dry soils or the soil surface (t. = 7–14 d); and t. = 30–60 d when 
incorporated into the soil profile (Racke et al. 1996) 
First order rate constants for photolytic decline in sandy soil: k = 2.91 . 10–3 h–1 with t. = 240 h irradiated 
in moisture-maintained, k = 2.06 . 10–3 h–1 with t. = 340 h, irradiated in air-dried k = 1.67 . 10–3 h–1 
with t. = 420 h in dark control moist and k = 0.99 . 10–3 h with t. = 700 h in dark control air-dried 
sandy soil from Sauk County, WI. The photolytic k = 8.43 . 10–4 h–1 with t. = 820 h in moist soil, 
k = 1.07 . 10–3 h–1 with t. = 650 h in dry soil. The contribution of moisture to irradiated metabolism 
k = 1.24 . 10–3 h–1 with t. = 560 h, but for dark control system for k = 6.78 . 10–4 h–1 with t. = 1020 h 
(Graebing & Chib 2004) 
Biota: t. = 335 h clearance from fish (Neely 1980); 
biochemical t. = 63 d from screening model calculations (Jury et al. 1987b); 
elimination t. ~ 3.3 d in channel catfish (Barron et al. 1991) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3765 
18.1.1.16 Chlorpyrifos-methyl 
Common Name: Chlorpyrifos-methyl 
Synonym: Reldan 
Chemical Name: O,O-dimethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate 
Uses: insecticide 
CAS Registry No: 5598-13-0 
Molecular Formula: C7H7Cl3NO3PS 
Molecular Weight: 322.534 
Melting Point (°C): 
43 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3): 
Acid Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.666 (mp at 43°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
4.76 (20°C, shake flask-GC, Chiou et al. 1977) 
0.40 (Spencer 1982) 
4.0 (Kenaga 1980a, b, Kenaga & Goring 1980) 
3.2 (20°C, shake flask, Bowman & Sans 1983b) 
4.0 (24°C, Hartley & Kidd 1987; Tomlin 1994) 
4.0 (selected, 20–25°C, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C): 
5.63 . 10–3 (Spencer 1982, Hartley & Kidd 1987; Tomlin 1994) 
5.60 . 10–3 (selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
4.31 (shake flask-GC, Chiou et al. 1977) 
4.17 (Kenaga 1980a; Kenaga & Goring 1980) 
3.29, 4.30 (Rao & Davidson 1980) 
4.30 (shake flask-concn ratio-GC; Bowman & Sans 1983b) 
4.31 (recommended, Sangster 1993) 
3.99 (HPLC-RT correlation, Sicbaldi & Finizio 1993) 
4.24 (Tomlin 1994) 
4.31 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.98 (fish, static water, Kenaga & Goring 1980) 
2.45, 2.36 (calculated-solubility, KOW, Kenaga 1980b) 
1.98 (fish, microcosm conditions, Garten & Trabalka 1983) 
N 
Cl Cl 
Cl O 
P 
O 
S 
O 
© 2006 by Taylor & Francis Group, LLC

3766 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Sorption Partition Coefficient, log KOC: 
3.52 (soil, Kenaga 1980a; Kenaga & Goring 1980) 
3.30 (soil, calculated, Kanga 1980b) 
3.76 (soil, Sabljic 1987) 
3.48 (estimated, soil, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
3.52 (soil, calculated-MCI ., Sabljic et al. 1995) 
3.52; 3.36, 3.49 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, 
Gramatica et al. 2000) 
Environmental Fate Rate Constant and Half-Lives, t.: 
Volatilization: 
Photolysis: under goes rapid photodecomposition in UV light (Spencer 1982). 
Photooxidation: 
Hydrolysis: relatively stable under neutral conditions, but hydrolyzed by acids (pH 4–6) and, more readily by 
alkalis (pH 8–10), t. = 3 d at pH 8 (Tomlin 1994) 
Biodegradation: 
Biotransformation: 
Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 
Half-Lives in the Environment: 
Air: 
Surface water: estimated t. ~ 38 d in buffered water at pH 6 (Spencer 1982); 
relatively stable under neutral conditions, but hydrolyzed by acids (pH 4–6) and, more readily by alkalis 
(pH 8–10), t. = 3 d at pH 8 (Tomlin 1994). 
Ground water: 
Sediment: 
Soil: field t. = 7 d (Augustjin-Beckers et al. 1994; Hornsby et al. 1996); 
t. = 1.5 and 33 d depending upon soil type and microbial activity (Tomlin 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3767 
18.1.1.17 Crotoxyphos 
Common Name: Crotoxyphos 
Synonym: Ciodrin, Ciovap, Cyodrin, Cypona EC, Decrotox, Duo-kill, Duravos, ENT 24717, Volfazol 
Chemical Name: dimethyl(E)-1-methyl-2-(1-phenyl-ethoxycarbonyl)vinyl phosphate 
Uses: insecticide 
CAS Registry No: 7700-17-6 
Molecular Formula: C14H19O6P 
Molecular Weight: 314.271 
Melting Point (°C): liquid 
Boiling Point (°C): 
135 (at 0.03 mmHg, Montgomery 1993) 
Density (g/cm3 at 20°C): 
1.2 (Spencer 1982) 
1.19 (25°C, Montgomery 1993) 
Molar Volume (cm3/mol): 
264.1 (calculated-density) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
1000 (Gunther et al. 1968) 
1000 (Melnikov 1971; Spencer 1973, 1982;) 
1000 (Martin & Worthing 1977; Worthing & Walker 1987; Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0019 (20°C, Khan 1980) 
0.00187, 0.0052, 0.013 (20, 30, 40°C, Spencer 1982) 
0.0019 (20°C, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.00063 (20–25°C, calculated-P/C, Montgomery 1993) 
0.00060 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
3.00 (Callahan et la. 1979) 
2.23 (Kenaga 1980) 
3.30 (shake flask, Log P Database, Hansch & Leo 1987) 
3.30 (selected, Sangster 1993) 
3.30 (selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.10 (calculated-S as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
2.23 (soil, Hamaker & Thompson 1972; Kenaga & Goring 1980) 
2.00, 1.70 (soil, quoted exptl., calculated-MCI . and fragment contribution, Meylan et al. 1992) 
2.23 (Montgomery 1993)
O O 
P 
O 
O O 
O 
© 2006 by Taylor & Francis Group, LLC

3768 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.00 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.00; 2.07, 2.59 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Surface water: biodegradation t. = 7.5 d at pH 9 and t. = 22.5 d at pH 2 from river die-away tests (Konrad & 
Chester 1969; quoted, Scow 1982). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3769 
18.1.1.18 Cyhalothrin 
Common Name: Cyhalothrin 
Synonym: Grenade, cyhalothrine 
Chemical Name: (RS)-.-cyano-3-phenoxybenzyl(Z)-(1RS,3RS)-(2-chloro-3,3,3-trifluoropropanyl)-2,2-dimethylcyclopropanecarboxylate 
Uses: insecticide 
CAS Registry No: 68085-85-8 
Molecular Formula: C23H19ClF3NO3 
Molecular Weight: 449.850 
Melting Point (°C): 
yellow to brown viscous oil (technical, Hartley & Kidd 1987; Tomlin 1994) 
Boiling Point (°C): 
187–190/0.2 mmHg (Hartley & Kidd 1987; Tomlin 1994) 
Density (g/cm3): 
1.25 (25°C, Hartley & Kidd 1987; Tomlin 1994) 
Acid Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C, F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
< 1.0 (Worthing & Walker 1983) 
0.003 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987) 
0.004 (20°C, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
~ 1.0 . 10–6 (20°C, Hartley & Kidd 1987) 
0.001 . 10–3 (20°C, Tomlin 1994) 
1.90 . 10–5 (40°C, Knudsen effusion method, Goodman 1997) 
log (P/Pa) = 13.47 – 5723/(T/K) (Antoine eq., measured range 45–85°C, Goodman 1997) 
1.51 . 10–5 (PS, GC-RT correlation, Tsuzuki 2001) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
6.02 (HPLC-RT correlation, Hu & Leng 1992) 
6.80 (20°C, Tomlin 1994) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, and Half-Lives. t.: 
Hydrolysis: slowly hydrolysed in sunlight at pH 7–9, more rapidly at pH >9 (Hartley & Kidd 1987; Tomlin 1994). 
Half-Lives in the Environment: 
Soil: t. ~ 4–12 wks (Hartley & Kidd 1987; Tomlin 1994) 
F 
F 
F 
Cl 
O 
O 
O 
N 
© 2006 by Taylor & Francis Group, LLC

3770 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.19 Lambda-cyhalothrin 
Common Name: lambda-cyhalothrin 
Synonym: lambda-cyhalothrin 
Chemical Name: equal quantities of (S)-.-cyano-3-phenoxybenzyl(Z)-(1R,3R)-3-(2-chloro-3,3,3-trifluoropropanyl)- 
2,2-dimethylcyclopropanecarboxylate and (S)-.-cyano-3-phenoxybenzyl(Z)-(1S,3S)-3-(2-chloro-3,3,3-trifluoropropanyl)-
2,2-dimethylcyclopropanecarboxylate 
Uses: insecticide 
CAS Registry No: 91465-08-6 
Molecular Formula: C23H19ClF3NO3 
Molecular Weight: 449.850 
Melting Point (°C): 
49.2 (Hartley & Kidd 1987; Tomlin 1994; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3): 
1.33 (25°C, Tomlin 1994) 
Acid Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.579 (mp at 49.2°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.005 (20°C, pH 6.5, Hartley & Kidd 1987) 
0.005, 0.004 (pH 6.5 in purified water, pH 5.0 in buffered water Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated *, are compiled at the end of this section): 
2.0 . 10–7 (20°C, Hartley & Kidd 1987) 
2.0 . 10–7, 2.0 . 10–4 (20, 60°C, Tomlin 1994) 
7.80 . 10–6* (40°C, Wollerton & Husband 1988, quoted in Goodman 1997) 
19 . 10–6* (40°C, Knudsen effusion method, measured range 40–80°C, Goodman 1997) 
1.88 (extrapolated-Antoine eq., Goodman 1997) 
log (P/kPa) = 13.47 – 5723/(T/K); temp range 40–80°C (Antoine eq., Knudsen effusion, Goodman 1997) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
7.0 (20°C, Tomlin 1994) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
F 
F 
F 
Cl 
O 
O 
O 
N 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3771 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: 
Sediment: t. ~ 20 d in water-sediment mixture in sunlight (Tomlin 1994). 
Soil: t. ~ 4–12 wk (Hartley & Kidd 1987; Tomlin 1994) 
Biota: 
TABLE 18.1.1.19.1 
Reported vapor pressures of lambda-cyhalothrin at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Wollerton & Husband 1988 Goodman 1997 
quoted in Goodman 1997 Knudsen effusion 
t/°C P/Pa t/°C P/Pa 
40 7.8 . 10–6 40 1.9 . 10–5 
50 4.0 . 10–5 50 4.7 . 10–5 
60 1.9 . 10–4 60 1.7 . 10–4 
70 8.2 . 10–4 70 6.5 . 10–4 
80 3.2 . 10–3 80 2.0 . 10–3 
eq. 1 P/Pa 
A 13.47 
B 5723 
FIGURE 18.1.1.19.1 Logarithm of vapor pressure versus reciprocal temperature for lambda-cyhalothrin. 
lambda-Cyhalothrin: vapor pressure vs. 1/T 
-7.0 
-6.0 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Wollerton & Husband 1988 
Goodman 1997 
m.p. = 49.2 °C 
© 2006 by Taylor & Francis Group, LLC

3772 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.20 Cypermethrin 
Common Name: Cypermethrin 
Synonym: Agrothrin, Ambush C, Barricade, CCN 52, Cymbush, Cyperkill, Demon, FMC 30980, Folcord, Imperator, 
Kafil Super, Polytrin, Ripcord, Sherpa, Stocade, Toppel 
Chemical Name: cyano(3-phenoxyphenyl)methyl 3-(2,2-dichloroethenyl)-2,2-dimethylcyclo-propanecarboxylate; (RS)- 
.-cyano-3-phenoxybenzyl(1RS,3RS;1RS,3SR)-3(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-carboxylate 
Uses: nonsystemic insecticide with contact and stomach action to control a wide range of insects in fruits, vegetables, 
vines, potatoes, cucurbits, capsicums, cereals, maize, soybeans, cotton, coffee, coca, rice, pecans, ornamentals and 
forestry, etc.; also used to control flies in animal houses and mosquitoes, cockroaches, houseflies and other pests 
in public health. 
CAS Registry No: 52315-07-8 
Molecular Formula: C22H19Cl2NO3 
Molecular Weight: 416.297 
Melting Point (°C): 
70 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.23 (Tomlin 1994) 
1.25 (Milne 1995) 
Molar Volume (cm3/mol): 
457.7 (calculated-Le Bas method at normal boiling point) 
335.7 (calculated-density) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.362 (mp at 70°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.041 (shake flask-GC, Coats & O’Donnell-Jefferey 1979) 
0.005–0.01 (Stephenson 1982) 
0.010 (20°C, Hartley & Kidd 1987) 
0.01–0.2 (21°C, Worthing & Walker 1987) 
0.004 (20–25°C, selected, Wauchope 1989; Wauchope et al. 1992; Hornsby et al. 1996) 
0.004 (Montgomery 1993) 
0.004 (at pH 7, Tomlin 1994) 
0.009 (20°C, selected, Siebers & Mattusch 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
8.7 . 10–7 (Barlow 1978) 
4.3 . 10–7 (gas saturation, Grayson et al. 1982) 
<1.3 . 10–5 (Spencer 1982) 
5.1 . 10–10 (70°C, Hartley & Kidd 1987) 
2.4 . 10–6 (GC-RT correlation, supercooled liquid PL, Hinckley et al. 1990) 
1.9 . 10–7 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.9 . 10–7 (20°C, extrapolated, Montgomery 1993) 
2.3 . 10–7 (20°C, Tomlin 1994) 
2.75 . 10–6; 2.4 . 10–6, 1.86 . 10–6, 1.15 . 10–6 (liquid PL, GC-RT correlation; quoted lit. values, Donovan 1996) 
2.3 . 10–6 (20°C, selected, Siebers & Mattusch 1996) 
3.23 . 10–6 (solid PS, converted from PL by GC-RT correlation, Tsuzuki 2001) 
Cl 
Cl 
O 
O 
N 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3773 
Henry’s Law Constant (Pa·m3/mol) at 25°C or as indicated: 
0.0199 (20–25°C, calculated-P/C, Montgomery 1993) 
0.0194 (20–25°C, calculated-P/C as per Wauchope et al. 1992, Majewski & Capel 1995) 
0.080 (selected, Siebers & Mattusch 1996) 
0.0195 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.47 (shake flask-GC, Coats & O’Donnell-Jefferey 1979) 
5.90 (Schimmel et al. 1983) 
5.2 ± 0.6 (cis-form, HPLC-RT correlation, Muir et al. 1985) 
5.0 ± 0.6 (trans-form, HPLC-RT correlation, Muir et al. 1985) 
6.60 (Montgomery 1993) 
4.47, 6.0 (quoted, Sangster 1993) 
6.60 (Tomlin 1994) 
6.60 (Milne 1995) 
6.05, 6.05 (.-, .-isomer, Hansch et al. 1995) 
5.56, 6.35, 5.60 (RP-HPLC correlation, ClogP, calculated-S, Finizio et al. 1997) 
5.62 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
2.99 (activated sludge, Freitag et al. 1984) 
3.52, 2.62, 2.99 (algae, golden ide, activated sludge, Freitag et al. 1985) 
1.73–2.34 (trans-form on sediment, 24 h BCF for chironomid larvae in water, Muir et al. 1985) 
1.63–2.39 (trans-form on sediment, 24 h BCF for chironomid larvae in sediment, Muir et al. 1985) 
1.49–2.05 (trans-form on sediment, 24 h BCF for chironomid larvae in sediment/pore water, Muir et al. 1985) 
1.53–2.38 (cis-form on sediment, 24 h BCF for chironomid larvae in water, Muir et al. 1985) 
1.84–2.59 (cis-form on sediment, 24 h BCF for chironomid larvae in sediment, Muir et al. 1985) 
1.68–2.02 (cis-form on sediment, 24 h BCF for chironomid larvae in sediment/pore water, Muir et al. 1985) 
2.89 (Oncorhynchus mykiss, Muir et al. 1994; quoted, Devillers et al. 1996) 
2.92 (Oncorhynchus mykiss, Muir et al. 1994; quoted, Devillers et al. 1996) 
Sorption Partition Coefficient, log KOC: 
2.36 (cis-form, silt, KP on 24% DOC, Muir et al. 1985) 
2.57 (cis-form, clay, KP on 56% DOC, Muir et al. 1985) 
2.59 (trans-form, silt, KP on 10% DOC, Muir et al. 1985) 
5.00 (soil, 20–25°C, estimated, Wauchope et al. 1992; quoted, Lohninger 1994; Hornsby et al. 1996) 
4.0–4.53 (Montgomery 1993) 
5.54 (sediments, Maund et al. 2002) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 5 d in river water (Tomlin 1994). 
Ground water: 
Sediment: 
Soil: estimated field t. = 30 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3774 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.21 DDD 
Common Name: DDD 
Synonym: dichloro diphenyl dichloroethane; p,p.-DDD; Dilene; ENT 4225; ME 1700; NCI-C00475; Rhothane; 
p,p.-TDE; TDE; tetrachlorodiphenylethane 
Chemical Name: 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane; 1,1.-(2,2-dichloroethylidene)bis[4-chlorobenzene 
Uses: degradation product of DDT used as insecticide. 
CAS Registry No: 72-54-8 (p,p.-DDD or DDD); 53-10-0 (o,p.-DDD) 
Molecular Formula: C14H10Cl4 
Molecular Weight: 321.041 
Melting Point (°C): 
109.5 (Ballschmiter & Wittlinger 1991; Kuhne et al. 1995; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
312.6 (calculated-LeBas method at normal boiling point) 
246.4 (Ruelle & Kesselring 1997; Passivirta et al. 1999) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
30.96 (DSC method, Plato & Glasgow 1969) 
27.313 (Ruelle & Kesselring 1997) 
Entropy of Fusion, .Sfus (J/mol K): 
81.17 (Plato & Glasgow 1969; Hinckley et al. 1990) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.148 (mp at 109.5°C) 
Water Solubility (g/m3 or mg/L at 25°C and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
0.002 (shake flask-LSC, Metcalf et al. 1973) 
0.005, 0.015, 0.09* (shake flask-GC with particle sizes: 0.01, 0.05, 5.0 micron, Biggar & Riggs 1974) 
0.24 (p, p.-DDD shake flask-GC, o, p.-DDD with particle sizes: 0.05 micron, Biggar & Riggs 1974) 
0.060, 0.10, 0.25, 0.315 (shake flask-GC, o, p.-DDD at 15, 25, 35, 45°C with particle sizes: 5.0 micron or less, 
Biggar & Riggs 1974) 
0.020 (generator column-GC/ECD, Weil et al. 1974) 
0.005 (Martin & Worthing 1977) 
0.09, 0.10 (quoted, p,p.-, o,p.-DDD, Callahan et al. 1979) 

0.004 (shake flask-nephelometry, Hollifield 1979) 
0.10 (20°C, selected, o,p.-DDD, Suntio et al. 1988) 
0.16 (Agency for Toxic Substances & Disease Registry 1988; quoted, Burmaster et al. 1991) 
0.020 (20–25°C, selected, Hornsby et al. 1996) 
0.050; 0.010, 0.0035 (quoted; predicted-molar volume, mp and mobile order thermodynamics, Ruelle & 
Kesselring 1997) 
log [SL/(mol/L)] = 0.2910 – 1442/(T/K) (liquid, Passivirta et al. 1999) 
0.90, 0.738 (p,p.-DDD, supercooled liquid: derivation of literature-derived value LDV, final-adjusted value FAV, 
Shen & Wania 2005) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
2.52 . 10–4 (30°C, o, p.-DDD, gas saturation-vapor density-GC, Spencer & Cliath 1972; Spencer 1975) 
1.36 . 10–4 (30°C, p, p.-DDD, gas saturation-GC, Spencer & Cliath 1972; Spencer 1975) 
1.63 . 10–3, 6.24 . 10–4 (PGC by GC-RT correlation, different stationary phases, Bidleman 1984) 
4.34 . 10–4 (supercooled liquid PL, converted from literature PS with .Sfus Bidleman 1984) 
Cl Cl 
Cl Cl 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3775 
1.00 . 10–4 (20°C, selected, Suntio et al. 1988) 
2.00 . 10–4 (20°C, o,p.-, selected, Suntio et al. 1988) 
4.35 . 10–4, 9.84 . 10–4 (supercooled PL, converted from literature PS with different .Sfus values, Hinckley et al. 
1990) 
1.63 . 10–3, 1.10 . 10–3 (PGC by GC-RT correlation with different reference standards, Hinckley et al. 1990) 
log (PL/Pa) = 12.49 – 4622/(T/K) (supercooled liquid, GC-RT correlation, Hinckley et al. 1990; quoted, Passivirta 
et al. 1999) 
1.33 . 10–4 (20–25°C, estimated, Hornsby et al. 1996) 
9.69 . 10–4, 1.13 . 10–4; 9.16 . 10–5 (p,p.-DDD, supercooled liquid PL: calculated, GC-RT correlation ; converted 
to solid PS with fugacity ratio F, Passivirta et al. 1999) 
log (PS/Pa) = 16.23 – 6062/(T/K) (solid, p,p.-DDD, Passivirta et al. 1999) 
0.00097, 0.0023 (p,p.-DDD, supercooled liquid PL: LDV literature derived value, FAV final adjusted value, Shen 
& Wania 2005) 
Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): 
2.18 (calculated-P/C, Yoshida et al. 1983) 
0.27 (Agency for Toxic Substances & Disease Registry 1988; quoted, Burmaster et al. 1991) 
0.64 (20°C, calculated-P/C, Suntio et al. 1988; quoted, Majewski & Capel 1995) 
9.00 (calculated-P/C, Ballschmiter & Wittlinger 1991) 
0.669 (p,p.-DDD, wetted wall column-GC, Altschuh et al. 1999) 
log [H/(Pa m3/mol)] = 12.20 – 3168/(T/K) (p,p.-DDD, Passivirta et al. 1999) 
0.67, 0.50 (p,p.-DDD, LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
Octanol/Water Partition Coefficient, log KOW: 
5.99 (O’Brien 1975) 
6.02 (Ernst 1977) 
6.02 (Veith & Morris 1978; Veith et al. 1979) 
5.69 (Hansch & Leo 1979) 
5.99, 6.08 (p,p.-, o,p.-DDD, Callahan et al. 1979) 
6.00 (Kenaga & Goring 1980) 
5.19 (RP-HPLC-RT correlation, Chin et al. 1986) 
5.00 (RP-HPLC-RT correlation, De Kock & Lord 1987) 
6.217 ± 0.031 (p,p.-DDD, shake flask/slow-stirring method, De Bruijn et al. 1989) 
6.02 (recommended, Sangster 1993) 
4.82 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
6.22 (recommended, Hansch et al. 1995) 
4.87 (o,p.-, RP-HPLC-RT correlation, Finizio et al. 1997) 
6.02 (p,p.-DDD, calculated, Passivirta et al. 1999) 
6.22, 6.33 (p,p.-DDD, LDV literature-derived value, FAV final-adjusted value, Shen & Wania 2005) 
Octanol/Air Partition Coefficients, log KOA at 25°C and reported temperature dependence equations. Additional data 
at other temperatures designated * are compiled at the end of this section: 
8.90 (p,p.-DDD, calculated-KOW/KAW, Wania & Mackay 1996) 
9.45 (p,p.-DDD, calculated, Finizio et al. 1997) 
10.11*, 10.27 (p,p.-DDD, gas saturation-GC/MS, calculated, measured range 5–35°C, Shoeib & Harner 2002) 
log KOA = –5.193 + 4610/(T/K), temp range: 5–35°C (p,p.-DDD, gas saturation-GC, Shoeib & Harner 2002) 
10.10, 10.03 (p,p.-DDD, LDV literature derived value, FAV final adjusted value, Shen & Wania 2005) 
Bioconcentration Factor, log BCF: 
4.92, 3.92 (Gambusia, Physa, Metcalf et al. 1973) 
3.96 (mussel, Ernst 1977) 
4.72 (fathead minnow, Veith et al. 1979) 
4.09 (calculated-S, Kenaga 1980) 
4.11 (calculated-S or KOW, Kenaga & Goring 1980) 
3.30 (Triaenodes tardus, Belluck & Felsot 1981) 
© 2006 by Taylor & Francis Group, LLC

3776 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
4.34, 4.42 (mussel, oyster; calculated-KOW, Zaroogian et al. 1985) 
4.68 (oyster, Zaroogian et al. 1985; quoted, Hawker & Connell 1986) 
2.85–4.29 (benthic macroinvertebrates, Reich et al. 1986) 
4.81 (calculated-S and KOW, Isnard & Lambert 1988) 
–1.90 (beef biotransfer factor log Bb, correlated-KOW from Fries et al. 1969, Travis & Arms 1988) 
–2.52 (milk biotransfer factor log Bm, correlated-KOW from Fries et al. 1969, Travis & Arms 1988) 
0.301 (earthworms, quoted, Menzie et al. 1992) 
–0.456, –0.745, –0.602 (earthworms, field/lab. estimated, field leaf litter, calculated-modeled, Menzie et al. 1992) 
4.68 (calculated-log KOW as per Mackay 1982, this work) 
Sorption Partition Coefficient, log KOC: 
4.91 (calculated-S, Kenaga 1980) 
4.63 (calculated-S or KOW, Kenaga & Goring 1980;) 
5.86 (calculated-S, Mill et al. 1980; quoted, Adams 1987) 
5.89 (estimated-QSAR & SPARC, Kollig 1993) 
5.00 (20–25°C, estimated, Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: aquatic half-life of a few days to about a month (summarized data, Callahan et al. 1979). 
Photolysis: aquatic t. > 150 d (summarized data, Callahan et al. 1979). 
Oxidation: aquatic t. ~ 22 yr (summarized data, Callahan et al. 1979); 
photooxidation t. = 13.3–133 h in air, based on estimated rate constant for reaction with hydroxyl radical 
in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: 
t. ~ 570 d at pH 9 and t. = 190 yr at pH 5 (summarized data, Callahan et al. 1979); 
t. = 28 yr at pH 7 and 25°C, calculated from measured neutral and base catalyzed hydrolysis constants of 
(2.8 ± 0.9) . 10–6 h–1 and 5.2 M–1 h–1 (Ellington et al. 1987, 1988, 1989; quoted, Howard et al. 1991); 
rate constant k = 2.5 . 10–2 yr–1 at pH 7 and 25°C (Kollig 1993). 
Biodegradation: aqueous aerobic t. = 2–15.6 yr, based on observed rates of biodegradation of DDT in aerobic 
soils under field conditions (Lichtenstein & Schultz 1959; Stewart & Chisholm 1971; quoted, Howard et 
al. 1991); aqueous anaerobic t. = 70–294 d, based on anaerobic flooded soil die-away study data for two 
flooded soils (Castro & Yoshida 1971; quoted, Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 52.9 h–1; k2 = 0.0058 h–1 (mussel, Ernst 1977; quoted, Hawker & Connell 1986) 
Half-Lives in the Environment: 
Air: t. = 17.7–177 h, based on estimated photooxidation half-life in air (Howard et al. 1991). 
Surface water: t. = 2–15.6 yr, based on observed rates of biodegradation of DDT in aerobic soils under field 
conditions (Lichtenstein & Schultz 1959; Stewart & Chisholm 1971; quoted, Howard et al. 1991) 
dehydrochlorination rate constant k = 5.0 . 10–2 h–1 with t. = 13.9 h for 1.0 ppm p,p.-DDD and 
k = 0.76 . 10–2 h–1 with t. = 96.3 h for o,p.-DDD both at 21 ± 2°C and pH 12.8 (in 0.1 N NaOH solution) 
(Choi & Chen 1976) 
estimated t. = 45 d for surface waters in case of a first order reduction process may be assumed (Zoeteman 
et al. 1980) 
Ground water: t. = 1680–270,000 h, based on anaerobic flooded soil die-away study data for two flooded soils 
(Castro & Yoshida 1971; quoted, Howard et al. 1991) and observed rates of biodegradation of DDT in 
aerobic soils under field conditions (Lichtenstein & Schultz 1959; Stewart & Chisholm 1971; quoted, Howard 
et al. 1991). 
Sediment: 
Soil: t. = 2–15.6 yr, based on observed rates of biodegradation of DDT in aerobic soils under field conditions 
(Lichtenstein & Schultz 1959; Stewart & Chisholm 1971; quoted, Howard et al. 1991); 
estimated field t. ~ 1000 d (20–25°C, Hornsby et al. 1996). 
Biota: t. = 119 h in mussel (Ernst 1977). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3777 
TABLE 18.1.1.21.1 
Reported aqueous solubilities and octanol-air partition coefficients of DDD at various temperatures 
Aqueous solubility log KOA 
p,p’-DDD o,p-DDD p,p’-DDD 
Biggar & Riggs 1974 Biggar & Riggs 1974 Shoeib & Harner 2002 
shake flask-GC shake flask-GC generator column-GC/MS 
t/°C S/g·m–3 S/g·m–3 S/g·m–3 t/°C S/g·m–3 t/°C log KOA 
particle size 0.01µ 0.05µ 5.0µ particle size 5.0µ 
15 – – 0.050 15 0.060 5 11.287 
25 0.005 0.015 0.090 25 0.100 15 11.238 
35 – – 0.150 35 0.280 20 10.286 
45 – – 0.240 45 0.315 25 10.110 
35 9.870 
log KOA = A + B/(T/K) 
A –5.193 
B 4610 
enthalpy of phase change 
.HOA/(kJ mol–1) = 80.1 
FIGURE 18.1.1.21.1A Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for p,p.-DDD. 
p,p' -DDD: solubility vs. 1/T 
-24.0 
-23.0 
-22.0 
-21.0 
-20.0 
-19.0 
-18.0 
-17.0 
-16.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
x nl 
Biggar & Riggs 1974 (0.01 µ particle size) 
Biggar & Riggs 1974 (0.05 µ particle size) 
Biggar & Riggs 1974 (5.0 µ particle size) 
Metcalf et al. 1973 
Weil et al. 1974 
Hollifield 1979 
© 2006 by Taylor & Francis Group, LLC

3778 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 18.1.1.21.1B Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for o,p.-DDD. 
FIGURE 18.1.1.21.2 Logarithm of KOA versus reciprocal temperature for p,p.-DDD. 
o,p' -DDD: solubility vs. 1/T 
-24.0 
-23.0 
-22.0 
-21.0 
-20.0 
-19.0 
-18.0 
-17.0 
-16.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
x nl 
Biggar & Riggs 1974 (5.0 µ particle size) 
p,p' -DDD: KOA vs. 1/T 
9.0 
9.5 
10.0 
10.5 
11.0 
11.5 
12.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K 
gol 
AO 
Shoeib & Harner 2000 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3779 
18.1.1.22 DDE 
Common Name: DDE (p,p.-DDE; o,p.-DDE) 
Synonym: 4,4.-DDE, DDE; 2,4-DDE 
Chemical Name: 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene 
CAS Registry No: 72-55-9 (p,p.-DDE); 3424-82-6 (o,p-DDE) 
Molecular Formula: C14H8Cl4 
Molecular Weight: 319.0 
Melting Point (°C): 
89 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
305.2 (calculated-Le Bas method at normal boiling point) 
243.1 (Ruelle & Kesselring 1997; Passivirta et al. 1999) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
30.543 (o,p.-DDE, DSC method, Plato & Glasgow 1969) 
24.267 (p,p.-DDE, DSC method, Plato & Glasgow 1969) 
Entropy of fusion, .Sfus (J/mol K): 
67.0 (Hinckley et al. 1990; Passivirta et al. 1999) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.236 (mp at 89°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional 
data at other temperatures designated * are compiled at the end of this section): 
p,p.-DDE 
0.0013 (shake flask-LSC, Metcalf et al. 1973, 1975) 
0.12* (shake flask-GC for particles 5µ - or less, measured range 15–45°C, Biggar & Riggs 1974) 
0.014 (generator column-GC/ECD, Weil et al. 1974) 
0.040 (20°C, shake flask-GC, Chiou et al. 1977; Freed et al. 1977) 
0.065 (shake flask-nephelometry, Hollifield 1979) 
0.0079 (Kenaga & Goring 1980) 
0.0017 (30°C, semimicro gas-saturation method, Westcott et al. 1981) 
0.0011, 0.006 (generator column-GC, HPLC-RT correlation, Swann et al. 1983) 
log [SL/(mol/L)] = 0.173 – 1263/(T/K) (liquid, Passivirta et al. 1999) 
0.00012 ± 0.00010 (mean literature value-basic statistics for uncensored original data, Pontolillo & Eganhouse 2001) 
0.258, 0.252 (supercooled liquid: derivation of literature-derived value LDV, final-adjusted value FAV, Shen & 
Wania 2005) 
o,p-DDE 
0.140 (shake flask-GC for particles 5 - or less, Biggar & Riggs 1974) 
0.0013 (Zepp et al. 1978) 
0.10 (selected, Suntio et al. 1988; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
p,p.-DDE 
8.65 . 10–4 (30°C, gas saturation-vapor density-GC, Spencer & Cliath 1972) 
9.87 . 10–4 (GC-RT correlation, Westcott & Bidleman 1981) 
1.73 . 10–4 (30°C, gas saturation-GC, Westcott et al. 1981) 
8.66 . 10–4 (selected, Yoshida et al. 1983) 
2.70 . 10–3, 2.09 . 10–3 (PGC by GC-RT correlation, different stationary phases, Bidleman 1984) 
2.55 . 10–3 (supercooled liquid PL, converted from literature PS with .Sfus Bidleman 1984) 
Cl Cl 
Cl Cl 
© 2006 by Taylor & Francis Group, LLC

3780 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
1.73 . 10–3 (20°C, supercooled liquid value, Bidleman et al. 1986) 
7.50 . 10–5 (10°C, estimated, McLachlin et al. 1990) 
0.00225, 0.00334 (supercooled liquid values, GC-RT correlation, Hinckley et al. 1990) 
2.33 . 10–3, 3.34 . 10–3 (supercooled PL, converted from literature PS with different .Sfus values, Hinckley et al. 
1990) 
2.58 . 10–3, 1.87 . 10–3 (PGC by GC-RT correlation with different reference standards, Hinckley et al. 1990) 
log (PL/Pa) = 12.79 – 4554/(T/K) (supercooled liquid, GC-RT correlation, Hinckley et al. 1990) 
5.13 . 10–4, 1.82 . 10–3 (supercooled liquid values at 10°C, 20°C, Cotham & Bidleman 1992) 
4.36 . 10–3 (supercooled liquid value, quoted, Majewski & Capel 1995) 
2.27 . 10–3, 2.78 . 10–3; 5.45 . 10–4 (supercooled liquid PL: calculated; GC-RT correlation; converted to solid 
PS with fugacity ratio F, Passivirta et al. 1999) 
log (PS/Pa) = 16.29 – 5816/(T/K) (solid, Passivirta et al. 1999) 
0.0033, 0.0034 (supercooled liquid PL: LDV literature derived value, FAV final adjusted value, Shen & Wania 
2005) 
o,p-DDE 
8.21 . 10–4 (30°C, gas saturation-vapor density-GC, Spencer & Cliath 1972) 
8.27 . 10–4 (Callahan et al. 1979, Mabey et al. 1982) 
8.67 . 10–4 (isomer unspecified, estimated, Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 
27.4 (Levins 1981; quoted, Tucker et al. 1983) 
0.78 (estimated-group method per Hine & Mookerjee 1975) 
6.89 (calculated-P/C, Mabey et al. 1982) 
124 (gas stripping-GC, Atlas et al. 1982) 
19.59 (calculated-P/C, Yoshida et al. 1983) 
7.95 (calculated-P/C, Suntio et al. 1988) 
1.25 (10°C, calculated-P/C, McLachlin et al. 1990) 
34.0 (calculated-P/C, Ballschmiter & Wittlinger 1991) 
120, 370 (23°C), 7.95 (20°C) (quoted, Iwata et al. 1993) 
7.95 (20–25°C, calculated-P/C, Majewski & Capel 1995) 
4.214 (p,p.-DDE, wetted wall column-GC, Altschuh et al. 1999) 
log (H/(Pa m3/mol)) = 12.62 – 3291/(T/K) (p,p.-DDE, Passivirta et al. 1999) 
4.2, 4.2 (p,p-DDE, LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
Octanol/Water Partition Coefficient, log KOW: 
5.80 (o,p-DDE, O’Brien 1975) 
4.28 (correlated, Metcalf et al. 1975) 
5.69 (p,p.-DDE, O’Brien 1975) 
5.83 (p,p.-DDE, HPLC-RT correlation, Veith et al. 1979a) 
5.69 (HPLC-RT correlation, Veith et al. 1979b) 
5.77 (Kenaga & Goring 1980) 
5.89 (HPLC-RT correlation, McDuffie 1981) 
5.63 (RP-HPLC-RT correlation, Swann et al. 1983) 
5.89 (estimated-HPLC/MS correlation, Burkhard et al. 1985) 
6.51 (HPLC-RT correlation, Webster et al. 1985) 
6.29 (RP-HPLC correlation, Chin et al. 1986) 
6.09 (RP-HPLC correlation, De Kock & Lord 1987) 
6.956 ± 0.011 (p,p.-DDE, shake flask/slow stirring method, De Bruijn et al. 1989; received highest ranking from 
Pontolillo & Eganhouse 2001) 
6.51 (recommended, Sangster 1993) 
5.78 (RP-HPLC correlation, Sicbaldi & Finizio 1993) 
6.96 (recommended, Hansch et al. 1995) 
5.43 (o,p.-, RP-HPLC correlation, Finizio et al. 1997) 
6.65 (mean literature value-basic statistics for uncensored original data, Pontolillo & Eganhouse 2001) 
6.96, 6.93 (p,p.-DDE, LDV literature-derived value, FAV final-adjusted value, Shen & Wania 2005) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3781 
Octanol/Air Partition coefficient, log KOA at 25°C and reported temperature dependence equations. Additional data 
at other temperatures designated * are compiled at the end of this section: 
8.40 (p,p.-DDE, calculated-KOW/KAW, Wania & Mackay 1996) 
9.45 (p,p.-DDE, calculated, Finizio et al. 1997) 
9.53*, 9.676 (p,p.-DDE, gas saturation-GC/MS, calculated, measured range 5–35°C, Shoeib & Harner 2002) 
log KOA = –7.49 + 5116/(T/K); temp range: 5–35°C (p,p.-DDE, gas saturation-GC, Shoeib & Harner 2002) 
9.69, 9.70 (LDV literature derived value, FAV final adjusted value, Shen & Wania 2005) 
Bioconcentration Factor, log BCF: 
4.44, 4.29 (Gambusia, Physa, Metcalf et al. 1973) 
4.05, 4.56, 4.77, 4.08 (alga, snail, mosquito, fish, Metcalf et al. 1975) 
4.71 (fathead minnows, 32-d exposure, Veith et al. 1979; Veith & Kosian 1983) 
3.80 (calculated-S or KOW, Kenaga & Goring 1980) 
4.71, 4.37 (quoted exptl, calculated-KOW, Mackay 1982) 
5.95 (microorganism-water: calculated-KOW, Mabey et al. 1982) 
3.34–4.00 mean 4.00; 4.26–4.15 mean 4.15 (p,p.-DDE, rainbow trout, 15°C, steady-state BCF on 7- to 96-d 
laboratory study in 2 tanks with different water concn, Oliver & Niimi 1985) 
4.91, 4.08; 7.25 (p,p.-DDE, rainbow trout: kinetic BCF, steady-state BCF, Lake Ontario field BCF, Oliver & 
Niimi 1985) 
3.70–5.32 (p,p.-DDE, benthic macroinvertebrates, Reich et al. 1986) 
3.70–5.32 (o,p.-DDE, benthic macroinvertebrates, Reich et al. 1986) 
4.13 (azalea leaves, Bacci & Gaggi 1987) 
6.01 (p,p-DDE, Connell et al. 1988) 
7.48 (Azalea leaves, Bacci et al. 1990) 
1.025; –0.824; –0.602 (earthworms: quoted; field/lab. estimated; calculated-modeled, Menzie et al. 1992) 
4.95, 6.05 (rainbow trout: wet wt basis, lipid wt basis, p,p.-DDE, Geyer et al. 2000) 
>4.78, >5.76(fathead minnow, 32-d uptake: wet wt basis, lipid wt basis, p,p.-DDE, Geyer et al. 2000) 
Bioaccumulation Factor, log BAF: 
8.35 (rainbow trout, Thomann 1989) 
Sorption Partition Coefficient, log KOC: 
4.48 (calculated-S or KOW, Kenaga & Goring 1980;) 
6.64 (sediment, calculated-KOW, Mabey et al. 1982) 
4.70, 5.17 (quoted, calculated-MCI ., Sabljic 1984) 
6.00, 5.30 (p,p.-DDE, field data of sediment trap material, calculated-KOW, Oliver & Charlton 1984) 
3.70 (soil, estimated, Hornsby et al. 1996) 
4.82 (av. lit. value, Gerstl 1990) 
4.82 (p,p.-DDE, soil, calculated- MCI ., Sabljic et al. 1995) 
4.85 (p,p.-DDE, soil, estimated-general model, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: midday t. = 5 h in hydrocarbon media (Zepp et al. 1976) 
t. = 1.5 d under sunlight in water (Mansour & Feicht 1994). 
Oxidation: 
Hydrolysis: the first-order rate constant k = 1.4 . 10–9 M–1 s–1 and the hydrolytic t. > 120 yr in water at 27°C 
(Wolfe et al. 1977); 
hydrolytic t. = 120 yr at pH 7 and 25°C of 120 yr and a rate constant k = 6.6 . 10–7 h–1 (Callahan et al. 
1979, Mabey et al. 1982). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 170.0 d–1; k2 = 0.021 d–1 (p,p.-DDE, rainbow trout, Oliver & Niimi 1985) 
© 2006 by Taylor & Francis Group, LLC

3782 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
k2 = 0.950 yr–1 (Larus argentatus, Norstrom et al. 1986) 
k1 = 20800 d–1; k2 = 0.020 d–1 (Oligochaetes, Connell et al. 1988) 
k2 = 0.0004 h–1 (azalea leaves, Paterson et al. 1991) 
k2 = 0.0030 h–1 (midge C. riparius, water only system, Lydy et al. 1992) 
k2 = 0.0046 h–1 (midge C. riparius, screened, Lydy et al. 1992) 
k2 = 0.0080 h–1 (midge C. riparius, 3% organic carbon, Lydy et al. 1992) 
k2 = 0.0046 h–1 (midge C. riparius, 15% organic carbon, Lydy et al. 1992) 
Half-Lives in the Environment: 
Air: atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: midday t. = 5 h in hydrocarbon media (Zepp et al. 1976) 
hydrolytic t. > 120 yr in water at 27°C (Wolfe et al. 1977); 
estimated t. = 690 d in surface waters in case of first order reduction process, and estimated t. > 300 d in 
lakes in the Netherlands (Zoeteman et al. 1980); 
photolysis t. = 1.5 d under sunlight in water (Mansour & Feicht 1994). 
Ground water: 
Sediment: 
Soil: field t. = 1000 d (estimated, Hornsby et al. 1996); 
t. > 20 yr, very persistent (Geyer et al. 2000) 
t. = 40.9 and 17.2 yr for control and sludge-amended Luddington soils, respectively (Meijer et al. 2001). 
Biota: elimination t. = 340 d (p,p.-DDE, rainbow trout, Oliver & Niimi 1985); 
t. = 264 d in herring gulls compared to literature average t. = 300 d for birds (Norstrom et al. 1986); 
elimination t. = 2230 h (Azalea leaves, Bacci & Gaggi 1987); 
t. = 231 h in the midge (Chironomus riparius) under varying sediment conditions (water only system with 
no sediment), t. = 150 h (midge screened from the sediment), t. = 87 h (midge screened from 3% organic 
carbon sediment), t. = 99 h (midge screened from 3% organic carbon sediment) (Lydy et al. 1992). 
TABLE 18.1.1.22.1 
Reported aqueous solubilities of DDE at various temperatures 
p,p’-DDE o,p’-DDE 
Biggar & Riggs 1974 Biggar & Riggs 1974 
shake flask-GC shake flask-GC 
t/°C S/g·m–3 S/g·m–3 S/g·m–3 t/°C S/g·m–3 S/g·m–3 S/g·m–3 
particle size 0.01µ 0.05µ 5.0µ particle size 0.01µ 0.05µ 5.0µ 
15 0.055 15 
25 0.010 0.040 0.120 25 0.015 0.040 0.140 
35 0.235 35 
45 0.450 45 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3783 
FIGURE 18.1.1.22.1A Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for p,p.-DDE. 
FIGURE 18.1.1.22.1B Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for o,p.-DDE. 
p,p' -DDE: solubility vs. 1/T 
-24.0 
-23.0 
-22.0 
-21.0 
-20.0 
-19.0 
-18.0 
-17.0 
-16.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
x nl 
Biggar & Riggs 1974 (0.01 µ particle size) 
Biggar & Riggs 1974 (0.05 µ particle size) 
Biggar & Riggs 1974 (5.0 µ particle size) 
experimental data 
o,p' -DDE: solubility vs. 1/T 
-24.0 
-23.0 
-22.0 
-21.0 
-20.0 
-19.0 
-18.0 
-17.0 
-16.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
x nl 
Biggar & Riggs 1974 (0.01 µ particle size) 
Biggar & Riggs 1974 (0.05 µ particle size) 
Biggar & Riggs 1974 (5.0 µ particle size) 
© 2006 by Taylor & Francis Group, LLC

3784 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 18.1.1.22.2 
Reported octanol-air partition coefficient of p,p’-DDE at various 
temperatures 
Shoeib & Harner 2002 
generator column-GC/MS 
t/°C log KOA 
5 10.905 
15 10.361 
20 9.906 
25 9.530 
35 9.196 
log KOA = A + B/(T/K) 
A –7.492 
B 5116 
enthalpy of phase change 
.HOA/(kJ mol–1) = 98.0 
FIGURE 18.1.1.22.2 Logarithm of KOA versus reciprocal temperature for p,p .-DDE. 
p,p' -DDE: KOA vs. 1/T 
8.5 
9.0 
9.5 
10.0 
10.5 
11.0 
11.5
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
AO 
Shoeib & Harner 2000 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3785 
18.1.1.23 DDT 
Common Name: DDT 
Synonym: Agritan, Anofex, Arkotine, Azotox, Bosan supra, Bovidermol, Cesarex, chlorophenoethane, Chlorophenothanum, 
Chlorophenotoxum, Citox, Clofenotan, Dedelo, Deoval, Devol, Detox, Detoxan, Dibovan, Dichophane, dichlorodiphenyltrichloroethane, 
Didigam, Didimac, Dodat, Dykol, ENT 1506, Estonate, Genitox, Gesafid, Gesapon, 
Gesarex, Gesarol, Guesarol, Gyron, Havero-extra, Ivoran, Ixodex, Kopsol, Mutoxin, Neocid, Parachlorocidum, 
PEBI, Pentachlorin, Pentech, p,p.-DDT, 4,4.-DDT, Rukseam, Santobane, Zeidane, Zerdane 
Chemical Name: 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)-ethane; 1,1.-(2,2,2-trichloroethylidene)-bis(4-chlorobenzene) 
Uses: persistent nonsystemic insecticide with contact and stomach action to control mosquitoes for the eradication of 
malaria but is now prohibited and displaced with less persistent insecticides on crop application. 
CAS Registry No: 50-29-3 (p,p.-DDT, DDT), 789-02-6 (o,p.-DDT) 
Molecular Formula: C14H9Cl5 
Molecular Weight: 354.486 
Melting Point (°C): 
108.5 (Lide 2003) 
Boiling Point (°C): 
260 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.55 (Hadaway et al. 1970; Kenaga 1972) 
Molar Volume (cm3/mol): 
250 (calculated-density, Chiou 1985) 
333.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
27.196 (o,p.-DDT, DSC method, Plato & Glasgow 1969) 
26.36 (p,p.-DDT, DSC method, Plato & Glasgow 1969) 
26.284 (Ruelle & Kesselring 1997) 
Entropy of Fusion, .Sfus (J/mol K): 
69.036 (Plato & Glasgow 1969) 
70.29 (Hinckley et al. 1990) 
72.8 (p,p.-DDT, Passivirta et al. 1999) 
Fugacity Ratio at 25°C, F: 
0.147 (assuming .Sfus = 56 J/mol K., Mackay et al. 1986) 
0.130 (20°C, assuming .Sfus = 56 J/mol K, Suntio et al. 1988) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional 
data at other temperatures designated * are compiled at the end of this section): 
0.0002–0.001(15°C, shake flask-bioassay, Richards & Cutkomp 1946) 
0.0374 (shake flask-radiometric method, measured range 2–37.5°C, Babers 1955) 
. 0.0012 (shake flask-radiometric method, Bowman et al. 1960) 
0.035 (shake flask-colorimetric, Lipke & Kearns 1960) 
0.0012 (Stephen & Stephen 1963) 
0.0016 (99% pure DDT isomers plus DDE at rm. temp., shake flask-GC, Robeck et al. 1965) 
0.0034 (Biggar et al. 1966) 
0.0017 (ultracentrifugation-GC, Biggar et al. 1967) 
0.0012–0.0374 (Gunther et al. 1968) 
0.0017*, 0.006*, 0.025* (shake flask-GC, p,p.-DDT, particle size: 0.01, 0.05, 5.0µ, Biggar & Riggs 1974) 
Cl Cl 
Cl Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

3786 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.004, 0.012, 0.085* (shake flask-GC, o,p.-DDT, particle size: 0.01, 0.05, 5.0µ size or less, Biggar & Riggs 1974) 
0.0055 (generator column-GC/ECD, Weil et al. 1974) 
0.0017 (Martin & Worthing 1977) 
0.0010 (shake flask-GC, Paris et al. 1977) 
0.004 (shake flask-nephelometry, Hollifield 1979) 
0.0012 (Hartley & Graham-Bryce 1980) 
0.040 (shake flask-HPLC, Ellgehausen et al. 1981) 
0.0645 (shake flask-GC, Chiou et al. 1982) 
0.0023 (generator column-GC, Swann et al. 1983) 
0.020 (RP-HPLC-RT correlation, Swann et al. 1983) 
0.0031–0.0034 (Verschueren 1983) 
0.0045 (shake flask-GC or LSC, Gerstl & Mingelgrin 1984) 
0.030 (RP-HPLC-RT correlation, Chin et al. 1986) 
0.0054 (24°C, shake flask-GC/ECD, Chiou et al. 1986) 
0.0055 (shake flask-GC, Chiou et al. 1991) 
0.001–0.0055 (Montgomery 1993) 
0.0055 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
log [SL/(mol/L)] = –0.195 – 1454/(T/K) (liquid, Passivirta et al. 1999) 
0.00023 ± 0.00010 (mean literature value-basic statistics for uncensored original data, Pontolillo & Eganhouse 2001) 
0.0956, 0.149 (p,p.-DDT, supercooled liquid SL: derivation of literature-derived value LDV, final-adjusted value 
FAV, Shen & Wania 2005) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
2.0 . 10–5* (p,p.-DDT, 20°C, effusion manometer, measured range 0–100°C, Balson 1947) 
log (P/mmHg) = 14.191 – 6160/(T/K), temp range 66–100°C (Antoine eq., effusion, Balson 1947) 
log (P/mmHg) = 13.778 – 6010/(T/K); temp range 50–90°C (Antoine eq., effusion, Dickinson 1947) 
0.001973*, 0.002027* (p,p'-DDT, 50.1°C, gas saturation-spec., measured range 50.1–90.2°C, Dickinson 1956) 
3.30 . 10–5 (interpolated exptl. data of Balson 1947, Spencer & Cliath 1970; Ballschmiter & Wittlinger 1991) 
3.33 . 10–5 (20°C, partition coefficient, Atkins & Eggleton 1971) 
2.53 . 10–5 (20°C, Melnikov 1971; Spencer 1973, 1982; Callahan et al. 1979, Mabey et al. 1982) 
2.03 . 10–5* (20°C, p,p.-DDT, 30°C, gas saturation-GC, measured range 20–40°C, Spencer & Cliath 1972) 
log (P/mmHg) = 14.24 – 6176/(T/K); temp range 20–40°C (p,p.-DDT, 30°C, gas saturation-GC, Antoine eq., 
Spencer & Cliath 1972; Spencer 1975) 
7.37 . 10–4 (o,p.-DDT, 30°C, gas saturation-GC, Spencer & Cliath 1972; Spencer 1975) 
2.50 . 10–5 (20°C, Hartley & Graham-Bryce 1980; Worthing & Hance 1991) 
5.73 . 10–5* (p, p.-DDT, gas saturation-HPLC/liquid scintillation spectrometry, measured range 20–80°C, Rothman 1980) 
2.00 . 10–5 (20–25°C, Weber et al. 1980) 
1.50 . 10–4 (20°C, GC, Seiber et al. 1981) 
6.0 . 10–4, 1.12 . 10–3 (o,p.-DDT 25, 30°C, capillary GC-RT correlation, Westcott & Bidleman 1981) 
1.17 . 10–3 (o,p.-DDT, 30°C, semi-micro gas-saturation-GC, Westcott et al. 1981) 
4.30 . 10–5 (estimated-relative volatilization rate, Dobbs & Cull 1982) 
2.67 . 10–3, 2.67 . 10–5 (20°C, calculated values, Grain 1982) 
2.01 . 10–5 – 2.8 . 10–5 (gas saturation, Jaber et al. 1982) 
1.96 . 10–5 (20°C, evaporation rate at 20–60°C, Guckel et al. 1982) 
4.31 . 10–5 (20°C, relative loss rate, Dobbs & Cull 1982) 
1.61 . 10–3, 1.28 . 10–3 (o,p.-DDT, PGC by GC-RT correlation, different stationary phases, Bidleman 1984) 
1.33 . 10–3 (o,p.-DDT, supercooled liquid PL, converted from literature PS with .Sfus Bidleman 1984) 
8.30 . 10–4, 4.70 . 10–4 (p,p.-DDT, PGC by GC-RT correlation, different stationary phases, Bidleman 1984) 
3.16 . 10–4 (p,p.-DDT, supercooled liquid PL, converted from literature PS with .Sfus Bidleman 1984) 
2.48 . 10–5 (20°C, GC-RT correlation, Kim 1985) 
1.73 . 10–4 (20°C, supercooled liquid value, Bidleman et al. 1986) 
2.50 . 10–5 (Hartley & Kidd 1987; Tomlin 1994) 
1.33 . 10–3, 1.83 . 10–3 (o,p.-DDT, supercooled liquid PL, converted from literature PS with different .Sfus values, 
Hinckley et al. 1990) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3787 
1.614 . 10–3, 1.035 . 10–3 (o,p.-DDT, PGC by GC-RT correlation with different reference standards, Hinckley et 
al. 1990) 
log (PL/Pa) = 12.77 – 4626/(T/K) (o,p.-DDT, supercooled liquid, GC-RT correlation, Hinckley et al. 1990) 
3.16 . 10–4, 5.12 . 10–4 (p,p.-DDT, supercooled liquid PL, converted from literature PS with different .Sfus values, 
Hinckley et al. 1990) 
8.30 . 10–4 (p,p.-DDT, PGC by GC-RT correlation with eicosane as reference standard, Hinckley et al. 1990) 
log (PL/Pa) = 13.02 – 4865/(T/K) (p,p.-DDT, GC-RT correlation, supercooled liquid, Hinckley et al. 1990) 
6.92 . 10–5, 2.69 . 10–4, 9.33 . 10–4 (supercooled liquid values at 10°C, 20°C, 30°C, calculated from Hinckley 
et al. 1990; Cotham & Bidleman 1992) 
2.27 . 10–8 (20°C, Montgomery 1993) 
2.53 . 10–5 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
1.715 . 10–5* (p, p.-DDT 20°C, gas saturation-GC/ECD, measured range 0–40°C, Wania et al. 1994) 
log (P/Pa) = 16.62 – 6276/(T/K), temp range 0–40°C (Antoine eq., gas saturation, Wania et al. 1994) 
1.05 . 10–4 (supercooled liquid PL, GC-RT correlation; Donovan 1996) 
5.01 . 10–4 (supercooled liquid PL, Wania & Mackay 1996) 
4.39 . 10–4, 4.27 . 10–4; 3.78 . 10–5 (supercooled liquid PL, calculated; GC-RT correlation; solid PS converted 
from PL with fugacity ratio F, Passivirta et al. 1999) 
log (PS/Pa) = 16.62 – 6276/(T/K) (solid, quoted from Wania et al. 1994, Passivirta et al. 1999) 
log (PL/Pa) = 12.82 – 4823/(T/K) (supercooled liquid, Passivirta et al. 1999) 
log (PL/Pa) = (12.38 ± 0.48) – (4665 ± 166)/(T/K); .Sfus = 70.9 J mol–1 K–1 (p,p.-DDT, supercooled liquid, 
summary of literature exptl. data, Bidleman et al. 2003) 
0.00056, 0.00048 (p,p.-DDT, supercooled liquid PL: LDV literature derived value, FAV final adjusted value, 
Shen & Wania 2005) 
log (PL/Pa) = –4666/(T/K) + 12.40 (supercooled liquid, linear regression of literature data, Shen & Wania 2005) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 
1.30 (measured, Atkins & Eggleton 1971) 
3.94 (calculated-P/C, Mackay & Leinonen 1975) 
6.02 (20–25°C, calculated, Thibodeaux 1979) 
7.48 (20°C, volatilization rate, Burkhard & Guth 1981) 
7.29 (calculated-P/C, Levins 1981) 
5.30 (calculated-P/C, Mackay & Shiu 1981) 
1.60 (calculated-P/C, Mabey et al. 1982) 
3.85 (calculated-P/C, Thomas 1982) 
0.466 (estimated-group method per Hine & Mookerjee 1975, Tucker et al. 1983) 
4.96 (calculated-P/C, Jury et al. 1984, 1987a; Jury & Ghodrati 1989) 
1.63 (calculated-P/C, Caron et al. 1984) 
1.31 (calculated-P/C, Mackay et al. 1986) 
4.96, 8.18 (calculated-P/C, Taylor & Glotfelty 1988) 
2.36 (20°C, calculated-P/C, Suntio et al. 1988) 
1.28, 1.33 (22–24°C, fog chamber-concn. ratio-GC/ECD, Fendinger et al. 1989) 
0.862 (23°C, wetted-wall column-GC/ECD, Fendinger et al. 1989, 1990) 
0.16 (0°C, selected, Cotham & Bidleman 1991) 
2.90 (calculated-P/C, Calamari et al. 1991) 
6.0 calculated-P/C, Ballschmiter & Wittlinger 1991) 
1.55 (calculated-bond contribution method, Meylan & Howard 1991) 
1.31, 0.86 (25°C, 24°C, Iwata et al. 1993) 
1.31 (23°C, quoted, Montgomery 1993) 
0.843 (p,p.-DDT, wetted wall column-GC, Altschuh et al. 1999) 
log (H/(Pa m3/mol)) = 13.02 – 3369/(T/K) (Passivirta et al. 1999) 
1.1, 1.1 (p,p.-DDT, LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
Octanol/Water Partition Coefficient, log KOW: 
3.98 (shake flask, Kapoor et al. 1973; Lu & Metcalf 1975) 
6.19 (calculated, O’Brien 1975) 
© 2006 by Taylor & Francis Group, LLC

3788 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
6.36 (shake flask-GC, Chiou et al. 1982) 
4.89 (Wolfe et al. 1977; Callahan et al. 1979) 
5.98 (Kenaga & Goring 1978, 1980; Kenaga 1980b) 
6.19 (shake flask-GC, Freed et al. 1979) 
3.98–6.19 (Hansch & Leo 1979) 
6.36 (shake flask, Karickhoff et al. 1979) 
5.75 (HPLC-RT correlation, Veith et al. 1979b, 1980; Veith & Kosian 1983) 
6.69 (Belluck & Felsot 1981) 
5.94 (shake flask-GC/LC, Ellgehausen et al. 1981) 
5.55 (HPLC-k. correlation, McDuffie 1981) 
6.38 (HPLC-RT correlation, Hammers et al. 1982) 
5.10 ± 0.1 (radioactive analysis method, Platford et al. 1982) 
5.60 (shake flask-GC, Platford 1982, 1983) 
5.90 (average of shake flask values, Eadsforth & Moser 1983) 
6.12 (average of HPLC-RT correlation, Eadsforth & Moser 1983) 
6.20 (Elgar 1983) 
5.44 (shake flask-GC or LSC, Gerstl & Mingelgrin 1984) 
6.40 (HPLC-RV correlation, Garst 1984) 
5.44 (estimated-HPLC/MS; Burkhard et al. 1985) 
6.22 (HPLC-RT correlation, Brooke 1986) 
6.06 (RP-HPLC-RT correlation, Chin et al. 1986) 
6.21 (HPLC-RT correlation, Eadsforth 1986) 
6.19 (RP-HPLC correlation, De Kock & Lord 1987) 
6.51 (HPLC-RT correlation, Liu & Leng 1988) 
6.914 ± 0.030 (p,p.-, shake flask/slow-stirring method, De Bruijn et al. 1989; received highest ranking from 
Pontolillo & Eganhouse 2001) 
6.307 ± 0.045; 6.914 ± 0.030 (shake flask-UV/GC/HPLC, BRE value, RITOX value, inter-laboratory studies, 
Brooke et al. 1990; received highest ranking from Pontolillo & Eganhouse 2001) 
4.89–6.91 (Montgomery 1993) 
5.50 (RP-HPLC correlation, Sicbaldi & Finizio 1993) 
6.36 (recommended, Sangster 1993) 
8.3064 (o,p.-DDT, calculated-UNIFAC group-interaction, Chen et al. 1993) 
6.91 (recommended, Hansch et al. 1995) 
5.65 (o,p.-DDT, RP-HPLC-RT correlation, Finizio et al. 1997) 
5.50 (p,p.-DDT, RP-HPLC-RT correlation, Finizio et al. 1997) 
6.50 (p,p.-DDT, quoted lit., calculated, Passivirta et al. 1999) 
6.65 (mean literature value-basic statistics for uncensored original data, Pontolillo & Eganhouse 2001) 
6.28, 6.39 (p,p.-DDT, LDV literature-derived value, FAV final-adjusted value, Xiao et al. 2004) 
Octanol/Air Partition Coefficient, log KOA at 25°C and reported temperature dependence equations. Additional data 
at other temperatures designated * are compiled at the end of this section: 
10.09, 9.22 (p,p.-DDT, generator column-GC/ECD, calculated-KOW/KAW, Harner & Mackay 1995) 
8.70 (calculated-KOW/KAW, Wania & Mackay 1996) 
9.93 (p,p.-DDT, calculated, Finizio et al. 1997) 
9.66* (o,p.-DDT, gas saturation-GC/MS, measured range 5–35°C, Shoeib & Harner 2002) 
log KOA = –11.291 + 6266/(T/K), temp range 5–35°C (o,p.-DDT, gas saturation-GC, Shoeib & Harner 2002) 
9.879*, 9.816 (p,p.-DDT, gas saturation-GC/MS, calculated, measured range 5–45°C, Shoeib & Harner 2002) 
log KOA = –5.63 + 4603/(T/K), temp range 5–35°C (p,p.-DDT, gas saturation-GC, Shoeib & Harner 2002) 
9.81, 9.73 (p,p.-DDT, LDV literature derived value, FAV final adjusted value, Shen & Wania 2005) 
Bioconcentration Factor, log BCF: 
5.31–6.23 (earthworms, Wheatley & Hardman 1968) 
2.42 (Cylindrotheca closterium, Keil & Priester 1969) 
4.40; 4.90; 4.40 (Syracosphaera carterae; Amphidirium cartaria; Tholassiosira fluviatilus, Cox 1970) 
4.00 (pinfish, Hansen & Wilson 1970) 
4.58 (Atlantic croaker, Hansen & Wilson 1970) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3789 
3.94 (soft clam, Butler 1971) 
4.20–4.36 (Daphnia magna over concn. gradient 8 µg/L to 1.1 mg/L, Crosby & Tucker 1971) 
5.00 (Daphnia magna at water level 80 ng/L, Johnson et al. 1971) 
4.27 (Daphnia magna, wet wt. basis, Crosby & Tucker 1971) 
4.45 (Daphnia magna, wet wt. basis, Johnson et al. 1971;) 
4.08–4.60 (fishes, Menzie 1972) 
4.93, 4.54 (Gambusia, Physa, Metcalf et al. 1973) 
4.68 (oyster, Parrish 1974) 
4.79 (Ankistrodesmus, Neudorf & Khan 1975) 
3.52–3.63, 3.11–3.43 (bacteria, algae, Wolfe et al. 1977) 
3.14 (trout muscle, Branson 1978) 
4.47 (fathead minnow, 32-d exposure, Veith et al. 1979b, 1980) 
4.72 (bluegill sunfish-kinetic value, Bishop & Maki 1980) 
4.79, 4.93 (fish: flowing water, static water; Kenaga 1980a,b; Kenaga & Goring 1980) 
4.35; 4.43 (calculated-S, calculated-KOC, Kenaga 1980a) 
–0.045 (average beef fat diet, Kenaga 1980b) 
4.15 (pulex, Kenaga & Goring 1980) 
4.11 (algae, estimated, Baughman & Paris 1981) 
2.95–3.03; 3.02–3.13 (Rhodotorulus solani, Alfafa tissue, Baughman & Paris 1981) 
2.10 (Triaenodes tardus, Belluck & Felsot 1981) 
5.38 (calculated-KOW, Briggs 1981) 
5.11 (selected, Schnoor & McAvoy 1981, Schnoor 1992) 
4.36, 4.15, 4.43 (estimated-S, calculated-KOW, calculated-KOC, Bysshe 1982) 
4.47, 4.43 (fish: quoted, correlated, Mackay 1982) 
4.37 (mussels, quoted average, Geyer et al. 1982) 
6.90 (microorganism-water, Mabey et al. 1982) 
2.30, 4.08 (trout, pinfish, Verschueren 1983) 
4.71 (15°C, rainbow trout, Davies & Dobbs 1984) 
5.00 (25°C, fathead minnow-steady state, Davies & Dobbs 1984) 
4.15 (activated sludge, Freitag et al. 1984) 
3.97, 3.46, 4.15 (algae, fish, activated sludge, Klein et al. 1984) 
3.97, 3.28, 4.15 (algae, golden ide, activated sludge, Freitag et al. 1985) 
4.97 (Oncorhynchus mykiss, Muir et al. 1985) 
3.91, 3.08 (rainbow trout: kinetic, steady-state, Oliver & Niimi 1985) 
4.47, 4.56 (oyster, calculated-KOW & models, Zaroogian et al. 1985) 
3.24–5.00 (p,p.-DDT, benthic macroinvertebrates, Reich et al. 1986) 
3.44–5.71 (o,p.-DDT, benthic macroinvertebrates, Reich et al. 1986) 
4.08 (Selenastrum capricornutum, Mailhot 1987) 
6.50 (zooplankton, chum salmon; Kawano et al. 1988) 
–1.55 (beef biotransfer factor log Bb, correlated-KOW from Radeleff et al. 1952 & Kenaga 1980, Travis & 
Arms 1988) 
–2.62 (milk biotransfer factor log Bm, correlated-KOW from Fries et al. 1969; Saha 1969 & Whiting et al. 
1973, Travis & Arms 1988) 
–1.80 (vegetation, correlated-KOW from Beall & Nash 1972 & Voerman & Besemer 1975, Travis & Arms 
1988) 
5.28, 7.64 (dry leaf, wet leaf, Bacci et al. 1990) 
4.47, 4.30 (quoted, calculated, Banerjee & Baughman 1991) 
4.72 (selected, Chessells et al. 1992) 
–0.155, –1.0 (earthworms, quoted, field/lab., Menzie et al. 1992) 
–1.0, –0.602 (earthworms, field leaf litter, calculated-model, Menzie et al. 1992) 
4.81, 4.86, 4.95, 4.99 (Oncorhynchus mykiss, Muir et al. 1994) 
4.05, 2.85, 3.70 (algae Selenastrum capricornutum, water flea Daphnia magna, catfish Ictalurus melas, wet wt. 
basis, Wang et al. 1996) 
3.97, 4.81 (algae Chlorella: wet wt basis, dry wt basis, p,p.-DDT, Geyer et al. 2000) 
© 2006 by Taylor & Francis Group, LLC

3790 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
4.45, 6.45 (Daphnia: wet wt basis, lipid wt basis, p,p.-DDT, Geyer et al. 2000) 
5.14, 7.06 (oyster, flow-through 6 months: wet wt basis, lipid wt basis, p,p.-DDT, Geyer et al. 2000) 
4.97, 6.67 (rainbow trout: wet wt basis, lipid wt basis, p,p.-DDT, Geyer et al. 2000) 
>4.57, >5.55 (fathead minnow, 10.5% lipid, 28-d: wet wt basis, lipid wt basis, o,p.-DDT, Geyer et al. 2000) 
Bioaccumulation Factor BAF: 
1.27 (bioaccumulation factor log BAF, adipose tissue in male Albino rats, Berdanier & de Dennis 1977) 
4.20; 3.539; 3.35 (log BF-bioaccumulation factor of algae; catfish; daphnids, Ellgehausen et al. 1980) 
5.10 (fish, reported as log BAFw, LeBlanc 1995) 
Sorption Partition Coefficient, log KOC: 
5.38 (soil, Hamaker & Thompson 1972; Kenaga 1980; Kenaga & Goring 1980; Karickhoff 1981) 
3.93 (sediment, Wolfe et al. 1977) 
5.38 (calculated-KOW, Kenaga 1980) 
5.16 (soil, calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
5.38 (Kenaga & Goring 1980; quoted, Hodson & Williams 1988) 
5.18 (average 3 soils, HPLC-RT correlation, McCall et al. 1980) 
5.39 (average soils/sediments, Rao & Davidson 1980) 
5.20, 5.18, 5.18; 5.18 (commerce soil, Tracy soil, Catlin soil; average soil, McCall et al. 1980) 
5.00 (selected, sediment/water, Schnoor & McAvoy 1981; Schnoor 1992) 
5.62; 6.81, 5.80 (estimated-S; estimated-S and mp, calculated-KOW, Karickhoff 1981) 
6.59 (calculated-KOW, Mabey et al. 1982) 
5.38 (soil, Thomas 1982; quoted, Nash 1988) 
5.20 (Pavlou & Weston 1983, 1984) 
5.18, 4.64 (soil slurry method, HPLC-RT correlation, Swann et al. 1983) 
5.38 (soil, Jury et al. 1984; quoted, Mackay & Stiver 1991) 
5.38, 5.33 (soil: quoted, calculated-MCI ., Sabljic 1984) 
5.61 (Caron et al. 1984) 
5.39 (soil, estimated, Karickhoff 1985) 
6.00 (best estimate at low sediment concn., Karickhoff 1985) 
5.11–5.45 (Aldrich humic acid, Landrum et al. 1984) 
4.28–4.66 (natural water, Landrum et al. 1984) 
5.61 ± 0.11 (Chiou et al. 1987; quoted, Chin et al. 1991) 
6.03 (predicted-KOW, Chiou et al. 1987) 
5.39 (selected, Elzerman & Coates 1987) 
3.94 (calculated-MCI ., Gerstl & Helling 1987) 
5.38 (soil, screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
5.38, 5.34 (quoted, calculated- MCI ., Bahnick & Doucette 1988) 
5.63 (RP-HPLC-k. correlation, cyanopropyl column, Hodson & Williams 1988) 
4.09 (calculated-KOW as per Kenaga & Goring 1980, Chapman 1989) 
5.15–6.26 (Montgomery 1993) 
6.59 (estimated-QSAR and SPARC, Kollig 1993) 
6.30 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
5.31 (soil, calculated-MCI ., Sabljic et al. 1995) 
5.63; 5.34 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
5.17 (p,p.-DDT, soil, estimated-general model, Gramatica et al. 2000) 
6.08 (p,p.-DDT, average values for sediments OC . 0.5%, Delle Site 2001) 
5.63, 5.54 (p,p.-DDT, soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
5.20 (soil humic acid, shake flask-HPLC/UV, Cho et al. 2002) 
Sorption Partition Coefficient, log KOM: 
5.14 (exptl., Briggs 1981) 
4.24 (calculated-Parachor, Briggs 1981) 
4.88 – 5.41 (Mingelgrin & Gerstl 1983) 
5.69, 5.59, 5.69 (average soil, sediment, soil and sediment, Gerstl & Mingelgrin 1984) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3791 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 3.7 d for water depth of 1 m (Mackay & Wolkoff 1973); 
t. = 73.9 h (Mackay & Leinonen 1975, Branson 1978); 
initial rate constant k = 6.9 . 10–4 h–1 and predicted rate constant k = 1.2 . 10–3 h–1 from soil with t. = 578 h; 
t.(calc) = 45 h from water (Thomas 1982); 
half-flux values times, 0.3 d from field study, 0.3–12 d from microagroecosystem, >80–1000 d from 
laboratory data (Nash 1983). 
Photolysis: midsummer direct photolysis k = 8.5 . 10–8 s–1 with t. > 227000 h in water, t. = 280000 h in 
hydrocarbon media; midday t. > 460000 h (52.5 yr) average over all seasons in water at latitude 40°N, 
daily average direct photolysis t. > 150 yr (12-h days) in water in the Central U.S. (Zepp et al. 1976) 
using fungus and either 254 or 300 nm UV light, more than 97% initial added amounts were metabolized 
in 3 wk of incubation (Katayama & Matsumura 1991). 
Oxidation: t. = 22 yr, estimated first-order half-life in aquatic environment (Callahan et al. 1979) 
k < 3600 M–1 h–1 for singlet oxygen, k = 3600 M–1 h–1 for RO2 (Mabey et al., 1982) 
photooxidation t. = 17.7–177 h in air, based on estimated rate constant for the reaction with hydroxyl 
radicals in air (Howard et al. 1991). 
photooxidation t. = 168–8400 h in water, based on measured rate of photooxidation in two natural waters 
under sunlight for 7 d and 56 d (Howard et al. 1991) 
Hydrolysis: k(alkaline) = 9.90 . 10–3 M–1 s–1 at 27°C corresponds to t. = 81 d at pH 9, k(neutral) = 1.9 . 10–9 
s–1 corresponds to t. = 12 yr in 5% acetonitrile-water at pH 5 and 27°C (Wolfe et al. 1977b) 
k(alkaline) = 9.90 . 10–3 M–1 s–1 at pH 9, k(neutral) = 1.9 . 10–9 s–1 for 1 . 10–8 M in water at 27°C (Harris 
1982) 
k = 1.57 . 10–4 h–1 at pH 7 (Neely & Blau 1985) 
k = 6.0 . 10–2 yr–1 at pH 7.0 and 25°C (Kollig 1993). 
Biodegradation: t.(aq. aerobic) = 2–15.6 yr based on observed rates of biodegradation in aerobic soils under 
field conditions (Lichtenstein & Schultz 1959; Stewart & Chisholm 1971; quoted, Howard et al. 1991) 
t.(aq. anaerobic) = 16–100 d, based on anaerobic flooded soil die-away data for two flooded soils (Castro 
& Yoshida 1971; quoted, Howard et al. 1991) 
t. = 3837 d (Hamaker 1972; quoted, Jury et al. 1983, 1984, 1987a, b, Jury & Ghodrati 1989) 
k = 0.00013 d–1 from soil incubation studies, and k = 0.0035 d–1 from flooded soil incubation studies in 
anaerobic system both by die-away test (Rao & Davidson 1980; quoted, Scow 1982) 
t.(aq. aerobic) = 2–15.6 yr, based on aerobic degradation in soil; t.(aq. anaerobic) = 16–100 d, based on 
anaerobic flooded soil die-away study data (Howard et al. 1991) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k2 = 0.002, 0.0007 h–1 (algae, daphnids, Ellgehausen et al. 1980) 
k2 = 0.052 d–1 (catfish, Ellgehausen et al. 1980) 
k1 = 170 d–1; k2 = 0.0021 d–1 (rainbow trout, Oliver & Niimi 1985) 
k1 = 818 d–1; k2 = 0.009 d–1 (rainbow trout, Muir et al. 1985) 
k2 = 8.60 yr–1; k2 = 4.50 yr–1 (P. hoyi, Evans et al. 1991) 
k1 = 20609 d–1; k2 = 1.845 d–1 (algae Selenastrum capricornutum, Wang et al. 1996) 
k1 = 135.6 d–1; k2 = 0.191 d–1 (water flea Daphnia magna, Wang et al. 1996) 
k1 = 9.761 d–1; k2 = 0.002 d–1 (catfish Ictalurus melas, Wang et al. 1996) 
Half-Lives in the Environment: 
Air: t. = 17.7–177 h, based on estimated rate constant for the reaction with hydroxyl radical in air (Howard et 
al. 1991; Mortimer & Connell 1995); 
half-lives for .DDT in the Great Lake’s atmosphere. t. = 17.0 ± 6.8 yr at Eagle Harbor, t. = 8.2 ± 1.4 yr 
at Sleeping Bear Dunes and t. = 7.1 ± 1.0 yr at Sturgeon Point (Buehler et al. 2004). 
Surface water: dehydrochlorination rate constant k = 1.75 . 10–2 h–1 for 1 ppm p,p.-DDT and k = 1.65 . 10–2 h–1 
for 1 ppm o,p.-DDT both at 21 ± 2°C and pH 12.8, in 0.1 N NaOH solution (Choi & Chen 1976); 
degradation t. = 8 yr in water at 27°C (Wolfe et al. 1977); 
midsummer direct photolysis t. > 227000 h in water, t. = 280000 h in hydrocarbon media; midday 
t. > 460000 h (52.5 yr) average over all seasons in water at latitude 40°N, daily average direct photolysis 
t. > 150 yr (12-h days) in water in the Central U.S. (Zepp et al. 1976) 
© 2006 by Taylor & Francis Group, LLC

3792 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
t. = 73.9 h for a pond 1 m deep (Branson 1978); 
t. = 168–8400 h, based on measured rate of photooxidation in two natural waters under sunlight for 7 d 
and 56 d (Callahan et al. 1979; quoted, Howard et al. 1991; Mortimer & Connell 1995); 
estimated t. = 110 and 56 d for o,p- and p,p-DDT, respectively, in surface waters in case of first order 
reduction process may be assumed in the Netherlands (Zoeteman et al. 1980) 
degradation t. ~ 10 yr average from the loss rates in Lake Michigan (Bierman & Swain 1982). 
Ground water: t. = 16 d to 31.3 yr, based on anaerobic flooded soil die-away data for two flooded soils (Castro 
& Yoshida 1971; quoted, Howard et al. 1991) and observed rates of biodegradation in aerobic soils under 
field conditions (Lichtenstein & Schultz 1959; Stewart & Chisholm 1971; quoted, Howard et al. 1991). 
Sediment: t. = 3 to 5 yr (Bierman & Swain 1982); t. = 21 yr (conversion of p,p.-DDT to p,p.-DDE in sediment, 
Oliver et al. 1989); t. = 78800 h (quoted mean value from Howard et al. 1991, Mortimer & Connell 1995). 
Soil: t. = 2–15.6 yr, based on observed rates of biodegradation in aerobic soils under field conditions (Lichtenstein 
& Schultz 1959; Stewart & Chisholm 1971; quoted, Howard et al. 1991); 
average t. ~ 12 yr in 3 different soils for ~50 ppm in soil (Nash & Woolson 1967); 
estimated persistence of 4 yr in soil (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury 
et al. 1987a); 
field t. = 173 d when incorporated into soil (Willis et al. 1971; quoted, Nash 1983); 
microagroecosystem t. > 50 d with open cotton canopy (quoted, Nash 1983); 
persistence of more than 36 months (Wauchope 1978); 
t. > 50 d and subject to plant uptake via volatilization (Callahan et al. 1979; quoted, Ryan et al. 1988); 
estimated first-order t. = 14.6 yr from biodegradation rate constant k = 0.00013 d–1 from soil incubation 
studies and t. = 198 d from rate constant k = 0.0035 d–1 from flooded soil incubation studies in anaerobic 
system both by die-away test (Rao & Davidson 1980; quoted, Scow 1982); 
very persistent in soils with t. > 100 d (Willis & McDowell 1982); 
microagroecosystem t. > 50 d in moist fallow soil (Nash 1983); 
t. = 3837 d from screening model calculations (Jury et al. 1984, 1987a, b; Jury & Ghorati 1989); 
t. = 173 d from field study, t. > 50 d from microagroecosystem, t. = 116 d from laboratory data (Nash 1985); 
t. = 3800 d (Jury et al. 1987; quoted, Montgomery 1993); 
reaction t. = 3837 d and overall t. = in soil 9.4 yr (Mackay & Stiver 1991); 
estimated field t. = 2000 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996); 
t. = 14.0 and 12.0 yr for control and sludge-amended Luddington soils, respectively, for o,p.-DDT, and 
t. = 11.8 and 10.5 yr for control and sludge-amended Luddington soils, respectively, for p,p.-DDT (Meijer 
et al. 2001). 
Biota: field t. = 15 d in fruit leaves (Decker et al. 1950; quoted, Nash 1983); 
microagroecosystem t. = 29 d in cotton leaves (Nash & Harris 1977; quoted, Nash 1983); 
t. = 915 h from fish compared with calculated value of t. = 517 h from regression (Neely 1980); 
t. = 0.70 h in algae, t. = 3.65 d in catfish and t. = 315 h in daphnids (Ellgehausen et al. 1980); 
t. = 340 d in rainbow trout (Oliver & Niimi 1985); 
biochemical t. = 3837 d (Jury et al. 1987a, b; Jury & Ghodrati 1989); 
biological t. = 77 d for trout, t. = 31 d for salmon, t. = 4 d for catfish (Niimi 1987). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3793 
TABLE 18.1.1.23.1 
Reported aqueous solubilities of DDT at various temperatures 
p,p’-DDT o,p’-DDT 
Biggar & Riggs 1974 Biggar & Riggs 1974 
shake flask-GC shake flask-GC 
t/°C S/g·m–3 S/g·m–3 S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 
particle size 0.01µ 0.05µ 5.0µ particle size 0.01µ 0.05µ 5.0µ 
15 0.001 0.0025 0.017 15 0.050 
25 0.0017 0.006 0.025 25 0.004 0.012 0.085 
35 0.0026 0.013 0.037 35 0.135 
45 0.0039 0.0275 0.045 45 0.200 
FIGURE 18.1.1.23.1A Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for p,p.-DDT. 
FIGURE 18.1.1.23.1B Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for o,p.-DDT. 
p,p' -DDT: solubility vs. 1/T 
-25.0 
-24.0 
-23.0 
-22.0 
-21.0 
-20.0 
-19.0 
-18.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
x nl 
Biggar & Riggs 1974 (0.01 µ particle size) 
Biggar & Riggs 1974 (0.05 µ particle size) 
Biggar & Riggs 1974 (5.0 µ particle size) 
experimental data 
o,p' -DDT: solubility vs. 1/T 
-25.0 
-24.0 
-23.0 
-22.0 
-21.0 
-20.0 
-19.0 
-18.0 
-17.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
x nl 
Biggar & Riggs 1974 (0.01 µ particle size) 
Biggar & Riggs 1974 (0.05 µ particle size) 
Biggar & Riggs 1974 (5.0 µ particle size) 
experimental data 
© 2006 by Taylor & Francis Group, LLC

3794 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 18.1.1.23.2 
Reported vapor pressures of DDT at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
1. 
Balson 1947 Dickinson 1956 Spencer & Cliath 1972 Rothman 1980 
effusion manometer gas saturation-spec. gas saturation-GC radiotracer transpiration 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
p,p.-DDT p,p.-DDT p,p.-DDT p,p.-DDT 
0 5.87 . 10–7 71.0 0.01947 20 2.03 . 10–5 20 2.93 . 10–5 
10 3.60 . 10–6 71.0 0.02586 30 9.68 . 10–5 25 5.73 . 10–5 
20 2.00 . 10–5 71.0 0.02733 40 4.43 . 10–4 30 1.24 . 10–4 
30 9.60 . 10–5 70.7 0.02706 40 5.33 . 10–4 
40 4.27 . 10–4 70.7 0.02640 eq. 1 P/mmHg 50 2.0 . 10–3 
50 1.77 . 10–3 70.7 0.02680 A 14.24 60 6.40 . 10–3 
60 4.00 . 10–3 71.3 0.02973 B 6176 70 0.020 
70 0.0231 71.3 0.02893 80 0.060 
80 0.0301 50.1 0.001973 o,p.-DDT 
90 0.224 50.1 0.002027 30 7.37 . 10–4 .Hsub = 100.6 kJ/mol 
100 0.640 60.1 0.007106 
60.1 0.006999 
60.1 0.007199 
eq. 1 P/mmHg 80.4 0.08053 
A 14.191 80.4 0.07666 
B 6160 80.4 0.07879 
temp range: 66–100°C 80.4 0.07599 
88.8 0.2039 
88.8 0.1933 
90.2 0.2200 
90.2 0.2346 
eq. 1 P/mmHg 
A 13.778 
B 6010 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3795 
TABLE 18.1.1.23.2 (Continued) 
2. 
Westcott et al. 1981 Westcott & Bidleman 1981 Wania et al. 1994 
gas saturation-GC 
capillary GC-RT 
correlation gas saturation-GC/ECD 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
o,p.-DDT o,p.-DDT p,p.-DDT 
30 1.17 . 10–3 25 6.0 . 10–4 0 5.003 . 10–7 
30 1.12 . 10–3 10 2.531 . 10–6 
20 1.715 . 10–5 
p,p.-DDT 30 8.180 . 10–5 
30 1.87 . 10–3 40 3.846 . 10–4 
eq. 1 P/Pa 
A 16.62 
B 6276 
for temp range 0–40°C 
enthalpy of sublimation: 
.Hsub = 120.2 kJ/mol 
FIGURE 18.1.1.23.2 Logarithm of vapor pressure versus reciprocal temperature for p,p.-DDT. 
p,p' -DDT: vapor pressure vs. 1/T 
-7.0 
-6.0 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Balson 1947 
Dickinson 1956 
Spencer & Cliath 1972 
Rothman 1980 
Wania et al. 1994 
m.p. = 108.5 °C 
© 2006 by Taylor & Francis Group, LLC

3796 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 18.1.1.23.3 
Reported octanol-air partition coefficients of DDT at various temperatures 
p,p’-DDT o,p’-DDT 
Harner & Mackay 1995 Shoeib & Harner 2002 Shoeib & Harner 2002 
generator column-GC/MS generator column-GC generator column-GC 
t/°C log KOA t/°C log KOA t/°C log KOA 
15 15 10.307 5 10.905 
25 10.09 25 9.879 15 10.455 
35 35 9.295 20 9.881 
45 45 8.824 25 9.660 
25 9.816 35 9.1959 
log KOA = A + B/(T/K) log KOA = A + B/(T/K) log KOA = A + B/(T/K) 
A –3.20 A –5.63 A –11.291 
B 3954 B 4603 B 6266 
enthalpy of phase change .HOA/(kJ mol–1) = 88.1 .HOA/(kJ mol–1) = 87.9 
.HOA/(kJ mol–1) = 75.7 
FIGURE 18.1.1.23.3A Logarithm of KOA versus reciprocal temperature for p,p.-DDT. 
p,p' -DDT: KOA vs. 1/T 
8.0 
8.5 
9.0 
9.5 
10.0 
10.5 
11.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K 
gol 
AO 
Shoeib & Harner 2000 
Shoeib & Harner 2002 (interpolated) 
Harner & Mackay 1995 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3797 
FIGURE 18.1.1.23.3B Logarithm of KOA versus reciprocal temperature for o,p.-DDT. 
o,p' -DDT: KOA vs. 1/T 
8.5 
9.0 
9.5 
10.0 
10.5 
11.0 
11.5
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
AO 
Shoeib & Harner 2000 
© 2006 by Taylor & Francis Group, LLC

3798 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.24 Deltamethrin 
Common Name: Deltamethrin 
Synonym: Decis, K-Othrin, Butoss, RU 22074, Cislin, Crackdown 
Chemical Name: S-.-cyano-3-phenoxybenzyl (1R,3R)-3-(2,2-dibromovinyl)-2,2-dimethyl cyclopropan-1-carboxylate 
CAS Registry No: 52918-63-5 
Uses: insecticide (pyrethroid) 
Molecular Formula: C22H19Br2NO3 
Molecular Weight: 505.199 
Melting Point (°C): 
98–101 (Hartley & Kidd 1987) 
98–102 (Tomlin 1994) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
0.55 (25°C, bulk density, Tomlin 1994) 
Molar Volume (cm3/mol): 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C): 
< 0.002 (20°C, Hartley & Kidd 1987) 
< 0.0002 (Tomlin 1994) 
Vapor Pressure (Pa at 25°C): 
2.0 . 10–6 (Hartley & Kidd 1987) 
<1.33 . 10–5 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol): 
12.6 (gas stripping-LSC, Muir et al. 1985a) 
Octanol/Water Partition Coefficient, log KOW: 
5.20 (HPLC-RT correlation, Muir et al. 1985b) 
6.20 (shake flask, Log P Database, Hansch & Leo 1987) 
6.21 (HPLC-RT correlation, Hu & Leng 1992) 
6.20 (recommended, Sangster 1993) 
4.60 (Tomlin 1994) 
6.20 (recommended, Hansch et al. 1995) 
5.74 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.53–3.0 (fathead minnows, Muir et al. 1985a) 
2.06–2.48 (chironomid larvae, Muir et al. 1985b) 
2.62, 2.70 (Oncorhynchus mykiss, flow-through condition, quoted, Devillers et al. 1996) 
Br 
O 
O 
O Br 
N 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3799 
Sorption Partition Coefficient, log KOC: 
3.66–4.21 (Tomlin 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 9 d in soil (Tomlin 1994). 
Oxidation: 
Hydrolysis: more stable in acidic than in alkaline media with t. = 2.5 d at pH 9 and 25°C (Tomlin 1994). 
Biodegradation: microbial degradation half-life are, t.(aerobic) = 21–25 d, t.(anaerobic) = 31–36 d in laboratory; 
t. < 23 d in field (Tomlin 1994) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 2–4 d in water of small outdoor ponds (Muir et al. 1985); 
more stable in acidic than in alkaline media with t. = 2.5 d at pH 9 and 25°C (Tomlin 1994). 
Ground water: 
Sediment: 
Soil: undergoes microbial degradation within 1–2 wk (Hartley & Kidd 1987) 
microbial degradation half-life are, t.(aerobic) = 21–25 d, t.(anaerobic) = 31–36 d in laboratory; t. < 23 d 
in field; photolysis t. = 9 d (Tomlin 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3800 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.25 Demeton 
Common Name: Demeton 
Synonym: Bayer 8169, Demeton-O, E-1059, mercaptophos, Systox-O 
Chemical Name: O,O-diethyl-O-(2-ethylthioethyl)phosphorothioate mixture with O,O-diethyl-S-(2-ethylthioethyl)- 
phosphorothioate 
Uses: insecticide to control sucking insects and mites in a wide range of crops, including fruit, nuts, vegetables, 
ornamentals, and field crops; also used as acaricide. 
CAS Registry No: 8065-48-3, 298-03-3 demeton-O, systox-O 
126-75-0 demoton-S, systox-S 
Molecular Formula: C8H19O3PS2 
Molecular Weight: 258.339 
Melting Point (°C): 
pale yellow oil (Hartley & Kidd 1987) 
Boiling Point (°C): 
123 (Khan 1980) 
92–93 (at 0.15 mmHg, Hartley & Kidd 1987) 
Density (g/cm3 at 20°C): 
1.119 (25°C, Spencer 1982) 
1.119–1.132 (Hartley & Kidd 1987) 
Molar Volume (cm3/mol): 
264.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
60 (20°C, Kenaga 1980a) 
60 (22°C, Khan 1980; Worthing & Walker 1983) 
100 (20–25°C, Willis & McDowell 1982) 
60 (rm. temp., Spencer 1982; Hartley & Kidd 1987) 
60 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0973, 0.0987 (30°C, demeton-O, demeton-S, Eichler 1965) 
0.00331, 0.0347 (20°C, demeton-O, demeton-S, Melnikov 1971) 
0.00373, 0.0347 (20°C, demeton-O, demeton-S, Hartley & Graham-Bryce 1980) 
0.0331 (Khan 1980) 
0.033 (20°C, Spencer 1982) 
0.0167, 0.00707 (20°C, demeton-O, demeton-S, GC-RT correlation, Kim 1985) 
0.034 (20°C, Hartley & Kidd 1987) 
0.030 (20°C, selected, Suntio et al. 1988) 
0.1333 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.130 (20°C, calculated-P/C, Suntio et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
Octanol/Air Partition Coefficient, log KOA: 
O 
P 
O 
S 
S 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3801 
Bioconcentration Factor, log BCF: 
1.79 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.66 (soil, calculated-S, Kenaga 1980) 
1.85 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Oxidation: calculated rate constant k = 128 . 10–12 cm3 molecule–1 s–1 for the vapor phase reaction with hydroxyl 
radical in air (Winer & Atkinson 1990). 
Half-Lives in the Environment: 
Soil: selected field t. = 15 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

3802 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.26 Dialifor 
Common Name: Dialifor 
Synonym: dialiphos, Torak 
Chemical Name: S-(2-chloro-(1,3-dihydro-1,3-dioxo-2H-isoindol-2-y)ethyl) O,O-diethyl phosphorodithioate 
CAS Registry No: 10311-84-9 
Uses: insecticide/acaricide 
Molecular Formula: C14H17ClNO4PS2 
Molecular Weight: 393.846 
Melting Point (°C): 
68 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.379 (mp at 68°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
0.18 (Chiou et al. 1977; Kenaga 1980b) 
< 1.0 (Hartley & Kidd 1987) 
0.18 (room temp., Montgomery 1993) 
Vapor Pressure (Pa at 25°C): 
0.133 (35°C, Hartley & Kidd 1987) 
1.08 . 10–7 (20°C, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.142 (20°C, calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
4.69 (shake flask-GC, Chiou et al. 1977; quoted, Rao & Davidson 1980; Sangster 1993) 
4.69 (Montgomery 1993) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
3.21 (calculated, Kenaga 1980b) 
Sorption Partition Coefficient, log KOC: 
4.04 (soil, calculated, Kenaga 1980b) 
4.05 (Montgomery 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: t. = 14 h at 20°C and pH 7.4, t. = 1.8 h at 37.5°C and pH 7.4 (Montgomery 1993). 
N 
O
O 
S 
Cl 
P
O
S
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3803 
Half-Lives in the Environment: 
Air: 
Surface water: hydrolysis t. = 14 h at 20°C and pH 7.4, t. = 1.8 h at 37.5°C and pH 7.4 (Montgomery 1993). 
Ground water: 
Sediment: 
Soil: 
Biota: rapidly eliminated in animal (Hartley & Kidd 1987). 
© 2006 by Taylor & Francis Group, LLC

3804 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.27 Diazinon 
Common Name: Diazinon 
Synonym: Alfa-Tox, AG-500, Basudin, Bazinon, Bazuden, Ciazinon, Dacutox, Dassitox, Dazzel, Desapon, Dianon, 
Diater, Diaterr-fos, Diazitol, Diazide, Diazol, Dicid, Dimpylate, Dipofene, Dizinon, Dyzol, ENT 19507, Flytrol, 
G 301, Gardentox, Geigy 24480, Kayazinon, Kayazol, NA 2763, Nedicisol, Neocidol, Nipsan, Nucidol, Sarolex, 
Spectracide 
Chemical Name: O,O-diethyl O-2-isopropyl-6-methylpyrimidin-4-yl phosphorothioate; O,O-diethyl-O-(2-isopropyl-6- 
methyl 4-pyrimidinyl) phosphorothioate; O,O-diethyl 2-isopropyl-4-methylpyrimidinyl-6-thiophosphate 
Uses: nonsystemic insecticide to control flies, aphids and spider mites in soil, fruit, vegetables and ornamentals; also 
used as acaricide. 
CAS Registry No: 333-41-5 
Molecular Formula: C12H21N2O3PS 
Molecular Weight: 304.345 
Melting Point (°C): 
colorless oil (Hartley & Kidd 1987; Tomlin 1994) 
Boiling Point (°C): 
125 (at 1 mmHg, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
83–84 (at 0.0002 mmHg, Montgomery 1993; Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.11 (Worthing & Hance 1991) 
1.116–1.118 (Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
320.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
< 2.5 (Albert 1963; Perrin 1989; Somasundaram et al. 1991; Montgomery 1993) 
Enthalpy of Vaporization, .HV (kJ/mol): 
87.5 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
40 (Spencer 1973, 1982; Martin & Worthing 1977; Worthing 1979, Worthing & Walker 1987) 
40 (Wauchope 1978; Briggs 1981; Burkhard & Guth 1981; Kanazawa 1989) 
68.8 (22°C, shake flask-GC, Bowman & Sans 1979, 1983a, b) 
40 (Hartley & Graham-Bryce 1980) 
40 (22°C, Khan 1980) 
40.5 (20–25°C, shake flask-GC, Kanazawa 1981) 
40 (20°C, Windholz 1983) 
40 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
60 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
53.5, 43.7 (20°C, 30°C, Montgomery 1993) 
52.36, 103.8 (supercooled liquid SL: literature-derived value LDV, final adjusted value FAV, Muir et al. 2004) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
0.0187 (Margot & Stammbach 1964) 
0.0111 (20°C, Wolfdietrich 1965) 
0.0112 (20°C, Melnikov 1971) 
O 
P 
O 
S 
N 
N 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3805 
0.0161 (gas saturation, Heiber & Szelagiewicz 1976) 
0.020 (gas saturation method, measured range 32–73°C, Marti 1976) 
log (P/mmHg) = 11.46 – 4569.55/(T/K), temp range 32–73°C (Marti 1976) 
0.0187 (Worthing 1979) 
0.019 (20°C, Hartley & Graham-Bryce 1980) 
0.0187 (Khan 1980) 
0.00971 (20°C, volatilization rate, Burkhard & Guth 1981) 
0.00236–0.00469 (20°C, GC, Seiber et al. 1981) 
0.0109* (gas saturation-GC, measured range 25.3–45. 0°C, Kim et al. 1984) 
log (P/mmHg) = 9.3871 – 4014.67/(T/K); temp range 25.3–45°C (gas saturation, Kim et al. 1984) 
0.0064 (20°C, extrapolated-Clausius-Clapeyron eq. with vapor pressures at several temp, Kim et al. 1984) 
0.0024 (20°C, GC-RT correlation, Kim et al. 1984; Kim 1985) 
9.7 . 10–5 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991) 
0.014* (gas saturation-GC, measured range 25–125°C, Rordorf 1989) 
log (PL/Pa) = 13.482 – 4571.2/(T/K); measured range 32.4–140°C (liquid, gas saturation-GC, Rordorf 1989) 
0.020 (GC-RT correlation, supercooled liquid value, Hinckley et al. 1990) 
0.008 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.0113 (20°C, Montgomery 1993) 
0.012 (20°C, Tomlin 1994) 
0.0123 (liquid PL, GC-RT correlation, Donovan 1996) 
0.011 (gradient GC method; Tsuzuki 2000) 
0.011; 0.0339, 0.0513 (gradient GC method; estimation using modified Watson method: Sugden’s parachor, 
McGowan’s parachor, Tsuzuki 2000) 
0.014, 0.0073 (supercooled liquid PL: literature-derived value LDV, final adjusted value FAV, Muir et al. 
2004) 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
0.074 (20°C, volatilization rate, Burkhard & Guth 1981) 
0.0114 (calculated, Adachi et al. 1984) 
0.124 (calculated-P/C, Jury et al. 1984, 1987a; Jury & Ghodrati 1989) 
0.0114 (23°C, wetted-wall column-GC/ECD, Fendinger & Glotfelty 1988) 
0.0669 (20°C, calculated-P/C, Suntio et al. 1988) 
0.1438 (calculated-P/C, Taylor & Glotfelty 1988) 
0.0138, 0.0101 (22–24°C, fog chamber-GC/ECD: drain water, cyclone water, Fendinger et al. 1989) 
0.007 (calculated-bond contribution method LWAPC, Meylan & Howard 1991) 
0.0114 (20°C, calculated-P/C, Montgomery 1993) 
0.0406 (calculated-P/C, this work) 
0.0338* (20°C, gas stripping-GC/MS, measured range 283–301 K, Feigenbrugel et al. 2004) 
H./(M atm–1) = (7.2 ± 0.5) . 10–15 exp[(11900 ± 700)/(T/K)]; temp range 283–310 K (Arrhenius eq., gas stripping-
GC/MS, Feigenbrugel et al. 2004) 
0.0108, 0.0216 (literature-derived value LDV, final adjusted value FAV, Muir et al. 2004) 
Octanol/Water Partition Coefficient, log KOW: 
3.02 (Rao & Davidson 1980) 
3.11 (shake flask-UV, Lord et al. 1980) 
3.11 (20°C, shake flask-UV, Briggs 1981) 
3.14 (shake flask-GC, Kanazawa 1980, 1981) 
3.81 (shake flask-GC, Bowman & Sans 1983b) 
1.92 (Veith & Kosian 1983) 
3.02 (shake flask, Log P Database, Hansch & Leo 1987) 
3.02–3.81 (Montgomery 1993) 
3.70 (RP-HPLC-RT correlation, Saito et al. 1993) 
3.58 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
3.30 (Tomlin 1994) 
© 2006 by Taylor & Francis Group, LLC

3806 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
3.81 (recommended, Hansch et al. 1995) 
3.58 (RP-HPLC-RT correlation, Finizio et al. 1997) 
4.23 (RP-HPLC-RT correlation, Nakamura et al. 2001) 
3.81 (literature-derived value LDV, Muir et al. 2004) 
Octanol/Air Partition Coefficient, log KOA: 
8.87 (final adjusted value FAV, Muir et al. 2004) 
Bioconcentration Factor, log BCF: 
2.39 (motsugo, Kanazawa 1975) 
1.54 (fish in flowing water, Alison & Hermanutz 1977) 
2.18, 1.56 (topmouth gudugeon, silver crucian carp, Kanazawa 1978, 1981) 
1.81; 1.24 (carp; guppy, Kanazawa 1978) 
0.69, 1.23, 0.77 (crayfish, red snail, pond snail, Kanazawa 1978) 
1.83; 0.954 (fish; invertebrates, Kanazawa 1978) 
1.89 (calculated-S, Kenaga 1980) 
2.75 (earthworms, Lord et al. 1980) 
2.08, 1.80 (carp, rainbow trout, Seguchi & Asaka 1981) 
1.41, 0.477 (loach, shrimp, Seguchi & Asaka 1981) 
1.81; 1.24; 2.18 (carp; guppy; topmouth gudgeon, Veith & Kosian 1983) 
2.32 (topmouth gudgeon, Kanazawa 1983) 
2.30 (sheepshead minnow, Zaroogian et al. 1985) 
1.46 (Isnard & Lambert 1988) 
–0.59 (vegetation, correlated-KOW, Nash 1974) 
2.39 (willow shiner, Tsuda et al. 1989; Tsuda et al. 1992) 
1.81, 2.08 (carp, De Bruijn & Hermens 1991) 
1.38, 1.81, 1.81 (loach, motsugo, rainbow trout, De Bruijn & Hermens 1991) 
2.16–2.33 (sheepshead minnow, De Bruijn & Hermens 1991) 
1.56, 2.18 (silver crucian carp, topmouth gudgeon, De Bruijn & Hermens 1991) 
2.18, 1.79 (pale chub, ayu sweetfish, calculated-field data, Tsuda et al. 1992) 
3.20 (eel, Sancho et al. 1993) 
2.02 (killifish Oryzias latipes, after 24–72 h exposure, Tsuda et al. 1995) 
1.34, 1.45 (Oryzias latipes, Tsuda et al. 1995; quoted, Devillers et al. 1996) 
Sorption Partition Coefficient, log KOC: 
2.76 (calculated-S as per Kenaga & Goring 1978, Kenaga) 
2.93 (Rao & Davidson 1980) 
2.28, 2.40 (average of 3 soils, 1 sediment, Sharom et al. 1980) 
2.36 (soil, sorption isotherm, converted from reported log KOM of 2.12, Briggs 1981) 
2.36 (estimated, Lyman et al. 1982; quoted, Howard 1991; Lohninger 1994) 
2.93 (screening model calculations, Jury et al. 1987b; Jury & Ghodrati 1989) 
2.40 (average of 2 soils, Kanazawa 1989) 
2.12, 3.27 (reported, estimated as log KOM, Magee 1991) 
2.75, 3.13 (soil, quoted exptl., calculated-. and fragment contribution, Meylan et al. 1992) 
3.00 (soil, 20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
2.76 (soil, average value, Dowd et al. 1993) 
3.00–3.27 (Montgomery 1993) 
2.75 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.75, 3.05 (soil, estimated-class-specific model, estimated-general model, Gramatica et al. 2000) 
2.74, 2.64, 2.90 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, average, Delle Site 2001) 
3.12–3.16 (sediments from San Diego Creek and Bonita Creek, shake flask-GC, Bondarenko & Gan 2004) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: mostly dissipated through volatilization with t. = 19 d from soil (Glotfelty et al. 1990). 

© 2006 by Taylor & Francis Group, LLC

Insecticides 3807 
Photolysis: calculated t. = 15 d for photolysis in an aqueous buffer solution at pH 7 and 25°C under UV light 
for 24 h (Burkhard & Guth 1979; quoted, Montgomery 1993); 
t. = 41 d without addition of humic substances; t. = 9 d and t. = 5 d with concn of humic acid 20 mg/L 
and 50 mg/L, respectively, under light intensity . . 290 nm (Mansour & Feicht 1994) 
Photodegradation (. > 290 nm) half-lives in various diazinon aqueous solutions: t. ~ 1 d river water exposed 
to sunlight, t. ~ 5 d lake water exposed to sunlight and t. ~ 5.5 d with humic acid exposed to sunlight 
(Mansour et al. 1997) 
photolytic k = 2.39 . 10–3 h–1 with t. = 290 h in moist sandy soil, k = 6.62 . 10–5 h–1 with t. = 10500 h in 
dry sandy soil; k = 2.55 . 10–3 h–1 in moist sandy loam (Graebing & Chib 2004) 
Oxidation: photooxidation t. = 4.1 h in air, estimated from the vapor-phase reaction with 5 . 105 hydroxyl 
radicals/m3 in air at 25°C (Martin & Worthing 1977; quoted, Howard 1991). 
kOH = 9.7 . 10–11 cm3 molecule–1 s–1 at 298 K in gas phase with atmospheric lifetime of 4.1 h but reduced 
to .19 h at 283 K; log kOH(aq.) = 8.2 . 109 M–1 s–1 in aqueous phase (Feigenbrugel et al. 2004) 
Hydrolysis: 
k(acid) = 2.1 . 10–2 M–1 s–1 for acid catalyzed hydrolysis, k(neutral) = 4.3 . 10–8 M–1 s–1 for neutral hydrolysis 
and k(alkaline) = 5.3 . 10–3 M–1 s–1 for base catalyzed hydrolysis with 10–5 M in aqueous buffer (Faust 
& Gomaa 1972; quoted, Freed 1976; Harris 1982) 
t. = 11.77 h at pH 3.1, t. = 185 d at pH 7.4 and t. = 6.0 d at pH 10.4 in water at 20°C (Worthing & Hance 
1991; Tomlin 1994) 
t. = 11.77 h at pH 3.1, t. = 185 d at pH 7.4, t. = 136 d at pH 9.0, and t. = 6 d at pH 10.4 at 20°C 
(Montgomery 1993). 
Biodegradation: 
half-lives t. = 4.91 d at pH 3.1 and t. = 185 d at pH 7.4 from river die-away tests (Gomaa et al. 1969; 
quoted, Scow 1982) 
t. = 12.5 wk in sterile soils and t. < 1 wk in nonsterile soils; t. = 6.5 wk in sterile sandy loam and t. = 2 wk 
in nonsterile sandy loam (Miles et al. 1979; quoted, Howard 1991) 
t. = 32 d in 0–10 cm depth of soil by 100 d leaching screening test (Rao & Davidson 1980; quoted, Jury 
et al. 1983, 1984, 1987a, b; Jury & Ghodrati 1989) 
k = 0.023 d–1 with estimated first-order t. = 30 d in soil incubation studies by soil die-away test (Rao & 
Davidson 1980; quoted, Scow 1982) 
k(av.) = 0.0193 d–1 in silty clay with t. = 36 d; and k(av.) = 0.0245 d–1 in sandy clay with t. = 28 d (Sattar 1990) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k2 = 0.070 h–1 (willow shiner, Tsuda et al. 1989) 
k2 = 0.023 h–1 (eel’s liver, Sancho et al. 1993) 
k2 = 0.019 h–1 (eel’s muscle, Sancho et al. 1993) 
k2 = 0.21 h–1 (killifish Oryzias latipes, Tsuda et al. 1995) 
Half-Lives in the Environment: 
Air: photooxidation t. = 4.1 h, estimated from the vapor-phase reaction with 5 . 105 hydroxyl radicals/m3 in air 
at 25°C (Martin & Worthing 1977; quoted, Howard 1991). 
Surface water: photolysis t. = 41 d without humic substances; t. = 13 d and 5 d with concn of humic acid 
20 mg/L and 50 mg/L, respectively, under light intensity . . 290 nm (Mansour & Feicht 1994); 
t. = 144 d at 6°C, t. = 69 d at 22°C in darkness for Milli-Q water; t. = 181 d at 6°C, t. = 80 d at 22°C in 
darkness, t. = 43 d under sunlight conditions for river water at pH 7.3; t. = 132 d at 6°C, t. = 52 d at 
22°C in darkness for filtered river water at pH 7.3; t. = 125 d at 6°C, t. = 50 d at 22°C in darkness, 
t. = 47 d under sunlight conditions for seawater, pH 8.1 (Lartiges & Garrigues 1995). 
Ground water: 
Sediment: first-order degradation k = 0.048 d–1 with t. = 14.4 d under aerobic conditions, k = 0.022 d–1 with 
t. = 31.7 d under anaerobic conditions in sediment from San Diego Creek, Orange County, CA; first-order 
degradation k = 0.033 d–1 with t. = 21.1 d under aerobic conditions, k = 0.029 d–1 with t. = 23.7 d under 
anaerobic conditions in sediment from Bonita Creek, Orange County, CA (Bondarendo & Gan 2004) 
Soil: t. = 43.8 d in sterile soil at pH 4.7 (Sethunathan & MacRae 1969; quoted, Montgomery 1993); 
estimated persistence of 12 wk in soil (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury 
et al. 1987a); 
© 2006 by Taylor & Francis Group, LLC

3808 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
persistence of 3 months (Wauchope 1978); 
t. = 12.5 wk in sterile sandy loam and t. < 1.0 wk in nonsterile sandy loam; t. = 6.5 wk in sterile organic 
soil and t. = 2.0 wk in nonsterile organic soil (Miles et al. 1979); 
estimated first-order t. = 30 d in soil from biodegradation rate constant k = 0.023 d–1 for soil incubation 
studies by soil die-away test (Rao & Davidson 1980; quoted, Scow 1982); 
moderate persistent in soil with t. = 20–100 d (Willis & McDowell 1982); 
t. = 32 d from screening model calculations (Jury et al. 1987a, b; Jury & Ghodrati 1989); 
dissipation t. = 19 d in soil (Glotfelty et al. 1990); 
av. degradation rate constant k = 0.0193 d–1 in silty clay with t. = 36 d and average degradation rate constant 
k = 0.0245 d–1 in sandy clay with t. = 28 d (Sattar 1990) 
selected field t. = 40 d (Wauchope et al. 1992; Dowd et al. 1993; Hornsby et al. 1996); 
soil t. = 65 d (Pait et al. 1992) 
t. = 40 d (selected, Halfon et al. 1996) 
On sandy soil: first-order rate constants for photolytic decline, k = 5.45 . 10–3 h–1 with t. = 130 h irradiated 
in moisture-maintained soil, k = 0.84 . 10–3 h–1 with t. = 830 h irradiated in air-dried soil, k = 3.06 . 10–3 
h–1 with t. = 230 h in dark control moist soil and k = 0.77 . 10–3 h–1 with t. = 900 h in dark control airdried 
sandy soil from Sauk County, WI. The photolytic k = 2.39 . 10–3 h–1 with t. = 290 h in moist soil, 
k = 6.62 . 10–5 h–1 with t. = 10500 h in dry soil. The contribution of moisture to irradiated metabolism 
k = 4.61 . 10–3 h–1 with t. = 150 h, but for dark control system for k = 2.29 . 10–5 h–1 with t. = 300 h 
(Graebing & Chib 2004) 
On sandy loam soil: first-order rate constants for photolytic decline, k = 4.07 . 10–3 h–1 irradiated in moisturemaintained 
soil, k = 1.07 . 10–3 h–1 irradiated in air-dried soil, k = 1.52 . 10–3 h–1 in dark control moist 
soil and no degradation in dark control air-dried sandy loam soil from Madia, CA. t. = 120 h for the 
first 96 h irradiation; over all t.(calc) = 200 h from 96–168 h but in dark control system t. = 460 h in 
moist sandy loam soil; irradiated metabolism t. = 650 h in dry sandy loam soils. Rate constants due to 
photolysis k = 2.55 . 10–3 h, and due to moisture k = 3.0 . 10–3 h in moist sandy loam soil (Graebing 
& Chib 2004) 
Biota: biochemical t. = 32 d from screening model calculations (Jury et al. 1987a, b; Jury & Ghodrati 1989); 
excretion t. = 9.9 h by willow shiner (Tsuda et al. 1989) 
t. = 25 h in eel’s liver and t. = 26 h in eel’s muscle (Sancho et al. 1993) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3809 
TABLE 18.1.1.27.1 
Reported vapor pressures and Henry’s law constants of diazinon at various 
temperatures 
Vapor pressure Henry’s law constant 
Kim et al. 1984, Kim 1985 Rordorf 1989 Feigenbrugel et al. 2004 
gas saturation-GC gas saturation-GC gas stripping-GC/MS 
t/°C P/Pa t/°C P/Pa t/°C H/(Pa m3/mol) 
25.3 0.0113 25 0.014 283.05 8.515 . 10–3 
34.9 0.0299 50 0.22 283.15 9.128 . 10–3 
45.0 0.0770 75 2.20 283.15 8.515 . 10–3 
20.0 0.0064 100 17.0 283.55 8.465 . 10–3 
25.0 0.0109 125 100 287.55 0.0138 
291.55 0.0166 
log P = A – B/(T/K) log P = A – B/(T/K) 293.05 0.0281 
P/mmHg P/Pa 293.05 0.0390 
A 9.3871 A 13.482 293.15 0.0349 
B 4014.67 B 4571.2 293.15 0.0375 
293.25 0.0298 
293.25 0.0281 
295.35 0.0441 
297.55 0.0675 
299.45 0.0921 
301.45 0.101325 
ln H = A – B/(T/K) 
H./(M/atm) 
A –32.5647 
B 11900 
FIGURE 18.1.1.27.1 Logarithm of vapor pressure versus reciprocal temperature for diazinon. 
Diazinon: vapor pressure vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Kim et al. 1984, Kim 1985 
Rordorf 1989 
Heiber & Szelagiewicz 1976 
© 2006 by Taylor & Francis Group, LLC

3810 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 18.1.1.27.2 Logarithm of Henry’s law constant versus reciprocal temperature for diazinon. 
Diazinon: Henry's law constant vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
m. aP( / H nl 
3 
) l o 
m/ 
Feigenbrugel et al. 2004 
Fendinger & Glotfelty 1988 
Fendinger et al. 1989 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3811 
18.1.1.28 Dichlorvos 
Common Name: Dichlorvos 
Synonym: Apavap, Astrobot, Atgard, Bay 19149, Benfos, Bibesol, Brevinyl, Canogard, Cekusan, Chlorvinphos, 
Cyanophos, Cypona, DDVF, DDVP, Dedevap, Deriban, Derribante, Devikol, Dichlorman, Dichlorophos, Divipan, 
Duo-kill, Duravos, ENT 20738, Equigard, Equigel, Estrosel, Estrosol, Fecama, Fly-die, Fly fighter, Herkal, Herkol, 
Krecalvin, Lindan, Mafu, Mafu strip, Marvex, Mopari, NA 2783, Nerkol, Nogos, No-pest, Nuva, Nuvan, Oko, OMS 
14, Phosvit, SD-1750, Szklarniak, Tap 9VP, Task, Tenac, Tetravos, UDVF, Unifos, Vapona, Vaponite, Vapora II, 
Verdican, Verdipor, Vinylofos, Vinylophos 
Chemical Name: 2,2-dichlorovinyl-O,O-dimethyl phosphate; 2,2-dichloroethenyl-O,O-dimethyl phosphate 
Uses: insecticide and fumigant to control flies, mosquitoes, and moths; also used as acaricide. 
CAS Registry No: 62-73-7 
Molecular Formula: C4H7Cl2O4P 
Molecular Weight: 220.976 
Melting Point (°C): 
colorless to amber liquid (Hartley & Kidd 1987) 
Boiling Point (°C): 
35, 74, 117 (at 0.05, 1.0, 10 mmHg, Hartley & Kidd 1987; Worthing & Hance 1991) 
234.1 (Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.415 (25°C, Spencer 1982; Hartley & Kidd 1987; Montgomery 1993; Milne 1995) 
1.420 (25°C, Worthing & Hance 1991) 
1.425 (Tomlin 1994) 
1.440 (Montgomery 1993) 
Molar Volume (cm3/mol): 
167.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
10000 (Gunther et al. 1968; Melnikov 1971; Kenaga 1980a; Khan 1980; Spencer 1982) 
10000 (Martin & Worthing 1977; Worthing 1979; Worthing & Walker 1987) 
10000 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991; Milne 1995) 
16000 (Kawamoto & Urano 1989) 
16000 (20°C, Montgomery 1993) 
10000 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
8000 (Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the 
end of this section): 
1.60 (20°C, Eichler 1965; Wolfdietrich 1965) 
1.60 (20°C, Melnikov 1971; Hartley & Graham-Bryce 1980; Spencer 1982; Montgomery 1993) 
1.60* (20°C, evaporation rate-gravimetric method, measured range 293–333 K, Guckel et al. 1973) 
1.60 (Khan 1980; Brouwer et al. 1994) 
log (P/mmHg) = 9.9081 – 3464/(T/K); temp range not specified (quoted from literature, Guckel et al. 1982) 
0.947* (20°C, evaporate rate-gravimetric method, measured range 20–60°C, Guckel et al. 1982) 
7.026 (gas saturation-GC, Kim et al. 1984) 
4.011 (20, 25°C, extrapolated-Clausius-Clapeyron eq., Kim et al. 1984) 
O 
P 
O O 
Cl 
Cl 
O 
© 2006 by Taylor & Francis Group, LLC

3812 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.67 (20°C, GC-RT correlation, Kim et al. 1984; Kim 1985) 
1.60, 3.90 (20°C, 30°C, Hartley & Kidd 1987) 
7.0 (20°C, selected, Suntio et al. 1988) 
0.29 (20°C, Worthing & Hance 1991) 
0.267 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
2.10 (Tomlin 1994) 
7.94 (gradient GC method; Tsuzuki 2000) 
6.92; 8.51, 5.62 (gradient GC method; estimation using modified Watson method: Sugden’s parachor, McGowan’s 
parachor, Tsuzuki 2000) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
0.190 (20°C, calculated-P/C, Suntio et al. 1988) 
0.097 (calculated-P/C, Howard 1991) 
506.5 (Montgomery 1993) 
0.194 (calculated-P/C, this work) 
0.0253* (gas stripping-GC/MS, measured range 10–25°C, Gautier et al. 2003) 
ln [H./(M atm–1)] = –28.904 + 11100/(T/K); temp range 283.5–298.15 K (Arrhenius eq., gas stripping-GC/MS, 
Gautier et al. 2003) 
Octanol/Water Partition Coefficient, log KOW: 
1.40 (Leo et al. 1971; Hansch & Leo 1979) 
2.29 (Rao & Davidson 1980) 
1.47 (shake flask-GC, Bowman & Sans 1983) 
1.16 (HPLC-RT correlation, Kawamoto & Urano 1989) 
1.40–2.29 (Montgomery 1993) 
1.73 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
1.43 (recommended, Sangster 1993) 
1.90 (Tomlin 1994) 
1.42 (selected, Hansch et al. 1995) 
1.73 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
0.477 (calculated-S, Kenaga 1980a; quoted, Howard 1991) 
–0.097 (whole body willow shiner after 24–168 h exposure, Tsuda et al. 1992; quoted, Devillers et al. 1996) 
< –0.30 (whole body carp, Tsuda et al. 1993) 
Sorption Partition Coefficient, log KOC: 
1.45 (soil, calculated-S, Kenaga 1980a; quoted, Howard 1991) 
1.67 (correlated, Kawamoto & Urano 1989) 
1.70 (calculated, Montgomery 1993) 
1.48 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
1.67; 2.98, 2.04 (soil, quoted exptl.; estimated-class-specific model, estimated-general model, Gramatica et al. 
2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: based on the Henry’s law constant, t. ~ 57 d from a model river (Lyman et al. 1982; quoted, 
Howard 1991); 
t. ~ 400 yr from an model pond, which considered the effect of adsorption (Howard 1991). 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate Constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
atmospheric t. = 320 d, based on an estimated rate constant kO3 = 3.58 . 10–20 cm3·molecule–1 s–1 at 25°C 
for the vapor-phase reaction with ozone of concn 7 . 1011/cm3 in air (Atkinson & Carter 1984; quoted, 
Howard 1991) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3813 
atmospheric t. = 2 d, based on an estimated rate constant kOH = 9.24 . 10–12 cm3 molecule–1 s–1 at 25°C for 
the vapor-phase reaction with hydroxyl radical of 5 . 105/cm3 in air (Atkinson 1987; quoted, Howard 
1991). 
kOH = 9.4 . 10–12 cm3·molecule–1 s–1 with calculated tropospheric lifetime about 1.2 d at 298 K assuming 
an average OH concn of 1 . 106 molecule/cm3 (Gautier et al. 2003) 
Hydrolysis: t. = 462 min at pH 7 and t. = 30 min at pH 8 (Montgomery 1993); 
t. ~ 31.9 d at pH 4, t. ~ 2.9 d at pH 7, and t. ~ 2.0 d at pH 9 at 22°C (Tomlin 1994) 
t. = 3800 d at pH 7 in natural waters (Capel & Larson 1995). 
Biodegradation: the presence of active microorganisms reduced the t. = 0.9–0.75 and 0.85 to 0.70 d in autoclaved 
clay and calcareous soil, respectively (Guirguis & Shafik 1975; quoted, Howard 1991); 
rate constant k(aerobic) = 0.20 d–1 with t. = 3.5 d at 20°C by aerobic activated sludge, and k(anaerobic) = 
0.20 d–1 with t. = 3.5 d at 20°C by anaerobic microorganisms (batch contacting method, Kawamoto & 
Urano 1990). 
t.(aerobic) = 180 d, t.(anaerobic) = 1 d in natural waters (Capel & Larson 1995) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants 
Half-Lives in the Environment: 
Air: t. = 320 d, based on an estimated rate constant k = 3.58 . 10–20 cm3 molecule–1 s–1 at 25°C for the vaporphase 
reaction with ozone of 7 . 1011/cm3 in air (Atkinson & Carter 1984; quoted, Howard 1991) 
atmospheric t. = 2 d, based on an estimated rate constant k =.24 . 10–12 cm3 molecule–1 s–1 at 25°C for the 
vapor-phase reaction with hydroxyl radical of 5 . 105/cm3 in air (Atkinson 1987; quoted, Howard 1991) 
atmospheric transformation lifetime was estimated to be <1 d (Kelly et al. 1994) 
Calculated tropospheric lifetime of 0.5 d for reaction with OH radicals, wet deposition lifetime estimated 
to be 5.6 d in the atmosphere by rainfall (Gautier et al. 2003) 
Surface water: half-lives in lakes and rivers are reported to be approximately 4 d (Lamoreaux & Newland 1978; 
quoted, Howard 1991) 
Biodegradation t. = 3.5 d by aerobic activated sludge or anaerobic microorganisms cultivated by a an 
artificial sewage (Kawamoto & Urano 1990) 
Biodegradation t.(aerobic) = 180 d, t.(anaerobic) = 1 d, hydrolysis t. = 3800 d at pH 7 in natural waters 
(Capel & Larson 1995) 
Ground water: 
Sediment: 
Soil: average degradation rate constant k = 0.0423 d–1 in silty clay with t. = 16 d and average degradation rate 
constant k = 0.0444 d–1 in sandy clay with t. = 16 d (Sattar 1990); 
selected field t. = 0.5 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3814 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 18.1.1.28.1 
Reported vapor pressures and Henry’s law constants of dichlorvos at various 
temperatures 
Vapor pressure Henry’s law constant 
Guckel et al. 1973 Guckel et al. 1982 Gautier et al. 2003 
evaporation rate evaporation rate gas stripping-GC/MS 
t/°C P/Pa t/°C P/Pa t/°C H/(Pa m3/mol) 
20 1.60 20 0.947 10 0.00322 
30 4.0 40 7.30 10 0.00367 
40 9.33 60 40.0 11 0.00378 
50 - 12 0.00520 
60 - 12 0.00504 
15 0.00209 
18 0.0109 
20 0.0151 
20 0.0163 
22.5 0.0181 
23 0.0230 
25 0.0230 
25 0.0247 
25 0.0289 
20.0 0.0253 
Arrhenius expression: 
ln H=/(M atm–1) = –A + B/(T/K) 
A 28.904 
B 11100 
FIGURE 18.1.1.28.1 Logarithm of vapor pressure versus reciprocal temperature for dichlorvos. 
Dichlorvos: vapor pressure vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Guckel et al. 1973 
Guckel et al. 1982 
Kim et al. 1984 
Kim 1985 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3815 
FIGURE 18.1.1.28.2 Logarithm of Henry’s law constant versus reciprocal temperature for dichlorvos. 
Dichlorvos: Henry's law constant vs. 1/T 
-8.0 
-7.0 
-6.0 
-5.0 
-4.0 
-3.0 
-2.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
m 
. aP 
( / H nl 
3 
) l om/ 
Gautier et al. 2003 
© 2006 by Taylor & Francis Group, LLC

3816 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.29 Dicrotophos 
Common Name: Dicrotophos 
Synonym: Bidirl, Bidrin, C 709, Cabicron, Carbomicron, CIBA 709, Diapadrin, Dicrotofos, Ektafos, ENT 24,482, 
Karbicron, Shell SD-3562 
Chemical Name: (E)-2-dimethylcarbamoyl-1-methylvinyl dimethyl phosphate; (E)-3-(diethylamino)-1-methyl-3-oxo- 
1-propenyl dimethyl phosphate 
Uses: contact and systemic insecticide and acaricide to control pests on rice, cotton, maize, soybeans, coffee, citrus, 
and potatoes. 
CAS Registry No: 141-66-2 cis-dicrotophos 
Molecular Formula: C8H16NO5P. 
Molecular Weight: 237.191 
Melting Point (°C): liquid 
Boiling Point (°C): 
130 (at 0.1 mmHg, Worthing & Hance 1991; Montgomery 1993; Milne 1995) 
400 (Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
1.216 (Hartley & Kidd 1987) 
1.216 (15°C, Merck Index 1989; Milne 1995) 
1.21 (technical grade, Worthing & Hance 1991) 
1.216 (Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Spencer 1973) 
miscible (Hartley & Kidd 1987; Budavari 1989; Milne 1995) 
miscible (Worthing & Walker 1987; Montgomery 1993; Tomlin 1994) 
1000000 (20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°Cor as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
0.0115* (20°C, extrapolated, gas saturation-GC, measured range 32.3–77°C, Grayson & Fosbracey 1982) 
ln (P/Pa) = 21.6 –7631/(T/K); temp range 32.3–77°C, (Antoine eq., gas saturation-GC, Grayson & Fosbracey 
1982) 
0.0093 (20°C, Hartley & Kidd 1987) 
0.0093 (20°C, Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
0.0213 (20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
5.05 . 10–6 (20–25°C, calculated-P/C) 
Octanol/Water Partition Coefficient, log KOW: 
–0.260 (calculated as per Broto et al. 1984, Karcher & Devillers 1990) 
–0.49 (shake flask, Log P Database, Hansch & Leo 1987) 
–0.49 (recommended, Sangster 1993) 
–0.50 (Montgomery 1993) 
0.0 (Hansch et al. 1995)
N O 
P 
O 
O O 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3817 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
1.88 (soil, 20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
1.04–2.27 (Montgomery 1993) 
1.66 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.66; 1.49, 1.67 (soil, quoted exptl.; estimated-class-specific model, estimated-general model, Gramatica et al. 
2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: t. = 117, 72, and 28 d in buffer solutions of pH 5, 7, and 9, respectively, at 25°C (Lee et al. 1989; 
quoted, Montgomery 1993); 
calculated t. = 88 d in water at 20°C at pH 5 and = 23 d at pH 9 (Worthing & Hance 1991; Montgomery 
1993; Tomlin 1994). 
Half-Lives in the Environment: 
Soil: t. = 3 d in sandy loam soil (Lee et al. 1989; quoted, Montgomery 1993); 
selected field t. = 20 d (Wauchope et al. 1992; Hornsby et al. 1996). 
TABLE 18.1.1.29.1 
Reported vapor pressures of dicrotophos 
at various temperatures 
Grayson & Fosbracey 1982 
gas saturation-GC 
t/°C P/Pa 
32.3 0.034 
33.7 0.036 
41.0 0.055 
45.2 0.106 
51.0 0.136 
60.1 0.287 
65.8 0.405 
69.5 0.424 
77.0 0.820 
30 0.0115 
ln P = A – B/(T/K) 
P/Pa 
A 7631 
B 21.6 
© 2006 by Taylor & Francis Group, LLC

3818 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 18.1.1.29.1 Logarithm of vapor pressure versus reciprocal temperature for dicrotophos. 
Dicrotophos: vapor pressure vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Grayson & Fosbracey 1982 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3819 
18.1.1.30 Dieldrin 
Common Name: Dieldrin 
Synonym: Aldren, Alvit, Alyran, Compound 497, Dieldrite, Dieldrix, Dorytox, ENT 16225, HEOD, Illoxol, Insectlack, 
Kombi-Albertan, NA 2761, NCI-C00124, Octalox, Panoram D-31, Quintox 
Chemical Name: 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8, 8a-octahydroendo-1,4-exo-5,8-dimethano-naphthalene; 
3,4,5,6,9,9-hexachloro-1a,2,2a,3,6,6a,7,7a-octahydro-2,7:3,6-dimethanonaphth[2,3-b]oxirene 
Uses: insecticide to control public health insect pests, termites, locusts, and tropical disease vectors. 
CAS Registry No: 60-57-1 
Molecular Formula: C12H8Cl6O 
Molecular Weight: 380.909 
Melting Point (°C): 
175.5 (Lide 2003) 
Boiling Point (°C): 
265, 352, 404 (estimated from structure, Tucker et al. 1983) 
Density (g/cm3 at 20°C): 
1.75 (Hartley & Kidd 1987; Montgomery 1993) 
Molar Volume (cm3/mol): 
318.2 (calculated-Le Bas method at normal boiling point) 
253.6 (Ruelle & Kesselring 1997) 
Dissociation Constant, pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
76.6 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
21.4 (Rordorf 1989) 
18.41 (Ruelle & Kesselring 1997) 
Entropy of Fusion, .Sfus (J/mol K): 
41.34, 48.12 (Plato 1972) 
47 (Rordorf 1989) 
44.77 (Hinckley et al. 1990) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 K/mol K), F: 
0.026 (20°C, Suntio et al. 1988) 
0.033 (Mackay et al. 1986) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
0.19 (colorimetric method, Lipke & Kearns 1960) 
0.25* (shake flask-GC/UV, measured range 25–45°, Richardson & Miller 1960) 
0.14–0.18 (particle size of 0.04–5.0µ, shake flask-GC, Robeck et al. 1965) 
0.15 (Eye 1968; quoted, Freed 1976; Jury et al. 1983,84) 
0.20 (Gunther et al. 1968) 
0.186 (25–29°C, shake flask-GC/ECD, Park & Bruce 1968) 
0.022 (Biggar & Riggs 1974) 
0.195* (particle size of . 5.0µ, shake flask-GC/ECD, measured range 15–45°C, Biggar & Riggs 1974) 
0.022*, 0.15*, 0.195* (particle size: 0.01, 0.05 & 5.0µ; shake flask-GC/ECD, measured range 15–45°C, Biggar 
& Riggs 1974) 
0.20 (generator column-GC/ECD, Weil et al. 1974) 
0.187 (Martin & Worthing 1977; Worthing & Walker 1987) 
0.10–0.25 (Wauchope 1978) 
O 
Cl 
Cl Cl 
Cl 
Cl Cl 
© 2006 by Taylor & Francis Group, LLC

3820 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.022 (Kenaga 1980a, b; Garten & Trabalka 1983; Isnard & Lambert 1989) 
0.10 (Weber et al. 1980; Eadie & Robbins 1987) 
0.468 (20–25°C, shake flask-GC, Kanazawa 1981) 
0.19 (20°C, Hartley & Kidd 1987) 
0.14, 0.20 (20°C, 30°C, Montgomery 1993) 
0.20 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
4.57, 4.95 (supercooled liquid: LDV derivation of literature-derived value, FAV final-adjusted value, Shen & 
Wania 2005) 
log [CL/(mol m–3)] = –1158/(T/K) + 1.94 (supercooled liquid, linear regression of literature data, Shen & Wania 
2005) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
1.04 . 10–4 (20°C, Porter 1964) 
1.04 . 10–4, 1.91 . 10–4, 3.65 . 10–4 (20, 30, 40°C, effusion method, Porter 1964 as quoted in Spencer & Cliath 
1969) 
2.40 . 10–5 (Eichler 1965; Martin 1972; Melnikov 1971) 
3.47 . 10–4, 1.33 . 10–3, 4.63 . 10–3 (20, 30, 40°C, gas saturation method, Spencer & Cliath 1969) 
6.59 . 10–4 (calculated from vapor pressure eq. apparent vapor pressure, Spencer & Cliath 1969) 
log (P/mmHg) = 12.07 –5178/(T/K); for temp range 20–40°C (gas saturation, apparent vapor pressure, Spencer & 
Cliath 1969) 
6.77 . 10–4 (gas saturation, Spencer & Cliath 1969) 
3.87 . 10–4 (20°C, partition coeff., Atkins & Eggleton 1971) 
4.13 . 10–4 (20°C, Khan 1980) 
2.40 . 10–5 (20–25°C, Weber et al. 1980) 
8.90 . 10–4 (20°C, GC, Seiber et al. 1981) 
4.20 . 10–4* (20°C, gas saturation-GC, extrapolated, measured range 35–75°C, Grayson & Fosbracey 1982) 
ln (P/Pa) = 30.7 – 11285/(T/K); temp range 35 to 75.2°C (Antoine eq., gas saturation-GC, Grayson & Fosbracey 1982) 
0.00532, 0.0597 (PGC by GC-RT correlation, different stationary phases, Bidleman 1984) 
0.0215 (supercooled liquid PL, converted from literature PS with .Sfus Bidleman 1984) 
4.00 . 10–4 (20°C, Hartley & Kidd 1987) 
7.90 . 10–4* (gas saturation-GC, measured range 25–125°C, Rordorf 1989) 
log (PS/Pa) = 14.37 – 5210.07/(T/K); measured range 32.4–125°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 11.66013 – 4001.62/(T/K); temp range not specified (liquid, gas saturation-GC, Rordorf 1989) 
0.0215, 0.0101 (supercooled PL, converted from literature PS with different .Sfus values, Hinckley et al. 1990) 
0.00532, 0.0318 (PGC by GC-RT correlation with different reference standards, Hinckley et al. 1990) 
log (PL/Pa) = 12.46 – 4310/(T/K) (GC-RT correlation, supercooled liquid, Hinckley et al. 1990) 
2.37 . 10–5 (20°C, Montgomery 1993) 
4.00 . 10–4 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
0.010 (supercooled liquid PL, Wania & Mackay 1996) 
3.24 . 10–4 (liquid PL, GC-RT correlation., Donovan 1996) 
0.016, 0.014 (supercooled liquid PL: LDV literature derived value, FAV final adjusted value, Shen & Wania 2005) 
log (PL/Pa) = –3995/(T/K) + 11.62 (supercooled liquid, linear regression of literature data, Shen & Wania 2005) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
4.59 (gas stripping, Atkins & Eggleton 1971) 
0.02 (calculated-P/C, Mackay & Leinonen 1975) 
0.0171 (20°C, calculated-P/C, Kavanaugh & Trussell 1980) 
5.84 (exptl., Warner et al. 1980) 
0.0456 (calculated-P/C, Levins 1981) 
1.10 (20°C, Mackay & Shiu 1981) 
2.94 (20°C, measured, Slater & Spedding 1981) 
0.172 (estimated-group method per Hine & Mookerjee 1975, Tucker et al. 1983) 
1.66 (calculated-P/C, Jury et al. 1984, 1987a; Jury & Ghodrati 1989) 
0.78 (calculated-P/C, Mackay et al. 1986) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3821 
0.74 (WERL Treatability Database, quoted, Ryan et al. 1988) 
1.12 (20°C, calculated-P/C, Suntio et al. 1988) 
1.0 (calculated-P/C, Nash 1989) 
5.88 (Montgomery 1993) 
1.016 (wetted wall column-GC, Altschuh et al. 1999) 
1.0, 1.1 (LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
Octanol/Water Partition Coefficient, log KOW: 
2.60 (Hansch & Leo 1979) 
5.48 (calculated, Kenaga 1980a, b) 
6.20 (TLC-retention time correlation, Lord et al. 1980) 
4.32 (shake flask-GC, Kanazawa 1981) 
6.20 (20°C, shake flask-GC, Briggs 1981) 
5.11 (HPLC-RT correlation, Hammers et al. 1982) 
5.30 (RP-HPLC correlation, Hermens & Leeuwangh 1982) 
5.10 (shake flask-GC, Platford 1982) 
4.32 (Hansch & Leo 1985; Medchem Database 1988) 
4.51, 4.49, 4.60, 4.55 (shake flask, Brooke et al. 1986) 
4.51 (HPLC-RT correlation, De Kock & Lord 1987) 
5.40 (shake flask/slow-stirring method, De Bruijn et al. 1989) 
3.69–6.20 (Montgomery 1993) 
4.76 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
5.20 (selected, Hansch et al. 1995) 
4.76 (RP-HPLC-RT correlation, Finizio et al. 1997) 
5.40, 5.58 (LDV literature-derived value, FAV final-adjusted value, Shen & Wania 2005) 
Octanol/Air Partition Coefficient, log KOA at 25°C and reported temperature dependence equations. Additional data 
at other temperatures designated * are compiled at the end of this section: 
7.40 (calculated-KOW/KAW, Wania & Mackay 1996) 
8.837*, 8.898 (gas saturation-GC/MS, calculated, measured range 5–45°C, Shoeib & Harner 2002) 
log KOA = –3.82 + 3790/(T/K), temp range: 5–45°C (gas saturation-GC, Shoeib & Harner 2002) 
8.89, 8.84 (LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
Bioconcentration Factor, log BCF: 
3.08, 4.14, 4.69 (algae, daphnia, guppies, Reinert 1967) 
3.65–4.69 (earthworms, Wheatley & Hardman 1968) 
0.230 (bioaccumulation factor log BF, adipose tissue in male Albino rats, Robinson et al. 1969) 
0.322 (bioaccumulation factor log BF, adipose tissue in male Albino rats, Walker et al. 1969) 
3.04–3.66 (Saccharomyces cerevisiae, Voerman & Tammes 1969) 
3.0–5.48 (benthic algae, Rose & McIntire 1970) 
0.301 (bioaccumulation factor log BF, adipose tissue in male Albino rats, Baron & Walton 1971) 
3.24 (soft clam, Butler 1971) 
3.11, 3.54, 2.37 (Scenedemus obliquus, Daphnia magna, Reinert 1972) 
2.37 (wet-wt. basis, Scenedemus obliquus, Reinert 1972) 
3.43, 4.79, 2.66–4.60 (Gambusia, Physa, Oedogonium sp., Metcalf et al. 1973) 
4.51 (wet-wt. basis, Ankistrodesmus, Neudorf & Khan 1975) 
3.39 (oyster, Mason & Rowe 1976) 
3.20 (mussel, steady state, Ernst 1977) 
2.30 (Anabaena cylindrica, Schauberger & Wildman 1977) 
2.70; 3.26 (Anacystis nidulans, Nostoc muscorum, Schauberger & Wildman 1977) 
2.0–4.0 (Callahan et al. 1979; quoted, Howard 1991) 
3.76, 3.65 (fish: flowing water, static water; Kenaga 1980a, b; Kenaga & Goring 1980) 
0.362 (average beef fat diet, Kenaga 1980b) 
3.54 (pulex, Kenaga & Goring 1980) 
3.62 (earthworms, Lord et al. 1980) 
© 2006 by Taylor & Francis Group, LLC

3822 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.00 (Triaenodes tardus, Belluck & Felsot 1981) 
3.65 (Pseudorasbora parva, flow-through conditions, Kanazawa 1981) 
1.0–5.0 (selected, Schnoor & McAvoy 1981) 
3.37 (mussel, quoted average, Geyer et al. 1982) 
4.23–4.98 (earthworms, Gish & Hughes 1982) 
4.16 (fish, correlated, Mackay 1982) 
3.52 (trout, Verschueren 1983) 
3.55 (clam fat, 60-d expt., Hartley & Johnson 1983) 
4.10 (guppy, Davies & Dobbs 1984) 
4.25 (activated sludge, Freitag et al. 1984) 
3.36, 3.48, 4.25 (algae, golden ide, activated sludge, Freitag et al. 1985) 
3.33, 3.29 (mussel, calculated values, Zaroogian et al. 1985) 
3.33, 3.29 (oyster, calculated values, Zaroogian et al. 1985) 
3.70, 3.90 (oyster, quoted from Zaroogian et al. 1985; Hawker & Connell 1986) 
1.72–1.95 (human fat lipid basis, Geyer et al., 1987) 
1.56–1.78 (human fat wet wt. basis, Geyer et al., 1987) 
4.10 (quoted, Isnard & Lambert 1988; Howard 1991) 
–2.10 (beef biotransfer factor log Bb, correlated-KOW, Potter et al. 1974) 
–1.97 (milk biotransfer factor log Bm, correlated-KOW, Saha 1969; Wilson & Cook 1972) 
–1.01 (vegetation, correlated-KOW, Beall & Nash 1972; quoted, Travis & Arms 1988) 
2.96–4.11 (aquatic food web, Fordham & Reagan 1991) 
3.81 (fish, Fordham & Reagan 1991) 
3.88 (selected, Chessells et al. 1992) 
3.36, 4.06 (algae Chlorella: wet wt basis, dry wt basis, Geyer et al. 2000) 
3.49, 5.49 (mussel Mytilus edulis: wet wt basis, lipid wt basis, Geyer et al. 2000) 
3.54, 5.57 (Daphnia: wet wt basis, lipid wt basis, Geyer et al. 2000) 
3.46, 5.54 (oyster Crassostrea virginica: wet wt basis, lipid wt basis, Geyer et al. 2000) 
3.32, 5.34 (oyster Crassostrea virginica: wet wt basis, lipid wt basis, Geyer et al. 2000) 
3.70, 5.62 (oyster Crassostrea virginica: wet wt basis, lipid wt basis, Geyer et al. 2000) 
4.10, 5.26 (guppy female: wet wt basis, lipid wt basis, Geyer et al. 2000) 
4.41, 5.41 (carp: wet wt basis, lipid wt basis, Geyer et al. 2000) 
3.32, 5.34 (oyster Crassostrea virginica: wet wt basis, lipid wt basis, Geyer et al. 2000) 
1.69; 1.85 (human: wet wt basis, lipid wt basis, Geyer et al. 2000) 
3.65; 3.66 (Oncorhynchus mykiss, wet wt. basis: quoted exptl.; calculated-QSAR model based on quantum 
chemical parameters, Wei et al. 2001) 
Sorption Partition Coefficient, log KOC: 
4.55 (soil, calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
4.08 (calculated-KOW, Rao & Davidson 1980) 
3.87 (extrapolated from RP-TLC and reported as log KOM, Briggs 1981) 
4.0 (selected, Schnoor & McAvoy 1981; Schnoor 1992) 
3.36–3.85 (reported as log KOM, Mingelgrin & Gerstl 1983) 
4.08 (soil, screening model calculations, Jury et al. 1984, 1987a, b; Jury & Ghodrati 1989) 
4.36 (calculated-KOW as per Kenaga & Goring 1980, Chapman 1989) 
4.15 (soil: clay loam/kaolinite, 20°C, batch equilibrium-sorption isotherm, Kishi et al. 1990) 
4.50 (sediment, Fordham & Reagan 1991) 
4.10 (soil, quoted exptl., Meylan et al. 1992) 
4.03 (soil, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
5.08 (estimated-QSAR and SPARC, Kollig 1993) 
4.08–4.55 (Montgomery 1993) 
4.08 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
4.55 (soil, calculated-MCI 1., Sabljic et al. 1995) 
4.55; 4.71 (soil, quoted exptl.; estimated-general model, Gramatica et al. 2000) 
4.90; 4.10 (soil, calculated-universal solvation model; quoted exptl., Winget et al. 2000) 
4.08, 4.06 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3823 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. ~ 1.4 d from a model river of depth 1 m flowing at 1 m/s with a wind velocity of 3 m/s by 
using Henry’s law constant (Lyman et al. 1982; quoted, Howard 1991). 
Photolysis: rate constant k = 4.8 . 10–4 h–1 by direct sunlight at 40° latitude (Mabey et al. 1982); using fungus and 
254 nm UV, more than 90% initial added amounts were degraded in 4 weeks of incubation (Katayama & 
Matsumura 1991). 
Oxidation: rate constant for singlet oxygen, k < 3600 M–1 h–1 and for RO2 radicals k < 30 M–1 h–1 (Mabey et al. 1982); 
photooxidation t. = 4–40.5 h, based on an estimated rate constant for vapor-phase reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
calculated tropospheric lifetimes of 1.1 d due to gas-phase reaction with OH radical (Atkinson et al. 1992). 
Hydrolysis: first-order t. = 10.5 yr based on a first-order rate constant k = 7.5 . 10–6 h–1 at pH 7.0 and 25°C 
(Ellington et al. 1986, 1987, 1988; quoted, Howard et al. 1991; Montgomery 1993); 
rate constant k = 6.3 . 10–2 yr–1 at pH 7 and 25°C (Kollig 1993). 
Biodegradation: aqueous aerobic t. = 4200–25,920 h, based on unacclimated aerobic soil grab sample data 
(Castro & Yoshida 1971; quoted, Howard et al. 1991; Howard 1991) and reported soil field test data (Kearney 
et al. 1969; quoted, Howard et al. 1991); 
t. = 868 d (Nash 1980; quoted, Jury et al. 1983); 
rate constant k = 0.013 d–1 from soil incubation studies by die-away tests (Rao & Davidson 1980; quoted, 
Scow 1982); 
aqueous anaerobic t. = 24–168 h, based on soil and freshwater mud grab sample data (Maule et al. 1987; 
quoted, Howard et al. 1991); 
t. = 870 d in soil by 100-d leaching screening simulation in 0–10 cm depth of soil (Jury et al. 1984, 1987a, 
b; Jury & Ghodrati 1989). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 20.40 h–1; k2 = 0.013 h–1 (Ernst 1977; quoted, Hawker & Connell 1986) 
k2 = 0.017 d–1 (fish, Fordham & Reagan 1991) 
k2 = 0.014 d–1 (birds, Fordham & Reagan 1991) 
Half-Lives in the Environment: 
Air: t. = 4–40.5 h, based on an estimated rate constant for vapor-phase reaction with hydroxyl radical in air 
(Atkinson 1987; quoted, Howard et al. 1991; Mortimer & Connell 1995); 
calculated life-time of 1.1 d in troposphere (Atkinson et al. 1992). 
Surface water: estimated t. . 300 d in lake waters (Zoeteman et al. 1980); 
t. = 4200–25920 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991; quoted, 
Mortimer & Connell 1995). 
Ground water: t. = 24–51840 h, based on estimated aqueous aerobic and anaerobic biodegradation half-lives 
(Howard et al. 1991). 
Sediment: t. = 15100 h (mean value quoted from Howard et al. 1991). 
Soil: field t. = 49 d in nondisked soil (Nash 1983); 
t. ~ 7 yr persistence in soil (Nash & Woolson 1967); 
estimated persistence of 3 yr in soil (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury 
et al. 1987); 
t. = 4200–25920 h, based on unacclimated aerobic soil grab sample data (Castro & Yoshida 1971; quoted, 
Howard et al. 1991) and reported soil field test data (Kearney et al. 1969; quoted, Howard et al. 1991); 
“best estimate” of 10 yr for 95% disappearance, the “true value” lies between 8.2–13.6 yr in experimental 
field (Freeman et al. 1975) 
persistence of more than 36 months (Wauchope 1978); 
first-order t. ~ 53.3 d from rate constant k = 0.013 d–1 from soil incubation studies by die-away tests (Rao 
& Davidson 1980; quoted, Scow 1982); 
moderately persistent in soils with t. = 20–100 d (Willis & McDowell 1982); 
microagroecosystem t. = 19–26 d in moist fallow soil (Nash 1983); 
measured dissipation rate k = 0.055 d–1 (Nash 1983; quoted, Nash 1988); 
estimated dissipation rate k = 0.034 and 0.049 d–1 (Nash 1988); 
© 2006 by Taylor & Francis Group, LLC

3824 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
biodegradation t. = 868 d (Jury et al. 1984, 1987a, b; Jury & Ghodrati 1989; quoted, Montgomery 1993); 
t. > 50 d and subject to plant uptake via volatilization (Ryan et al. 1988); 
estimated field t. = 1000 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996); 
t. = 5 – 9 yr in soil (Geyer et al. 2000) 
t. = 21.7 and 25 yr for control and sludge-amended Luddington soils, respectively (Meijer et al. 2001). 
Biota: estimated t. ~ 1.3 and 10.2 d in rat’s liver, and similar values estimated t. = 10.3 d for the blood in rat 
and t. = 3 d in adipose tissue of rat (Robinson et al. 1969); 
t. = 53.1 h in mussels (Ernst 1977; quoted, Hawker & Connell 1986); 
biochemical t. = 868 d from screening model calculations (Jury et al. 1987a, b; Jury & Ghodrati 1989) 
TABLE 18.1.1.30.1 
Reported aqueous solubilities and octanol-air partition coefficients of dieldrin at various temperatures 
Aqueous solubility log KOA 
Richardson & Miller 1960 Biggar & Riggs 1974 Shoeib & Harner 2002 
shake flask-UV spec. shake flask-GC generator column-GC/MS 
t/°C S/g·m–3 t/°C S/g·m–3 S/g·m–3 S/g·m–3 t/°C log KOA 
particle size 0.01µ 0.05µ 5.0µ 
25 0.25 15 0.010 0.065 0.090 15 9.359 
35 0.54 25 0.022 0.150 0.195 25 8.837 
45 1.0 35 0.047 0.270 0.400 35 8.550 
45 0.090 0.480 0.650 45 8.075 
25 8.898 
log KOA = A + B/(T/K) 
A –3.82 
B 3790 
enthalpy of phase change 
.HOA/(kJ mol–1) = 72.6 
FIGURE 18.1.1.30.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for dieldrin. 
Dieldrin: solubility vs. 1/T 
-24.0 
-23.0 
-22.0 
-21.0 
-20.0 
-19.0 
-18.0 
-17.0 
-16.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
x nl 
Richardson & Miller 1960 
Biggar & Riggs 1974 (0.01 µ particle size) 
Biggar & Riggs 1974 (0.05 µ particle size) 
Biggar & Riggs 1974 (5.0 µ particle size) 
Lipke & Kearns 1960 
Weil et al. 1974 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3825 
FIGURE 18.1.1.30.2 Logarithm of KOA versus reciprocal temperature for dieldrin. 
TABLE 18.1.1.30.2 
Reported vapor pressures of dieldrin at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) In P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Spencer & Cliath 1969 Grayson & Fosbracey 1982 Rordorf 1989 
gas saturation-GC gas saturation-GC gas saturation-GC 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
wet set 1 set 2 
20 3.47 . 10–4 35.0 0.0026 25 0.00079 25 0.0051 
30 1.32 . 10–3 38.2 0.0042 50 0.018 50 0.064 
40 4.68 . 10–3 51.5 0.017 75 0.25 75 0.55 
dry 62.8 0.059 100 2.60 100 3,60 
20 3.73 . 10–4 70.0 0.114 125 19.0 125 18.0 
30 1.35 . 10–3 75.2 0.182 
40 4.52 . 10–3 20 0.00042 eq. 1 PS/Pa eq. 1 PS/Pa 
A 14.37 A 11.867 
eq.1 P/mmHg eq. 1a P/Pa B 5210.07 B 4220.71 
A 12.07 A 11285 
B 5178 B 30.7 eq. 1 PL/Pa eq. 1 PL/Pa 
A 11.6603 A 9.519590 
B 4001.62 B 3280.59 
.HV = 76.6 kJ/mol .HV = 62.8 kJ/mol 
Dieldrin: KOA vs. 1/T 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 
10.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
AO 
Shoeib & Harner 2000 
Shoeib & Harner 2002 (interpolated) 
© 2006 by Taylor & Francis Group, LLC

3826 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 18.1.1.30.3 Logarithm of vapor pressure versus reciprocal temperature for dieldrin. 
Dieldrin: vapor pressure vs. 1/T 
-6.0 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Porter 1964 
Spencer & Cliath 1968 
Grayson & Fosbracey 1982 
Rordorf 1989 (set 1) 
Rordorf 1989 (set 2) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3827 
18.1.1.31 Diflubenzuron 
Common Name: Diflubenzuron 
Synonym: Deflubenzon, difluron, Dimilin, DU 112307, Duphacid, ENT 29054, OMS 1804, Largon, Micromite, PDD 
60401, PH 60–40, TH-6040 
Chemical Name: 1-(4-chlorophenyl)-3-(2,6-difluorobenzol) urea; N-[[(4-chlorophenyl)-amino]carbonyl]-2,6-difluorobenzamide 
Uses: nonsystemic insecticide to control leaf-eating larvae and leaf miners in forestry, woody ornamentals and fruit trees. 
CAS Registry No: 35367-38-5 
Molecular Formula: C14H9ClF2N2O2 
Molecular Weight: 310.683 
Melting Point (°C): 
230–232 (pure, Hartley & Kidd 1987; Montgomery 1993; Milne 1995) 
230–232 (dec., Tomlin 1994) 
239 (Lide 2003) 
Boiling Point (°C): 
dec. on distillation (Montgomery 1993) 
Density (g/cm3 at 20°C): 
288.3 (calculated-Le Bas method at normal boiling point) 
Molar Volume (cm3/mol): 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.00795 (mp at 239°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.25 (Ivie et al. 1980; quoted, Belluck & Felsot 1981) 
0.20 (Spencer 1982; Wauchope 1989) 
0.14 (20°C, Hartley & Kidd 1987; Milne 1995) 
0.10 (20°C, Worthing & Walker 1987, 1991) 
14.0 (Montgomery 1993) 
0.30 (Milne 1995) 
0.08 (selected, Lohninger 1994) 
0.08 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 3.3 . 10–5 (50°C, Hartley & Kidd 1987) 
< 1.3 . 10–5 (Worthing & Hance 1991) 
3.33 . 10–5 (20°C, Montgomery 1993) 
1.20 . 10–7 (gas saturation method, Tomlin 1994) 
1.20 . 10–7 (20–25°C, selected, Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
7.40 . 10–4 (20–25°C, calculated-P/C, Montgomery 1993) 
4.70 . 10–4 (20–25°C, calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
5.06 (Belluck & Felsot 1981) 
3.88 (shake flask-UV, Sotomatsu et al. 1987) 
Cl 
HN 
HN 
O O F 
F 
© 2006 by Taylor & Francis Group, LLC

3828 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.12 (shake flask-UV, Nakagawa et al. 1991) 
3.10 (selected, Nendza 1991) 
3.29 (calculated, Montgomery 1993) 
3.89 (Tomlin 1994) 
Bioconcentration Factor, log BCF: 
2.88 (calculated-S as per Kenaga & Goring, this work) 
2.44 (calculated-KOW as per Kenaga & Goring, this work) 
Sorption Partition Coefficient, log KOC: 
3.01 (calculated, Montgomery 1993) 
4.00 (average value, Dowd et al. 1993) 
4.00 (20–25°C, selected, Hornsby et al. 1996) 
4.06 (estimated-chemical structure, Lohninger 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: half-lives at 20°C: t. > 150 d at pH 5 and 7 and t. = 42 d at pH 9 (Tomlin 1994). 
t. > 300 d at pH 2, t. = 100 d at pH 7 and t. = 0.48 d at pH 12 in natural waters at 20–25°C (Capel & 
Larson 1995) 
Biodegradation: t.(aerobic) = 3 d, t.(anaerobic) = 12 d in natural waters (Capel & Larson 1995) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: stable at pH 5 and 7 with t. > 150 d, and t. = 42 d at pH 9 and 20°C (Tomlin 1994) 
biodegradation t.(aerobic) = 3 d, t.(anaerobic) = 12 d, hydrolysis t. > 300 d at pH 2, t. = 100 d at pH 7 
and t. = 0.48 d at pH 12 in natural waters at 20–25°C (Capel & Larson 1995) 
Ground water: 
Sediment: 
Soil: t. < 7 d (Hartley & Kidd 1987; quoted, Montgomery 1993; Tomlin 1994); 
t. = 10 d in forest soil (Dowd et al. 1993); 
field t. = 10 d (20–25°C, selected, Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3829 
18.1.1.32 Dimethoate 
Common Name: Dimethoate 
Synonym: AC 12880, AC 18682, American Cynamid 12880, BI 58, Cekuthoate, Chemathoate, CL 12880, Cygon, 
Daphene, De-fend, Demos-L40, Devigon, Dimetate, Dimeton, Dimevur, ENT 24650, Ferkethion, Fip, Fortion NM, 
Fosfamid, Fosfotox, Fostion MM, L 395, Lurgo, NC 262, Perfekthion, Phosphamid, Rebelate, Rogodial, Rogor, 
Roxion, Sinoratox, Trimetion 
Chemical Name: O,O-dimethyl S-methylcarbamoyl-methyl phosphorodithioate; O,O-dimethyl S-(N-monomethyl)carbamylmethyl 
dithiophosphate; 2-dimethoxyphosphinothioylthio-N-methylacetamide 
Uses: systemic and contact insecticide to control thrips and red spider mites on many agricultural crops, sawflies on 
apples and plums, also wheat bulb and olive flies. 
CAS Registry No: 60-51-5 
Molecular Formula: C5H12NO3PS2 
Molecular Weight: 229.258 
Melting Point (°C): 
51–52 (Hartley & Kidd 1987) 
49.0 (Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
52 (Lide 2003) 
Boiling Point (°C): 
107 (at 0.05 mmHg, Melnikov 1971; Freed et al. 1977) 
117 (at 0.1 mmHg, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
117 (tech. grade at 0.1 mmHg, Worthing & Hance 1991) 
Density (g/cm3 at 20°C): 
1.277 (65°C, Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994; Milne 1995) 
1.281 (50°C, Worthing & Hance 1991; Montgomery 1993) 
Molar Volume (cm3/mol): 
205.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
23.43 (DSC method, Plato & Glasgow 1969) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.543 (mp at 52°C) 
Water Solubility (g/m3 or mg/L at 25°C at normal boiling point): 
39000 (Melnikov 1971) 
25000 (Martin & Worthing 1977; Worthing 1979; Kenaga 1980a) 
25140 (Briggs 1981) 
7000–30000 (20–25°C, selected, Willis & McDowell 1982) 
> 5000 (20°C, shake flask-GC, Bowman & Sans 1983a) 
25020 (20°C, shake flask-GC, Bowman & Sans 1983b) 
25000 (22°C, Verschueren 1983) 
25000 (21°C, Hartley & Kidd 1987; Worthing & Walker 1987, 1991; Montgomery 1993) 
25120 (Kanazawa 1989) 
39800 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
23300, 23800, 25000 (20°C, at pH 5, 7, 9, Tomlin 1994) 
21000 (21°C, Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
11.3 . 10–4 (20°C, Wolfdietrich 1965; Melnikov 1971; Khan 1980) 
3.73 . 10–4 (20°C, vaporization rate-gravimetric method, Guckel et al. 1973) 
HN 
O 
S 
P 
O 
S 
O 
© 2006 by Taylor & Francis Group, LLC

3830 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
11.0 . 10–4 (Worthing 1979; Hartley & Kidd 1987) 
8.90 . 10–4 (20°C, GC, Seiber et al. 1981) 
6.80 . 10–4 (gas saturation-GC, Kim et al. 1984, Kim 1985) 
3.87 . 10–4 (20°C, extrapolated-Clausius-Clapeyron eq. with vapor pressures at several temperatures, Kim 
et al. 1984) 
85.0 . 10–4 (20°C, GC-RT correlation without mp correlation, Kim et al. 1984; Kim 1985) 
41.0 . 10–4 (20°C, GC-RT correlation with mp correction, Kim et al. 1984; Kim 1985) 
2.90 . 10–4 (20°C, Worthing & Hance 1991) 
33.3 . 10–4 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
6.75 . 10–4 (20°C, Montgomery 1993) 
11.0 . 10–4 (Tomlin 1994) 
0.0363 (gradient GC method; Tsuzuki 2000) 
0.0363; 0.11, 0.083 (gradient GC method; estimation using modified Watson method: Sugden’s parachor, 
McGowan’s parachor, Tsuzuki 2000) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
6.23 . 10–6 (calculated-P/C, Lyman et al. 1982; quoted, Howard 1991) 
1.10 . 10–4 (20°C, calculated-P/C, Suntio et al. 1988; quoted, Majewski & Capel 1995) 
2.66 . 10–6 (20–21°C, calculated-P/C, Montgomery 1993) 
1.15 . 10–4 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
–0.29 (Hamaker 1975; Kenaga & Goring 1980) 
–0.294 (shake flask-GC, Freed et al. 1979) 
0.79 (20 ± 2°C, shake flask-UV, Briggs 1981) 
0.70 (22°C, shake flask-GC, Bowman & Sans 1983) 
0.50, 0.78 (recommended, Hansch & Leo 1985) 
2.71 (Kanazawa 1989) 
0.699 (Worthing & Hance 1991; Milne 1995) 
0.51–0.78 (Montgomery 1993) 
0.50 (recommended, Sangster 1993) 
0.704 (Tomlin 1994) 
0.78 (selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
2.00 (estimated-S, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
1.23 (soils, calculated, Kenaga 1980a; quoted, Howard 1991) 
0.72 (20 ± 2°C, shake flask-UV and reported as log KOM, Briggs 1981) 
1.43 (average of 2 soils, Kanazawa 1989) 
1.26, 1.56 (clay loam soil, Kanazawa 1989) 
0.716 (clay soil, Kanazawa 1989;) 
0.72, 1.47 (reported as log KOM, estimated as log KOM, Magee 1991) 
1.20, 1.39 (soil, quoted exptl., calculated-. and fragment contribution, Meylan et al. 1992) 
1.30 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.132 (estimated-QSAR and SPARC, Kollig 1993) 
0.96 (Montgomery 1993) 
1.00 (estimated-chemical structure, Lohninger 1994) 
1.21; 1.72 (sandy loam soil, sandy loam sand, Tomlin 1994) 
1.20 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.20; 1.70, 1.85 (soil, quoted exptl.; estimated-class-specific model, estimated-general model, Gramatica et al. 
2000) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3831 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: photooxidation t. = 0.469–4.69 h in air, based on estimated rate constant for the reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: t. = 0.8 h at pH 9 and t. = 21 h at pH 2 both at 70°C (Melnikov 1971; quoted, Freed et al. 1977) 
neutral rate constant k = 1.7 . 10–4 h–1 with a calculated t. = 118 h at pH 7 and 25°C (Ellington et al. 1987, 
1988; quoted, Montgomery 1993); 
first-order t. = 2822 h, based on measured neutral and base catalyzed hydrolysis rate constants (Ellington 
et al. 1987; quoted, Howard et al. 1991); 
rate constant k = 1.68 yr–1 at pH 7.0 and 25°C (Kollig 1993); 
t. = 12 d at pH 9 (Tomlin 1994) 
t. = 120 d at pH 2, t. = 120 d at pH 7 and t. = 0.0038 d at pH 12 in natural waters (Capel & Larson 1995) 
Biodegradation: aqueous aerobic t. = 264–1344 h, based on river die-away test data (Eichelberger & Lichtenburg 
1971; quoted, Howard et al. 1991) and soil die-away test data for two soils (Bro-Rasmussen et al. 1970; 
quoted, Howard et al. 1991); aqueous anaerobic t. = 1056–5376 h, based on estimated unacclimated aqueous 
aerobic biodegradation half-life (Howard et al. 1991) 
t.(aerobic) = 11 d, t.(anaerobic) = 44 d in natural waters (Capel & Larson 1995) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.469–4.69 h, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 
1987; quoted, Howard et al. 1991). 
Surface water: t. = 264–1344 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991) 
Biodegradation t.(aerobic) = 11 d, t.(anaerobic) = 44 d, hydrolysis t. = 120 d at pH 2, t. = 120 d at pH 7 
and t. = 0.0038 d at pH 12 in natural waters (Capel & Larson 1995) 
t. = 423 d at 6°C, 193h at 23°C in darkness for Milli-Q water; t. = 171 d at 6°C, t. = 43 d at 22°C in 
darkness, t. = 29 d under sunlight conditions for river water at pH 7.3; t. = 173 d at 6°C, t. = 29 d at 
22°C in darkness for filtered river water, pH 7.3; t. = 219 d at 6°C, t. = 36 d at 22°C in darkness, t. = 
74 d under sunlight conditions for seawater, pH 8.1 (Lartiges & Garrigues 1995). 
Ground water: t. = 528–2688 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: 
Soil: t. = 264–888 h, based on soil die-away test data for two soils (Bro-Rasmussen et al. 1970; quoted, Howard 
et al. 1991); 
selected t. = 7.0 d (Wauchope et al. 1992; Hornsby et al. 1996); 
aerobic t. = 2–4.1 d in soil and photolytic t. = 7–16 d on soil surface (Tomlin 1994); 
t. = 7.0 d (selected, Halfon et al. 1996). 
Biota: disappearance rate and half-life from treated plants: t. = 2.95 d for cabbage, t. = 3.40 d for tomato leaves 
and t. = 2.40 d for tomato fruits (Othman et al. 1987). 
© 2006 by Taylor & Francis Group, LLC

3832 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.33 Disulfoton 
Common Name: Disulfoton 
Synonym: Di-Syston, Dimaz, Disipton, Disystox, Dithiosystox, Frumin AL, Glebofos, Solvirex 
Chemical Name: O,O-diethyl S-[2-(ethylthio) ethyl] phosphorodithioate; phosphorodithioic acid, O,O-diethyl 
S-[2-(ethylthio)ethyl] ester 
Uses: insecticide to control aphids, thrips, mealybugs, and other sucking insects, and spider mites in potatoes, vegetables, 
cereals, maize, sorghum, rice, soybeans, groundnuts, lucerne, clover, sugar cane, sugar beet, hops, strawberries, 
cotton, coffee, pineapples, tobacco, ornamentals, fruit and nut crops, and forestry nurseries; also used as acaricide. 
CAS Registry No: 298-04-4 
Molecular Formula: C8H19O2PS3 
Molecular Weight: 274.405 
Melting Point (°C): 
–25 (Milne 1995; Lide 2003) 
Boiling Point (°C): 
62.0 (at 0.01 mmHg, Hartley & Kidd 1987) 
128 (at 1 mmHg, Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
1.144 (Hartley & Kidd 1987; Tomlin 1994) 
1.14 (Worthing & Hance 1991) 
Molar Volume (cm3/mol): 
282.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
66 (Gunther 1968) 
25 (20°C, Melnikov 1971; Spencer 1973) 
25 (Martin & Worthing 1977) 
16.3 (19.5°C, shake flask-GC, Bowman & Sans 1979, 1983b) 
25 (22°C, Khan 1980; Worthing & Walker 1983) 
15–66 (20–25°C, selected, Willis & McDowell 1982) 
25 (22°C, Hartley & Kidd 1987) 
12 (22°C, Worthing & Hance 1991) 
25 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
12 (20°C, Tomlin 1994) 
12 (22°C, Milne 1995) 
29.9, 29.9 (supercooled liquid SL: literature-derived value LDV, final adjusted value FAV, Muir et al. 2004) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.024 (20°C, vapor density, MacDougall & Archer 1964) 
log (P/mmHg) = 10.20 – 4084.80/(T/K); temp range 10–40°C (vapor density, MacDougall & Archer 1964) 
0.024 (20°C, Eichler 1965) 
0.024 (20°C, Melnikov 1971; Khan 1980) 
0.024 (Worthing 1983) 
0.0041 (20°C, GC-Rt correlation, Kim et al. 1984; Kim 1985) 
0.024 (20°C, Hartley & Kidd 1987) 
0.020 (20°C, selected, Suntio et al. 1988) 
O 
P 
S 
S 
S 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3833 
0.024 (20°C, Worthing & Hance 1991) 
0.020 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.013 (Tomlin 1994) 
0.010, 0.0099 (supercooled liquid PL: literature-derived value LDV, final adjusted value FAV, Muir et al. 2004) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.404 (calculated-P/C, Lyman et al. 1982; quoted, Howard 1991) 
0.22 (20°C, calculated-P/C, Suntio et al. 1988) 
0.101, 0.253 (10°, 20°C, Wanner et al. 1989) 
0.090 (final adjusted value FAV, Muir et al. 2004) 
Octanol/Water Partition Coefficient, log KOW: 
3.04 (Callahan et al. 1979) 
3.88 (shake flask-UV, Hermens & Leeuwangh 1982) 
4.02 (shake flask-GC, Bowman & Sans 1983b) 
4.02 (recommended, Hansch & Leo 1985) 
3.84 (RP-HPLC correlation, Saito et al. 1993) 
3.95 (Tomlin 1994) 
4.02 (recommended, Hansch et al. 1995) 
3.95 (literature-derived value LDV, Muir et al. 2004) 
Octanol/Air Partition Coefficient, log KOA: 
8.39 (final adjusted value FAV, Muir et al. 2004) 
Bioconcentration Factor, log BCF: 
2.00 (calculated-S, Kenaga 1980; quoted, Pait et al. 1992) 
2.04 (calculated-KOC, Kenaga 1980) 
2.00, 2.83 (estimated-S, estimated-KOW, Lyman et al. 1982; quoted, Howard 1991) 
2.65 (carp, Takase & Oyama 1985; quoted, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
3.25 (soil, Hamaker & Thompson 1972; Kenaga 1980; Kenaga & Goring 1980) 
2.81, 3.04, 3.72 (Hamaker & Thompson 1972) 
2.87 (soil, calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
3.20 (av. soils/sediments, Rao & Davidson 1980) 
2.67–3.70 (reported as log KOM, Mingelgrin & Gerstl 1983) 
2.90 (calculated- MCI ., Gerstl & Helling 1987) 
3.20 (soil, screening model calculations, Jury et al. 1987b) 
3.36 (estimated as log KOM, Magee 1991) 
3.22 (soil, quoted exptl., Meylan et al. 1992) 
2.91 (soil, calculated-MCI . and fragments contribution, Meylan et al. 1992) 
2.78 (soil, 20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
2.94 (estimated-QSAR and SPARC, Kollig 1993) 
2.91 (soil, HPLC-screening method, mean value, Kordel et al. 1993, 1995) 
3.49 (estimated-chemical structure, Lohninger 1994) 
3.22 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.91; 2.91 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
3.66, 3.146, 3.11, 3.37, 4.146 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1998) 
3.417, 3.333, 3.151, 2.782, 3.127 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, HPLC-k. correlation, 
Gawlik et al. 2000) 
3.22; 3.15, 3.40 (soil, quoted exptl.; estimated-class-specific model, estimated-general model, Gramatica et al. 
2000) 
2.92 (soil: organic carbon OC . 0.5%, average, Delle Site 2001) 
© 2006 by Taylor & Francis Group, LLC

3834 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: gas exchange t. = of 900 d for winter and t. = 360 d for summer in Rhine River (Wanner et al. 
1989). 
Photolysis: photolytic t. = 1000 d for winter and t. = 100 d for summer in the Rhine River (Wanner et al. 1989); 
t. = 1–4 d (Tomlin 1994) 
Apparent first-order rate constant phototransformation at . > 285 nm, k = (1.38 ± 0.12) . 10–2 h–1 in purified 
water, and k = (1.68 ± 0.12) . 10–2 h–1 in Capot river water with t. ~ 40 h (Zamy et al. 2004) 
Oxidation: half-life ranged from t. ~ 5 h of midday sunlight during summer to t. = 12 h during winter estimated 
from kinetic data for oxygenation reactions photosensitized by humic substances in water exposed to sunlight 
(Zepp et al. 1981); 
photooxidation t. = 0.50–4.80 h in air, based on estimated rate constant for the reaction with hydroxyl radical 
in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: first-order t. = 103 d, based on measured overall rate constant k = 2.8 . 10–4 h–1 at pH 7, 25°C 
(Ellington et al. 1986, 1987, 1988; quoted, Howard et al. 1991); 
abiotic hydrolysis k = 1.3 . 10–7 s–1 under neutral condition, k = 2.0 . 10–3 s–1 under base-catalyzed condition 
at 20°C and hydrolysis t. = 170 d at 11°C, pH 9 and t. = 62 d in summer were predicted in Rhine River 
(Wanner et al. 1989); 
t. = 3.04 yr in water at pH 1–5 and at 20°C; 1.2 d at pH 7 and t. = 7.2 h at pH 9 both at 70°C (Worthing & 
Hance 1991); 
rate constant k = 3.23 yr–1 at pH 7.0 and 25°C (Kollig 1993); 
t. = 133 d at pH 4, t. = 169 d at pH 7, and t. = 131 d at pH 9 at 22°C (Tomlin 1994). 
Biodegradation: t. < 14 d, rapidly oxidized in soil (Szeto et al. 1983) 
primary biodegradation rate constant k = 0.2 µg2 L2 d–1 with t. = 41 d, and the degradation t. = 7–41 d for 
winter and t. = 4–28 d for summer in Rhine River (Wanner et al. 1989); 
aqueous aerobic t. = 72–504 h, based on aerobic soil field data and reported half-lives for soil (Howard 
et al. 1991); 
aqueous anaerobic t. = 288–2016 h, based on estimated unacclimated aqueous aerobic biodegradation halflife 
(Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.50–4.80 h, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 
1987; quoted, Howard et al. 1991). 
Surface water: gas exchange t. = 900 d for winter, t. = 360 d for summer; abiotic hydrolysis half-lives of 170 
d for winter, 62 d for summer; photolytic transformation t. = 1000 d for winter, t. = 200 d for summer and 
primary biodegradation t. = 7–41 d for winter, t. = 8–28 d for summer in Rhine River under environmental 
conditions (Wanner et al. 1989); 
overall t. = 72–504 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
t. ~ 40 h upon photolysis in Capot river water (Zamy et al. 2004) 
Ground water: t. = 144–1008 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: 
Soil: estimated persistence of 4 wk in soil (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982); 
t. = 72–504 h, based on aerobic soil field data (Szeto et al. 1983; quoted, Howard et al. 1991) and reported 
half-lives for soil (Domsch 1984; quoted, Howard et al. 1991); 
t. = 5 d from screening model calculations (Jury et al. 1987b); 
estimated t. = 30 d (Wauchope et al. 1992; Hornsby et al. 1996); 
soil t. = 9 d (Pait et al. 1992). 
Biota: biochemical t. = of 5 d from screening model calculations (Jury et al. 1987b). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3835 
18.1.1.34 Endosulfan 
Common Name: Endosulfan 
Synonym: Benzoepin, Beosit, Bio 5462, Chlorthiepin, Crissulfan, Cyclodan, Endocel, ENT 23979, FMC 5462, Hildan, 
Hoe 2671, Insectophene, KOP-thiodan, Malix, NCI-C00566, Niagara 5462, OMS-570, Thifor, Thimul, Thiodan, 
Thiofor, Thionex, Thiosulfan, Tionel, Tiovel 
Chemical Name: 1,4,5,6,7,7-hexachloro-5-norbornene-2,3-dimethyl cyclic sulfite; 1,2,3,4,7,7-hexachlorobicyclo- 
2,2,1-hepten-5,6-bisoxymethylene sulfite; (1,4,5,6,7,7-hexachloro-8,9,10-trinorborn-5-en-2,3-ylene-bismethylene)- 
sulfite; 6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine 3-oxide 
Uses: insecticide for vegetable crops and also used as acaricide. 
CAS Registry No: 115-29-7; 959-98-8 (.-endosulfan, endosulfan I); 33213-65-9 (.-endosulfan, endosulfan II) 
Molecular Formula: C9H6Cl6O3S 
Molecular Weight: 406.925 
Melting Point (°C): 
70–100 (tech. grade, Worthing & Hance 1991; Milne 1995) 
70–100, 108–110 (.-endosulfan, .-endosulfan, Suntio et al. 1988) 
106, 207–209 (.-endosulfan, .-endosulfan, Montgomery 1993) 
109.2, 213.3 (.-endosulfan, .-endosulfan, Tomlin 1994) 
106, 109.2 (Milne 1995) 
Boiling Point (°C): 
106 (at 0.7 mmHg, Hartley & Kidd 1987; Milne 1995) 
Density (g/cm3 at 20°C): 
1.80 (tech. grade, Tomlin 1994) 
1.745 (Milne 1995; Montgomery 1993) 
Molar Volume (cm3/mol): 
312.8 (calculated-Le Bas method at normal boiling point,) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
0.22. 0.13 (20°C, .-, .-endosulfan, Suntio et al. 1988) 
Water Solubility (g/m3 or mg/L at 25°C pr as indicated): 
0.53 (.-endosulfan, generator column-GC, Weil et al. 1974) 
0.286 (.-endosulfan, generator column-GC, Weil et al. 1974) 
<1.0 (Wauchope 1978) 
0.050 (Weber et al. 1980) 
0.510 (.-endosulfan, 20°C, shake flask-GC, Bowman & Sans 1983a) 
0.45 (.-endosulfan, 20°C, shake flask-GC, Bowman & Sans 1983a) 
0.06–0.15 (U.S. EPA 1984; McLean et al. 1988) 
0.32 (22°C, Hartley & Kidd 1987) 
0.15 (20°C, selected, Suntio et al. 1988) 
0.32 (.-endosulfan at 22°C, Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
0.33 (.-endosulfan at 22°C, Worthing & Hance 1991; Tomlin 1994) 
0.32 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.53 (.-endosulfan, Montgomery 1993) 
0.28 (.-endosulfan, Montgomery 1993) 
Cl Cl 
Cl 
Cl 
Cl 
O
S 
O O 
Cl 
© 2006 by Taylor & Francis Group, LLC

3836 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
3.75, 3.63 (.-endosulfan, supercooled liquid SL: literature-derived value LDV, final adjusted value FAV, Muir 
et al. 2004) 
1.71, 2.56 (.-endosulfan, supercooled liquid: LDV derivation of literature-derived value, FAV final-adjusted 
value, Shen & Wania 2005) 
32.1, 36.2 (.-endosulfan, supercooled liquid: LDV derivation of literature-derived value, FAV final-adjusted 
value, Shen & Wania 2005) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.00133 (Martens 1972; Khan 1980) 
0.013 (endosulfan I, Barlow 1978) 
> 0.00013 (20–25°C, Weber et al. 1980) 
1.20 (80°C, Hartley & Kidd 1987) 
0.0061 (endosulfan I, GC-RT correlation, supercooled liquid value, Hinckley et al. 1990) 
0.0032 (endosulfan II, GC-RT correlation, supercooled liquid value, Hinckley et al. 1990) 
0.0011 (20°C, selected, Suntio et al. 1988) 
1.20 (tech. grade at 80°C, Worthing & Hance 1991) 
2.27 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.00133 (Montgomery 1993) 
8.3 . 10–5 (20°C, 2 to 1 mixture of .- and .-endosulfan, Tomlin 1994) 
2.3 . 10–5 (selected, Halfon et al. 1996) 
0.0061, 0.0063 (.-endosulfan, supercooled liquid PL: literature-derived value LDV, final adjusted value FAV, 
Muir et al. 2004) 
0.0060, 0.0044 (.-endosulfan, supercooled liquid PL: LDV literature-derived value, FAV final adjusted value, 
Shen & Wania 2005) 
0.0043, 0.0040 (.-endosulfan, supercooled liquid PL: LDV literature-derived value, FAV final adjusted value, 
Shen & Wania 2005) 
Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): 
1.09 (calculated-P/C, Mabey et al. 1982) 
2.98 (20°C, calculated-P/C, Suntio et al. 1988) 
0.679, 0.0627 (endosulfan I, II, calculated, Cotham & Bidleman 1989) 
1.135 (calculated-P/C an average of .- and .-endosulfan, Howard 1991) 
10.23 (.-endosulfan, Montgomery 1993) 
1.935 (.-endosulfan, calculated-P/C, Montgomery 1993) 
6.45, 13.23 (20°C, tech. grade: distilled water, salt water 33.3l%, wetted wall column-GC, Rice et al. 1997a, b) 
6.63, 0.788 (20°C, endosulfan I, II, distilled water, wetted wall column-GC, Rice et al. 1997a, b) 
log KAW = –876.14/(T/K) + 0.4463; temp range: 8.3–38.2°C, (endosulfan I, distilled water, wetted-wall column- 
GC, Rice et al. 1997a) 
12.89, 2.12 (20°C, endosulfan I, II, salt water 33.3l%, wetted wall column-GC, Rice et al. 1997a, b) 
8.65, 8.48; 9.31 (20°C, endosulfan I: microlayer, subsurface natural water of salinity 17l% and TOC 0.4–1.0 
ppm, from Pt. Lookout, Chesapeake Bay; estimated value adjusted to salinity, Rice et al. 1997b) 
8.77, 8.04; 9.12 (20°C, endosulfan I: microlayer, subsurface natural water of salinity 16l% and TOC 0.5–0.6 
ppm, from Solomons, Chesapeake Bay; estimated adjusted to salinity, Rice et al. 1997b) 
7.14, 9.21; 8.43 (20°C, endosulfan I: microlayer, subsurface natural water of salinity 12l%, TOC 0.6 ppm, from 
Sandy Point, Chesapeake Bay; estimated value adjusted to salinity, Rice et al. 1997b) 
0.719, 0.040 (.-, .-endosulfan, wetted wall column-GC, Altschuh et al. 1999) 
6.99 (20°C, Endosulfan I, selected from literature experimentally measured data, Staudinger & Roberts 
2001) 
log KAW = 0.446 – 876/(T/K), (Endosulfan I, van’t Hoff eq. derived from literature data, Staudinger & Roberts 
2001) 
0.715, 0.699 (.-endosulfan, literature-derived value LDV, final adjusted value FAV, Muir et al. 2004) 
0.72, 0.70 (.-endosulfan, LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
0.040, 0.045 (.-endosulfan, LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3837 
Octanol/Water Partition Coefficient, log KOW: 
3.55, 3.62 (.-, .-endosulfan, Ali 1978) 
3.83 (.-endosulfan, shake flask-GC, Hermens & Leeuwangh 1982) 
3.83 (.-endosulfan, Hansch & Leo 1985) 
4.74, 4.78 (.-, .-endosulfan, calculated-fragment const., Noegrohati & Hammers 1992) 
3.55, 3.62 (.-, .-endosulfan, Montgomery 1993) 
4.74, 4.79 (.-, .-endosulfan at pH 5, Tomlin 1994) 
3.62, 3.83 (.-, .-endosulfan, Hansch et al. 1995) 
3.84 (Pomona-database, Muller & Kordel 1996) 
5.09 (.-endosulfan, literature-derived value LDV, Muir et al. 2004) 
4.74, 4.94 (.-endosulfan, LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
4.78, 4.78 (.-endosulfan, LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
Octanol/Air Partition Coefficient, log KOA at 25°C and reported temperature dependence equation. Additional data 
at other temperatures designated * are compiled at the end of this section: 
8.677*, 8.638 (gas saturation-GC/MS, calculated, measured range 5–25°C, Shoeib & Harner 2002) 
log KOA = –5.90 + 4333/(T/K), temp range: 5–25°C (gas saturation-GC, Shoeib & Harner 2002) 
8.64 (.-endosulfan, final adjusted value FAV, Muir et al. 2004) 
8.63, 8.49 (.-endosulfan, LDV literature derived value, FAV final adjusted value, Shen & Wania 2005) 
Bioconcentration Factor, log BCF: 
–3.66 (beef biotransfer factor log Bb, correlated-KOW, Beck et al. 1966) 
2.78 (.-endosulfan for mussel, Ernst 1977;) 
–1.52, –1.22 (.-, .-endosulfan, bioaccumulation factor log BF, adipose tissue in female Albino rats, Dorough 
et al. 1978) 
2.63, 2.44 (.-, .-endosulfan, paddy field fish, Soon & Hock 1987) 
1.91, 2.33 (.-, .-endosulfan, paddy field fish, Tejada 1995) 
3.55; 3.65 (.-endosulfan for Oncorhynchus mykiss, wet wt. basis: quoted exptl.; calculated-QSAR model based 
on quantum chemical parameters, Wei et al. 2001) 
Sorption Partition Coefficient, log KOC: 
3.46 (.-endosulfan, estimated, Lyman et al. 1982; quoted, Howard 1991) 
3.83 (.-endosulfan, calculated-S, Lyman et al. 1982; quoted, Howard 1991) 
4.09 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
4.00 (.- or .-endosulfan, estimated-QSAR & SPARC, Kollig 1993) 
3.31, 3.37 (.-endosulfan, .-endosulfan, calculated, Montgomery 1993) 
4.09 (soil, .-endosulfan, HPLC-screening method, mean value of different stationary and mobile phases, 
Kordel et al. 1993) 
4.09 (estimated-chemical structure, Lohninger 1994) 
3.48–4.30 (Tomlin 1994) 
4.09 (.-endosulfan, HPLC-screening method, Kordel et al. 1995) 
4.09; 5.24 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
3.90 (soil, estimated-general model, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: photooxidation t. = 2.5–24.8 h, based on an estimated rate constant for the vapor-phase reaction with 
hydroxyl radical in air with a deoxygenated endosulfan analog (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: first-order t. = 218 h, based on neutral aqueous hydrolysis rate constant k = (3.2 ± 2.0) . 10–3 h–1 
for .-Endosulfan at pH 7 and 25°C (Ellington et al. 1986, 1987, 1988; quoted, Howard et al. 1991; 
Montgomery 1993); 
first-order t. = 187 h, based on neutral aqueous hydrolysis rate constant k = (3.7 ± 2.0) . 10–3 h–1 for 
.-endosulfan at pH 7 and 25°C (Ellington et al. 1987, 1988; quoted, Howard et al. 1991; Montgomery 
© 2006 by Taylor & Francis Group, LLC

3838 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
1993); rate constant k = 6.1 . 10–2 yr–1 for .-endosulfan at pH 7 and 25°C and rate constant 
k = 8.9 . 10–2 yr–1 for .-endosulfan at pH 7 and 25°C (Kollig 1993). 
t. = 360 d at pH 2, t. = 9.1 d at pH 7 and t. = 0.00029 d at pH 12 in natural waters (Capel & Larson 1995) 
Biodegradation: aqueous aerobic t. = 48–336 h, based on unacclimated aerobic river die-away test data (Eichelberger 
& Lichtenburg 1971; quoted, Howard et al. 1991) and reported soil grab sample data (Bowman et al. 1965; 
quoted, Howard et al. 1991); 
first-order rate constant k = –0.00502 h–1 in nonsterile sediment, k = –0.00796 h–1 in sterile sediment by 
shake-tests at Range Point, first-order k = –0.0157 h–1 in nonsterile water, and k = –0.0325 h–1 in sterile 
water by shake-tests at Range Point (Walker et al. 1988); 
first-order rate constants k = –0.00165 to –0.00296 h–1 in nonsterile sediment, k = –0.00426, –0.00545 h–1 
in sterile sediment by shake-tests at Davis Bayou and first-order rate constants k = –0.00335 to –0.00490 
h–1 in nonsterile water and k = –0.0130, –0.00866 h–1 in sterile water by shake-tests at Davis Bayou 
(Walker et al. 1988) 
t.(aerobic) = 2 d, t.(anaerobic) = 8 d in natural waters (Capel & Larson 1995). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 12.3 h–1; k2 = 0.0205 h–1 (mussel from .-endosulfan, Ernst 1977; quoted, Hawker & Connell 1986) 
Half-Lives in the Environment: 
Air: t. = 2.5–24.8 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radicals in 
air with a deoxygenated Endosulfan analog (Atkinson 1987; quoted, Howard et al. 1991); 
t. = 9.2 ± 4 yr at Eagle Harbor in the Great Lake’s atmosphere. (Buehler et al. 2004). 
Surface water: persistence of up to 4 weeks in river water (Eichelberger & Lichtenberg 1971); 
t. = 30 d and 45 d for .- and .-endosulfan respectively for surface waters in case of first order reduction 
process may be assumed and estimated t. ~ 30–300 d for .-endosulfan in lakes in the Netherlands 
(Zoeteman et al. 1980); 
t. = 4.5–218 h, based on aqueous hydrolysis half-lives for both .- and .-endosulfan at pH 7 and 9 and 
25°C, respectively (Ellington et al. 1987; quoted, Howard et al. 1991) 
t. = 1.3 d in rice paddy water (Tejada et al. 1993; quoted, Abdullah et al. 1997) 
t.(aerobic) = 2 d, t.(anaerobic) = 8 d, hydrolysis t. = 360 d at pH 2, t. = 9.1 d at pH 7 and t. = 0.00029 
d at pH 12 in natural waters (Capel & Larson 1995) 
Ground water: estimated t. = 30–300 d in lakes and Ground water (.-Endosulfan, Zoeteman et al. 1980); 
t. = 4.5–218 h, based on aqueous hydrolysis half-lives for both .- and .-endosulfan at pH 7 and 9 and 
25°C respectively (Ellington et al. 1987; quoted, Howard et al. 1991). 
Sediment: 
Soil: t. = 4.5–218 h, based on aqueous hydrolysis half-lives for both .- and .-endosulfan at pH 7 and 9 and 
25°C, respectively (Ellington et al. 1987; quoted, Howard et al. 1991); 
t. > 50 d and subject to plant uptake via volatilization (Ryan et al. 1988); 
selected t. = 50 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 1.2 d in rice soil (Tejada et al. 1993; quoted, Abdullah et al. 1997); 
soil t. = 120 d (Pait et al. 1992); 
degraded in soil with t. = 30–70 d (Tomlin 1994); 50 d (selected, Halfon et al. 1996) 
t. = 5 – 7 yr in soil (Geyer et al. 2000) 
Biota: t. = 33.8 h in mussels (.-endosulfan, Ernst 1977); 
t. = 1.0 d in rice leaves (Tejada et al. 1993; quoted, Abdullah et al. 1997). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3839 
TABLE 18.1.1.34.1 
Reported octanol-air partition coefficients of .-endosulfan at various temperatures 
Shoeib & Harner 2002 
generator column-GC/MS 
t/°C log KOA 
5 9.7188 
10 9.3591 
15 9.1651 
20 8.8316 
25 8.6772 
25 8.638 
log KOA = A + B/(T/K) 
A –5.902 
B 4333 
enthalpy of phase change 
.HOA/(kJ mol–1) = 83.0 
FIGURE 18.1.1.34.1 Logarithm of KOA versus reciprocal temperature for .-endosulfan. 
.-Endosulfan: KOA vs. 1/T 
7.5 
8.0 
8.5 
9.0 
9.5 
10.0 
10.5
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
AO 
Shoeib & Harner 2000 
Shoeib & Harner 2002 (interpolated) 
© 2006 by Taylor & Francis Group, LLC

3840 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.35 Endrin 
Common Name: Endrin 
Synonym: Endrex, ENT 17521, Hexadrin, Isodrin epoxidek, Mendrin, NA 2761, NCI-C00157, Nendrin, RCRA 
Chemical Name: 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-exo-1,4-exo-5,8-dimethano-naphthalene 
Uses: Insecticide/Avicide/Rodenticide 
CAS Registry No: 72-20-8 
Molecular Formula: C12H8Cl6O 
Molecular Weight: 380.909 
Melting Point (°C): 
226–230 (Hartley & Kidd 1987; Howard 1991) 
245 (dec, Lide 2003) 
Boiling Point (°C): 
245 (dec. Montgomery 1993) 
Density (g/cm3 at 20°C): 
1.70, 1.65 (pure, technical, at 25°C, Montgomery 1993) 
Molar Volume (cm3/mol): 
318.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
23.88 (Ruelle & Kesselring 1997) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.00694 (mp at 245°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
0.23* (shake flask-UV, measured range 25–45°C, Richardson & Miller 1960) 
0.26 (rm. temp., shake flask-GC, Robeck et al. 1965) 
0.23 (Gunther et al. 1968) 
0.25* (shake flask-GC/ECD, measured range 15–45°C, Biggar & Riggs 1974) 
0.022*, 0.15*, 0.195* (particle size: 0.01, 0.05 and 5.0µ, shake flask-GC/ECD, measured range 15–45°C, Biggar 
& Riggs 1974) 
0.26 (generator column-GC/ECD, Weil et al. 1974) 
0.10 (Weber et al. 1980) 
0.024 (Bruggeman et al. 1981) 
0.25 (misquoted as 0.25 µg/L from Biggar & Riggs, Howard 1991) 
0.22–0.26 (Montgomery 1993) 
0.23 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
15.85 (20–25°C, supercooled liquid value, Majewski & Capel 1995) 
0.105, 0.000065 (predicted-molar volume, mp and mobile order thermodynamics, Ruelle & Kesselring 1997) 
1.03, 1.14 (supercooled liquid: LDV derivation of literature-derived value, FAV final-adjusted value, Shen & 
Wania 2005) 
log [CL/(mol m–3)] = –1022/(T/K) + 0.86 (supercooled liquid, linear regression of literature data, Shen & Wania 
2005) 
Vapor Pressure (Pa at 25°C or as indicated): 
4.00 . 10–4 (20°C, Bowery 1964) 
2.67 . 10–5 (Eichler 1965; Melnikov 1971; Martin 1972; Quellette & King 1977) 
Cl Cl 
Cl 
Cl Cl 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3841 
2.67 . 10–5 (20–25°C, Weber et al. 1980) 
1.17 . 10–5 (20°C, selected exptl. value, Kim 1985) 
2.00 . 10–5 (20°C, selected, Suntio et al. 1988) 
9.33 . 10–5 (25°C, Montgomery 1993) 
2.67 . 10–5 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
1.38 . 10–3 (20–25°C, supercooled liquid value, Majewski & Capel 1995) 
0.0052, 0.0031 (supercooled liquid PL: LDV literature derived value, FAV final adjusted value, Shen & Wania 
2005) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.8 . 10–4 (calculated-P/C, Mabey et al. 1982) 
0.042 (Ryan et al. 1988) 
0.033 (20°C, calculated-P/C, Suntio et al. 1988) 
0.762 (calculated, Howard 1991) 
0.0507 (calculated-P/C, Montgomery 1993) 
0.644 (wetted wall column-GC, Altschuh et al. 1999) 
0.64, 1.1 (LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
Octanol/Water Partition Coefficient, log KOW: 
5.60 (calculated, Neely et al. 1974) 
4.56 (RP-HPLC-RT correlation, Veith et al. 1979) 
5.34 (Kenaga & Goring 1980;) 
3.21 (Rao & Davidson 1980) 
4.82 (Veith & Kosian 1982) 
5.01 (HPLC-RT correlation, Eadsforth 1986) 
5.28 (HPLC-RT correlation, Liu & Qian 1988) 
5.195 ± 0.005 (slow-stirring method, De Bruijn et al. 1989) 
3.21–5.34 (Montgomery 1993) 
4.71 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
5.20 (recommended, Hansch et al. 1995) 
4.71 (RP-HPLC-RT correlation, Finizio et al. 1997) 
5.20, 4.94 (LDV literature-derived value, FAV final-adjusted value, Shen & Wania 2005) 
Octanol/Air Partition Coefficient, log KOA at 25°C and reported temperature dependence equation. Additional data 
at other temperatures designated * are compiled at the end of this section: 
8.338*, 8.609 (gas saturation-GC/MS, calculated, measured range 5–35°C, Shoeib & Harner 2002) 
log KOA = –11.75 + 6067/(T/K), temp range: 5–35°C (gas saturation-GC, Shoeib & Harner 2002) 
8.13, 8.32 (LDV literature derived value, FAV final adjusted value, Shen & Wania 2005) 
Bioconcentration Factor, log BCF: 
2.40–2.18 (bluegills, Bennett & Day 1970) 
2.60–2.88 (channel catfish, Argyle et al. 1973) 
3.21 (channel catfish, 55-d exposure, Argyle et al. 1973) 
3.13, 4.69 (Gambusia, Physa, Metcalf et al. 1973) 
3.11, 4.69, 3.66 (fish, snail, algae, Metcalf et al. 1973) 
2.83, 2.49, 2.48 (fish, mosquitoes, Daphnia, 3-d expt. with no dietary routes, Metcalf et al. 1973) 
3.43 (oyster, Mason & Rowe 1976) 
3.28 (mussel, Ernst 1977) 
3.24 (calculated-KOW, Mackay 1982) 
4.02; 4.18; 3.85 (flagfish, 30-d exposure; 65-d exposure; 110-d exposure, Hermanutz 1978) 
3.70 (fathead minnow, Jarvinen & Tyo 1978) 
3.17 (mosquito fish, 35-d exposure, Veith et al. 1979; Veith & Kosian 1983) 
3.66 (fathead minnow, 300-d exposure, Veith et al. 1979; Veith & Kosian 1983) 
3.66 (Oedogonium sp., Baughman & Paris 1981) 
3.85–4.18 (flag fish, mosquito fish, Veith & Kosian 1983) 
© 2006 by Taylor & Francis Group, LLC

3842 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
3.24, 3.18 (mussel, calculated-KOW & models, Zaroogian et al. 1985) 
3.17 (fathead minnow, quoted from Veith et al. 1979, Zaroogian et al. 1985) 
3.40 (Isnard & Lambert 1988) 
3.13–4.0 (fish, quoted, Howard 1991) 
3.85 (fathead minnow, whole body, after 300-d exposure, Howard 1991) 
3.21–3.30 (channel catfish, after 41- and 55-d exposure, Howard 1991) 
4.18 (flagfish, whole body after 65-d exposure, Howard 1991) 
3.52–3.68 (sheepshead minnow, 33-d exposure for embryojuveniles, Howard 1991) 
3.40–3.81 (sheepshead minnow, adults, after 28–161 d, Howard 1991) 
2.70–3.10 (shellfish, Howard 1991) 
4.69, 3.22–3.44, 3.48 (snail, oyster, grass shrimp, mussel, Howard 1991) 
2.15–2.30 (algae, Howard 1991) 
3.83 (fish, reported as log BAFw, LeBlanc 1996) 
3.28, 5.28 (mussel Mytilus edulis: wet wt basis, lipid wt basis, Geyer et al. 2000) 
3.22, 5.14 (oyster Crasssostrea virginica: wet wt basis, lipid wt basis, Geyer et al. 2000) 
3.44, 5.37 (oyster Crasssostrea virginica: wet wt basis, lipid wt basis, Geyer et al. 2000) 
3.42 (clam: wet wt basis, Geyer et al. 2000) 
3.66, 5.18 (fathead minnow, uptake 300-d: wet wt basis, lipid wt basis, Geyer et al. 2000) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
4.53 (calculated, Kenaga 1980, quoted, Howard 1991) 
5.36 (calculated-S, Mill et al. 1980; quoted, Adams 1987) 
4.00 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
5.00; 4.10 (soil, calculated-universal solvation model; quoted exptl., Winget et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. ~ 9.6 d from a model river 1-m deep, flowing 1 m/s with a wind speed of 3 m/s, and t. > 14 yr 
from a model pond (Howard 1991). 
Photolysis: 
Oxidation: 
k(aq.) = (2.7 ± 0.7) . 108 M–1 s–1 for the reaction with OH radical in aqueous solution (Fenton reaction) at 
24 ± 1°C and pH 2.8 (Haag & Yao 1992) with reference to 4.2 . 108 M–1 s–1 for the reaction of DPCP 
with OH radical in aqueous solution (Buxton et al. 1988; quoted, Haag & Yao 1992); 
k(aq.) = (1.3 ± 0.4) . 109 M–1 s–1 (Fenton reaction) and k = (1.1 ± 0.2) . 109 M–1 s–1 (photo-Fenton reaction) 
for the reaction with OH radical in aqueous solution at 24 ± 1°C and pH 3.4 (Haag & Yao 1992) with 
reference to 8 . 108 M–1 s–1 for the reaction of lindane with OH radical in aqueous solution (Buxton et 
al. 1988; quoted, Haag & Yao 1992) 
k(aq.) < 0.02 M–1 s–1 for direct reaction with ozone in water at pH 2.7–6.4 and 23 ± 3°C, with t. > 20 d at 
pH 7 (Yao & Haag 1991). 
Hydrolysis: t. = 4 yr at least (Callahan et al. 1979). 
Biodegradation: t. = 5–14 d in thick anaerobic sewage sludge (Howard 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
–log k2 = 1.99 h (oyster, Mason & Rowe 1976; quoted, Hawker & Connell 1986) 
log k1 = 1.5 h–1; –log k2 = 1.78 h (mussel, Ernst 1977; quoted, Hawker & Connell 1986) 
Half-Lives in the Environment: 
Air: t. = 1.45 h was predicted for reaction with hydroxyl radical (Howard 1991). 
Surface water: t. > 8 wk in river water (Eichelberger & Lichtenberg 1971); 
measured kO3(aq.) < 0.02 M–1 s–1 for direct reaction with ozone in water at pH 2.7–6.4 and 23 ± 3°C, with 
t. > 20 d at pH 7 (Yao & Haag 1991). 
Ground water: 
Sediment: 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3843 
Soil: t. ~ 12 yr in Congaree sandy loam soil (Nash & Woolson 1967); 
field t. = 63 d for sugar cane in soil (Willis & Hamilton 1973; quoted, Nash 1983); 
moderately persistent in soil with t. = 20–100 d (Willis & McDowell 1982); 
microagroecosystem t. = 33 d in moist fallow soil (Nash 1983); 
t. > 50 d in soil (Ryan et al. 1988); 
selected field t. = 4300 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
t. ~ 12 yr in soil (Geyer et al. 2000) 
Biota: elimination t. = 24 h (Ernst 1977, quoted, Callahan et al. 1979). 
TABLE 18.1.1.35.1 
Reported aqueous solubilities and octanol-air partition coefficients of endrin at various temperatures 
Aqueous solubility log KOA 
Richardson & Miller 1960 Biggar & Riggs 1974 Shoeib & Harner 2002 
shake flask-UV spec. shake flask-GC generator column-GC/MS 
t/°C S/g·m–3 t/°C S/g·m–3 S/g·m–3 S/g·m–3 t/°C log KOA 
particle size 0.01µ 0.05µ 5.0µ 
25 0.23 15 0.010 0.090 0.130 5 10.2787 
35 0.38 25 0.0245 0.180 0.250 15 9.3548 
45 0.51 35 0.058 0.315 0.420 20 8.6528 
45 0.120 0.518 0.625 25 8.3377 
35 8.2855 
25 8.609 
log KOA = A + B/(T/K) 
A –11.75 
B 6067 
enthalpy of phase change 
.HOA/(kJ mol–1) = 84.9 
FIGURE 18.1.1.35.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for endrin. 
Endrin: solubility vs. 1/T 
-24.0 
-23.0 
-22.0 
-21.0 
-20.0 
-19.0 
-18.0 
-17.0 
-16.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
x nl 
Richardson & Miller 1960 
Biggar & Riggs 1974 (0.01 µ particle size) 
Biggar & Riggs 1974 (0.05 µ particle size) 
Biggar & Riggs 1974 (5.0 µ particle size) 
Robeck et al. 1965 
Weil et al. 1974 
© 2006 by Taylor & Francis Group, LLC

3844 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 18.1.1.35.2 Logarithm of KOA versus reciprocal temperature for endrin. 
Endrin: KOA vs. 1/T 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 
10.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
AO 
Shoeib & Harner 2000 
Shoeib & Harner 2002 (interpolated) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3845 
18.1.1.36 Ethiofencarb 
Common Name: Ethiofencarb 
Synonym: Croneton, Bay-Hox-1901 
Chemical Name: .-ethylthio-o-tolyl methylcarbamate 
CAS Registry No: 29973-13-5 
Uses: insecticide 
Molecular Formula: C11H15NO2S 
Molecular Weight: 225.307 
Melting Point (°C): 
33.4 (Spencer 1982; Hartley & Kidd 1987, Montgomery 1993, Tomlin 1994) 
Boiling Point (°C): 
decomposes on distillation (Hartley & Kidd 1987, Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.1473 (Hartley & Kidd 1987, Worthing & Walker 1987; Montgomery 1993) 
1.231 (20°C, Tomlin 1994) 
Molar Volume (cm3/mol): 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.827 (mp at 33.4°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
1900 (20°C, Spencer 1982, Hartley & Kidd 1987, Montgomery 1993) 
1820 (20°C, Worthing & Walker 1987) 
1800 (20°C, Tomlin 1994) 
Vapor Pressure (Pa at 25°C): 
6.67 . 10–4 (Spencer 1982) 
0.013 (30°C, Hartley & Kidd 1987; Worthing & Walker 1987) 
4.506 . 10–4 (20°C, Montgomery 1993) 
0.00045, 0.00094, 0.026 (20, 25, 50°C, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol): 
5.37 . 10–5 (calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
0.98 (calculated-Montgomery 1993) 
2.04 (Tomlin 1994) 
4.20 (RP-HPLC-RT correlation, Nakamura et al. 2001) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
1.84 (calculated, Montgomery 1993) 
S 
O NH 
O 
© 2006 by Taylor & Francis Group, LLC

3846 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants or Half-Lives: 
Volatilization: 
Photolysis: photodegradation in sunlight is very rapid (Tomlin 1994). 
Oxidation: 
Hydrolysis: hydrolyzed in alkaline solution (Tomlin 1994). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: in isopropanol/water (1:1, 37–40°C) solutions, half-lives were t. = 300 d at pH 2, t. = 45 h at 
pH 7 and t. = 5 min at pH 11.4 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3847 
18.1.1.37 Ethion 
Common Name: Ethion 
Synonym: AC 3422, Bladan, diethion, Embathion, ENT 24105, Ethanox, Ethiol, Ethodan, Ethopaz, FMC 1240, Fosfono 
50, Hylemax, Hylemox, Itopaz, KWIT, NA 2783, NIA 1240, Niagara 1240, Nialate, Vegfru fosmite 
Chemical Name: bis(S-(dimethoxyphosphinothioyl)mercapto)methane; O,O,O.,O.-tetraethyl-S,S.-methylene bis(phosphorodithioate); 
O,O,O.,O.-tetraethyl-S,S.-methylene-bisphosphorothiolothionate 
Uses: nonsystemic insecticide and acaricide used on apples. 
CAS Registry No: 563-12-2 
Molecular Formula: C9H22O4P2S4 
Molecular Weight: 384.476 
Melting Point (°C): 
–12 to –15 (Montgomery 1993; Tomlin 1994; Milne 1995) 
–13 (Lide 2003) 
Boiling Point (°C): 
164–165 (at 0.3 mmHg, Hartley & Kidd 1987; Howard 1991; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
1.22 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
350.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
2.0 (Metcalf 1971, 1974) 
0.60 (Miles 1976; Miles & Harris 1978) 
1.0 (20–25°C, selected, Willis & McDowell 1982; Gerstl & Helling 1987) 
1.1 (19.5°C, shake flask-GC, Bowman & Sans 1983b) 
1.1 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.68, 0.76 (20°C, 30°C, Montgomery 1993) 
2.0 (Tomlin 1994) 
Vapor Pressure (Pa at 25°C): 
0.0002 (Khan 1980; Merck Index 1983, 1989) 
0.0002 (Worthing 1983, Worthing & Hance 1991) 
0.0002 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
1.50 . 10–4 (20°C, selected, Suntio et al. 1988) 
3.20 . 10–4 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.58 . 10–4 (gradient GC method; quoted lit., Tsuzuki 2000) 
1.58 . 10–4; 4.17 . 10–5, 1.58 . 10–4 (gradient GC method; estimation using modified Watson method: Sugden’s 
parachor, McGowan’s parachor, Tsuzuki 2000) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.0699 (calculated-P/C, Lyman et al. 1982; quoted, Howard 1991) 
0.032 (20°C, calculated-P/C, Suntio et al. 1988) 
0.0384 (calculated-P/C, Montgomery 1993) 
S
P 
O S 
O 
S 
P 
O 
S 
O 
© 2006 by Taylor & Francis Group, LLC

3848 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
5.07 (Hansch & Leo 1979) 
5.073 (shake flask-GC, Bowman & Sans 1983b) 
5.07 (recommended, Sangster 1993) 
4.28, 5.07 (Montgomery 1993) 
5.07 (selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
2.77 (estimated-log KOW, Howard 1991) 
2.77 (estimated-S, Howard 1991) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
4.19 (average of 4 soils, King & McCarthy 1968) 
4.19 (soil, Hamaker & Thompson 1972; Kenaga & Goring 1980) 
3.81, 3.94. 4.0 (organic soil, Beverley sandy loam, Plainsfield sand, Sharom et al. 1980) 
3.66 (calculated-MCI ., Gerstl & Helling 1987) 
4.19; 4.28 (reported as log KOM, estimated as log KOM, Magee 1991) 
4.06, 4.12 (soil, quoted exptl., calculated-MCI . and fragment contribution, Meylan et al. 1992) 
4.00 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
3.54–4.34 (Montgomery 1993) 
4.43 (estimated-chemical structure, Lohninger 1994) 
4.06 (calculated-MCI 1., Sabljic et al. 1995) 
3.70, 3.95 (soil, estimated-class-specific model, estimated-general model, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. ~ 102 d from a model river 1-m deep, flowing 1 m/s with wind 
velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1991). 
Photolysis: 
Oxidation: photooxidation t. ~ 6.95 h for the vapor-phase reaction with hydroxyl radicals in air (Howard 1991). 
Hydrolysis: half-lives in water at 25°C and pHs of 4.5, 5.0, 6.0, 7.0 and 8.0 were 99, 63, 58, 25, and 8.4 wk, 
respectively (Chapman & Cole 1982; quoted, Montgomery 1993); 
t.(exptl) = 20.8 wk was determined in buffered distilled water at 30°C between pH 4 and 7, t. = 8.9 wk at 
pH 8 and t. = 1 d at pH 10 (Dierberg & Pfeuffer 1983; quoted, Howard 1991); 
t. = 390 d at pH 9 (Tomlin 1994). 
Biodegradation: t. > 24 wk in sterile sandy loam and t. = 7 wk in nonsterile sandy loam; t. > 24 wk in sterile 
organic soil and t. = 8.0 wk in nonsterile organic soil (Miles et al. 1979; quoted, Howard 1991); 
t. = 24–26 d in both sterilized and unsterilized Florida canal water over 12 wk observation (Dierberg & 
Pfeuffer 1983; quoted, Howard 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. ~ 6.95 h for the vapor-phase reaction with hydroxyl radical in air (Howard 1991). 
Surface water: t. = 4 wk in river water (Eichelberger & Lichtenberg 1971). 
Ground water: 
Sediment: 
Soil: t. > 24 wk in sterile sandy loam and t. = 7 wk in nonsterile sandy loam; t. > 24 wk in sterile organic soil 
and t. = 8.0 wk in nonsterile organic soil (Miles et al. 1979; quoted, Howard 1991); 
selected field t. = 150 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 90 d in soil (Tomlin 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3849 
18.1.1.38 Ethoprop 
Common Name: Ethoprop 
Synonym: ethoprophos 
Chemical Name: O-ethyl S,S-dipropylphosphorodithioate 
CAS Registry No: 13194-48-4 
Uses: insecticide/nematicide 
Molecular Formula: C8H19O2PS2 
Molecular Weight: 242.340 
Melting Point (°C): liquid 
20 (Montgomery 1993) 
Boiling Point (°C): 
86–91/0.2 mmHg (Spencer 1982; Hartley & Kidd 1987; Worthing & Walker 1987; Montgomery 1993; Tomlin 
1994) 
Density (g/cm3 at 20°C): 
1.094 (Spencer 1982; Hartley & Kidd 1987; Worthing & Walker 1987; Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
700 (20°C, Hartley & Kidd 1987; Tomlin 1994) 
750 (Worthing & Walker 1987) 
700 (Montgomery 1993) 
750 (selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C): 
0.0465 (26°C, Hartley & Kidd 1987) 
0.0465 (20°C, Montgomery 1993) 
0.0507 (selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0161 (calculated-P/C, Montgomery 1993; Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW: 
3.59 (21°C, Montgomery 1993; Tomlin 1994) 
3.59 (quoted, Sabljic et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
1.41–2.20 (soil, quoted values, Wauchope et al. 1992) 
1.85 (soil, Wauchope et al. 1992; Hornsby et al. 1996) 
1.82–2.27 (Montgomery 1993) 
1.80 (soil, calculated-MCI, Sabljic et al. 1995) 
S 
P 
S 
O 
O 
© 2006 by Taylor & Francis Group, LLC

3850 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: stable in water up to 100°C at pH 7, but rapidly hydrolyzed at 25°C at pH 7 (Worthing 1987; Tomlin 
1994). 
Half-Lives in the Environment: 
Soil: t. ~ 87 d in humus-containing soil at pH 4.5 and t. = 14–28 d in sandy loam at pH 7.2–7.3 (Hartley & 
Kidd 1987; Montgomery 1993; Tomlin 1994); 
field t. = 87 d in organic soil, t. = 1–28 d in sandy soil; others t. = 3–63 d; recommended t. = 25 d 
(Wauchope et al. 1992; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3851 
18.1.1.39 Fenitrothion 
Common Name: Fenitrothion 
Synonym: Accothion, Agria 1050, Agrothion, Arbogal, Cyfen, Cytel, Dybar, Falithion, Fenitox, Kotion, Sumithion 
Chemical Name: O,O-dimethyl O-4-nitro-m-tolyl phosphorothioate; phosphorothioic acid O,O-dimethyl O-4-nitro-mtolyl 
ester; O,O-dimethyl O-(3-methyl-4-nitrophenyl) phosphorothioate 
Uses: insecticide to control boring, chewing and sucking insects in cereals, cotton, maize, sorghum, citrus fruit, pome 
fruit, stone fruit, soft fruit, vines, bananas, olives, rice, soybeans, beet, sugar cane, oilseed rape, vegetables, lucerne, 
coffee, cocoa, tea, tobacco, ornamentals and forestry; also used as a public health insecticide to control household 
insects, flies in animal houses, mosquito larvae, and locusts. 
CAS Registry No: 122-14-5 
Molecular Formula: C9H12NO5PS 
Molecular Weight: 277.234 
Melting Point (°C): 
3.4 (Tomlin 1994) 
Boiling Point (°C): 
164 (at 1 mmHg, Worthing & Hance 1991; Milne 1995) 
140–145 (at 0.1 mmHg, dec., Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.328 (Worthing & Hance 1991; Tomlin 1994) 
1.3227 (25°C, Milne 1995) 
Molar Volume (cm3/mol): 
229.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
7.20 (Kortum et al. 1961; Wolfe 1980) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
30 (Macy 1948; Hamaker 1975; Kenaga 1980; Kenaga & Goring 1980) 
30 (20°C, Bright et al. 1950; Melnikov 1971; Hamaker 1975) 
25.2 (20°C, shake flask-GC, Bowman & Sans 1979) 
38.7 (20–25°C, shake flask-GC, Kanazawa 1981) 
21 (20°C, Worthing & Hance 1991; Tomlin 1994) 
30 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
30 (21°C, Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
8.0 . 10–3 (20°C, Melnikov 1971) 
7.2 . 10–3 (20°C, Freed et al. 1979) 
8.0 . 10–4 (20°C, Hartley & Graham-Bryce 1980; Khan 1980) 
5.5 . 10–3 (gas saturation method, Addison 1981) 
5.4 . 10–3 (gas saturation-extrapolated, Addison 1981) 
8.0 . 10–3 (Budavari 1989) 
1.1 . 10–2 (GC-RT correlation, supercooled liquid value, Hinckley et al. 1990) 
1.5 . 10–4 (20°C, Worthing & Hance 1991) 
1.3 . 10–4 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
0.0180 (20°C, Tomlin 1994) 
O2N 
O 
P 
O 
S 
O 
© 2006 by Taylor & Francis Group, LLC

3852 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.00316 (gradient GC method, Tsuzuki 2000) 
3.23 . 10–3; 3.47 . 10–3, 2.18 . 10–3 (gradient GC method; estimation using modified Watson method: Sugden’s 
parachor, McGowan’s parachor, Tsuzuki 2000) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0942, 0.0669 (exptl., estimated Metcalf et al. 1980) 
0.0962 (calculated-bond contribution method, Meylan & Howard 1991) 
0.0012 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
3.38 (20°C, shake flask-GC, Chiou et al. 1977) 
3.30 (shake flask, Mundy et al. 1978) 
3.38 (shake flask-GC, Freed et al. 1979) 
3.36 (Rao & Davidson 1980) 
3.44 (shake flask-GC, Kanazawa 1981, 1989) 
3.397 (shake flask-GC, Bowman & Sans 1983b) 
3.16 (shake flask-HPLC, Moody et al. 1987) 
3.466 ± 0.003 (shake flask/slow-stirring method, De Bruijn & Hermens 1991; De Bruijn et al. 1993) 
3.43 (20°C, Worthing & Hance 1991; Tomlin 1994) 
2.96 (RP-HPLC-RT correlation, Saito et al. 1993) 
3.03 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
3.30 (recommended, Sangster 1993) 
3.43 (Milne 1995) 
3.30 (selected, Hansch et al. 1995) 
3.03 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.00 (fish in static water, Leo et al. 1971; Kenaga & Goring 1980) 
2.23 (motsugo, Kanazawa 1975) 
2.34 (rainbow trout, Takimoto & Miyamoto 1976) 
2.02 (mussel, McLeese et al. 1979) 
1.96 (calculated-S, Kenaga 1980) 
2.39 (Pseudorasbora parva, Kanazawa 1981) 
2.34, 2.17 (mussel, calculated-KOW & models, Zaroogian et al. 1985) 
2.11 (mussel, Zaroogian et al. 1985) 
2.74, 2.75 (Oryzias latipes, Takimoto et al. 1984) 
2.48 (Oryzias latipes, Takimoto et al. 1987) 
2.60 (willow shiner, Tsuda et al. 1989) 
3.36 ± 0.04 (guppy, calculated on an extractable lipid wt. basis, De Bruijn & Hermens 1991) 
2.37, 2.72 (killifish, De Bruijn & Hermens 1991) 
2.18, 2.31, 1.48 (minnow, motsugo, mullet, De Bruijn & Hermens 1991) 
3.54 (Poecilia reticulata, De Bruijn & Hermens 1991) 
2.30, 2.39 (rainbow trout, topmouth gudgeon, De Bruijn & Hermens 1991) 
1.65, 1.68 (Oryzias latipes, Tsuda et al. 1995) 
Sorption Partition Coefficient, log KOC: 
2.83 (soil, calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
2.63 (average of 2 soils, Kanazawa 1989) 
3.30 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
2.54, 2.76 (soil, estimated-class-specific model, estimated-general model, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 6.3 d from the bottom of Palfrey Lake and t. = 7.2 d from the surface of Palfrey Lake vs. a 
calculated t. = 20.6 d; 0.9 d from Palfrey Brook vs. a calculated t. = 5.40 d (Metcalf et al. 1980). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3853 
Photolysis: disappearance rate constant k = 0.053 h–1 with calculated first-order t. = 13 h (Lacorte & Barcelo 
1994). 
Oxidation: 
Hydrolysis: second-order alkaline hydrolysis rate constant k = 4.2 . 10–3 M–1 s–1 at 27°C (Maquire & Hale 1980; 
quoted, Wolfe 1980); 
estimated half-lives at 22°C: t. ~ 108.8 d at pH 4, t. ~ 84.3 d at pH 7, and t. ~ 75 d at pH 9 (Tomlin 1994). 
Biodegradation: aerobic degradation k = 2.3 . 10–3 h–1 with t. = 13.0 d for control system, k = 0.4 . 10–3 h–1 
with t. = 73.0 d for metabolism, k = 5.3 . 10–3 h–1 with t. = 8.50 d for co-metabolism; anaerobic degradation 
k = 1.7 . 10–3 h–1 with t. = 17.0 d for control system, k = 3.9 . 10–3 h–1 with t. = 9.6 d for metabolism, 
k = 38.0 . 10–3 h–1 with t. = 1.0 d for co-metabolism, by a mixture of microorganisms from activated sludge, 
soil and sediment in cyclone fermentors (Liu et al. 1981) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 88 d–1 (rainbow trout, Takimoto & Miyamoto 1976; quoted, McLeese et al. 1976) 
k2 = 0.4 d–1 (rainbow trout, Takimoto & Miyamoto 1976; quoted, McLeese et al. 1976) 
k2 = 0.070 h–1 (willow shiner, Tsuda et al. 1989) 
k1 = (3.89 ± 1.39) . 10–3 mL g–1 d–1 (guppy, De Bruijn & Hermens 1991) 
k2 = (1.13 ± 0.07) d–1 (guppy, De Bruijn & Hermens 1991) 
k2 = 1.01 d–1 (guppy, calculated-KOW, De Bruijn & Hermens 1991) 
k2 = (0.28 ± 0.02) . 10–3 (NADPH) min–1·mg protein–1 (rainbow trout, De Bruijn et al. 1993) 
k2 = (0.15 ± 0.02) . 10–3 (GSH) min–1·mg protein–1 (rainbow trout, De Bruijn et al. 1993) 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 15–168 h in summer, Palfrey Lake, Canada at pH 6.7, 11°C under sunlight conditions (Metcalfe 
et al. 1980); 
t. = 36–48 h at pH 7.0–7.5, 19–23°C under sunlight conditions, t. = 518–1188 h at pH 7.5, 23°C under 
dark conditions in Lac Bourgeous, Quebec (Greenhalgh et al. 1980); 
t. = 5.5 d and 1.0 d under aerobic and anaerobic co-metabolism conditions, t. = 73 d under aerobic 
metabolism condition (Liu et al. 1981) 
t. = 13 h in winter, irrigation ditch from Ebre Delta, Spain under sunlight conditions, at pH 7.8, 11°C 
(Lacorte & Barcelo 1994); 
t. = 202 d at 6°C, t. = 62 d at 22°C in darkness for Milli-Q water at pH 6.1; t. = 103 d at 6°C, t. = 31 d 
at 22°C in darkness, t. = 4 d under sunlight conditions for river water at pH 7.3; t. = 143 d at 6°C, t. 
= 27 d at 22°C in darkness for filtered water at pH 7.3; t. = 224 d at 6°C, t. = 34 d at 22°C in darkness, 
t. = 3 d under sunlight conditions in seawater (Arcachon Bay, France) at pH 8.1, 22–25°C (Lartiges & 
Garri gues 1995); 
t. = 11–19.3 h at pH 7.8–8.2, 25–20°C under sunlight conditions in rice crop field; t. = 70–74 h at pH 8.2, 
15–18°C under dark conditions from Ebre Delta, Spain (Oubina et al. 1996). 
Ground water: 
Sediment: 
Soil: selected field t. = 4 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996); 
t. = 12–28 d under upland conditions and t. = 4–20 d under submerged conditions (Tomlin 1994). 
Biota: excretion t. = 9.9 h (willow shiner, Tsuda et al. 1989); 
elimination rate constants k = (0.28 ± 0.02) . 103 (NADPH) and (0.15 ± 0.02) . 103 (GSH) min–1·mg protein–1 
(rainbow trout, De Bruijn et al. 1993); 
degradation t. = 4 d in balsam fir and spruce foliage (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

3854 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.40 Fenoxycarb 
Common Name: Fenoxycarb 
Synonym: Insegar, Logic, Pictyl, Torus, Varikil 
Chemical Name: ethyl 2-(4-phenoxyphenoxy)ethylcarbamate; ethyl[2-(p-phenoxy)ethyl]- carbamate 
Uses: insecticide to control lepidoptera, scale insects, and psyllids on fruit, cotton and ornamentals; and also cockroaches, 
fleas, mosquito larvae, and fire ants in public health situations. 
CAS Registry No: 79127-80-3 
Molecular Formula: C17H19NO4 
Molecular Weight: 301.338 
Melting Point (°C): 
53 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.23 (Tomlin 1994) 
Molar Volume (cm3/mol): 
344.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.531 (mp at 53°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
6.0 (20°C, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
5.7 (Worthing & Hance 1991) 
6.0 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
1.7 . 10–6 (Hartley & Kidd 1987) 
7.8 . 10–6 (20°C, Worthing & Hance 1991) 
8.7 . 10–7 (Tomlin 1994) 
1.7 . 10–6 (20–25°C, selected, Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
8.5 . 10–5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.30 (Worthing & Hance 1991; Milne 1995) 
4.07 (Tomlin 1994) 
4.30 (selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
2.35 (calculated-S as per Kenaga 1980, this work) 
3.11 (calculated-KOW as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
3.00 (20–25°C, estimated, Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Soil: t. = 1.7–2.5 months in laboratory soil and water and t. = few days to 31 d in field soil and water (Tomlin 1994); 
field t. = 1 d (20–25°C, selected, Hornsby et al. 1996). 
O 
O 
HN
O 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3855 
18.1.1.41 Fenpropathrin 
Common Name: Fenpropathrin 
Synonym: Rody, Danitol, Meothrin, S-3206, Ortho Danitol, Herald, Meothrin 
Chemical Name: (R,S)-.-cyano-3-phenoxybenzyl 2,2,3,3-tetramethylcyclopropanecarboxylate 
CAS Registry No: 64257-84-7 (racemate); 39515-41-8 (unstated stereochemistry) 
Uses: insecticide/acaricide (pyrethroid) 
Molecular Formula: C22H23NO3 
Molecular Weight: 349.423 
Melting Point (°C): 
47 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.15 (Hartley & Kidd 1987; Tomlin 1994) 
Molar Volume (cm3/mol): 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.608 (mp at 47°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
0.33 (Hartley & Kidd 1987) 
0.0141 (Tomlin 1994) 
0.33 (selected, Augustijn-Beckers et al. 1994) 
Vapor Pressure (Pa at 25°C): 
0.00073 (20°C, Hartley & Kidd 1987; Tomlin 1994) 
0.00130, 0.00133 (quoted, Augustijn-Beckers et al. 1994) 
7.33 . 10–4 (selected, Augustijn-Beckers et al. 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
6.0 (20°C, Tomlin 1994) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
6.75, 3.70 (quoted, estimated, Augustijn-Beckers et al. 1994) 
3.70 (soil, estimated and selected, Augustijn-Beckers et al. 1994) 
Environmental Fate Rate Constants, k, or Half-Lives: 
Volatilization: 
Photolysis: degraded principally by photolysis, t. = 2.7 wk in river water (Hartley & Kidd 1987; Tomlin 1994). 
Oxidation: 
Hydrolysis: decomposed in alkaline solution (Hartley & Kidd 1987; Tomlin 1994). 
Biodegradation: 
O 
O 
O 
N 
© 2006 by Taylor & Francis Group, LLC

3856 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: degraded principally by photolysis, t. = 2.7 wk in river water (Hartley & Kidd 1987; Tomlin 1994). 
Ground water: 
Sediment: 
Soil: duration of activity in soil 1–5 d (Hartley & Kidd 1987; Tomlin 1994); 
reported field t. = 8–144 d, recommended field t. = 5 d (Augustijn-Beckers et al. 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3857 
18.1.1.42 Fensulfothion 
Common Name: Fensulfothion 
Synonym: Dassnit, Terracur 
Chemical Name: O,O-diethyl O-4-methylsulphinylphenyl phosphorothioate 
Uses: insecticide/nematicide 
CAS Registry No: 115-90-2 
Molecular Formula: C11H17O4PS2 
Molecular Weight: 308.354 
Melting Point (°C): 
yellow-brown oil (Spencer 1982; Hartley & Kidd 1987) 
< 25 (Montgomery 1993) 
Boiling Point (°C): 
138–141/0.01 mmHg (Hartley & Kidd 1987, Worthing & Walker 1987; Howard 1991) 
Density (g/cm3): 
1.202 (20°C, Spencer 1982, Hartley & Kidd 1987; Worthing & Walker 1987) 
Acid Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C, F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
1600 (Spencer 1982) 
2000 (20°C, shake flask, Bowman & Sans 1979, 1983b) 
1540 (Hartley & Kidd 1987; Worthing & Walker 1987) 
1540 (selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C): 
9.09 . 10–5 (Howard 1991) 
6.67 . 10–3 (selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
1.40 . 10–5 (calculated-P/C, Howard 1991) 
Octanol/Water Partition Coefficient, log KOW: 
2.23 (shake flask-concn ratio-GC, Bowman & Sans 1983) 
2.23 (Montgomery 1993) 
2.23 (recommended, Sangster 1993) 
2.23 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.46, 0.93 (calculated-KOW, solubility, Howard 1991) 
1.68 (killifish Oryzias latipes, after 48–72 h exposure, Tsuda et al. 1995) 
S
O 
O 
P 
O
O 
S 
© 2006 by Taylor & Francis Group, LLC

3858 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Sorption Partition Coefficient, log KOC: 
1.83, 2.11 (estimated, Howard 1991) 
1.89 (calculated, Montgomery 1993) 
2.09–2.57 (Augustijn-Beckers et al. 1994) 
2.48 (soil, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
2.52 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.45, 2.266, 2.11, 2.26, 2.85 (first generation EUROSOILS ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1998, 1999) 
3.05, 2.44, 2.15, 2.237, 2.85 (second generation EUROSOILS ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1999) 
3.053, 2.443, 2.150, 2.237, 2.848 (second generation EUROSOILS ES-1, ES-2, ES-3, ES-4, ES-5, shake 
flask/batch equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
2.52; 2.94, 2.62 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Volatilization: 
Photolysis: 
Photooxidation: 
Hydrolysis: t. = 58–87 d over pH range of 4.5–8.0 at 25°C in pure water (Howard 1991). 
Biodegradation: field t. ~ 30 d (estimated, Augustijn-Becker et al. 1994). 
Biotransformation: 
Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 
k2 = 0.17 h–1 (killifish Oryzias latipes, Tsuda et al. 1995) 
Half-Lives in the Environment: 
Air: t. = 7.03 h for reaction with OH radicals in the atmosphere (Howard 1991). 
Surface water: t. = 58–87 d in pure water at 25°C over the pH range of 4.5–8.0 (Howard 1991). 
Ground water: 
Sediment: 
Soil: t. < 1 wk to several weeks in soil (Howard 1991); 
field t. = 3 to 182 d and t. ~ 30 d (estimated, Augustijn-Becker et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3859 
18.1.1.43 Fenthion 
Common Name: Fenthion 
Synonym: Bay 29493, Baycid, Bayer 9007, Baytex, Baycid, DMTP, Ekalux, ENT 25540, Entex, Lebacid, Lebaycid, 
Mercaptophos, MPP, NCI-C08651, OMS 2, Queletox, Spottan, Talodex, Tiquvon 
Chemical Name: O,O-dimethyl O-(3-methyl-4-(methylthio)phenyl) phosphorothioate; O,O-dimethyl O-4-methylthio-mtolyl 
phosphorothioate 
Uses: insecticide with contact, stomach and respiratory action and also used as acaricide and cholinesterase inhibitor. 
CAS Registry No: 55-38-9 
Molecular Formula: C10H15O3PS2 
Molecular Weight: 278.328 
Melting Point (°C): 
7.0 (Montgomery 1993) 
7.5 (Tomlin 1994; Milne 1995) 
Boiling Point (°C): 
87.0 (at 0.01 mmHg, Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; 
Milne 1995) 
Density (g/cm3 at 20°C): 
1.246 (Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
1.25 (Worthing & Hance 1991; Montgomery 1993) 
Molar Volume (cm3/mol): 
264.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
89.31 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
55 (Gunther et al. 1968; Martin & Worthing 1977; Budavari 1989) 
54–56 (rm. temp., Spencer 1973, 1980) 
56 (22°C, Khan 1980) 
55 (22°C, Verschueren 1983) 
7.51 (20°C, shake flask-GC, Bowman & Sans 1983a, b) 
9.3 (20°C, shake flask-GC, Bowman & Sans 1985) 
54–56 (20°C, Hartley & Kidd 1987) 
2.0 (20°C, Worthing & Walker 1987; Worthing & Hance 1991; Milne 1995) 
2.0, 4.2, 7.51, 9.3, 50 (20°C, literature data variability, Heller et al. 1989) 
4.2 (20–25°C, selected, Wauchope et al. 1992; Lohninger 1994; Hornsby et al. 1996) 
9.30, 11.3 (20°C, 30°C, Montgomery 1993) 
4.2 (20°C, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
4.0 . 10–3 (20°C, Eichler 1965) 
4.0 . 10–3 (20°C, Melnikov 1971) 
4.0 . 10–3 (20°C, Hartley & Graham-Bryce 1980) 
4.0 . 10–3 (20°C, Khan 1980; Budavari 1989; Worthing & Hance 1991; Montgomery 1993) 
8.4 . 10–3 (20°C, GC-RT correlation, Kim et al. 1984; Kim 1985) 
S 
O 
P 
O
O 
S 
© 2006 by Taylor & Francis Group, LLC

3860 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
4.0 . 10–3, 10 . 10–3 (20°C, 30°C, Hartley & Kidd 1987) 
4.0 . 10–3 (20°C, selected, Suntio et al. 1988) 
2.5 . 10–3, 4.0 . 10–2, 0.43, 3.40, 21.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.037 – 4665.2/(T/K); measured range 32.7–160°C (liquid, gas saturation-GC, Rordorf 1989) 
3.7 . 10–4 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
7.4 . 10–4 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.022 (20°C, calculated-P/C, Suntio et al. 1988) 
0.547 (Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
4.09 (shake flask-GC, Bowman & Sans 1983b) 
4.167 ± 0.009 (shake flask/slow-stirring method, De Bruijn & Hermens 1991) 
4.09, 4.84 (Montgomery 1993) 
3.56 (RP-HPLC correlation, Saito et al. 1993) 
4.09 (recommended, Sangster 1993) 
4.84 (Tomlin 1994) 
4.09 (selected, Hansch et al. 1995) 
4.17 (RP-HPLC-RT correlation, Nakamura et al. 2001) 
Bioconcentration Factor, log BCF: 
1.81 (calculated-S, Kenaga 1980) 
–4.50 (beef biotransfer factor log Bb, correlated-KOW, MacDougall 1972) 
–5.60 (milk biotransfer factor log Bm, correlated-KOW, Johnson & Bowman 1972) 
4.22 ± 0.08 (guppy, calculated on an extractable lipid wt. basis, De Bruijn & Hermens 1991) 
4.17 (Poecilia reticulata, De Bruijn & Hermens 1991) 
2.68 (whole body willow shiner after 24–168 h exposure, Tsuda et al. 1992) 
1.34, 1.46, 1.43, 1.41 (whole body carp: 24 h, 72 h, 120 h, and 148 h; Tsuda et al. 1993) 
1.96 (killifish Oryzias latipes, after 12–72 h exposure, Tsuda et al. 1995) 
1.96, 2.02 (Oryzias latipes, Tsuda et al. 1995; quoted, Devillers et al. 1996) 
Sorption Partition Coefficient, log KOC: 
2.68 (calculated-S, Kenaga 1980) 
3.18 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
3.31 (soil, HPLC-screening test, mean value of different stationary and mobile phases, Kordel et al. 
1993, 1995a, b) 
0.89–1.58 (Montgomery 1993) 
3.18 (Tomlin 1994; Lohninger 1994) 
3.31; 3.37 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
4.35, 3.55, 3.46, 3.146, 3.64 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1998) 
3.10 (sandy loam soil, column equilibrium method-HPLC/UV, 20°C, Xu et al. 1999) 
3.716, 3.658, 3,450, 3.226, 3.292 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
3.50, 3.00 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, Gramatica 
et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: t. = 223 d at pH 4, t. = 200 d at pH 7, and t. = 151 d at pH 9 at 22°C (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3861 
Biodegradation: rate constants k = –0.00745 h–1 in nonsterile sediment and k = –0.00199 h–1 in sterile sediment 
by shake-tests at Range Point and k = –0.00129 h–1 in nonsterile water by shake-tests at Range Point (Walker 
et al. 1988). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = (8.81 ± 0.72) . 10–3 mL g–1 d–1 (guppy, De Bruijn & Hermens 1991) 
k2 = (0.60 ± 0.02) d–1 (guppy, De Bruijn & Hermens 1991) 
k2 = 0.42 d–1 (guppy, calculated-KOW, De Bruijn & Hermens 1991) 
k2 = 0.07 h–1 (whole body willow shiner, Tsuda et al. 1992) 
k2 = 0.34 h–1 (carp, Tsuda et al. 1992) 
k2 = (0.64 ± 0.09) . 10–3 (NADPH) min–1·mg protein–1 (rainbow trout, De Bruijn et al. 1993) 
k2 = (0.12 ± 0.02) . 10–3 (GSH) min–1·mg protein–1 (rainbow trout, De Bruijn et al. 1993) 
k2 = 0.14 h–1 (killifish Oryzias latipes, Tsuda et al. 1995) 
Half-Lives in the Environment: 
Air: 
Surface water: persistence of up to 4 wk in river water (Eichelberger & Lichtenberg 1971); 
t. = 189 d at 6°C, 71 d at 2 2°C in darkness for Mill-Q water at pH 6.1; t. = 149 d at 6°C, t. = 42 d at 
22°C in darkness, t. = 2 d under sunlight conditions for river water at pH 7.3; t. = 104 d at 6°C, t. = 33 d 
at 22°C in darkness for filtered river water, pH 7.3; t. = 227 d at 6°C, t. = 26 d at 22°C in darkness, 
t. = 5 d under sunlight conditions for seawater at pH 8.1 (Lartiges & Garrigues 1995). 
Ground water: 
Sediment: 
Soil: selected field t. = 34 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. ~ 1 d in soil and water (Tomlin 1994). 
Biota: excretion rate constant k = 0.07 h–1 from whole body willow shiner (Tsuda et al. 1992); 
elimination rate constants k = (0.64 ± 0.09) . 10–3 (NADPH) and k = (0.12 ± 0.02) . 10–3 (GSH) min–1·mg 
protein–1 (rainbow trout, De Bruijn et al. 1993); 
excretion rate constant k = 0.34 h–1 with t. = 2.0 d from carp (Tsuda et al. 1993). 
© 2006 by Taylor & Francis Group, LLC

3862 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.44 Fenvalerate 
Common Name: Fenvalerate 
Synonym: Belmark, Ectrin, Pydrin, Pyrethroid, S 5602, Sanmarton, SD 43775, Sumicide, Sumicidin, Sumifly, Sumipower, 
WL 43775 
Chemical Name: (RS)-.-cyano-3-phenoxybenzyl (RS)-2-(4-chlorophenyl)-3-methylbutyrate; cyano-(3-phenoxyphenyl)- 
methyl 4-chloro-.-(-1-methylethyl)benzeneacetate 
Uses: non-systemic insecticide to control a wide variety of pests and also used as acaricide 
CAS Registry No: 51630-58-1 
Molecular Formula: C25H22ClNO3 
Molecular Weight: 419.901 
Melting Point (°C): liquid 
Boiling Point (°C): 
decomposes on distillation (Hartley & Kidd 1987; Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.26 (22°C, Spencer 1982) 
1.17 (23°C, Hartley & Kidd 1987; Milne 1995) 
1.175 (tech. grade at 25°C, Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
479.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.085 (shake flask-GC, Coats & O’Donnell-Jafferey 1979) 
0.085 (Verschueren 1983; quoted, Pait et al. 1992) 
0.024 (in seawater, Schimmel et al. 1983; Zaroogian et al. 1985; Clark et al. 1989) 
<1.0 (20°C, Worthing 1979, 1987; Spencer 1982) 
<1.0 (20°C, Hartley & Kidd 1987; Montgomery 1993; Milne 1995) 
< 0.02 (Davies & Lee 1987; quoted, Kawamoto & Urano 1989) 
<1.0 (tech. grade at 20°C, Worthing & Walker 1991) 
0.002 (20–25°C, selected, Wauchope 1989; Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
4.90 . 10–7 (Barlow 1978) 
3.07 . 10–5 (Worthing 1979) 
1.33 . 10–5 (22°C, Spencer 1982) 
3.70 . 10–5 (Hartley & Kidd 1987) 
1.47 . 10–6 (Budavari 1989) 
3.73 . 10–5 (Kawamoto & Urano 1989) 
8.10 . 10–7 (GC-RT correlation, supercooled liquid value, Hinckley et al. 1990) 
3.70 . 10–5 (tech. grade, Worthing & Hance 1991) 
1.47 . 10–6 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.92 . 10–7 (20°C, Tomlin 1994) 
1.78 . 10–6 (solid PS, converted from PL determined by GC-RT correlation, Tsuzuki 2001) 
Cl 
O 
O 
N 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3863 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.0152 (20–25°C, calculated-P/C, Montgomery 1993) 
0.308 (20–25°C, calculated-P/C as per Wauchope et al. 1992, Majewski & Capel 1995) 
0.0211 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW at 25°C or as indicated: 
4.42 (shake flask-GC, Coats & O’Donnell-Jafferey 1979) 
6.20 (shake flask-GC, Schimmel et al. 1983) 
5.2 ± 0.6 (HPLC-RT correlation, Muir et al. 1985) 
6.65 (shake flask, Log P Database, Hansch & Leo 1987) 
6.25 (HPLC-RT correlation, Kawamoto & Urano 1989) 
4.09 (23°C, Worthing & Walker 1991) 
6.25 (HPLC-RT correlation, Hu& Leng 1992) 
4.09–6.25 (Montgomery 1993) 
6.20 (recommended, Sangster 1993) 
5.01 (23°C, Tomlin 1994) 
6.20 (recommended, Hansch et al. 1995) 
4.08 (23°C, Milne 1995) 
Bioconcentration Factor, log BCF: 
3.67 (quoted, Schimmel et al. 1983) 
1.67–1.84 (sand, 24 h BCF for chironomid larvae in water, Muir et al. 1985) 
2.01–2.24 (sand, 24 h BCF for chironomid larvae in sediment, Muir et al. 1985) 
1.30–1.53 (sand, 24 h BCF for chironomid larvae in sediment/pore water, Muir et al. 1985) 
1.62–1.87 (silt, 24 h BCF for chironomid larvae in water, Muir et al. 1985) 
1.36–2.06 (silt, 24 h BCF for chironomid larvae in sediment, Muir et al. 1985) 
1.26–1.97 (silt, 24 h BCF for chironomid larvae in sediment/pore water, Muir et al. 1985) 
1.36–1.51 (clay, 24 h BCF for chironomid larvae in water, Muir et al. 1985) 
2.09–2.19 (clay, 24 h BCF for chironomid larvae in sediment, Muir et al. 1985) 
0.95–1.70 (clay, 24 h BCF for chironomid larvae in sediment/pore water, Muir et al. 1985) 
4.48, 4.57 (oyster, calculated-KOW & models, Zaroogian et al. 1985) 
4.48, 4.57 (sheepshead minnow, calculated-KOW & models, Zaroogian et al. 1985) 
3.67 (oyster, Zaroogian et al. 1985; quoted, Hawker & Connell 1986) 
–3.09 (milk biotransfer factor log Bm, correlated-KOW, Wszolek et al. 1980; quoted, Travis & Arms 1988) 
2.61, 2.96 (Oncorhynchus mykiss, Muir et al. 1994; quoted, Devillers et al. 1996) 
2.70 (calculated, Pait et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.58 (silt, reported as KP on 78% DOC, Muir et al. 1985) 
2.61 (clay, reported as KP on 61% DOC, Muir et al. 1985) 
1.30 (selected, USDA 1989; quoted, Neary et al. 1993) 
3.72 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
3.64 (calculated, Montgomery 1993) 
3.72 (estimated-chemical structure, Lohninger 1994) 
3.74 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Biodegradation: rate constant k(aerobic) = 0.055 d–1 with t. = 13 d at 20°C by aerobic activated sludge, and 
k(anaerobic) = 0.055 d–1 with t. = 13 d at 20°C by anaerobic microorganisms (batch contacting method, 
Kawamoto & Urano 1990). 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 14 d in 100 mL of a pesticide-seawater solution under outdoor light, t. > 14 d under outdoor 
dark condition and t. > 28 d under indoor condition (Schimmel et al. 1983); 
© 2006 by Taylor & Francis Group, LLC

3864 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
t. = 27–42 d in an estuary (Schimmel et al. 1983; quoted, Montgomery 1993). 
t. = 13 d biodegradation by aerobic activated sludge or anaerobic microorganisms cultivated by an artificial 
sewage (Kawamoto & Urano 1990). 
Ground water: 
Sediment: t. = 34 d in 10 g of sediment/100 mL of a pesticide-seawater solution in untreated condition and 
t. > 28 d in sterile condition (Schimmel et al. 1983). 
Soil: selected field t. = 35 d (Wauchope et al. 1992; Hornsby et al. 1996). 
soil t. = 50 d (Pait et al. 1992). 
Biota: average t. = 35 d in the forest (USDA 1989; quoted, Neary et al. 1993). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3865 
18.1.1.45 Flucythrinate 
Common Name: Flucythrinate 
Synonym: AC 222705, Cybolt, Cythrin, Pay-Off 
Chemical Name: (RS)-.-cyano-3-phenoxybenzyl(S)-2-(4-difluoromethoxyphenyl)-3-methylbutyrate; cyano(3-phenoxy 
phenyl)methyl 4-(difluoromethoxy)-.-(1-methylethyl)benzeneacetate 
Uses: non-systemic insecticide with contact and stomach action to control a wide range of insect pests in cotton, fruit 
trees, strawberries, vines, fruits, olives, coffee, cocoa, hops, vegetables, soybeans, cereals, maize, alfalfa, sugar beet, 
sunflowers and ornamentals 
CAS Registry No: 70124-77-5 
Molecular Formula: C26H23F2NO4 
Molecular Weight: 451.463 
Melting Point (°C): 
< 25 (dark amber liquid, Montgomery 1993) 
Boiling Point (°C): 
108.0 (at 0.35 mmHg, Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; 
Milne 1995) 
Density (g/cm3 at 20°C): 
1.189 (22°C, Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994; Milne 1995) 
1.190 (22°C, Worthing & Hance 1991) 
Molar Volume (cm3/mol): 
499.9 (calculated-Le Bas method at normal boiling point) 
379.4 (22°C, calculated-density) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.049 (in seawater, Schimmel et al. 1983) 
0.50 (21°C, Hartley & Kidd 1987; Worthing & Walker 1987, 1991; Tomlin 1994; Milne 1995) 
0.06 (20–25°C, selected, Wauchope 1989; Hornsby et al. 1996) 
0.50 (21°C, Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
1.2 . 10–6 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
9.066 (Montgomery 1993) 
2.69 . 10–6, 2.2 . 10–6 (liquid PL, GC-RT correlation; Donovan 1996) 
1.2 . 10–6 (20–25°C, selected, Hornsby et al. 1996) 
2.82 . 10–6 (solid PS, converted from PL determined by GC-RT correlation method, Tsuzuki 2001) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
8187 (21–25°C, calculated-P/C, 8.08 . 10–2 atm·m3/mol, Montgomery 1993) 
0.0011 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
6.28 (shake flask-GC, Schimmel et al. 1983) 
6.20 (Clark et al. 1989) 
O F 
F 
O 
O 
N 
O 
© 2006 by Taylor & Francis Group, LLC

3866 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.08 (Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
5.55 (shake flask, Huang & Leng 1993) 
4.70 (Montgomery 1993) 
6.20 (recommended, Sangster 1993) 
6.20 (selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
2.96 (calculated-S as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
3.81 (calculated, Montgomery 1993) 
5.00 (20–25°C, selected, Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. ~ 21 d for degradation on soil plates by simulated sunlight and t. = 4.0 d in aqueous solutions 
(Tomlin 1994). 
Oxidation: 
Hydrolysis: t. = 40, 52, and 6.3 d at pH 3, 5, 9 all at 27°C (Hartley & Kidd 1987; Montgomery 1993; Tomlin 
1994). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 34 d in an estuarine environment (Schimmel et al. 1983; quoted, Montgomery 1993). 
Ground water: 
Sediment: 
Soil: t. ~ 2 months in soil (Tomlin 1994); 
field t. = 21 d (20–25°C, selected, Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3867 
18.1.1.46 Fonofos 
Common Name: Fonofos 
Synonym: Difonate, Dyfonate, ENT-25796, Fonophos, N 2788, N-2790, Stauffer NA 2790 
Chemical Name: O-ethyl S-phenyl (RS)-ethylphosphorodithioate; ( ± )-O-ethyl S-phenyl ethylphosphorodithioate 
Uses: soil insecticide to control rootworms, wireworms, crickets and similar crop pests in vegetables, sorghum, ornamentals, 
cereals, maize, vines, olives, sugar beet, sugar cane, potatoes, groundnuts, tobacco, turf, and fruit crops 
CAS Registry No: 944-22-9 (unstated stereochemistry); 66767-39-3 (racemate); 62705-71-9 (R)-isomer; 62680-03-9 
(S)-isomer 
Molecular Formula: C10H15OPS2 
Molecular Weight: 246.329 
Melting Point (°C): liquid 
Boiling Point (°C): 
130 (at 0.1 mmHg, Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; 
Milne 1995) 
Density (g/cm3 at 20°C): 
1.160 (25°C, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
1.154 (Worthing & Hance 1991; Montgomery 1993) 
Molar Volume (cm3/mol): 
213.4 (calculated-density) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
13 (22°C, Spencer 1973) 
13 (Wauchope 1978) 
15.7 (20°C, shake flask-GC, Bowman & Sans 1979, 1983b) 
13 (Hartley & Kidd 1987; Worthing & Hance 1991; Milne 1995) 
13 (20°C, Worthing & Walker) 
16.9 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
13 (rm. temp., Montgomery 1993) 
13 (22°C, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0267 (Menn 1969; Fuhrmann & Lichtenstein 1980) 
0.028 (Khan 1980; Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
0.028 (Worthing & Walker 1987; Worthing & Hance 1991) 
0.0453 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.5206 (calculated-P/C as per Worthing & Walker 1987, Schomburg et al. 1991) 
0.5268 (20–25°C, calculated-P/C, Montgomery 1993) 
0.530 (calculated-P/C as per Worthing & Walker 1987, Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW at 25°C or as indicated: 
3.892 (shake flask-GC, Bowman & Sans 1983b) 
3.94 (shake flask, Log P Database, Hansch & Leo 1987) 
3.90 (20°C, Worthing & Hance 1991) 
S 
P
S 
O 
© 2006 by Taylor & Francis Group, LLC

3868 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
3.89, 3.90 (Montgomery 1993) 
3.94 (recommended, Sangster 1993) 
3.94 (Tomlin 1994) 
3.90 (Milne 1995) 
3.94 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.89 (mosquito fish, wet wt. basis, De Bruijn & Hermens 1991) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
2.3–2.7 (selected, sediment/water, Schnoor & McAvoy 1981; Schnoor 1992) 
1.83 (screening model calculations, Jury et al. 1987b) 
1.18 (loam soil, Worthing & Hance 1991) 
2.94 (soil, 20–25°C, selected, Wauchope et al. 1992) 
3.03 (calculated, Montgomery 1993) 
2.94 (estimated-chemical structure, Lohninger 1994) 
2.94 (soil, 20–25°C, selected, Hornsby et al. 1996) 
3.44; 3.0, 3.04 (soil, quoted exptl.; estimated-class-specific model, estimated-general model, Gramatica et al. 
2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 12 d in water at pH 5 and 25°C (Worthing & Hance 1991; Tomlin 1994). 
Oxidation: 
Hydrolysis: alkaline chemical hydrolysis rate constant k = 1 . 10–4 M–1 s–1 with t. > 365 d (selected, sediment/water, 
Schnoor & McAvoy 1981; quoted, Schnoor 1992); 
hydrolysis t. = 74–127 d in water at 40°C and pH 7, t. = 101 d at pH 4 (Worthing & Hance 1991; quoted, 
Montgomery 1993; Tomlin 1994). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: 
Sediment: 
Soil: persistence of less than one month in soil (Wauchope 1978); 
t. > 24 wk in sterile sandy loam and t. = 3.0 wk in nonsterile sandy loam; t. > 24 wk in sterile organic 
soil and t. = 4.0 wk in nonsterile organic soil (Miles et al. 1979); 
t. = 60 d from screening model calculations (Jury 1987b); 
t. = 16.5–28 d at 24°C (Worthing & Hance 1991); 
selected field t. = 40 d (Wauchope et al. 1992; quoted, Richards & Baker 1993; Hornsby et al. 1996). 
Biota: biochemical t. = 60 d from screening model calculations (Jury et al. 1987b). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3869 
18.1.1.47 .-HCH 
Common Name: .-HCH 
Synonym: .-BHC, .-Hexachlorocyclohexane 
Chemical Name: .-1,2,3,4,5,6-hexachlorocyclohexane, (1., 2., 3., 4., 5., 6.-1, 2, 3, 4, 5, 6-hexachloro-cyclohexane 
CAS Registry No: 319-84-6 
Molecular Formula: C6H6Cl6 
Molecular Weight: 290.830 
Melting Point (°C): 
158 (Lide 2003) 
Boiling Point (°C): 288 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
243.6 (calculated-Le Bas method at normal boiling point) 
Enthalpy of fusion, .Hfus (kJ/mol): 
30.96 (Ruelle & Kesselring 1997) 
Entropy of fusion, .Sfus (J/mol K): 
72.0 (Passivirta et al. 1999) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0496 (mp at 158°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations): 
10 (20°C, Slade 1945, Gunther et al. 1968; Ulmann 1972; Horvath 1982) 
1.63 (shake flask-GC, Kanazawa et al. 1971) 
2.03, 1.21 (28°C, shake flask-centrifuge, membrane filter-GC, max. 0.1 µm particle size, Kurihara et al. 1973) 
1.77, 1.48 (28°C, shake flask-centrifuge, sonic and centrifuge-GC, max. 0.05 µm particle size, Kurihara et al. 1973) 
1.21–2.03 (28°C, Kurihara et al. 1973) 
2.0 (generator column-GC/ECD, Weil et al. 1974) 
4.34 (shake flask-GC/ECD, Malaiyandi et al. 1982) 
1.51 (20°C, Deutsche Forschungsgemeinschaft 1983; Ballschmiter & Wittlinger 1991; Fischer et al. 1991) 
21.6 (supercooled liquid value, Majewski & Capel 1995) 
0.666, 0.023 (calculated-molar volume, mp and mobile order thermodynamics, Ruelle & Kesselring 1997) 
log [SL/(mol/L)] = 2.790 – 1621/(T/K) (supercooled liquid, Passivirta et al. 1999) 
85.22, 96.85 (supercooled liquid values: LDV literature-derived value, FAV final-adjusted value, Xiao et al. 2004) 
log SL/(mol m–3) = – 398.5/(T/K) + 0.859 (supercooled liquid, final adjusted eq., Xiao et al. 2004) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
2.67* (20°C, static method, measured range 20–60°C, Slade 1945) 
0.00333* (20°C, effusion manometer, measured range 15–30°C, Balson 1947) 
0.27 (supercooled liquid value from Balson 1947; quoted, Hinckley et al. 1990) 
0.0073 (20°C, Deutsche Forschungsgemeinschaft 1983; quoted, Ballschmiter & Wittlinger 1991; Fischer 
et al. 1991; Schreitmuller & Ballschmiter 1995) 
0.0840 (20°C, supercooled liquid value, Bidleman et al. 1986) 
0.313 (GC-RT correlation, Watanabe & Tatsukawa 1989) 
0.227 (supercooled liquid PL, GC-RT correlation, Hinckley et al. 1990) 
log (PL/Pa) = 10.49 – 3301/(T/K) (supercooled liquid, Hinckley et al. 1990) 
log (PL/Pa) = 11.34 – 3375/(T/K) (supercooled liquid, Hinckley et al. 1990) 
0.003 (selected, Suntio et al. 1988, quoted, Calamari et al. 1991; Schreitmuller & Ballschmiter 1995) 
0.0060 (quoted, Howard 1991) 
0.00647 (quoted, supercooled liquid value, Majewski & Capel 1995) 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

3870 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.159; 0.00464 (supercooled liquid PL, GC-RT correlation; converted to solid PS with fugacity ratio F, Passivirta 
et al. 1999) 
log (PS/Pa) = 14.53 – 4954/(T/K) (solid, Passivirta et al. 1999) 
log (PL/Pa) = 10.77 – 3335/(T/K) (supercooled liquid, Passivirta et al. 1999) 
0.245, 0.245 (supercooled liquid PL: LDV literature-derived value, FAV final adjusted value, Xiao et al. 2004) 
log PL/Pa = – 3434/(T/K) + 10.91 (supercooled liquid, linear regression of literature data, Xiao et al. 2004) 
log PL/Pa = – 3497/(T/K) + 11.12 (supercooled liquid, final adjusted eq., Xiao et al. 2004) 
Henry’s Law Constant (Pa·m3/mol or at 25°C as indicated and reported temperature dependence equations. Additional 
data at other temperatures designated * are compiled at the end of this section): 
0.47–0.792 (Callahan et al. 1979) 
2.16 (gas stripping-GC, Atlas et al. 1982) 
0.55 (calculated-P/C, Mabey et al. 1982) 
0.87 (calculated-P/C, Suntio et al. 1988) 
1.10 (calculated-P/C, Ballschmiter & Wittlinger 1991; Fischer et al. 1991) 
1.07 (calculated-P/C, Howard 1991) 
0.43 (calculated-P/C, Calamari et al. 1991) 
0.677* (23°C, gas stripping-GC/ECD, distilled water, measured range 0.5–45°C, Kucklick et al. 1991) 
log [H/(Pa·m3 mol–1] = –2810/(T/K) + 9.31, temp range 0.5–45°C (gas stripping-GC measurements, distilled 
water, Kucklick et al. 1991, McConnell et al. 1993) 
0.104, 0.257, 0.710, 2.10, 5.99 (0.5, 10, 25, 23, 35, 45°C, gas stripping-GC/ECD, artificial seawater, Kucklick 
et al. 1991) 
log [H/(Pa·m3 mol–1)] = –2969/(T/K) + 9.88, temp range 0.5–45°C (gas stripping-GC measurements, artificial 
seawater, Kucklick et al. 1991) 
0.87 (20°C), 2.40, 1.10, 0.677, 0.710 (23°C) (quoted, Iwata et al. 1993) 
0.215, 0.491, 0.373, 0.630, 0.630 (8.5°C in Green Bay, 18.9°C in Lake Michigan, 18.5°C in Lake Huron, 22.3°C 
in Lake Erie, 22.3°C in Lake Ontario, concn. ratio-GC, McConnell et al. 1993) 
0.872 (calculated-P/C, this work) 
1.239 (wetted wall column-GC, Altschuh et al. 1999) 
log [H/(Pa m3/mol)] = 8.98 – 1714/(T/K) (Passivirta et al. 1999) 
0.43* (20°C, gas stripping-GC, measured range 10–40°C, Jantunen et al. 2000) 
log [H/(Pa m3/mol)] = 10.88 – 3298/(T/K); temp range 10–40°C (gas stripping-GC, Jantunen et al. 2000) 
0.53 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001) 
log KAW = 5.485 – 2682/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
0.38* (20°C, dynamic headspace-GC, DHS method, measured range 5–35°C, Sahsuvar et al. 2003) 
0.42* (20°C, gas stripping-GC, BS method, measured range 5–35°C, Sahsuvar et al. 2003) 
0.39* (20°C, mean value of DHS and BS methods, temp range 5–35°C, Sahsuvar et al. 2003) 
log [H/(Pa m3/mol)] = 10.13 – 3088/(T/K); temp range 5–35°C (Sahsuvar et al. 2003) 
0.646, 0.741 (LDV literature-derived value, FAV final adjusted value, Xiao et al. 2004) 
log [H/(Pa m3/mol)] = –3171/(T/K) + 10.45 (LDV linear regression of literature data, Xiao et al. 2004) 
log [H/(Pa m3/mol)] = –3099/(T/K) + 10.26 (FAV final adjusted eq., Xiao et al. 2004) 
Octanol/Water Partition Coefficient, log KOW at 25°C or as indicated. Additional data at other temperatures designated 
* are compiled at the end of this section: 
3.81 (shake flask-GC, Kurihara et al. 1973) 
3.81 (HPLC-RT correlation, Sugiura et al. 1979) 
3.90 (Veith et al. 1979) 
3.776 ± 0.025 (shake flask/slow stirring method; De Bruijn et al. 1989) 
3.80 (recommended, Sangster 1993) 
3.80 (recommended, Hansch et al. 1995) 
3.79* ± 0.001 (shake flask-slow stirring-GC, measured range 5–45°C, Paschke & Schuurmann 1998) 
3.81; 4.57 (quoted lit.; calculated, Passivirta et al. 1999) 
3.81, 3.94 (LDV literature-derived value, FAV final-adjusted value, Xiao et al. 2004) 
log KOW = –374.5/(T/K) + 2.55 (LDV linear regression of literature data, Xiao et al. 2004) 
log KOW = –266.2/(T/K) + 3.04 (LDV linear regression of literature data, Xiao et al. 2004) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3871 
Octanol/Air Partition Coefficient, log KOA at 25°C and reported temperature dependence equations. Additional data 
at other temperatures designated * are compiled at the end of this section: 
6.90 (calculated-KOW/KAW, Wania & Mackay 1996) 
7.26 (calculated, Finizio et al. 1997) 
7.618*, 7.611 (gas saturation-GC/MS, calculated, measured range 5–25°C, Shoeib & Harner 2002) 
log KOA = –3.23 + 3231/(T/K), temp range: 5–25°C (gas saturation-GC, Shoeib & Harner 2002) 
7.61, 7.464 (LDV literature-derived value, FAV final adjusted value, Xiao et al. 2004) 
log KOA = 3231/(T/K) – 3.23 (LDV linear regression of literature data, Xiao et al. 2004) 
log KOA = 3235/(T/K) – 3.90 (FAV final adjusted eq., Xiao et al. 2004) 
Bioconcentration Factor, log BCF: 
2.03 (mussels, Ernst 1977; quoted, Renberg & Sundstrom 1979; Hawker & Connell 1986) 
3.08, 2.52, 2.78, 2.77 (golden orfe, carp, brown trout, guppy, Suguira et al. 1979) 
2.20, 2.82 (mussels, Geyer et al. 1982) 
2.97–3.38 mean 3.20; 2.97–3.45 mean 3.38 (rainbow trout, 15°C, steady-state BCF on 7- to 96-d laboratory 
study in 2 tanks with different water concn, Oliver & Niimi 1985) 
3.20, 2.85 (rainbow trout: laboratory BCF, Lake Ontario field BCF, Oliver & Niimi 1985) 
1.93 (paddy field fish, Soon & Hock 1987) 
2.15 (calculated, Isnard & Lambert 1988) 
6.01 (azalea leaves, Bacci et al. 1990) 
3.04 (Brachydanio rerio, flow-through conditions, Butte et al. 1991) 
2.33 (early juvenile of rainbow trout, Vigano et al. 1992) 
5.72 (azalea leaves, calculated, Muller et al. 1994) 
2.79; 2.606, 2.712 (fish, steady-state, quoted lit.; calculated-MCI ., calculated-KOW, Lu et al.1999) 
2.33; 2.44 (Oncorhynchus mykiss, wet wt. basis: quoted exptl.; calculated-QSAR model based on quantum 
chemical parameters, Wei et al. 2001) 
Sorption Partition Coefficient, log KOC: 
3.81 (calculated-S, Lyman et al. 1982) 
4.10, 3.5 (field sediment trap material, calculated-KOW, Oliver & Charlton 1984) 
3.25 (av. lit. value, Gerstl 1991) 
3.32 (derived from exptl., Meylan et al. 1992) 
3.53 (calculated-MCI ., Meylan et al. 1992) 
3.25 (soil, calculated-MCI 1., Sabljic et al. 1995) 
5.50 (soil, calculated-universal solvation model, Winget et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: volatilization t. ~ 6 d from a model river of 1 m deep flowing 1 m/s with a wind speed of 3 m/s 
(Saleh et al. 1982); 
t. ~ 500 d from a model pond (estimated, Howard 1991). 
Photolysis: 
Oxidation: photooxidation t. = 2.3 d for reaction with OH radical in the gas phase (Atkinson 1987). 
Hydrolysis: hydrolytic t. = 26 yr at pH 8 and 5°C (Ngabe et al. 1993). 
Biodegradation: overall degradation rate constant k = 0.0648 h–1 with t. = 10.7 h for (+)-.-HCH and rate constant 
k = 0.0298 h–1 with t. = 23.3 h for (–)-.-HCH were calculated from experiments S1–S3 of (35 ± 0.5) h for 
(+) enantiomer and 99 ± 3.5 h for (–) enantiomer in sewage sludge (Muller & Buser 1995). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 3.82 h–1; k2 = 0.036 h–1 (mussels, Ernst 1977; quoted, Hawker & Connell 1986) 
k1 = 0.52 d–1, 0.56 d–1, 0.91 d–1, and 0.42 d–1 (golden orfe, carp, brown trout, and guppy at steady state, 
Sugiura et al. 1979) 
k2 = 0.0009 h–1 (azalea leaves, Peterson et al. 1991) 
k1 = 27.6 h–1; k2 = 0.13 h–1 (early juvenile of rainbow trout, Vigano et al. 1992) 
Half-Lives in the Environment: 
Air: atmospheric t. ~ 2.3 d based on reaction with OH radical at 25°C (Atkinson 1987); 
© 2006 by Taylor & Francis Group, LLC

3872 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
half-lives in the Great Lake’s atmosphere. t. = 4.4 ± 0.2 yr at Eagle Harbor, t. = 3.5 ± 0.2 yr at Sleeping 
Bear Dunes and t. = 3.3 ± 0.2 yr at Sturgeon Point (Buehler et al. 2004). 
Surface water: t. = 1.7–77 d in various locations in the Netherlands in case a first order reduction process may 
be assumed (Zoeteman et al. 1980) 
Ground water: 
Sediment: 
Soil: t. = 8.2 and 7.1 yr for control and sludge-amended Luddington soils, respectively (Meijer et al. 2001). 
Biota: t. = 19.2 h (mussels, Ernst 1977). 
TABLE 18.1.1.47.1 
Reported vapor pressures, octanol-water partition coefficients and octanol-air partition coefficients of .- 
HCH at various temperatures 
Vapor pressure log KOW log KOA 
Slade 1945 Balson 1947 Paschke & Schuurmann 1998 Shoeib & Harner 2002 
static method effusion-manometer shake flask/GC generator column-GC/MS 
t/°C P/Pa t/°C P/Pa t/°C log KOW t/°C log KOA 
20 2.67 0 2.0 . 10–4 5 3.92 5 8.4086 
40 8.0 10 8.67 . 10–4 25 3.79 10 8.1770 
60 44.0 20 3.33 . 10–3 45 3.75 15 7.9681 
30 0.01187 20 7.8100 
40 0.03866 enthalpy of phase transfer: 25 7.6178 
50 0.1160 .HOW/(kJ mol–1) = – 9.80 25 7.611 
60 0.3266 entropy of phase transfer: 
70 0.8666 .SOW/(J K–1 mol–1) = 55.4 log KOA = A + B/(T/K) 
A –3.231 
log P = A – B/(T/K) B 3231 
P/mmHg 
A 11.950 enthalpy of phase change 
B 4850 .HOA/(kJ mol–1) = 61.9 
temp range: 51–71°C 
FIGURE 18.1.1.47.1 Logarithm of vapor pressure versus reciprocal temperature for .-HCH. 
.-HCH: vapor pressure vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Slade 1945 
Balson 1947 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3873 
FIGURE 18.1.1.47.2 Logarithm of KOW versus reciprocal temperature for .-HCH. 
FIGURE 18.1.1.47.3 Logarithm of KOA versus treciprocal temperature for .-HCH. 
.-HCH: KOW vs. 1/T 
3.0 
3.5 
4.0 
4.5 
5.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
WO 
Paschke & Schuurmann 1998 
Kurihara et al. 1973 
De Bruijn et al. 1989 
Sangster 1993 
Hansch et al. 1995 
.-HCH: KOA vs. 1/T 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
AO 
Shoeib & Harner 2000 
Shoeib & Harner 2002 (interpolated) 
© 2006 by Taylor & Francis Group, LLC

3874 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 18.1.1.47.2 
Reported Henry’s law constants of .-HCH at various temperatures and temperature dependence equations 
ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a) 
ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a) 
ln (kH/atm) = A – B/(T/K) (3) 
ln H = A – B/(T/K) (4) log H = A – B/(T/K) (4a) 
KAW = A – B·(T/K) + C·(T/K)2 (5) 
Kucklick et al. 1991 McConnell et al. 1993 Jantunen et al. 2000 Sahsuvar et al. 2003 
gas stripping-GC concentration ratio air stripping-GC air stripping/dynamic HS 
t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) 
Green Bay dynamic headspace (DHS) 
0.5 0.104 8.0 0.215 10 0.17 5 0.094 
10 0.255 Lake Michigan 20 0.43 10 0.15 
23 0.677 18.9 0.491 30 0.92 20 0.38 
35 1.34 Lake Huron 35 1.52 30 0.79 
45 3.27 18.5 0.373 40 2.21 35 1.32 
Lake Erie 
eq. 4a H/(Pa m3/mol) 22.3 0.630 eq. 4a H/(Pa m3/mol) gas stripping-GC 
A 9.31 Lake Ontario A 10.88 ± 0.50 5 0.098 
B 2810 22.3 0.630 B 3298 ± 149 10 0.13 
seawater 20 0.42 
0.5 0.104 30 0.92 
10 0.257 35 1.24 
23 0.710 
35 2.10 combined - both methods 
45 5.99 5 0.095 
10 0.15 
eq.4a H/(Pa m3/mol) 20 0.39 
A 9.88 30 0.85 
B 2969 35 1.30 
eq. 4a H/(Pa m3/mol) 
A 10.13 ± 0.29 
B 3088 ± 84 
enthalpy of transfer air-water 
.HWA/(kJ mol–1) = 59.3 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3875 
FIGURE 18.1.1.47.4 Logarithm of Henry’s law constant versus reciprocal temperature for .-HCH. 
.-HCH: Henry's law constant vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
m. aP( / H nl 
3 
) l o 
m/ 
Kucklick et al. 1991 
McConnell et al. 1993 
Jantunen et al. 2000 
Sahsuvar et al. 2003 
Atlas et al. 1982 
Altschuh et al. 1999 
© 2006 by Taylor & Francis Group, LLC

3876 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.48 .-HCH 
Common Name: .-HCH 
Synonym: .-BHC, .-Hexachlorocyclohexane, 1.,2.,3.,4.,5.,6.-1,2,3,4,5,6-hexachloro-cyclohexane 
Chemical Name: .-1,2,3,4,5,6-hexachlorocyclohexane 
CAS Registry No: 319-85-7 
Molecular Formula: C6H6Cl6 
Molecular Weight: 290.830 
Melting Point (°C): 
309 (Slade 1945; Ballschmiter & Wittlinger 1991) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
243.6 (calculated-Le Bas method at normal boiling point) 
Enthalpy of fusion, .Hfus (kJ/mol): 
Entropy of fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.00164 (mp at 309°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations): 
5.0 (20°C, Slade 1945; Gunther et al. 1968; Horvath 1982) 
0.70 (20°C, shake flask-GC, Kanazawa et al. 1971) 
0.20, 0.13 (28°C, shake flask-centrifuge, membrane filter-GC, max. 0.1 µm particle size, Kurihara et al. 1973) 
0.70 (20°C, Brooks 1974) 
0.24 (generator column-GC/ECD, Weil et al. 1974) 
0.13–0.70 (Callahan et al. 1979) 
2.04 (20°C, Deutsche Forschungsgemeinschaft 1983; Ballschmiter & Wittlinger 1991; Fischer et al. 1991) 
7.0 (Worthing & Walker 1983) 
69.5 (supercooled liquid value, Majewski & Capel 1995) 
344, 418.8 (supercooled liquid: derivation of literature-derived value, final-adjusted value, Xiao et al. 2004) 
log [SL/(mol m–3)] = –110.1/(T/K) – 0.211 (supercooled liquid, final adjusted eq., Xiao et al. 2004) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
0.67* (20°C, static method, measured range 20–60°C, Slade 1945) 
3.73 . 10–5* (20°C, effusion-manometer, measured range 0–110°C, Balson 1947) 
4.90 . 10–5 (20°C, Deutsche Forschungsgemeinschaft 1983; Ballschmiter & Wittlinger 1991; Fischer et al. 1991) 
0.266 (GC-RT correlation, Watanabe & Tatsukawa 1989) 
0.0272 (supercooled liquid value, Majewski & Capel 1995) 
0.062, 0.0525 (supercooled liquid PL LDV literature derived value, FAV final adjusted value, Xiao et al. 2004) 
log (PL/Pa) = –3563/(T/K) + 10.74 (supercooled liquid, linear regression of literature data, Xiao et al. 2004) 
log (PL/Pa) = –3563/(T/K) + 10.67 (supercooled liquid, final adjusted eq., Xiao et al. 2004) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional 
data at other temperatures designated * are compiled at the end of this section): 
0.055 (20–25°C, Mabey et al. 1982) 
0.120 (calculated-P/C, Suntio et al. 1988) 
0.070 (calculated-P/C, Ballschmiter & Wittlinger 1991; Fischer et al. 1991) 
0.0446 (wetted-wall column-GC, Altschuh et al. 1999) 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3877 
0.022* (dynamic headspace-GC, measured range 5–35°C, Sahsuvar et al. 2003) 
log [H/(Pa m3/mol)] = 9.96 – 3400/(T/K); temp range 5–35°C (dynamic headspace-GC, Sahsuvar et al. 2003) 
0.037, 0.037 (LDV literature-derived value, FAV final adjusted value, Xiao et al. 2004) 
log [H/(Pa m3/mol)] = –3454/(T/K) + 10.16 (LDV linear regression of literature data, Xiao et al. 2004) 
log [H/(Pa m3/mol)] = –3673/(T/K) + 10.89 (FAV final adjusted eq., Xiao et al. 2004) 
Octanol/Water Partition Coefficient, log KOW at 25°C or as indicated. Additional data at other temperatures designated 
* are compiled at the end of this section: 
3.80 (shake flask-GC, Kurihara et al. 1973) 
4.15 (HPLC-RT correlation, Sugiura et al. 1979) 
3.842 ± 0.036; 3.78 (shake flask/slow stirring-GC, De Bruijn et al. 1989) 
3.81 (recommended, Sangster 1993) 
3.78 (recommended, Hansch et al. 1995) 
3.88* ± 0.01 (shake flask/slow stirring-GC, measured range 5–25°C, Paschke & Schuurmann 1998) 
3.84, 3.92 (LDV literature-derived value, FAV final-adjusted value, Xiao et al. 2004) 
log KOW = 847.5/(T/K) + 1.07 (LDV linear regression of literature data, Xiao et al. 2004) 
Octanol/Air Partition Coefficient, log KOA at 25°C and reported temperature dependence equations. Additional data 
at other temperatures designated * are compiled at the end of this section: 
8.965*, 8.875 (gas saturation-GC/MS, calculated, measured range 5–35°C, Shoeib & Harner 2002) 
log KOA = –7.69 + 4937/(T/K), temp range 5–35°C, (gas saturation-GC, Shoeib & Harner 2002) 
8.87, 8.74 (LDV literature-derived value, FAV final adjusted value, Xiao et al. 2004) 
log KOA = 4937/(T/K) – 7.69 (LDV linear regression of literature data, Xiao et al. 2004) 
log KOA = 4391/(T/K) – 5.98 (FAV final adjusted eq., Xiao et al. 2004) 
Bioconcentration Factor, log BCF: 
2.99, 2.44, 2.82, 3.17 (golden orfe, carp, brown trout, guppy, Sugiura et al. 1979) 
3.08, 2.26, 2.62 (activated sludge, algae, golden ide, reported as log BF, Freitag et al. 1985) 
2.66 (calculated, Isnard & Lambert 1988) 
3.16, 3.18 (Brachydanio rerio, flow-through conditions, Butte et al. 1991; quoted, Devillers et al. 1996) 
2.86; 2.606, 2.712 (fish, steady-state, quoted lit.; calculated-MCI ., calculated-KOW, Lu et al.1999) 
2.50; 2.44 (Oncorhynchus mykiss, wet wt. basis: quoted exptl.; calculated-QSAR model based on quantum 
chemical parameters, Wei et al. 2001) 
Sorption Partition Coefficient, log KOC: 
3.36 (av. lit. value, Gerstl 1991) 
3.98 (soil, calculated-S as per Kenaga 1980, this work) 
3.50 (derived from exptl., Meylan et al. 1992) 
3.53 (calculated-MCI ., Meylan et al. 1992) 
3.36 (soil, calculated-MCI 1., Sabljic et al. 1995) 
5.50; 3.50 (soil, calculated-universal solvation model; quoted exptl., Winget et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
Oxidation: 
Biodegradation: calculated t. = 178 h in sewage sludge from experiments S1–S3 (Buser & Muller 1995). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 0.46 d–1, 0.33 d–1, 0.53 d–1, and 0.18 d–1 (golden orfe, carp, brown trout, and guppy at steady state, 
Sugiura et al. 1979) 
Half-Lives in the Environment: 
© 2006 by Taylor & Francis Group, LLC

3878 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 18.1.1.48.1 
Reported vapor pressures and Henry’s law constants of .-HCH at various 
temperatures 
Vapor pressure Henry’s law constant 
Slade 1945 Balson 1947 Sahsuvar et al. 2003 
static method effusion manometer dynamic headspace-GC 
t/°C P/Pa t/°C P/Pa t/°C H/(Pa m3/mol) 
20 0.667 0 1.733 . 10–6 5 0.0054 
40 22.7 10 8.399 . 10–6 10 0.0092 
60 77.3 20 3.733 . 10–5 20 0.022 
30 1.533 . 10–4 30 0.053 
40 5.60 . 10–4 35 0.088 
50 1.907 . 10–3 
60 6.00 . 10–3 
70 0.01760 ln H = A – B/(t/K) 
80 0.04933 H/(Pa m3/mol) 
90 0.1293 A 9.96 ± 0.23 
100 0.3200 B 3400 ± 68 
110 0.7653 
enthalpy of transfer air-water 
log P = A – B/(T/K) .HWA/(kJ mol–1) = 65.1 
P/mmHg 
A 11.790 
B 5375 
temp range: 95–117°C 
FIGURE 18.1.1.48.1 Logarithm of vapor pressure versus reciprocal temperature for .-HCH. 
.-HCH: vapor pressure vs. 1/T 
-6.0 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Slade 1945 
Balson 1947 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3879 
FIGURE 18.1.1.48.2 Logarithm of Henry’s law constant versus reciprocal temperature for .-HCH. 
TABLE 18.1.1.48.2 
Reported octanol-water and octanol-air partition 
coefficients of .-HCH at various temperatures 
log KOW log KOA 
Paschke & Schuurmann 1998 Shoeib & Harner 2002 
shake flask-GC generator column-GC/MS 
t/°C log KOW t/°C log KOA 
5 3.99 5 10.0686 
25 3.88 15 9.4375 
45 3.87 20 8.9875 
25 8.9651 
enthalpy of phase transfer: 35 8.3682 
.HOW/(kJ mol–1) = – 8.20 25 8.875 
entropy of phase transfer: 
.SOW/(J K–1 mol–1) = 62.7 log KOA = A + B/(T/K) 
A –7.692 
B 4937 
enthalpy of phase change 
.HOA/(kJ mol–1) = 94.5 
.-HCH: Henry's law constant vs. 1/T 
-6.0 
-5.0 
-4.0 
-3.0 
-2.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
m. aP( 
/ H 
nl 
3 
) l om/ 
Sahsuvar et al. 2003 
Altschuh et al. 1999 
© 2006 by Taylor & Francis Group, LLC

3880 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 18.1.1.48.3 Logarithm of KOW versus reciprocal temperature for .-HCH. 
FIGURE 18.1.1.48.4 Logarithm of KOA versus reciprocal temperature for .-HCH. 
.-HCH: KOW vs. 1/T 
3.0 
3.5 
4.0 
4.5 
5.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
WO 
Paschke & Schuurmann 1998 
Kurihara et al. 1973 
De Bruijn et al. 1989 
Sangster 1993 
Hansch et al. 1995 
.-HCH: KOA vs. 1/T 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 
10.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
AO 
Shoeib & Harner 2000 
Shoeib & Harner 2002 (interpolated) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3881 
18.1.1.49 .-HCH 
Common Name: .-HCH 
Synonym: .-BHC, .-Hexachlorocyclohexane, 1.,2.,3.,4.,5.,6.-1,2,3,4,5,6-hexachloro-cyclohexane 
Chemical Name: .-1,2,3,4,5,6-hexachlorocyclohexane 
CAS Registry No: 319-86-8 
Molecular Formula: C6H6Cl6 
Molecular Weight: 290.830 
Melting Point (°C): 
141.5 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
243.6 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
21.34 (DSC method, Plato 1972) 
21.50 (Ruelle & Kesselring 1997) 
Entropy of fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0719 (mp at 141.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
10 (20°C, Slade 1945) 
15.7, 10.7 (28°C, shake flask-centrifuge, membrane filter-GC, max. 0.1 µm particle size, Kurihara et al. 1973) 
11.6, 8.64 (28°C, shake flask-centrifuge, sonic and centrifuge-GC, max. 0.05 µm particle size, Kurihara et al. 
1973) 
8.64–31.4 (shake flask-GC, Kurihara et al. 1973) 
10 (20°C, quoted, Gunther et al. 1968) 
21.3 (20°C, shake flask-GC, Kanazawa et al. 1971) 
31.4 (generator column-GC/ECD, Weil et al. 1974) 
9.01 (20°C, Deutsche Forschungsgemeinschaft 1983; Ballschmiter & Wittlinger 1991; Fischer et al. 
1991) 
Vapor Pressure (Pa at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the 
end of this section): 
2.67* (20°C, static method, measured range 20–60°C, Slade 1945) 
2.27 . 10–3* (20°C, effusion manometer, Balson 1947) 
0.150 (GC-RT correlation, Watanabe & Tatsukawa 1989) 
0.0309 (supercooled liquid value, Majewski & Capel 1995) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.018 (20–25°C, Mabey et al. 1982) 
0.073 (calculated-P/C, Suntio et al. 1988) 
0.0825 (calculated-PL/CL, Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW at 25°C or as indicated. Additional data at other temperatures designated 
* are compiled at the end of this section: 
4.14 (shake flask-GC, Kurihara et al. 1973) 
4.14 (recommended, Sangster 1993) 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

3882 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
4.14 (recommended, Hansch et al. 1995) 
4.17* ± 0.01 (shake flask-slow stirring-GC, measured range 5–45°C, Paschke & Schuurmann 1998) 
Octanol/Air Partition Coefficient, log KOA at 25°C and reported temperature dependence equations. Additional data 
at other temperatures designated * are compiled at the end of this section: 
8.80*, 8.848 (gas saturation-GC/MS, calculated, measured range 5–35°C, Shoeib & Harner 2002) 
log KOA = –7.45 + 4856/(T/K), temp range 5–35°C (gas saturation-GC, Shoeib & Harner 2002) 
Bioconcentration Factor, log BCF: 
1.95 (calculated-S as per Kenaga 1980, this work) 
3.21, 3.25 (Brachydanio rerio, flow-through conditions, Butte et al. 1991; quoted, Devillers et al. 1996) 
2.45 (rainbow trout, flow-through conditions, Vigano et al. 1992; quoted, Devillers et al. 1996) 
2.34; 2.44 (Oncorhynchus mykiss, wet wt. basis: quoted exptl.; calculated-QSAR model based on quantum 
chemical parameters, Wei et al. 2001) 
Sorption Partition Coefficient, log KOC: 
2.82 (soil, calculated-S as per Kenaga 1980, this work) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Biodegradation: calculated t. = 126 h in sewage sludge from experiments S1–S3 (Buser & Muller 1995). 
Half-Lives in the Environment: 
TABLE 18.1.1.49.1 
Reported vapor pressures, octanol-water partition coefficients and octanol-water partition coefficients of 
.-HCH at various temperatures 
Vapor pressure log KOW log KOA 
Slade 1945 Balson 1947 Paschke & Schuurmann 1998 Shoeib & Harner 2002 
static method effusion manometer shake flask-GC generator column-GC/MS 
t/°C P/Pa t/°C P/Pa t/°C log KOW t/°C log KOA 
20 2.67 0 1.213 . 10–4 5 4.27 5 10.0436 
40 12.0 10 5.466 . 10–4 25 4.17 15 9.4587 
60 45.33 20 2.266 . 10–3 45 4.15 20 8.9251 
30 8.533 . 10–3 25 8.7995 
40 0.02946 enthalpy of phase transfer: 35 8.4420 
50 0.09466 .HOW/(kJ mol–1) = – 7.60 25 8.848 
60 0.2780 entropy of phase transfer: 
70 0.7866 .SOW/(J K–1 mol–1) = 69.9 log KOA = A + B/(T/K) 
A –7.447 
log P = A – B/(T/K) B 4856 
eq. 1 P/mmHg 
A 12.635 enthalpy of phase change 
B 5100 .HOA/(kJ mol–1) = 93.0 
temp range: 55–75°C 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3883 
FIGURE 18.1.1.49.1 Logarithm of vapor pressure versus reciprocal temperature for .-HCH. 
FIGURE 18.1.1.49.2 Logarithm of KOW versus reciprocal temperature for .-HCH. 
.-HCH: vapor pressure vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Slade 1945 
Balson 1947 
.-HCH: KOW vs. 1/T 
3.0 
3.5 
4.0 
4.5 
5.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
WO 
Paschke & Schuurmann 1998 
Kurihara et al. 1973 
Sangster 1993 
Hansch et al. 1995 
© 2006 by Taylor & Francis Group, LLC

3884 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 18.1.1.49.3 Logarithm of KOA versus reciprocal temperature for .-HCH. 
.-HCH: KOA vs. 1/T 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 
10.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
AO 
Shoeib & Harner 2000 
Shoeib & Harner 2002 (interpolated) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3885 
18.1.1.50 Heptachlor 
Common Name: Heptachlor 
Synonym: Aahepta, Aathepta, Agroceres, Basaklor, 3-Chlorochlordene, Drinox, ENT 15152, Hepta, Heptachlorane, 
Heptagran, Heptagranox, Heptamak, Heptamul, Heptasol, Heptox, methanoindene, NA 2761, NCI-C00180, Rhodiachlor, 
Soleptax, Velsicol 
Chemical Name: 1, 4, 5, 6, 7, 8, 8-heptachloro-3a, 4, 7, 7a-tetrahydro-4, 7-methanoindene; 3–4, 5, 6, 7, 8, 8a-heptachlorodicyclopentadiene 
Uses: non-systemic insecticide with contact, stomach, and some respiratory action to control termites, ants, and soil 
insects in cultivated and uncultivated soils; also used to control household insects 
CAS Registry No: 76-44-8 
Molecular Formula: C10H5Cl7 
Molecular Weight: 373.318 
Melting Point (°C): 
95.5 (Lide 2003) 
Boiling Point (°C): 
135–145 (at 1–1.5 mmHg, Montgomery 1993; Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.65–1.67 (25°C, Hartley & Kidd 1987; Tomlin 1994) 
1.66 (Montgomery 1993) 
Molar Volume (cm3/mol): 
308.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
73.06 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
22 (Rordorf 1989) 
22.97 (Ruelle & Kesselring 1997) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.203 (mp at 95.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
0.056 (25–29°C, shake flask-GC, Park & Bruce 1968) 
0.03, 0.125, 0.180* (particle size: 0.01, 0.05 & 5.0µ, shake flask-GC, measured range 15–45°C, Biggar & Riggs 
1974) 
0.03 (Martin & Worthing 1977; Kenaga 1980a, b; Kenaga & Goring 1980) 
<1.0 (Wauchope 1978) 
0.056 (Hartley & Graham-Bryce 1980; Worthing & Walker 1987; Hartley & Kidd 1987) 
0.05 (Khan 1980) 
0.30 (Herbicide Handbook 1983) 
0.056 (25–29°C, Worthing & Hance 1991; Tomlin 1994) 
0.18 (Montgomery 1993) 
0.056 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
1.307, 1.307 (supercooled liquid: LDV derivation of literature-derived value, FAV final-adjusted value, Shen & 
Wania 2005) 
log [CL/(mol m–3)] = –770/(T/K) + 0.13 (supercooled liquid, linear regression of literature data, Shen & Wania 
2005) 
Cl Cl 
Cl 
Cl 
Cl 
Cl Cl 
© 2006 by Taylor & Francis Group, LLC

3886 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Vapor Pressure (Pa at 25°C or as indicated or reported temperature dependence equations): 
0.025 (Bowery 1964) 
0.040 (Eichler 1965; Martin 1972; Quellette & King 1977) 
0.021 (20°C, Hartley & Graham-Bryce 1980) 
0.053 (Spencer 1982; Worthing 1983, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
0.0213 (20°C, selected exptl. value, Kim 1985) 
0.021, 0.410, 5.10, 46, 320 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 14.977 – 4966.6/(T/K); measured range 36.4–95.6°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 11.811 – 3816.5/(T/K); measured range 96.6–151°C (liquid, gas saturation-GC, Rordorf 1989) 
0.031 (supercooled liquid PL value, GC-RT correlation, Hinckley et al. 1990) 
log (PL/Pa) = 11.88 – 3995/(T/K) (supercooled liquid, GC-RT correlation, Hinckley et al. 1990) 
0.022 (20°C, selected, Taylor & Spencer 1990) 
0.040 (20°C, Montgomery 1993) 
0.0533 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
0.13, 0.13 (supercooled liquid PL: LDV literature derived value, FAV final adjusted value, Shen & Wania 2005) 
log (PL/Pa) = –3870/(T/K) + 12.11 (supercooled liquid, linear regression of literature data, Shen & Wania 2005) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
150 (gas stripping-GC, Warner et al. 1987) 
154 (WERL Treatability Database, Ryan et al. 1988) 
112 (20°C, calculated-P/C, Suntio et al. 1988) 
845.4 (calculated-P/C, Jury et al. 1990) 
17.8 (calculated-bond contribution method LWAPC, Meylan & Howard 1991) 
233 (Montgomery 1993) 
29.75 (wetted wall column-GC, Altschuh et al. 1999) 
30, 38 (LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
Octanol/Water Partition Coefficient, log KOW: 
5.44 (HPLC-RT correlation, Veith et al. 1979, 1980; Veith & Kosian 1983) 
3.87 (quoted, Rao & Davidson 1980) 
5.27 (HPLC-RT correlation, McDuffie 1981) 
4.40–5.50 (Montgomery 1993) 
5.27, 5.58 (quoted, Hansch et al. 1995) 
6.02 (shake flask/slow stirring-GC, Simpson et al. 1995) 
5.24 (RP-HPLC-RT correlation, Finizio et al. 1997) 
6.10, 5.94 (LDV literature-derived value, FAV final-adjusted value, Shen & Wania 2005) 
Octanol/Air Partition Coefficient, log KOA at 25°C and reported temperature dependence equations. Additional data 
at other temperatures designated * are compiled at the end of this section: 
7.705*, 7.643 (gas saturation-GC/MS, calculated, measured range 5–25°C, Shoeib & Harner 2002) 
log KOA = –3.95 + 3455/(T/K), temp range 5–25°C (gas saturation-GC, Shoeib & Harner 2002) 
7.64, 7.76 (LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
Bioconcentration Factor, log BCF: 
–1.81 (beef biotransfer factor log Bb, correlated-KOW, Kenaga 1980) 
–1.48 (vegetation, correlated-KOW, Lichtenstein 1960; Nash 1974) 
–2.49 (milk biotransfer factor log Bm, correlated-KOW, Saha 1969) 
4.26 (oysters, wet wt. basis, Wilson 1963) 
3.26 (bluegill, field tests, Andrews et al. 1966) 
3.41 (soft clam, Butler 1971) 
3.45–4.33 (estuarine fish for 96-h exposure, Schimmel et al. 1976) 
3.76–3.92 (spot fish, whole body 24-d exposure, Schimmel et al. 1976) 
3.67 (spot fish, edible tissue 24-d exposure, Schimmel et al. 1976) 
3.58 (mosquito fish, Callahan et al. 1979) 
3.56, 3.87 (spot fish for 72-h test, 96-h test. Callahan et al. 1979) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3887 
4.57, 4.32 (snails, algae, Callahan et al. 1979) 
3.98, 4.30 (fathead minnow, 32-d exposure, 276-d exposure, Veith et al. 1979, 1980) 
4.30 (sheepshead minnow, Veith et al. 1979) 
4.24, 3.33 (fish: flowing water, static water; Kenaga 1980; Kenaga & Goring 1980) 
3.65, 3.90 (estimated-S, KOW, Bysshe 1982) 
3.11–3.56 (earthworm, Gish & Hughes 1982) 
3.98, 4.30 (fathead minnow, Veith & Kosian 1983) 
4.03 (clam fat, 60-d expt., Hartley & Johnson 1983) 
4.26 (oysters, Biddinger & Gloss 1984) 
3.90, 3.90, 3.90 (oyster, pinfish, sheepshead minnow, Zaroogian et al. 1985) 
4.30, 4.33 (measured for fathead minnow, sheepshead minnow, Zaroogian et al. 1985) 
3.93 (oyster, Zaroogian et al. 1985) 
3.98 (calculated, Isnard & Lambert 1988) 
4.11 (selected, Chessells et al. 1992) 
4.14; 4.406, 4.112 (fish, steady-state, quoted lit.; calculated-MCI ., calculated-KOW, Lu et al.1999) 
4.23, 6.15 (oyster, uptake 6 months: wet wt basis, lipid wt basis, Geyer et al. 2000) 
4.30, 5.85 (fathead minnow, uptake 276-d: wet wt basis, lipid wt basis, Geyer et al. 2000) 
3.98; 3.67 (Oncorhynchus mykiss, wet wt. basis: quoted exptl.; calculated-QSAR model based on quantum 
chemical parameters, Wei et al. 2001) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
4.48 (soil, calculated-S as per Kenaga & Goring 1978, Kenaga 1980a) 
4.38 (screening model calculations, Jury et al. 1987b) 
4.34 (calculated-KOW as per Kenaga & Goring 1980, Chapman 1989) 
3.81 (Jury et al. 1990) 
5.21 (estimated-QSAR and SPARC, Kollig 1993) 
4.38 (Montgomery 1993) 
4.38 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
4.76 (soil, estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: measured rate constant k = 3.0 d–1 (Glotfelty et al. 1984; quoted, Glotfelty et al. 1989); 
calculated rate constant k = 5.0 d–1 (Glotfelty et al. 1989). 
Photolysis: 
Oxidation: t. = 5.2–51.7 h in air, based on estimated rate constant for the vapor-phase reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: first-order t. = 23.1 h, based on rate constant k = 2.97 . 10–2 h–1 at pH 7.0 and 25°C (Demayo 1972; 
quoted, Callahan et al. 1979; Kollig et al. 1987; Howard et al. 1991); 
rate constant k = 61 yr–1 at pH 7.0 and 25°C (Kollig 1993) 
t. = 5.4 d at pH 2, t. = 0.96 d at pH 7 in natural waters (Capel & Larson 1995) 
Biodegradation: aqueous aerobic t. = 360–1567 h, based on unacclimated aerobic soil grab sample test data 
(Castro & Yoshida 1971; quoted, Howard et al. 1991); 
rate constant k = 0.011 d–1 by die-away test in soil (Rao & Davidson 1980; quoted, Scow 1982); 
estimated t. = 220 d in soil (Jury et al. 1990); 
aqueous anaerobic t. = 1440–6268 h, based on unacclimated aerobic biodegradation half-life (Howard et 
al. 1991) 
t.(aerobic) = 15 d, t.(anaerobic) = 60 d in natural waters (Capel & Larson 1995) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 9.8–59.0 h, based on estimated photooxidation half-life in air (Atkinson 1987; quoted, Howard et al. 
1991); 
atmospheric transformation lifetime was estimated to be <1 d (Kelly et al. 1994). 
© 2006 by Taylor & Francis Group, LLC

3888 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Surface water: persistence up to 2 wk in river water (Eichelberger & Lichtenberg 1971); 
t. = 38 d in surface waters in the Netherlands in case a first order reduction process may be assumed 
(Zoeteman et al. 1980) 
t. = 23.1–129.4 h, based on hydrolysis half-lives (Kollig et al. 1987 and Chapman & Cole 1982; quoted, 
Howard et al. 1991) 
Biodegradation t.(aerobic) = 15 d, t.(anaerobic) = 60 d, hydrolysis t. = 5.4 d at pH 2, t. = 0.96 d at pH 7 
in natural waters (Capel & Larson 1995). 
Ground water: t. = 23.1–129.4 h, based on hydrolysis half-lives (Kollig et al. 1987 and Chapman & Cole 1982; 
quoted, Howard et al. 1991). 
Sediment: 
Soil: t. ~ 2–5 yr persistence in soil (Nash & Woolson 1967); 
estimated persistence of 2 yr in soil (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury 
et al. 1987a); 
Best estimated t. = 0.91 yr, true value is between 0.86–0.97 yr when heptachlor was incorporated to 7.5 
cm depth in an experimental field (Freeman et al. 1975) 
persistence of >24 months (Wauchope 1978); 
t. < 10 d and subject to plant uptake via volatilization (Callahan et al. 1979; quoted, Ryan et al. 1988); 
first-order t. = 63 d from biodegradation rate constant k = 0.011 d–1 by die-away test in soil (Rao & Davidson 
1980; quoted, Scow 1982); 
field t. = 0.3 d in moist fallow soil (Glotfelty 1981; quoted, Nash 1983); 
microagroecosystem t. = 3 d in moist fallow soil (Nash 1983); 
measured dissipation rate k = 0.28 d–1 (Nash 1983; quoted, Nash 1988); 
estimated dissipation rate k = 1.0 and 0.20 d–1 (Nash 1988); 
reported t. = 9–10 months in soil (Hartley & Kidd 1987; quoted, Montgomery 1993); 
t. = 23.1–129.4 h, based on hydrolysis half-lives (Kollig et al. 1987 and Chapman & Cole 1982; quoted, 
Howard et al. 1991); 
estimated biodegradation t. = 220 d in soil (Jury et al. 1990); 
selected field t. = 250 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996); 
t. = 9–10 months when used at agricultural rates (Tomlin 1994) 
t. = 7–14 yr in soil (Geyer et al. 2000) 
Biota: biochemical t. = 2000 d from screening model calculations (Jury et al. 1987b). 
TABLE 18.1.1.50.1 
Reported aqueous solubilities and octanol-air partition coefficients of 
heptachlor at various temperatures 
Aqueous solubility log KOA 
Biggar & Riggs 1974 Shoeib & Harner 2002 
shake flask-GC generator column-GC/MS 
t/°C S/g·m–3 S/g·m–3 S/g·m–3 t/°C log KOA 
particle size 0.01µ 0.05µ 5.0µ 
15 0.100 5 8.5093 
25 0.030 0.125 0.180 10 8.2625 
35 0.315 15 7.9873 
45 0.490 20 7.7934 
25 7.7046 
25 7.643 
log KOA = A + B/(T/K) 
A –3.951 
B 3455 
enthalpy of phase change 
.HOA/(kJ mol–1) = 66.2 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3889 
FIGURE 18.1.1.50.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for heptachlor. 
FIGURE 18.1.1.50.2 Logarithm of KOA versus reciprocal temperature for heptachlor. 
Heptachlor: solubility vs. 1/T 
-24.0 
-23.0 
-22.0 
-21.0 
-20.0 
-19.0 
-18.0 
-17.0 
-16.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
x nl 
Biggar & Riggs 1974 (0.01 µ particle size) 
Biggar & Riggs 1974 (0.05 µ particle size) 
Biggar & Riggs 1974 (5.0 µ particle size) 
Heptachlor: KOA vs. 1/T 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
AO 
Shoeib & Harner 2000 
Shoeib & Harner 2002 (interpolated) 
© 2006 by Taylor & Francis Group, LLC

3890 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.51 Heptachlor epoxide 
Common Name: Heptachlor epoxide 
Synonym: .-Heptachlorepoxide, Epoxyheptachlor, HCE, Velsicol 53-CS-17 
Chemical Name: 1,4,5,6,7,8,8-heptachloro-2,3-epoxy-3a,4,7,7a-tetrahydro-4,7-methanoindan; 2,3,4,5,7,8-hexa-hydro- 
2, 5-methano-2H-indeno(1,2b)oxirene 
Uses: a degradation product of heptachlor 
CAS Registry No: 1024-57-3 
Molecular Formula: C10H5Cl7O 
Molecular Weight: 389.317 
Melting Point (°C): 
160 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
317.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
21.506 (Ruelle & Kesselring 1997) 
Entropy of Fusion, .Sfus (J/mol K): 
61.56 (Plato 1972) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0474 (mp at 160°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
0.035 (25–29°C, shake flask-GC, Park & Bruce 1968) 
0.025, 0.120, 0.20* (shake flask-GC, particle size: 0.01, 0.05 and 5.0µ, measured range 15–45°C, Biggar & 
Riggs 1974) 
0.35 (generator column-GC/ECD, Weil et al. 1974) 
0.20–0.35 (Mills et al. 1982; Mabey et al. 1982) 
0.90 (Zaroogian et al. 1985) 
0.275 (Montgomery 1993) 
5.91 (supercooled liquid value, 20–25°C, Majewski & Capel 1995) 
0.60, 0.0004 (predicted-molar volume, mp and mobile order thermodynamics, Ruelle & Kesselring 1997) 
7.0, 5.06 (supercooled liquid: LDV derivation of literature-derived value, FAV final-adjusted value, Shen & 
Wania 2005) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.045 (estimated, Mabey et al. 1982) 
0.00256 (estimated, Howard 1991) 
3.47 . 10–4 (20°C, Montgomery 1993) 
0.0997 (supercooled liquid value, 20–25°C, Majewski & Capel 1995) 
0.013, 0.022 (supercooled liquid PL: LDV literature derived value, FAV final adjusted value, Shen & Wania 2005) 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 
395 (calculated-P/C, Mabey et al. 1982) 
3.42 (gas-stripping, Warner et al. 1987) 
3.25 (Montgomery 1993) 
65.5 (20–25°C, Majewski & Capel 1995) 
Cl Cl 
Cl 
Cl 
Cl 
Cl 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3891 
2.13 (wetted-wall column-GC, Altschuh et al. 1999) 
2.1, 1.7 (LDV literature-derived value, FAV final adjusted value, Shen & Wania 2005) 
Octanol/Water Partition Coefficient, log KOW: 
4.43 (Briggs 1981) 
5.40 (HPLC-RT correlation, Veith et al. 1979) 
4.56 ± 0.05 (shake flask, Noegrohati & Hammers 1992) 
3.65 (Montgomery 1993) 
5.40, 5.42 (LDV literature-derived value, FAV final-adjusted value, Shen & Wania 2005) 
Octanol/Air Partition Coefficient, log KOA: 
8.62, 8.59 (LDV literature-derived value, FAV final-adjusted value, Shen & Wania 2005) 
Bioconcentration Factor, log BCF: 
3.30, 4.90, 3.78 (algae, snail, mosquito-microcosm expt., Lu & Metcalf 1975) 
3.23 (mussel, Ernst 1977) 
4.16 (fathead minnows, 32-d flow-through aquarium, Veith et al. 1979) 
2.03 (microorganism, calculated-KOW, Mabey et al. 1982) 
3.37 (clam fat, 60-d expt., Hartley & Johnson 1983) 
2.93 (oyster, Zaroogian et al. 1985) 
3.87, 3.89 (sheepshead minnow, pinfish, mussel and oyster, Zaroogian et al. 1985) 
–1.45 (beef biotransfer factor log Bb, correlated-KOW, Travis & Arms 1988) 
3.88 (calculated-KOW, Howard 1991) 
> 4.16, >5.14(fathead minnow, uptake 32-d: wet wt basis, lipid wt basis, Geyer et al. 2000) 
4.16; 4.10 (Oncorhynchus mykiss, wet wt. basis: quoted exptl.; calculated-QSAR model based on quantum 
chemical parameters, Wei et al. 2001) 
Sorption Partition Coefficient, log KOC: 
2.34 (sediment, calculated-KOW, Mabey et al. 1982) 
2.00 (bentonite clay, Hill & McCarty 1967) 
4.0–4.3 (suspended solids in river, Frank 1981) 
3.89 (calculated-S, Howard 1991) 
4.32 (calculated, Montgomery 1993) 
3.98 (activated carbon-water, Blum et al. 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 60 h from a model river (Howard 1991). 
Photolysis: 
Oxidation: oxidation rate Constants, k < 3600 M–1 h–1 for reaction with singlet oxygen, and k = 20 M–1 h–1 for 
reaction with peroxy radical (Mabey et al. 1982) 
t. = 6–60 h, based on estimated photooxidation half-life in air (Howard et al. 1991) 
Hydrolysis: not expected to be important (Howard et al. 1991) 
Biodegradation: t. ~ 25 d under anaerobic conditions when incubated with thick digester sludge at 35°C (Howard 
1991) 
t.(aerobic) = 792–13248 h, based on aerobic soil grab sample data; t.(anaerobic) = 24–168 h, based on soil 
and freshwater mud grab sample data (Howard et al. 1991) 
t.(aerobic) = 33 d, t.(anaerobic) = 1 d in natural waters (Capel & Larson 1995) 
Biotransformation: rate constant for bacterial transformation in water k = 3 . 10–12 mL cell–1 h–1 (Mabey et al. 1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: estimated t. = 1.5 d for vapor-phase reaction with photochemically produced hydroxyl radical (Howard 1991) 
t. = 6–60 h, based on estimated photooxidation half-life in air (Howard et al. 1991) 
Surface water: t. = 35 d in lower Rhine River in case a first order reduction process may be assumed (Zoeteman 
1980) 
© 2006 by Taylor & Francis Group, LLC

3892 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
t. = 792–13248 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991) 
biodegradation t.(aerobic) = 33 d, t.(anaerobic) = 1 d in natural waters (Capel & Larson 1995) 
Ground water: t. = 24–26496 h, based on estimated unacclimated aqueous aerobic and anaerobic biodegradation 
half-lives (Howard et al. 1991) 
Sediment: 
Soil: t. = 792–13248 h, based on aerobic soil grab sample data (Howard et al. 1991) 
t. ~ 3 yr in soil (Geyer et al. 2000) 
Biota: 
TABLE 18.1.1.51.1 
Reported aqueous solubilities of heptachlor epoxide at various temperatures 
Biggar & Riggs 1974 
shake flask-GC 
t/°C S/g·m–3 S/g·m–3 S/g·m–3 
particle size 0.01µ 0.05µ 5.0µ 
15 0.110 
25 0.025 0.120 0.200 
35 0.350 
45 0.600 
FIGURE 18.1.1.51.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for heptachlor 
epoxide. 
Heptachlor epoxide: solubility vs. 1/T 
-24.0 
-23.0 
-22.0 
-21.0 
-20.0 
-19.0 
-18.0 
-17.0 
-16.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
x nl 
Biggar & Riggs 1974 (0.01 µ particle size) 
Biggar & Riggs 1974 (0.05 µ particle size) 
Biggar & Riggs 1974 (5.0 µ particle size) 
Weil et al. 1974 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3893 
18.1.1.52 Kepone 
Common Name: Kepone 
Synonym: Chlordecone, CIBA 8514 
Chemical Name: 1,2,3,4,5,5,6,7,9,10,10-dodecachlorooctahydro-1,3,4-metheno-2-cyclobuta-[c,d]-pentalone 
CAS Registry No: 143-50-0 
Uses: Insecticide/Fungicide 
Molecular Formula: C10Cl10O 
Molecular Weight: 490.636 
Melting Point (°C): 
350 (dec. Howard 1991; Montgomery 1993; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
369.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 6.5 . 10–4 (mp at 350°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
4.0 (100°C, Gunther et al. 1968) 
2.7 (quoted Weil 1978 unpublished result, Kilzer et al. 1979) 
3.0 (20°C, Kenaga & Goring 1978, Kenaga 1980) 
7.6 (24°C, shake flask-nephelometry/fluo., Hollifield 1979; quoted, Howard 1991; Montgomery 1993) 
Vapor Pressure (Pa at 25°C): 
3.0 . 10–5 (Kilzer et al. 1979; quoted, Howard 1991; Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol): 
0.00153 (calculated-P/C, Howard 1991) 
0.00311 (calculated-P/C, Montgomery 1993) 
0.00140 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
5.50 (Di Toro 1985) 
5.41 (shake flask, log P database, Hansch & Leo 1987) 
4.07 (calculated, Montgomery 1993) 
5.41 (recommended, Sangster 1993) 
5.44 (selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
4.04 (shrimp, 10–20 d exposure, Bahner et al. 1979) 
3.92 (Kenaga & Goring 1980) 
4.0, 2.65, 2.76 (sludge, algae, golden ide, Freitag et al. 1985) 
3.84 (oyster, Zaroogian et al. 1985) 
4.39, 4.46 (oyster, calculated-KOW & models, Zaroogian et al. 1985) 
Cl 
Cl 
Cl Cl 
O
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

3894 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
4.39, 4.47 (sheephead minnow, calculated-KOW & models, Zaroogian et al. 1985) 
3.85 (Spot Leiostomus xanthurus, 19-d uptake and 28-d clearance studies, Fisher et al. 1986) 
4.11 (grass shrimp Palaemonetes pugio, 16-d uptake and 21-d clearance studies, Fisher & Clark 1990) 
3.04–3.34 (fathead minnow, quoted, Howard 1991) 
3.19, 3.09, 2.84, 0.91 (Cyprinodon variegatus, Leiostomus xanthrus, Palaemonetes pugio, Callinetes sapidus, 
quoted, Howard 1991) 
3.36–3.99 (Atlantic menhaden, Howard 1991) 
4.34–4.78 (Atlantic silversides, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
3.38–3.41 (calculated, Howard 1991) 
4.74 (calculated, Montgomery 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 3.8–46 yr predicted for evaporation from a river 1 m deep, flowing at 1 m/s with a wind 
velocity of 3 m/s (Howard 1991). 
Photolysis: indefinite in air (Howard et al. 1991). 
Oxidation: 
Hydrolysis: no hydrolyzable group (Howard et al. 1991). 
Biodegradation: aerobic aqueous t. = 7488 to 17,280 h (312 d to 2 yr), based on aerobic aquatic microcosm 
study, anaerobic t. = 29,952–69,120 h (1248 d to 8 yr) based on unacclimated aerobic biodegradation halflife 
(Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Kinetic data of spot Leiostomus xanthurus in 19-d uptake and 28-d clearance studies (Fisher et al. 1986) 
k1 = 0.273 d–1; k2 = 0.037 d–1 with t. = 18.7 d, uncontaminated water + 4% ration contaminated food, 
k1 = 217.3 d–1; k2 = 0.03 d–1 with t. = 23.5 d, contaminated water + 4% ration uncontaminated food, 
k1 = 0.265 d–1; k2 = 0.037 d–1 with t. = 18.7 d, uncontaminated water + 8% ration contaminated food, 
k1 = 185.5 d–1; k2 = 0.027 d–1 with t. = 25.5 d, contaminated water + 8% ration uncontaminated food, 
k1 = 0.262 d–1; k2 = 0.032 d–1 with t. = 21.5 d, contaminated food (4% ration) then water, 
k1 = 214 d–1; k2 = 0.023 d–1 with t. = 29.9 d, contaminated water then food (a 4% ration) 
k1 = 0.292 d–1; k2 = 0.043 d–1 with t. = 16.2 d, contaminated food (a 8% ration) then water, 
k1 = 154 d–1; k2 = 0.020 d–1 with t. = 35.4 d, contaminated water then food (a 8% ration) 
Kinetic data of grass shrimps in 16-d uptake and 21-d clearance studies (Fisher & Clark 1990) 
k1 = 0.475 d–1; k2 = 0.017 d–1 with t. = 28 d, uncontaminated water + 4% ration contaminated food, 
k1 = 175 d–1; k2 = 0.014 d–1 with t. = 47.8 d, contaminated water + 4% ration uncontaminated food, 
k1 = 0.499 d–1; k2 = 0.019 d–1 with t. = 36.3 d, contaminated food (4% ration) then water, 
k1 = 182 d–1; k2 = 0.013 d–1 with t. = 51.5 d, contaminated water then food (a 4% ration) 
k1 = 0.399 d–1; k2 = 0.021 d–1 with t. = 32.3 d, contaminated food (a 8% ration) then water, 
k1 = 170 d–1; k2 = 0.011 d–1 with t. = 63.7 d, contaminated water then food (a 4% ration) 
Half-Lives in the Environment: 
Air: estimated t. = 438,000 to 4.2 . 107 h or 50–200 yr (Howard et al. 1991). 
Surface water: t. = 7488 to 17,280 h or 312 d to 2 yr, based on aerobic aquatic microcosm study of soil and 
water grab samples (Howard et al. 1991). 
Ground water: estimated t. = 14,976 to 34,560 h (624 d to 4 yr) based on aqueous aerobic biodegradation 
(Howard et al. 1991). 
Sediment: 
Soil: estimated t. = 7488 to 17,280 h (312 d to 2 yr) based on aerobic aquatic microcosm study (Howard et al. 
1991). 
Biota: clearance t. = 28 d (shrimp, 10–20 d exposure, Bahner 1977 
Clearance t. = 16.2–35.4 d for spot Leiostomus xanthurus (Fisher et al. 1986): 
t.(4W) = 18.7 d for kepone contaminated water + uncontaminated food at 4% ration 
t.(4F) = 23.5 d for uncontaminated water + kepone contaminated food at 4% ration 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3895 
t.(8W) = 18.7 d for kepone contaminated water + uncontaminated food at 8% ration, 
t.(8F) = 25.5 d for uncontaminated water + kepone contaminated food at 8% ration 
t.(4FW-food) = 21.5 d for dietary accumulation in combined exposure (food-water) at 4% ration 
t.(4FW-water) = 29.9 d for dietary accumulation in combined exposure (water-food) at 4% ration 
t.(8FW-food) = 16.2 d for dietary accumulation in combined exposure (food-water) at 8% ration 
t.(8FW-water) = 35.4 d for dietary accumulation in combined exposure (water-food) at 8% ration 
Clearance t. = 32.3–63.7 d for grass shrimps Palaemonetes pugio (Fisher & Clark 1990): 
t.(4W) = 47.8 d for kepone contaminated water + uncontaminated food at 4% ration 
t.(4F) = 40.6 d for uncontaminated water + kepone contaminated food at 4% ration 
t.(4FW-food) = 36.3 d for dietary accumulation in combined exposure (food-water) at 4% ration 
t.(4FW-water) = 51.5 d for dietary accumulation in combined exposure (water-food) at 4% ration 
t.(8FW-food) = 32.3 d for dietary accumulation in combined exposure (food-water) at 8% ration 
t.(8FW-water) = 63.7 d for dietary accumulation in combined exposure (water-food) at 8% ration 
© 2006 by Taylor & Francis Group, LLC

3896 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.53 Leptophos 
Common Name: Leptophos 
Synonym: Abar, Phosvel, VCS-506 
Chemical Name: O-(4-bromo-2,5-dichlorophenyl) O-methyl phenylphosphorothioate 
Uses: insecticide 
CAS Registry No: 21609-90-5 
Molecular Formula: C13H10BrCl2O2PS 
Molecular Weight: 412.066 
Melting Point (°C): 
71 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.53 (25°C, Merck Index 1989) 
Molar Volume (cm3/mol): 
317.8 (calculated-Le Bas method at normal boiling point) 
269.3 (calculated-density) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.354 (mp at 71°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.03 (shake flask-UV, Carringer et al. 1975) 
0.03 (20°C, GC, Freed 1976) 
0.0047 (20°C, shake flask-GC, Chiou et al. 1977) 
2.4 (Martin & Worthing 1977; Kenaga 1980; Kenaga & Goring 1980; Khan 1980) 
0.07 (20°C, shake flask-GC, Bowman & Sans 1979) 
0.0047 (20–25°C, shake flask-GC, Freed et al. 1979) 
0.005 (20–25°C, shake flask-GC, Kanazawa 1981) 
0.021 (20°C, shake flask-GC, Bowman & Sans 1983a, b) 
0.03 (Budavari 1989) 
Vapor Pressure (Pa at 25°C or as indicated): 
3.07 . 10–6 (20°C, NIEHS 1975; quoted, Freed et al. 1977) 
2.27 . 10–5 (30°C, NIEHS 1975; quoted, Freed et al. 1977) 
3.07 . 10–6 (20–25°C, Freed et al. 1979) 
3.00 . 10–6 (20°C, selected, Suntio et al. 1988) 
0.0002 (Merck Index 1989) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.27 (20°C, calculated-P/C, Mackay & Shiu 1981) 
0.25 (20°C, calculated-P/C, Suntio et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
6.30 (NIEHS 1975; quoted, Freed et al. 1977) 
6.31 (20°C, shake flask-GC, Chiou et al. 1977) 
6.31 (Hansch & Leo 1979) 
4.32 (20°C, shake flask-GC, Kanazawa 1981) 
O 
P
S 
Cl Br 
Cl O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3897 
5.88 (22°C, shake flask-GC, Bowman & Sans 1983b) 
6.31 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
2.81 (Daphnia magna, wet wt. basis, Macek et al. 1979) 
2.88, 3.16 (fish: flowing water, static water; Kenaga 1980; Kenaga & Goring 1980) 
2.58, 2.86 (calculated-S, calculated-KOC, Kenaga 1980) 
3.78 (Pseudorasbora parva, Kanazawa 1981) 
3.16 (mosquito fish, wet wt. basis, De Bruijn & Hermens 1991) 
3.78 (topmouth gudgeon, wet wt. basis, De Bruijn & Hermens 1991) 
2.88 (fish, reported as log BAFW, LeBlanc 1995) 
Sorption Partition Coefficient, log KOC: 
3.97 (soil, Carringer et al. 1975) 
3.43 (soil, calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
3.97, 4.45 (reported as log KOM, estimated as log KOM, Magee 1991) 
4.50 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.88, 4.74 (soil, estimated-class-specific model, estimated-general model, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
© 2006 by Taylor & Francis Group, LLC

3898 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.54 Lindane (.-HCH) 
Common Name: Lindane (.-HCH) 
Synonym: Aalindan, Aficide, Agrisol G-20, Agrocide, Agronexit, Ambocide, Ameisenatod, Ameisenmittelmerck, 
Aparacin, Aparasin, Aphtiria, Aplidal, Arbitex, BBX, Ben-hex, Bentox 10, Benzenehexachloride, Benzex, Bexol, 
BHC, .-BHC, Celanex, Chloran, Chloresene, Codechine, DBH, Detmol-extrakt, Detox 25, Devoran, Dolmix, ENT 
7796, Entomoxan, Exagama, Forlin, Gallogama, Gamacid, Gamaphex, Gamene, Gamiso, Gamahexa, Gamalin, 
Gammexane, Gammopaz, Gexane, HCCH, Gyben, HCCH, HCH, .-HCH, Heclotox, Hexa, Hexachlor, .-Hexachlor, 
Hexachloran, .-Hexachloran, Hexachlorane, .-Hexachlorane, .-Hexachlorobenzene, Hexamul, Hexapurdre, 
Hexatox, Hexaverm, Hexdow, Hexicide, Hexyclan, HGI, Hortex, Inexit, Isaton, Isotox, Jacutin, Kokotine, Kotol, 
Kwell, Lendine, Lentox, Lidenal, Lindafor, Lindagam, Lindagrain, Lindagranox, .-Lindine, Lindapoudre, Lindatox, 
Lindosep, Lintox, Lorexane, Milbol 49, Mszycol, NA 2761, NCI-C00204, Neo-scabicidol, Nexen FB, Nexit, Nexitstark, 
Nexol-E, Nicochloran, Novigam, Omnitox, Ovadziak, Owadziak, Pedraczak, Pflanzol, Quellada, Silvanol, 
Soprocide, Spritz-rapidin, Spruehpflanzol, Streunex, Tap 85, TBH, Tri-6, Viton 
Chemical Name: 1,2,3,4,5,6-hexachlorocyclohexane; .-hexachlorocyclohexane; .-1,2,3,4,5,6-hexachloro-cyclohexane; 
1.,2.,3.,4.,5.,6.-1,2,3,4,5,6-hexachloro-cyclohexane 
Uses: insecticide and pesticide with contact, stomach, and respiratory action to control a broad spectrum of phytophagous 
and soil inhibiting insects, public health pests, and animal ectoparasites. 
CAS Registry No: 58-89-9 
Molecular Formula: C6H6Cl6 
Molecular Weight: 290.830 
Melting Point (°C): 
112.5 (Slade 1945; Howard 1991; Montgomery 1993; Milne 1995; Lide 2003) 
Boiling Point (°C): 
323.4 (Howard 1991; Montgomery 1993; Lide 2003) 
Density (g/cm3 at 20°C): 
1.87 (Montgomery 1993) 
Molar Volume (cm3/mol): 
243.6 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Vaporization, .HV (kJ/mol): 
101.13 (Spencer & Cliath 1970) 
76 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
22.4 (Rordorf 1989) 
22.13 (Ruelle & Kesselring 1997) 
Entropy of Fusion, .Sfus (J/mol K): 
41.4 (Plato & Glasgow 1969) 
58.0 (Rordorf 1989) 
61.1 (Hinckley et al. 1990; Passivirta et al. 1999) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
0.12 (20°C, Suntio et al. 1988) 
0.138 (Mackay et al. 1986) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional 
data at other temperatures designated * are compiled at the end of this section): 
10 (20°C, Slade 1945; Gunther et al. 1968; Spencer 1973, 1982) 
7.3* (shake flask-UV spectrophotometry, measured range 25–45°C, Richardson & Miller 1960) 
0.50–6.60 (particle size of 0.04–5µ, shake flask-GC, room temp., Robeck et al. 1965) 
5.7 (partition coefficient, Atkins & Eggleton 1971) 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3899 
7.52 ± 0.041 (shake flask-centrifuge/GC, Masterton & Lee 1972) 
7.40, 5.75 (28°C, shake flask-centrifuge, membrane filter-GC, maximum 0.1 µm particle size, Kurihara et al. 
1973) 
6.61, 6.24 (28°C, shake flask-centrifuge, sonic and centrifuge-GC, max. 0.05 µm particle size, Kurihara et al. 
1973) 
12 (26.5°C, Bhavnagary & Jayaram 1974) 
0.15*, 0.60*, 6.80* (shake flask-GC, for different particle sizes: 0.01µ, 0.05µ, 5.0µ, measured range 15–45°C, 
Biggar & Riggs 1974) 
7.8 (generator column-GC/ECD, Weil et al. 1974) 
0.15 (Martin & Worthing 1977; Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
2.0 (shake flask-nephelometry, Hollifield 1979) 
7.88 (20–25°C, shake flask-GC, Kanazawa 1981) 
6.50, 9.20 (15, 25°C, shake flask method, average values of 6–7 laboratories, OECD 1981) 
10 (20–25°C, shake flask-GC, Platford 1981) 
10.3 (shake flask-GC/ECD, Malaiyandi et al. 1982) 
9.50, 7.9–8.2 (shake flask-GC/ECD: Milli-Q water, environmental surface waters, Saleh et al. 1982) 
6.11 (20°C, Deutsche Forschungsgemeinschaft 1983; Ballschmiter & Wittlinger 1991; Fischer et al. 
1991; 1993) 
7.87 (24°C, shake flask-GC, Chiou et al. 1986) 
7.0 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
log [SL/(mol/L)] = 2.220 – 1237/(T/K) (liquid, Passivirta et al. 1999) 
67.77, 71.84 (supercooled liquid SL: derivation of literature-derived value, final-adjusted value, Xiao et al. 2004) 
log [SL/(mol m–3)] = –749.8/(T/K) + 2.78 (supercooled liquid, linear regression of literature data, Xiao et al. 2004) 
log [SL/(mol m–3)] = –788.4/(T/K) + 2.04 (supercooled liquid, final adjusted eq., Xiao et al. 2004) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
4.0, 18.7, 64(20, 40, 60°C static method, Slade 1945) 
0.001253* (20°C, effusion manometer, measured range 0–90°C, Balson 1947) 
log (P/mmHg) = 15.515 – 6020/(T/K); temp range 50–90°C, (effusion manometer, Balson 1947) 
0.00435* (20°C, gas-saturation-GC, measured range 20–40°C, Spencer & Cliath 1970) 
log (P/mmHg) = 13.544 – 5288/(T/K), temp range 20–40°C (gas saturation-GC, Spencer & Cliath 1970) 
0.00413 (20°C, Partition coefficient, Atkins & Eggleton 1971) 
0.0213 (20°C, Demozay & Marechal 1972) 
0.00125 (20°C, Martin 1972, Melnikov 1971, Spencer 1973; Montgomery 1993) 
0.0028 (20°C, estimated from diffusion rate, Zimmerli & Marek 1974) 
0.0026 (20°C, estimated-relative loss rate, Dobbs & Grant 1980) 
0.00426 (20°C, volatilization rate, Burkhard & Guth 1981) 
log (P/mmHg) = 15.515 – 6020/(T/K) (Guckel et al. 1982) 
0.166 (GC-RT correlation, Watanabe & Tatsukawa 1989) 
0.0056 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987, Worthing & Hance 1991; Tomlin 1994) 
0.107, 0.0654 (PGC by GC-RT correlation, different stationary phases, Bidleman 1984) 
0.0552 (supercooled liquid PL, converted from literature PS with .Sfus Bidleman 1984) 
0.00321; 0.00368 (20°C, gas saturation-GC, gas saturation-mixed bed-GC, Kim 1985) 
0.00435 (20°C, GC-RT correlation, Kim 1985) 
6.70 . 10–3* (gas saturation-GC, measured range 25–125°C, Rordorf 1989) 
log (PS/Pa) = 15.096 – 5148.9/(T/K); measured range 45–113°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 12.05 – 3970.1/(T/K); measured range 115–171°C (liquid, gas saturation-GC, Rordorf 1989) 
0.0552, 0.0649 (supercooled PL, converted from literature PS with different .Sfus values, Hinckley et al. 1990) 
0.107, 0.0706 (PGC by GC-RT correlation with different reference standards, Hinckley et al. 1990) 
log (PL/Pa) = 11.15 – 3680/(T/K) (GC-RT correlation, supercooled liquid PL, Hinckley et al. 1990; quoted, 
Boehncke et al. 1996)) 
7.426 . 10–4 (Howard 1991) 
0.0044 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
© 2006 by Taylor & Francis Group, LLC

3900 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.0145, 0.0398, 0.1035 (supercooled liquid values at 10°C, 20°C, 30°C, calculated from Hinckley et al. 1990; 
Cotham & Bildeman 1992) 
0.0094* (20°C, gas saturation-GC/ECD, measured range –30 to 30°C, Wania et al. 1994; quoted, Boehncke 
et al. 1996) 
log (PS/Pa) = 16.99 – 5566/(T/K), temp range –30 to + 30°C (solid, gas saturation-GC, Wania et al. 1994) 
0.00737* (Knudsen effusion method, measured range 19.63–53.07°C, Boehncke et al. 1996) 
0.00383 (20°C, interpolated from vapor pressure eq. ln (P/Pa) = (34.53 ± 0.21) – (11754 ± 72)/(T/K), temp 
range 20–50°C, Boehncke et al. 1996) 
0.0104* (torsion and Knudsen-effusion methods, measured range 310–384 K, Giustini et al. 1998) 
log (P/kPa) = (11.23 ± 0.50) – (4832 ± 150)/(T/K); temp range 310–384 K (torsion and Knudsen-effusion methods, 
Giustini et al. 1998) 
0.189, 0.131; 0.0167 (quoted supercooled liquid PL: calculated, GC-RT correlation; converted to solid PS with 
fugacity ratio F, Passivirta et al. 1999) 
log (PL/Pa) = 13.80 – 4330/(T/K), (supercooled liquid, Passivirta et al. 1999) 
0.0776, 0.0759 (supercooled liquid PL: LDV literature derived value, FAV final adjusted value, Xiao et al. 2004) 
log (PL/Pa) = –3890/(T/K) + 11.94 (supercooled liquid, linear regression of literature data, Xiao et al. 2004) 
log (PL/Pa) = –3905/(T/K) + 11.98 (supercooled liquid, final adjusted eq., Xiao et al. 2004) 
Henry’s Law Constant (Pa·m3/mol or as indicated and reported temperature dependence equations. Additional data 
at other temperatures designated * are compiled at the end of this section): 
0.005 (calculated-P/C, Mackay & Leinonen 1975) 
0.22 (gas stripping, Atkins & Eggleton 1971) 
0.32 (24°C, calculated-P/C, Chiou et al. 1980) 
0.018–0.55 (calculated-P/C, Mabey et al. 1982) 
0.124 (20°C, volatilization rate, Burkhard & Guth 1981) 
0.27–0.32 (calculated-P/C, Mackay & Shiu 1981) 
0.05 (calculated-P/C, Lyman et al. 1982; quoted, Suntio et al. 1988) 
0.0486 (calculated-P/C, Thomas 1982) 
0.322 (calculated-P/C, Jury et al. 1984, 1987a; Jury & Ghodrati 1989) 
0.158 (calculated-P/C, Mackay et al. 1986) 
0.202, 0.234 (23°C, wetted-wall column-GC/ECD, Fendinger & Glotfelty 1988) 
1.49 (WERL Treatability Database, Ryan et al. 1988) 
0.129 (20°C, calculated-P/C, Suntio et al. 1988) 
0.322 (calculated-P/C, Taylor & Glotfelty 1988) 
0.199, 0.209 (22–24°, fog chamber-concentration ratio-GC/ECD, Fendinger et al. 1989) 
0.0486 (20°C, Lyman et al. 1990; quoted, Hemond & Fechner 1994) 
0.10 (calculated-P/C, Ballshmiter & Wittlinger 1991; Fischer et al. 1991) 
0.296 (calculated-P/C, Howard 1991) 
0.353* (distilled water, gas stripping-GC/ECD, measured range 0.5–45°C, Kucklick et al. 1991) 
log [H/(Pa·m3 mol–1)] = –2382/(T/K) + 7.54, temp range: 0.5–45°C (gas stripping-GC/ECD, Kucklick et al. 
1991, McConnell et al. 1993) 
0.0627, 0.137, 0.363, 0.996, 2.57 (0.5, 10, 23, 35, 45°C, gas stripping-GC/ECD, artificial seawater, Kucklick et 
al. 1991) 
log [H/(Pa·m3 mol–1)] = –2703/(T/K) + 8.68; temp range 0.5–45°C (gas stripping-GC/ECD, artificial seawater, 
Kucklick et al. 1991) 
0.17 (calculated-P/C, Calamari et al. 1991) 
0.10, 1.50 (calculated-P/C, Fischer et al. 1991) 
25.9 (calculated-bond contribution method, Meylan & Howard 1991) 
0.13 (20°C), 0.20, 0.339, 0.363 (23°C), 0.158 (Iwata et al. 1993) 
0.121 at 8°C in Green Bay, 0.242 at 18.9°C in Lake Michigan, 0.236 at 18.5°C in Lake Huron, 0.301 at 22.3°C 
in Lake Erie and 0.301 at 22.3°C in Lake Ontario (concn ratio-GC, McConnell et al. 1993) 
0.0246 (20°C, Montgomery 1993) 
0.520 (wetted wall column-GC, Altschuh et al. 1999) 
log [H/(Pa m3/mol)] = 11.58 – 3049/(T/K) (Passivirta et al. 1999) 
0.18* (20°C, air stripping-GC, measured range 10–40°C, Jantunen et al. 2000) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3901 
log [H/(Pa m3/mol)] = 9.51 – 3005/(T/K); temp range 10–40°C (gas stripping, Jantunen et al. 2000) 
0.258 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001) 
log KAW = 3.715 – 2254/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
0.14* (20°C, dynamic headspace-GC, DHS method, measured range 5–35°C, Sahsuvar et al. 2003) 
0.15* (20°C, gas stripping-GC, BS method, measured range 5–35°C, Sahsuvar et al. 2003) 
0.14* (20°C, mean value of DHS and BS methods, temp range 5–35°C, Sahsuvar et al. 2003) 
log [H/(Pa m3/mol)] = 10.14 – 3208/(T/K); temp range 5–35°C (Sahsuvar et al. 2003) 
0.159, 0.193 (20, 23°C, dynamic equilibrium system-GC/MS, measured range 278–293 K, Feigenbrugel et al. 2004) 
0.269, 0.309 (LDV literature-derived value, FAV final adjusted value, Xiao et al. 2004) 
log [H/(Pa m3/mol)] = –2940/(T/K) + 9.29 (LDV linear regression of literature data, Xiao et al. 2004) 
log [H/(Pa m3/mol)] = –3117/(T/K) + 9.94 (FAV final adjusted eq., Xiao et al. 2004) 
0.165* (seawater, dynamic equilibrium system-GC/MS, measured range 278–293 K, Xiao et al. 2004) 
Octanol/Water Partition Coefficient, log KOW at 25°C or as indicated. Additional data at other temperatures designated 
* are compiled at the end of this section: 
3.72 (shake flask-GC, Kurihara et al. 1973) 
3.65 (HPLC-RT correlation, Sugiura et al. 1979) 
3.85 (HPLC-RT correlation, Veith et al. 1979) 
2.81 (Rao & Davidson 1980) 
3.66 (shake flask-GC, concn. ratio, Kanazawa 1981) 
3.62 (HPLC-k. correlation, McDuffie 1981) 
3.25 (shake flask-GC, Platford 1982) 
3.53 (shake flask-GC/FID, Hermens & Leeuwangh 1982) 
3.90 (Elgar 1983) 
3.61 (Hansch & Leo 1985) 
3.67 (HPLC-RT correlation, Eadsforth 1986) 
3.00 (HPLC-RT correlation, De Kock & Lord 1987) 
3.57 (shake flask-GC, Kishi & Hashimoto 1989) 
3.688 ± 0.021 (shake flask/slow stirring-GC, De Bruijn et al. 1989) 
3.51 (shake flask-GC, Noegrohati & Hammers 1992) 
3.20–3.89 (Montgomery 1993) 
5.32 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
3.55 (recommended, Sangster 1993) 
3.52 (RP-HPLC-RT correlation, Finizio et al. 1997) 
3.72* ± 0.01 (shake flask-slow stirring-GC, measured range 5–35°C, Paschke & Schuurmann 1998) 
3.80; 3.71 (quoted lit.; calculated, Passivirta et al. 1999) 
3.70, 3.83 (LDV literature-derived value, FAV final-adjusted value, Xiao et al. 2004) 
log KOW = 282.2/(T/K) + 2.78 (LDV linear regression of literature data, Xiao et al. 2004) 
log KOW = 533.2/(T/K) + 2.04 (LDV linear regression of literature data, Xiao et al. 2004) 
Octanol/Air Partition Coefficient, log KOA at 25°C and reported temperature dependence equations. Additional data 
at other temperatures designated * are compiled at the end of this section: 
7.70 (calculated-KOW/KAW, Wania & Mackay 1996) 
8.08 (calculated, Finizio et al. 1997) 
7.847*, 7.849 (gas saturation-GC/MS, calculated, measured range 5–25°C, Shoeib & Harner 2002) 
log KOA = –3.61 + 3415/(T/K), temp range: 5–25°C (gas saturation-GC, Shoeib & Harner 2002) 
7.84, 7.74 (LDV literature derived value, FAV final adjusted value, Xiao et al. 2004) 
log KOA = 3415/(T/K) – 3.61 (LDV linear regression of literature data, Xiao et al. 2004) 
log KOA = 3521/(T/K) – 4.07 (FAV final adjusted eq., Xiao et al. 2004) 
Bioconcentration Factor, log BCF: 
–1.78 (beef biotransfer factor log Bb, correlated-KOW, Radeleff et al. 1952; Kenaga 1980;) 
–0.41 (vegetation, correlated-KOW, Lichtenstein 1959; Voerman & Besemer 1975) 
–2.60 (milk biotransfer factor log Bm, correlated-KOW, Saha 1969) 
© 2006 by Taylor & Francis Group, LLC

3902 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.15, 2.34 (Voerman & Tammes 1969) 
1.83, 3.24 (brine shrimp, silverside fish, Matsumura & Benezet 1973) 
1.98, 2.26 (brine shrimp in water, brine shrimp in sand, Matsumura & Benezet 1973) 
3.21 (northern brook silverside fish to lindane residues on sand, Matsumura & Benezet 1973) 
2.75, 2.66 (fish, snail, Metcalf et al. 1973) 
2.26 (fathead minnow, Canton et al. 1975) 
2.23, 2.65 (zooplankton, Hamelink & Waybrant 1976) 
2.00 (mussels, steady state, Ernst 1977) 
1.92, 2.34, 1.80, 2.69 (pink shrimp, pinfish, grass shrimp, sheepshead minnow, Schimmel et al. 1977; quoted, 
Howard 1991) 
2.88, 2.45, 2.65, 2.97 (golden orfe, carp, brown trout, guppy, Sugiura et al. 1979) 
2.68 (fathead minnow, Veith et al. 1979) 
2.26 (fathead minnow, 32-d exposure, Veith et al. 1979; Veith & Kosian 1983) 
2.51, 2.75 (fish: flowing water, static water; Kenaga 1980b; Kenaga & Goring 1980) 
3.26, 1.73 (calculated-S, KOC, Kenaga 1980) 
–0.26 (average beef fat diet, Kenaga 1980b) 
2.67, 2.25 (fathead minnow, 30-d exposure, 32-d exposure, Veith et al. 1980) 
3.10 (topmouth gudgeon, Kanazawa 1981) 
2.19 (mussel, quoted average, Geyer et al. 1982) 
3.10 (topmouth gudgeon, Kanazawa 1983) 
3.42 (clam fat, 60-d exptl., Hartley & Johnson 1983) 
2.38, 2.46 (algae: exptl., calculated, Geyer et al. 1984) 
2.26 (fathead minnow, Davies & Dobbs 1984) 
2.38, 2.88, 2.91 (algae, fish, activated sludge, Klein et al. 1984) 
2.38, 2.57, 2.91 (algae, golden ide, activated sludge, Freitag et al. 1985) 
2.89–3.32 mean 3.08; 2.94–5.46 mean 3.30 (p,p.-DDE, rainbow trout, 15°C, steady-state BCF on 7- to 96-d 
laboratory study in 2 tanks with different water concn, Oliver & Niimi 1985) 
3.32, 3.20; 3.00 (rainbow trout: kinetic BCF, steady-state BCF; Lake Ontario field BCF, Oliver & Niimi 1985) 
2.50 (Salmo gairdneri Richardson fry, Ramamoorthy 1985) 
2.78, 2.73, 2.78; 2.61 (mussel, pinfish, sheepshead minnow; calculated-KOW and models, Zaroogian et al. 1985) 
2.38, 2.67 (quoted values: mussel, sheepshead minnow, Zaroogian et al. 1985) 
2.76; 2.43 (salmon fry in humic water April 1982; Oct. 1983, at steady state, Carlberg et al. 1986) 
2.42, 2.84; 2.45–3.18 (salmon fry in lake water, quoted lit. values, Carlberg et al. 1986) 
2.33 (Daphnia magna, wet wt. basis, Korte & Freitag 1986) 
3.53 (azalea leaves, Bacci & Gaggi 1987) 
2.38 (paddy field fish, Soon & Hock 1987) 
4.30 (zooplankton, chum salmon, Kawano et al. 1988) 
3.53, 5.88 (dry leaf, wet leaf, Bacci et al. 1990) 
2.33 (Daphnia magna, Geyer et al. 1991) 
2.09, 2.70, 2.29, 2.34 (zebrafish: egg, embryo, yolk sac fry, juvenile, Gorge & Nagel 1990) 
1.96 (calculated, Banerjee & Baughman 1991) 
2.93, 2.96 (Brachydanio rerio, Butte et al. 1991) 
2.67 (selected, Chessells et al. 1992) 
1.58 (Hydrilla, Hinman & Klaine 1992) 
2.16–2.57 (rainbow trout in early life stages on wet wt. basis, Vigano et al. 1992; quoted, Devillers et al. 1996) 
3.77–3.85 (rainbow trout in early life stages on lipid basis, Vigano et al. 1992) 
2.65 ± 2.23; 1.63–3.63 (aquatic organisms, wet wt basis, average value; range, Geyer et al. 1997) 
4.04 (aquatic organisms, lipid basis, Geyer et al. 1997) 
2.65; 2.606, 2.676 (fish, steady-state, quoted lit.; calculated-MCI ., calculated-KOW, Lu et al.1999) 
Sorption Partition Coefficient, log KOC: 
2.96 (soil, Hamaker & Thompson 1972;, Kenaga 1980a, b; Kenaga & Goring 1980) 
4.09 (soil, calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
3.40 (soil, Kenaga 1980) 
2.87 (average of 3 soils, HPLC-RT, McCall et al. 1980) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3903 
4.64 (calculated-S, Mill et al. 1980) 
3.03 (av. for 3 soils, Rao & Davidson 1982) 
2.88, 2.95, 2.74; 2.87 (Commerce soil, Tracy soil, Catlin soil; average soil, McCall et al. 1980) 
4.07, 2.90 (estimated-S, KOW, Lyman 1982) 
3.11 (soil, screening model simulations, Jury et al. 1984, 1987a, b; Jury & Ghodrati) 
4.30, 3.50 (field data of river sediment, calculated-KOW, Oliver & Charlton 1984) 
3.03 (Rao & Davidson 1982, Howard 1991) 
2.63–3.18 (reported as log KOM, Mingelgrin & Gerstl 1983) 
3.04 (Caron et al. 1985) 
1.63 (log KP with first-order adsorption rate 0.088 h–1, Miller & Weber 1986) 
3.11, 2.82 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
0.114 (screening model calculations, Jury et al. 1987b) 
4.02 (RP-HPLC-k. correlation, cyanopropyl column, Hodson & Williams 1988) 
3.47 (calculated-KOW as per Kenaga & Goring 1980, Chapman 1989) 
2.38 (average of 2 soils, Kanazawa 1989) 
2.84, 3.11, 3.08, 2.98, 2.88 (5 soils: clay loam/kaolinite, light clay/montmorillonite, light clay/montmorillite, 
sandy loam/allophane, clay loam/allophane, batch equilibrium-sorption isotherm, Kishi et al. 1990) 
3.11 (soil, Mackay & Stiver 1991) 
3.04 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.38–3.52 (quoted lit. range, Montgomery 1993) 
3.00 (calculated-MCI 1., Sabljic et al. 1995) 
3.00; 4.57 (soil, quoted exptl.; estimated-general model, Gramatica et al. 2000) 
5.40; 3.30 (soil, calculated-universal solvation model; quoted exptl., Winget et al. 2000) 
3.02, 3.00, 3.08 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, average, Delle Site 2001) 
3.49 (sediment: organic carbon OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 191 d was estimated from water (Mackay & Leinonen 1975, quoted, Howard 1991) 
estimated t. > 200 d (Callahan et al. 1979); 
t.(exptl.) = 3.2 d in nonstirred water and t.(exptl) = 1.5 d in stirred water from 4.5 cm deep distilled water 
at 24°C (Chiou et al. 1980; quoted, Howard 1991); 
estimated half-lives: 3.4 d in nonstirred water and 2.3 d in stirred water (Chiou et al. 1980); 
t. = 22 d, estimated from a model river of 1 m deep flowing 1 m/s with a wind speed of 3 m/s (Lyman 
et al. 1982; quoted, Howard 1991); 
initial k = 4.4 . 10–2 h–1 and predicted k = 1.4 . 10–2 h–1 from soil with t. = 49.5 h (Thomas 1982); 
t.(calc) = 2760 h from water (Thomas 1982); 
measured rate constant k(exptl) = 3.0 d–1 (Glotfelty et al. 1984; quoted, Glotfelty et al. 1989); 
calculated rate constant k = 0.01 d–1 (Glotfelty et al. 1989); 
t. = 266 d from lab. and field experiments (Jury et al. 1984; quoted, Spencer & Cliath 1990); 
half-lives in soil surfaces at 20 ± 1°C: t. = 5.5 to 15.9 d in peat soil and t. = 2.7 to 6.7 d in sandy soil; 
half-lives in plant surfaces at 20 ± 1°C: t. = 0.56 d in bean, t. = 0.40 d in turnips and t. = 0.31 d in oats 
(Dorfler et al. 1991). 
Photolysis: kP(aq.) = 1.429 . 10–2 d–1 for photolysis in natural waters (Malaiyandi et al. 1982) 
kP(aq.) = 8.9 . 10–4 h–1 for Milli-Q water, kP = 4.1 . 10–3 h–1 for natural surface water samples from eutrophic 
pond, kP = 3.9 . 10–4 h–1 from eutrophic pond, kP = 4.5 . 10–4 h–1 from oligotrophic rock quarry and the 
half-lives were 779, 169, 1791, and 1540 h, respectively, under direct sunlight (Saleh et al. 1982; quoted, 
Howard 1991) 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = 6.94 . 10–12 cm3 molecule–1 s–1 with a t. ~ 2.3 d (Atkinson 1987; quoted, Howard 1991) 
k(aq.) = 4.2 . 108 M–1 s–1 for the reaction (Fenton with reference to DBCP) with hydroxyl radical in aqueous 
solutions at pH 2.9 and at 24 ± 1°C (Buxton et al. 1988; quoted, Faust & Hoigne 1990; Haag & Yao 1992) 
k(aq.) . 0.04 M–1 s–1 for direct reaction with ozone in water at pH 2.7–6.3 and 23°C, with a t. . 10 d at 
pH 7 (Yao & Haag 1991). 
© 2006 by Taylor & Francis Group, LLC

3904 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
calculated tropospheric lifetimes due to gas-phase reaction with OH radical was estimated to be about 7 d 
(Atkinson et al. 1992) 
kOH (aq.) = (5.8 ± 1.9) . 108 M–1 s–1 (Fenton with reference to DBCP); and k = (5.2 ± 0.9) . 108 M–1 s–1 
(photo-Fenton with reference to DBCP) for the reaction with hydroxyl radicals in aqueous solutions at 
pH 2.9 and at 24 ± 1°C (Haag & Yao 1992) 
Hydrolysis: k(neutral) = 1.6 . 10–4 h–1 indicating that neutral hydrolysis is unimportant, rate constants of 
7.5 . 10–3, 8.99 . 10–4, and 1.07 . 10–3 h–1 corresponded to half-lives of 92, 771 and 648 h in natural surface 
water samples from eutrophic pond, dystrophic reservoir and oligotrophic rock quarry, respectively (Saleh 
et al. 1982; quoted, Howard 1991) 
k(neutral) = (1.2 ± 0.2) . 10–4 h–1 with a calculated t. = 206 d at pH 7 (Ellington et al. 1987, 1988; quoted, 
Montgomery 1993) 
t. = 42 yr at pH 8 and 5°C (Ngabe et al. 1993) 
t. = 191 d at pH 7, and t. = 11 h at pH 9 at 22°C (Tomlin 1994) 
t. = 240 d at pH 2, t. = 210 d at pH 7 and t. = 0.015 d at pH 12 in natural waters (Capel & Larson 1995) 
Biodegradation: k = 0.0026 d–1 by die-away test in soil (Rao & Davidson 1980; quoted, Scow 1982); 
t. = half-life of 266 d (soil, Jury et al. 1987); 
t. = 3 to 30, 30 to 300 d and >300 d for river, lake and ground water, respectively (Zoeteman et al. 1980; 
quoted, Howard 1991); 
t. = 266 d for 100-d leaching screening test in 0–10 cm depth of soil (Jury et al. 1984, 1987a, b; Jury & 
Ghodrati 1989) 
t.(aerobic) = 31 d, t.(anaerobic) = 5.9 d in natural waters (Capel & Larson 1995) 
t.(calc) = (20.4 ± 0.1) h in sewage sludge from experiments S1–S3 (Buser & Muller 1995) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 3.13 h–1; k2 = 0.0313 h–1 (mussels, Ernst 1977) 
k1 = 130 d–1; k2 = 0.063 d–1 (rainbow trout, Oliver & Niimi 1985) 
k1 = 14, 179, 196 h–1 (zebrafish: egg, yolk sac fry, juvenile, Gorge & Nagel 1990) 
k2 = 0.06 h–1 (Chironomus riparius-water only system, Lydy et al. 1992) 
k2 = 0.0661 h–1 (Chironomus riparius-screened system, Lydy et al. 1992) 
k2 = 0.08 h–1 (Chironomus riparius-3% organic carbon system, Lydy et al. 1992) 
k2 = 0.0661 h–1 (Chironomus riparius-15% organic carbon system, Lydy et al. 1992) 
k1 = 9.0–26.4 h–1; k2 = 0.04–0.18 h–1 (rainbow trout in early life stages on wet wt. basis, Vigano et al. 1992) 
k1 = 180–939 h–1; k2 = 0.031–0.13 h–1 (rainbow trout in early life stages on lipid basis, Vigano et al. 1992) 
Half-Lives in the Environment: 
Air: t. ~ 2.3 d was estimated, based on rate constant 6.94 . 10–12 cm3 molecule–1·s–1 for the vapor-phase reaction 
with hydroxyl radical in air (Howard 1991); 
calculated tropospheric lifetimes due to gas-phase reaction with OH radical was estimated to be about 7 d 
(Atkinson et al. 1992); 
atmospheric transformation lifetime was estimated to be <1 d (Kelly et al. 1994) 
Lifetime of 13 d was estimated for atmospheric reaction with OH radical in the tropics (Schreitmuller and 
Ballschmiter 1995); 
half-lives in the Great Lake’s atmosphere. t. = 7.9 ± 1.2 yr at Eagle Harbor, t. = 4.3 ± 0.5 yr at Sleeping 
Bear Dunes and t. = 4.9 ± 0.5 yr at Sturgeon Point, when accounting the agricultural application effects, 
half-lives are, t. = 9.1 ± 1.3 yr at Eagle Harbor, t. = 4.6 ± 0.4 yr at Sleeping Bear Dunes and 
t. = 5.4 ± 0.4 yr at Sturgeon Point (Buehler et al. 2004) 
Surface water: t. = 10–138 d in various locations in the Netherlands in case a first order reduction process may 
be assumed; and t. = 3–30 d in rivers and t. = 30–300 d in lakes (Zoeteman et al. 1980); 
hydrolysis t.(exptl) = 92 h, t.(calc) = 89 h for Roselawn Cemetery Pond at pH 9.3; t.(exptl) = 771 h, 
t.(calc) = 578 h for Cross Lake at pH 7.3; t.(exptl) = 648 h, t.(calc) = 231 h for Indiana Quarry at pH 7.8; 
photolysis half-lives for direct sunlight during July and adjusted for mid-winter: t. = 779 h, 1560 h for 
Milli-Q water at pH 6.98, t. = 169 h, 339 h for Roselawn Pond at pH 9.3, t. = 1791 h, 3590 h for Cross 
Lake and t. = 1540 h, 3090 h for Indiana Quarry (Saleh et al. 1982); 
t. > 10 d for direction reaction with ozone in water at 23°C and pH 7 (Yao & Haag 1991); 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3905 
hydrolysis t. = 191 d at pH 7, and t. = 11 h at pH 9 at 22°C (Tomlin 1994). 
Biodegradation t.(aerobic) = 31 d, t.(anaerobic) = 5.9 d, hydrolysis t. = 240 d at pH 2, t. = 210 d at pH 7 
and t. = 0.015 d at pH 12 in natural waters (Capel & Larson 1995) 
Ground water: t. –300 d (Zoeteman et al. 1980). 
Sediment: 
Soil: t. ~ 2 yr persistence in soil (Nash & Woolson 1967; quoted, Kaufman 1976); 
persistence of 3 yr in soil (Edwards 1973; quoted, Morrill et al. 1982); 
t. > 50 d and subject to plant uptake via volatilization (Callahan et al. 1979; quoted, Ryan et al. 1988) 
First-order t. = 266 d in soil from biodegradation rate constant k = 0.0026 d–1 by die-away test in soil 
(Rao & Davidson 1980; quoted, Scow 1982); 
field t. = 0.3 d in moist fallow soil (Glotfelty 1981; quoted, Nash 1983); 
microagroecosystem t. = 1–4 d in moist fallow soil (Nash 1983); measured dissipation rate of 0.16 d–1 (Nash 
1983; quoted, Nash 1988); 
estimated dissipation rate of 0.20, 0.10 d–1 (Nash 1988); 
biodegradation t. = 266 d (soil, Jury et al. 1984, 1987); 
first-order adsorption rate 0.088 h–1 (Miller & Weber 1986; quoted, Brusseau & Rao 1989); 
half-lives in soil surfaces at 20 ± 1°C: t. = 5.5 to 15.9 d in peat soil and t. = 2.7 to 6.7 d in sandy soil 
(Dorfler et al. 1991); reported t. = 266 d in soil (Jury et al. 1987a, b; Jury & Ghodrati 1989; quoted, 
Montgomery 1993); 
reaction t.= 266 d (Mackay & Stiver 1991); 
selected field t. = 400 d (Wauchope et al. 1992; Dowd et al. 1993; Hornsby et al. 1996); 
t. = 14 d for soil depth < 5 cm, t. = 90 d for 5–20 cm and t. = 180 d for >20 cm (Dowd et al. 1993) 
t. = 14.5 and 16.0 yr for control and sludge-amended Luddington soils, respectively (Meijer et al. 2001) 
Biota: t. = 22.1 h (mussels, Ernst 1977); 
t. = 46 d (rainbow trout, Oliver & Niimi 1985); 
biological half-lives for fishes: t. = 11 d for trout muscle, t. = 1 d for goldfish, t. < 1 d for sunfish and 
t. = 4 d for guppy (Niimi 1987); 
t. = 678 h (azalea leaves, Bacci & Gaggi 1987); 
biochemical t. = 266 d from screening model calculations (Jury et al. 1987b); 
half-lives in plant surfaces at 20 ± 1°C: t. = 0.56 d in bean, t. = 0.40 d in turnips and t. = 0.31 d in oats 
(Dorfler et al. 1991); 
elimination half-lives in the midge (Chironomus riparius) under varying sediment conditions: t. = 11 h for 
water only system, t. = 10 h for screened system, t. = 9 h for 3% organic carbon system and t. = 6 h 
for 15% organic carbon system (Lydy et al. 1992); 
half-lives t. (in h) = 12.09 . L(% lipid) – 10.09, in different aquatic organisms (Geyer et al. 1997). 
Average t. = 90 d (for pesticides used in conjunction with forest management, Neary et al. 1993). 
TABLE 18.1.1.54.1 
Reported aqueous solubilities of lindane at various temperatures 
Richardson & Miller 1960 Biggar & Riggs 1974 OECD 1981 
shake flask-UV spectro. shake flask-GC shake flask method 
t/°C S/g·m–3 t/°C S/g·m–3 S/g·m–3 S/g·m–3 t/°C S/g·m–3 
particle size 0.01µ 0.05µ 5.0µ 
25 7.30 15 0.075 0.330 2.150 15 6.50 
35 12.0 25 0.150 0.600 6.80 25 9.20 
45 14.0 35 0.315 0.950 11.40 
45 0.575 1.450 15.20 
© 2006 by Taylor & Francis Group, LLC

3906 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 18.1.1.54.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for lindane (.-HCH). 
TABLE 18.1.1.54.2 
Reported vapor pressures of lindane at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
1. 
Balson 1947 Spencer & Cliath 1970 Wania et al. 1994 Boehncke et al. 1996 
effusion manometer gas saturation-GC gas saturation-GC Knudsen effusion 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
0 3.87 . 10–5 20 0.004346 –30 1.701 . 10–6 19.63 0.00374 
10 2.40 . 10–4 30 0.0171 –20 7.353 . 10–6 24.95 0.00737 
20 1.253 . 10–3 40 0.0608 –10 8.435 . 10–5 28.42 0.0116 
30 6.00 . 10–3 30 wet 0.0167 0 4.489 . 10–4 33.58 0.0225 
40 0.0257 30 dry 0.0173 10 2.209 . 10–3 37.82 0.0281 
50 0.1027 20 9.395 . 10–3 37.86 0.0386 
60 0.3706 eq. 1 P/mmHg 30 4.192 . 10–2 43.26 0.0718 
70 1.233 A 13.544 48.06 0.123 
80 3.853 B 5288 53.07 0.217 
90 11.479 eq. 1 P/Pa 20 3.83 . 10–3 
.HV = 101.13 kJ/mol A 16.99 
eq. 1 P/mmHg B 5566 eq. 1a P/Pa 
A 15.515 A 34.53 
B 6020 enthalpy of sublimation: B 11754 
temp range: 60–92°C Rordorf 1989 .Hsub = 106.6 kJ/mol temp range: 293–323 K 
.HV = 115.06 kJ/mol gas saturation-GC enthalpy of sublimation: 
25 0.067 .Hsub = 97.7 kJ/mol 
50 0.15 
75 2.0 
Lindane (.-HCH): solubility vs. 1/T 
-21.0 
-20.0 
-19.0 
-18.0 
-17.0 
-16.0 
-15.0 
-14.0 
-13.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
x nl 
Richardson & Miller 1960 
Biggar & Riggs 1974 (0.01 µ particle size) 
Biggar & Riggs 1974 (0.05 µ particle size) 
Biggar & Riggs 1974 (5.0 µ particle size) 
OECD 1981 
experimental data 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3907 
TABLE 18.1.1.54.2 (Continued) 
Balson 1947 Spencer & Cliath 1970 Wania et al. 1994 Boehncke et al. 1996 
effusion manometer gas saturation-GC gas saturation-GC Knudsen effusion 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
100 20.0 
125 150 
eq. 1 P/Pa 
A 15.096 
B 5148.9 
eq. 1 P/Pa 
A 12.05 
B 3970.1 
2. 
Giustini et al. 1998 
torsion torsion Knudsen effusion Knudsen effusion 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
run 1–4 run 5–8 cell K.1 cell K.2 
50 0.162 73 1.9498 37.5 0.0562 70 1.5849 
54 0.245 76 2.4547 39.5 0.0776 71.5 1.9055 
59 0.407 79 3.3113 44.5 0.1023 72 1.7783 
65 0.646 83 4.6774 45.0 0.1175 73.5 2.2387 
69 1.148 88 7.2444 48.5 0.1622 74.5 2.3988 
74 1.778 93 11.482 49.5 0.1995 75 3.0903 
80 2.754 98 17.378 53.5 0.2951 80.5 4.0738 
88 5.370 66 0.9550 55.0 0.3311 81 4.2658 
97 11.220 69 1.5136 55.5 0.3631 84 7.0795 
59 0.4074 76 2.3442 56.5 0.3981 87.5 7.0795 
64 0.7244 79 3.0200 63.0 0.8318 89 9.3325 
69 1.047 83 4.6774 63.5 0.8128 94 12.303 
74 1.622 88 7.2444 65.5 0.9772 99.5 23.442 
82 3.311 93 11.482 66.5 1.0471 
88 5.495 99 19.953 
92 8.710 68 1.2303 eq. 1 kPa eq. 1 kPa 
60 0.4074 72 1.7783 A 10.89 A 11.46 
66 0.8128 77 2.7542 B 4706 B 4889 
71 1.2303 82 4.3652 for temp 310.5–339.5 K for temp 343–377 K 
76 1.8621 88 7.0795 
82 2.9512 94 13.490 
89 5.0119 101 24.547 Combining the above 4 equations, the final equation 
98 13.183 104 30.903 log (P/kPa) = 11.23 ± 0.5 – (4832 ± 150)/(T/K) 
66 0.8128 80 4.3652 for temperature range 310 to 384 K 
71 1.2303 83 5.6234 .Hsub = 92.5 kJ/mol at 350 K 
76 2.0417 88 9.1201 at 25°C P = 0.0104 Pa 
81 2.8184 93 15.136 
87 4.6774 97 20.417 
92 7.7625 102 30.903 
96 11.482 106 48.978 
111 66.069 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3908 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 18.1.1.54.2 (Continued) 
Giustini et al. 1998 
torsion torsion Knudsen effusion Knudsen effusion 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
eq. 1 kPa 
A 10.78 eq. 1 kPa 
B 4709 A 11.79 
B 5025 
for temp 323–370 K for temp 339–384 K 
FIGURE 18.1.1.54.2 Logarithm of vapor pressure versus reciprocal temperature for lindane (.-HCH). 
TABLE 18.1.1.54.3 
Reported Henry’s law constants of lindane (-HCH) at various temperatures and temperature dependence 
equations 
ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a) 
ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a) 
ln (kH/atm) = A – B/(T/K) (3) 
ln H = A – B/(T/K) (4) log H = A – B/(T/K) (4a) 
KAW = A – B·(T/K) + C·(T/K)2 (5) 
Kucklick et al. 1991 McConnell et al. 1993 Jantunen et al. 2000 Sahsuvar et al. 2003 
gas stripping-GC concentration ratio air stripping-GC air stripping/dynamic HS 
t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) 
distilled water Green Bay dynamic headspace (DHS) 
0.5 0.0721 8.0 0.121 10 0.073 5 0.039 
10 0.126 Lake Michigan 20 0.18 10 0.062 
15 0.187 18.9 0.242 30 0.39 20 0.14 
20 0.258 Lake Huron 35 0.58 30 0.33 
23 0.339 18.5 0.236 40 0.80 35 0.60 
Lindane (.-HCH): vapor pressure vs. 1/T 
-6.0 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0024 0.0028 0.0032 0.0036 0.004 0.0044 
1/(T/K) 
P( gol 
S 
) aP/ 
Slade 1945 
Balson 1947 
Spencer & Cliath 1970 
Rordorf 1989 
Wania et al. 1994 
Boehncke et al. 1996 
Giustini et al. 1998 
Kim 1985 
m.p. = 112.5 °C 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3909 
TABLE 18.1.1.54.3 (Continued) 
Kucklick et al. 1991 McConnell et al. 1993 Jantunen et al. 2000 Sahsuvar et al. 2003 
gas stripping-GC concentration ratio air stripping-GC air stripping/dynamic HS 
t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) 
25 0.353 Lake Erie 
35 0.624 22.3 0.310 eq. 4a H/(Pa m3/mol) gas stripping-GC 
45 1.170 A 9.51 ± 0.49 5 0.044 
22.3 0.301 B 3005 ± 145 10 0.054 
eq.4a H/(Pa m3/mol) 20 0.15 
A 7.54 ± 0.54 30 0.34 
B 2392 ± 160 35 0.55 
seawater combined - both methods 
0.5 0.0627 5 0.040 
10 0.137 10 0.061 
23 0.363 20 0.14 
35 0.996 30 0.33 
45 2.57 35 0.59 
eq. 4a H/(Pa m3/mol) eq. 4a H/(Pa m3/mol) 
A 8.68 ± 0.96 A 10.14 ± 0.55 
B 2703 ± 276 B 3208 ± 161 
for temp range 0.5–23°C 
enthalpy of transfer, air-water 
.HWA/(kJ mol–1) = 61.4 
FIGURE 18.1.1.54.3 Logarithm of Henry’s law constant versus reciprocal temperature for lindane (.-HCH). 
Lindane (.-HCH): Henry's law constant vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
m. aP( / H nl 
3 
) l o 
m/ 
Kucklick et al. 1991 
McConnell et al. 1993 
Jantunen et al. 2000 
Sahsuvar et al. 2003 
experimental data 
© 2006 by Taylor & Francis Group, LLC

3910 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 18.1.1.54.4 
Reported octanol-water and octanol-air partition coefficients 
of lindane (.-HCH) at various temperatures 
log KOW log KOA 
Paschke & Schuurmann 1998 Shoeib & Harner 2002 
shake flask-GC generator column-GC/MS 
t/°C log KOW t/°C log KOA 
5 3.85 5 8.6845 
25 3.72 10 8.4493 
45 3.73 15 8.2181 
20 8.0643 
enthalpy of phase transfer: 25 7.8473 
.HOW/(kJ mol–1) = – 10.40 25 7.849 
entropy of phase transfer: 
.SOW/(J K–1 mol–1) = 52.2 log KOA = A + B/(T/K) 
A –3.611 
B 3415 
enthalpy of phase change 
.HOA/(kJ mol–1) = 65.4 
FIGURE 18.1.1.54.4 Logarithm of KOW versus reciprocal temperature for lindane (.-HCH). 
Lindane ( .-HCH): KOW vs. 1/T 
2.5 
3.0 
3.5 
4.0 
4.5 
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K g o l 
W O 
Paschke & Schuurmann 1998 
experimental data 
Sangster 1993 
Hansch et al. 1995 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3911 
FIGURE 18.1.1.54.5 Logarithm of KOA versus reciprocal temperature for lindane (.-HCH). 
Lindane (.-HCH): KOA vs. 1/T 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
K gol 
AO 
Shoeib & Harner 2000 
Shoeib & Harner 2002 (interpolated) 
© 2006 by Taylor & Francis Group, LLC

3912 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.55 Malathion 
Common Name: Malathion 
Synonym: American Cyanamid 4049, Calmathion, Carbethoxy malathion, Carbetovur, Carbetox, Carbofos, Carbophos, 
Celthion, Chemathion, Cimexan, Cythion, Detmol MA, EL 4049, Emmatos, Emmatos extra, ENT 17034, Ethiolacar, 
Etio, Fog 3, Formal, Forthion, Fosfothion, Fyfanon, Hithion, Karbofos, Kop-thion, Kypfos, Malacide, Malafor, 
Malakill, Malagran, Malamar, Malaphele, Malaphos, Malasol, Malaspray, Malatol, Malatox, Maldison, Malmed, 
Malphos, Maltox, Mercaptothion, MLT, Moscardia, NA 2783, NCI-C00215, Oleophosphothion, Orthomalathion, 
Phosphothion, Prioderm, Sadofos, Sadophos, SF 60, Siptox I, Sumitox, Tak, TM-4049, Vegfru malatox, Vetiol, Zithiol 
Chemical Name: S-[1,2-bis(ethoxycarbonyl)ethyl] O,O-dimethyl phosphorodithioate 
Uses: as insecticide to control sucking and chewing insects and spider mites on vegetables, fruits, ornamentals, field 
crops in greenhouses, gardens and forestry; also used as acaricide. 
CAS Registry No: 121-75-5 
Molecular Formula: C10H19O6PS2 
Molecular Weight: 330.358 
Melting Point (°C): 
1.4 (Lide 2003) 
Boiling Point (°C): 
120 (at 0.2 mmHg, Melnikov 1971; Freed et al. 1977) 
156–157 (at 0.7 mmHg, Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.23 (25°C, Spencer 1982; Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993) 
Molar Volume (cm3/mol): 
319.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
145 (20°C, Macy 1948; Melnikov 1971; Spencer 1973) 
145 (Spiller 1961; Willis & McDowell 1982) 
145 (room temp., Spencer 1973; Martin & Worthing 1977; Worthing & Walker 1987, Worthing & Hance 
1991; Hartley & Kidd 1987; Tomlin 1994) 
150 (Hartley & Graham-Bryce 1980; Beste & Humburg 1983) 
145 (22°C, Khan 1980) 
143 (20°C, shake flask-GC, Bowman & Sans 1983a, b) 
130 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
145, 164 (20°C, 30°C, Montgomery 1993) 
Vapor Pressure (Pa at 2 5°C or as indicated): 
1.67 . 10–4 (20°C, Wolfdietrich 1965; Melnikov 1971; Montgomery 1993) 
7.33 . 10–4 (20°C, evaporation rate-gravimetric method, Guckel et al. 1973) 
2.90 . 10–3 (Woolford 1975) 
1.30 . 10–3 (20°C, Hartley & Graham-Bryce 1980) 
5.30 . 10–3 (30°C, Khan 1980) 
9.20 . 10–4 (20°C, GC, Seiber et al. 1981) 
1.05 . 10–3 (gas saturation-GC, Kim et al. 1984; Kim 1985) 
0.60 . 10–3 (20°C, extrapolated-Clausius-Clapeyron eq., Kim et al. 1984, Kim 1985) 
P 
S 
O 
O
O 
O 
S 
O
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3913 
0.67 . 10–3 (20°C, GC-RT correlation, Kim et al. 1984; Kim 1985) 
5.30 . 10–3 (30°C, Hartley & Kidd 1987; Tomlin 1994) 
4.70 . 10–3 (GC-RT correlation, supercooled liquid value, Hinckley et al. 1990) 
1.07 . 10–3 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.0063 (liquid PL, GC-RT correlation; Donovan 1996) 
1.07 . 10–3 (selected, Halfon et al. 1996) 
0.00174 (gradient GC method; Tsuzuki 2000) 
1.78 . 10–3; 1.35 . 10–3, 2.51 . 10–3 (gradient GC method; estimation using modified Watson method: Sugden’s 
parachor, McGowan’s parachor, Tsuzuki 2000) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.038 (calculated-P/C, Mackay & Shiu 1981) 
2.30 . 10–3 (20°C, calculated-P/C, Suntio et al. 1988) 
3.22 . 10–3 (calculated-P/C, Taylor & Glotfelty 1988) 
2.03 . 10–3 (calculated-P/C, Howard 1991) 
4.96 . 10–4 (calculated-bond contribution method, Meylan & Howard 1991) 
4.9 . 10–4 (23°C, quoted, Schomburg et al. 1991) 
4.9 . 10–4 (Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
2.89 (20°C, shake flask-GC, Chiou et al. 1977) 
2.89 (shake flask-GC, Freed et al. 1979; Yoshioka et al. 1986) 
2.36 (Hansch & Leo 1979, 1985) 
2.36 (Rao & Davidson 1980) 
2.82 (shake flask-GC/FID, Hermens & Leeuwangh 1982) 
2.94 (shake flask/slow-stirring method-GC, De Bruijn et al. 1991) 
2.75 (Worthing & Hance 1991; Tomlin 1994) 
2.36–2.89 (Montgomery 1993) 
2.68 (RP-HPLC-RT correlation, Saito et al. 1993) 
2.18 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
2.36 (recommended, Sangster 1993) 
2.36 (selected, Hansch et al. 1995) 
2.18 (RP-HPLC-RT correlation, Finizio et al. 1997) 
3.57 (RP-HPLC-RT correlation, Nakamura et al. 2001) 
3.38 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
1.11 (carp, calculated. from k1 of Bender 1969, McLeese et al. 1976) 
–4.74 (beef biotransfer factor logBb, correlated-KOW, Pasarela et al. 1962) 
0.867, 1.47 (lake trout, coho salmon, Howard 1991) 
2.94, 2.98 (white shrimp, brown shrimp, Conte & Parker 1975) 
1.57 (calculated-S, Kenaga 1980a; quoted, Howard 1991) 
0.40 (Triaenodes tardus, Belluck & Felsot 1981) 
1.54 (willow shiner, Tsuda et al. 1989) 
0.85 (carp, wet wt. basis, De Bruijn & Hermens 1991) 
2.00 (topmouth gudgeon, wet wt. basis, De Bruijn & Hermens 1991) 
1.57 (Pait et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.45 (soil, calculated-S as per Kenaga & Goring 1978, Kenaga 1980a) 
3.26 (av. soils/sediments, Rao & Davidson 1980) 
3.25 (Rao & Davidson 1980) 
3.25 (Karickhoff 1981) 
2.83, 3.29, 2.50 (estimated-S, calculated-S and mp, estimated-KOW, Karickhoff 1981) 
2.36 (Bomberger et al. 1983) 
© 2006 by Taylor & Francis Group, LLC

3914 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
3.25 (screening model calculations, Jury et al. 1987b) 
0.903 (selected, USDA 1989; Neary et al. 1993) 
3.26 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.61 (Montgomery 1993) 
3.07 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.07; 2.76, 2.29 (soil, quoted exptl.; estimated-class-specific model, estimated-general model, Gramatica et al. 
2000) 
3.08, 3.05 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
2.68–2.72 (sediments from San Diego Creek and Bonita Creek, shake flask-GC, Bondarenko & Gan 2004) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 131 d, based on volatilization rate from water with a wind speed of 0–2.5 m/s (Sanders & 
Seiber 1984; quoted, Howard 1991). 
Photolysis: t. = 15 h for direct sunlight photolysis in aqueous media (Wolfe et al. 1976) 
t. = 900 h in distilled water at pH 6 with wavelength . > 290 nm; t. = 16 h by sunlight in a natural water 
from Suwannee River (Wolfe et al. 1977) 
t. = 990–20000 h for both atmospheric and aqueous photolysis, based on experimental photolysis rate 
constant in aqueous solution at pH 6 exposure to >290 nm under summer sunlight at 40°N (Howard 
et al. 1991) 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
photooxidation t. = 1.0–9.8 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl 
radical in air (Howard et al. 1991) 
kOH(calc) = 64 . 10–12 cm3 molecule–1 s–1 at room temp. (Winer & Atkinson 1990) 
calculated lifetime . = 3 h for reaction with OH radical in the troposphere (Atkinson et al. 1992) 
Hydrolysis: t. = 10.5 d at pH 7.4 and 20°C (Freed et al. 1977, 1979; Montgomery 1993) 
t. = 120 d at pH 6.1 and t. = 11 d at pH 7.4 in water and soil at 20°C as per Ruzicka et al. 1967 using 
GC-RT correlation method for hydrolysis rates determination (Freed et al. 1979) 
k(acid) = (4.8 ± 0.2) . 10–5 M–1 s–1 with t. > 4 yr for acid degradation at pH 4 at 27°C; k(alkaline) = 
(5.5 ± 0.3) M–1 s–1 with a t. = 36 h for alkaline degradation at pH 8 at 27°C, t. = 1 h at 40°C and t. = 40 h 
at 0°C and pH 8; all for 10–4 M in 1% acetonitrile and water at 27°C; t. = 20 h for distilled water and 
t. = 22 h for natural river water from Withlacoochee River, pH 8.2 (Wolfe et al.1977) 
k(acid) = 4.8 . 10–5 M–1 s–1; k(neutral) = 7.7 . 10–9 s–1 and k(alkaline) = 5.5 M–1 s–1 all for 10–4 M in 1% 
acetonitrile and water at 27°C (Wolfe et al. 1977; quoted, Harris 1982) 
t. = 8.8 yr, based on reported k = 2.5 . 10–2 M–1 s–1 at pH 7 and 0°C; t.(base) = 14 h at pH 9 and 27°C 
(Howard et al. 1991) 
t. = 9 d at pH 6 (Montgomery 1993) 
t. = 3200 d at pH 7, t. = 0.0006 d at pH 12 in natural waters (Capel & Larson 1995) 
Biodegradation: k = 6.2 . 10–8 mL cell –1 d–1 (Paris et al. 1975; quoted, Scow 1982) 
k = 5.0 . 10–8 mL cell –1 d–1 (Baughman & Lassiter 1978; quoted, Scow 1982) 
k = 2.6 – 16.1 . 10–7 mL cell–1 d–1 (Paris et al. 1978; quoted, Scow 1982); 
k = 1.4 d–1 in soil (Rao & Davidson 1980; quoted, Scow 1982) 
k = (4.5 ± 0.74) . 10–11 L cell–1 h–1 in North American waters (Paris et al. 1981) 
t.(aq. aerobic) = 100–1236 h, based on estimated aqueous aerobic biodegradation half-life; t.(aq. anaerobic) = 
400–4944 h based on unacclaimed aerobic biodegradation (Howard et al. 1991). 
t.(aerobic) = 4.2 d, t.(anaerobic) = 17 d in natural waters (Capel & Larson 1995) 
Biotransformation: transformation rate k = 7.8 . 10–3 mg (mg fungi)–1 h–1 by a fungi Aspergillus orgzae at 28°C 
in aqueous solution (Lewis et al. 1975) 
k = 1.9 . 10–1 mg (mg fungi)–1 d–1 in aquatic systems (Lewis et al. 1975; quoted, Scow 1982) 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 1.07 d–1 (carp, Bender 1969; quoted, McLeese et al. 1976) 
k2 = 0.08 d–1 (carp, calculated. from k1 of Bender 1969, McLeese et al. 1976) 
k2 = 0.49 h–1 (willow shiner, Tsuda et al. 1989) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3915 
Half-Lives in the Environment: 
Air: t. = 1.0–9.8 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radical in 
air (Howard et al. 1991); 
calculated lifetime of 3 h for the vapor-phase reaction with OH radical in the troposphere (Atkinson et al. 
1992). 
Surface water: persistence of up to 4 wk in river water (Eichelberger & Lichtenberg 1971); 
t. = 100–1236 h, based on unacclimated aerobic river die-away test data and estuarine water grab sample 
data (Howard et al. 1991); 
t. = 1.65 d in Indian River water, at 24 ppt salinity and pH 8.16 (Wang & Hoffman 1991); 
t. = 212 d at 6°C, t. = 42 d at 22°C in darkness for Milli-Q water, pH 6.1; t. = 55 d at 6°C, t. = 19 d at 
22°C in darkness, 8 d under sunlight conditions for river water at pH 7.3; t. = 53 d at 6°C, t. = 7 d 
at 22°C in darkness for filtered river water at pH 7.3; t. = 41 d at 6°C, t. = 6 d at 22°C in darkness, 
t. = 14 d under sunlight conditions for seawater at pH 8.1 (Lartiges & Garrigues 1995) 
Biodegradation t.(aerobic) = 4.2 d, t.(anaerobic) = 17 d, hydrolysis t. = 3200 d at pH 7 and t. = 0.0006 
d at pH 12 in natural waters (Capel & Larson 1995) 
Ground water: t. = 200–2472 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Sediment: t. = 2 d in sediment suspension (Cotham & Bidleman 1989) 
first-order degradation k = 0.902 d–1 with t. = 0.8 d under aerobic conditions, k = 0.302 d–1 with t. = 2.3 
d under anaerobic conditions in sediment from San Diego Creek, Orange County, CA; first-order degradation 
k = 0.506 d–1 with t. = 1.4 d under aerobic conditions, k = 0.431 d–1 with t. = 1.6 d under 
anaerobic conditions in sediment from Bonita Creek, Orange County, CA (Bondarendo & Gan 2004) 
Soil: estimated persistence of one week (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury 
et al. 1987); 
t. = 72–168 h, based on unacclimated aerobic soil grab sample data (Walker & Stojanovic 1973; quoted, 
Howard et al. 1991); 
biodegradation rate constant of 1.4 d–1 in soil (Rao & Davidson 1980; quoted, Scow 1982); 
non-persistent in soil with t. < 20 d (Willis & McDowell 1982); 
t. = 1 d in screening model simulations (Jury et al. 1987b); 
Degradation t. = 8 d in a coarse sandy soil, t. = 19 d in sandy loam (Kjeldsen et al. 1990) 
selected field t. = 1.0 d (Wauchope et al. 1992; Dowd et al. 1993; Halfon et al. 1996; Hornsby et al. 1996); 
soil t. = 11 d (Pait et al. 1992); 
t. = 1 d for soil depth < 5 cm, t. = 7 d for soil depth 5–20 cm and t. = 14 d for soil depth >20 cm (Dowd 
et al. 1993). 
Biota: biochemical t. = 1 d from screening model calculations (Jury et al. 1987b); 
excretion t. = 1.4 h (willow shiner, Tsuda et al. 1989); 
average t. = 20 d in the forest (USDA 1989; quoted, Neary et al. 1993). 
© 2006 by Taylor & Francis Group, LLC

3916 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.56 Methiocarb 
Common Name: Methiocarb 
Synonym: Bayer 37344, Draza, Ensurol, Mercaptodimethur, Mesurol, Mesurol Phenol, metmercapturon 
Chemical Name: 4-methylthio-3,5-xylyl methylcarbamate; 3,5-dimethyl-4-(methylthio)phenol methylcarbamate 
Uses: Insecticide/Acaricide/Molluscicide/Repellent; to control slugs and snails in a wide range of agricultural situations; 
broad range control of lepidoptera, coleoptera, diptera, and homoptera and spider mites in pome fruit, stone fruit, 
citrus fruit, strawberries, hops, potatoes, beet, maize, oilseed rape, vegetables and ornamentals; also used as a bird 
repellent. 
CAS Registry No: 2032-65-7 
Molecular Formula: C11H15NO2S 
Molecular Weight: 225.308 
Melting Point (°C): 
120 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.236 (Tomlin 1994) 
Molar Volume (cm3/mol): 
261.4 (calculated-Le Bas method at normal boiling point) 
182.3 (calculated-density) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.117 (mp at 120°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
30 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987; Milne 1995) 
27 (20°C, Tomlin 1994) 
24 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.015 (60°C, Hartley & Kidd 1987) 
1.5 . 10–5 (20°C, Tomlin 1994) 
3.6 . 10–5 (Tomlin 1994) 
0.016 (20–25°C, selected, Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
0.120 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.92 (shake flask as per Fujita et al. 1964; Briggs 1981) 
2.92 (selected, Magee 1991) 
3.34 (Tomlin 1994) 
2.92 (recommended, Hansch et al. 1995) 
2.82 (Pomona-database, Muller & Kordel 1996) 
2.95 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
O
S 
NH 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3917 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
2.32 (20°C, sorption isotherm, converted from log KOM of 2.08, Briggs 1981) 
2.08, 2.33 (reported as log KOM, converted from KOM multiplied by 1.724, Magee 1991) 
2.82 (soil, HPLC-screening method, mean value of different stationary and mobile phases, Kordel et al. 
1993, 1995) 
2.32 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.82; 2.26 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
2.48 (20–25°C, estimated, Hornsby et al. 1996) 
3.12, 2.45, 2.38, 2.88, 2.80 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-
HPLC/UV, Gawlik et al. 1998) 
2.25 (sandy loam soil, column equilibrium method-HPLC/UV, 20°C, Xu et al. 1999) 
2.741, 2.641, 2.377, 2.493, 2.824 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
2.32; 2.23, 2.22 (soil, quoted exptl.; estimated-class specific model, estimated-general model, Gramatica et al. 
2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Photolysis: photodegradation half-life of 6–16 d (Tomlin 1994). 
Half-Lives in the Environment: 
Soil: field t. = 30 d (20–25°C, estimated, Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

3918 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.57 Methomyl 
Common Name: Methomyl 
Synonym: Du Pont 1179, ENT 27341, Lannate, Mesomile, Nu-bait II, Nudrin, SD 14999, WL 18236 
Chemical Name: S-methyl-N-(methylcarbamoyloxy) thioacetimidate; methyl-N-(((methylamino)-carbonyl)oxy) 
ethan-imidothioate 
Uses: insecticide/acaricide; control a wide range of insects and spider mites in fruit, vines, olives, hops, vegetables, 
ornamentals, field crops, cucurbits, flax, cotton, soya beans, etc.; also used for control of flies in animal and poultry 
houses and dairies. 
CAS Registry No: 16752-77-5 
Molecular Formula: C5H10N2O2S 
Molecular Weight: 162.210 
Melting Point (°C): 
78–79 (Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
78 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.2946 (25°C, Spencer 1982; Worthing & Hance 1991; Tomlin 1994) 
1.2946 (24°C, Milne 1995; Montgomery 1993) 
Molar Volume (cm3/mol): 
179.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
22.267 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.302 (mp at 78°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
58000 (Worthing 1979; Khan 1980; Worthing 1983, 1987, Worthing & Hance 1991) 
10000 (Kenaga 1980a; Kenaga & Goring 1980) 
> 1000 (20°C, shake flask-GC, Bowman & Sans 1983a) 
57900 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994; Milne 1995) 
58000 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
3.47 . 10–3 (20°C, Hartley & Graham-Bryce 1980) 
6.66 . 10–3 (Khan 1980; Spencer 1982) 
0.162 (30°C, GC, Seiber et al. 1981) 
6.67 . 10–3 (Worthing 1983) 
3.47 . 10–3 (20°C, selected exptl. value, Kim 1985) 
7.53 . 10–2, 1.99 . 10–2 (20°C, GC-RT correlation, GC-RT correlation with mp correction, Kim 1985) 
6.65 . 10–3 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
6.67 . 10–3 (20–25°C, selected, Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated: 
1.82 . 10–5 (calculated, Lyman et al. 1982) 
6.50 . 10–5 (20°C, calculated-P/C, Suntio et al. 1988) 
6.48 . 10–5 (calculated-P/C, Montgomery 1993) 
NH 
O 
O 
N S 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3919 
Octanol/Water Partition Coefficient, log KOW: 
0.30 (Dow Chemical data, Kenaga & Goring 1980) 
1.08 (Rao & Davidson 1980) 
0.131 (22°C, shake flask-GC, Bowman & Sans 1983b) 
0.60 (shake flask-HPLC, Drabel & Bachmann 1983) 
0.60 (Hansch & Leo 1985) 
0.13, 1.08 (Montgomery 1993) 
0.60 (recommended, Sangster 1993) 
0.09 (Tomlin 1994) 
0.60 (selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
0.477, 0.903 (calculated-S, calculated-KOC, Kenaga 1980) 
0.230, 0.110 (calculated-KOW, calculated-S, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
2.20 (soil, Fung & Uren 1977) 
1.45 (soil, calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
1.71; 1.00 (calculated-KOW; calculated-S, Lyman et al. 1982) 
2.20 (Worthing 1983) 
1.08 (soil, calculated-MCI . and fragments contribution, Meylan et al. 1992) 
1.86, 2.20 (Montgomery 1993) 
1.86 (estimated-chemical structure, Lohninger 1994) 
1.86 (Tomlin 1994) 
1.30 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.86 (soil, 20–25°C, selected, Hornsby et al. 1996) 
1.16, 1.62 (soil, estimated-class-specific model, estimated-general model, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, Half-Lives, t. 
Volatilization: 
Photolysis: 
Oxidation: photooxidation t. ~ .14 months, based on vapor-phase reaction with hydroxyl radical in air (GEMS 
1986; quoted, Howard 1991). 
Hydrolysis: experimental t. = 262 d from rate constant k = 8.9 . 10–5 h–1 has been determined in pure water at 
pH 7 and 25°C (Ellington et al. 1987, 1988; quoted, Howard 1991; Montgomery 1993). 
Biodegradation: rate constants k = –0.000215 h–1 in nonsterile sediment, k = –0.000747 h–1 in sterile sediment 
by shake-tests at Range Point and k = –0.000175 h–1 in nonsterile water and k = –0.000383 h–1 in sterile 
water by shake-tests at Range Point (Walker et al. 1988). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. ~ 1.14 months, based on rate constant k = 2.919 . 10–13 cm3/molecules for the vapor-phase reaction with 
8 . 105/cm3 hydroxyl radical in air (GEMS 1986; quoted, Howard 1991). 
Surface water: experimental t. = 262 d has been determined in pure water at 25°C (Ellington et al. 1988; quoted, 
Howard 1991). 
Ground water: t. < 0.2 d in ground water samples (Smelt et al. 1983; quoted, Tomlin 1994). 
Sediment: 
Soil: field t. = 30 d (20–25°C, selected, Hornsby et al. 1996). 
Biota: t. ~ 3–5 d in plants following leaf application (Harvey & Reiser 1973; quoted, Tomlin 1994); 
t. = 0.4–8.5 d on cotton plants, t. = 0.8–1.2 d on mint plants and t. ~ 2.5 d on Bermuda grass (Willis & 
McDowell 1987; quoted, Howard 1991). 
© 2006 by Taylor & Francis Group, LLC

3920 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.58 Methoxychlor 
Common Name: Methoxychlor 
Synonym: Chemform, Dimethoxy-DDT, DMDT, DMTD, ENT 1716, Maralate, Marlate, Methorcide, Methoxo, Metox, 
Moxie NCI-C00497 
Chemical Name: 1,1,1-trichloro-2,2-bis(4-methoxyphenyl)ethane; 1,1.-(2,2,2-trichloroethylidene)bis[4-methoxybenzene] 
Uses: insecticide to control mosquito larvae, house flies, and other insect pests in field crops, fruits, and vegetables; 
also to control ectoparasites on cattle, sheep, and goats. 
CAS Registry No: 72-43-5 
Molecular Formula: C16H15Cl3O2 
Molecular Weight: 345.648 
Melting Point (°C): 
87 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.41 (25°C, Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
354.3 (calculated-Le Bas method at normal boiling point) 
245.1 (calculated-density) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
27.614 (DSC method, Plato & Glasgow 1969) 
23.88 (Ruelle & Kesselring 1997) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.246 (mp at 87°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional 
data at other temperatures designated *, are compiled at the end of this section): 
0.10* (shake flask-UV, measured range 25–45°C, Richardson & Miller 1960) 
0.62 (Karpoor et al. 1970) 
0.003, 0.01, 0.045* (particle size of 0.01, 0.05 and 5.0µ; shake flask-GC, measured range 15–45°C, Biggar & 
Riggs 1974) 
0.10 (generator column-GC/ECD, Weil et al. 1974) 
0.12 (shake flask-GC/ECD, Zepp et al. 1976, Karickhoff et al. 1979; Karickhoff 1981) 
0.1–0.25 (Wauchope 1978) 
0.10 (Weber et al. 1980) 
0.10 (Worthing 1983, 1987, Worthing & Hance 1991; Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
0.10 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.04 (24°C, Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 1.33 . 10–4 (20–25° C, Weber et al. 1980) 
1.910 . 10–4 (estimated, Howard 1991) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.60 (estimated, Hine & Mookerjee 1975; quoted, Howard 1991) 
0.999 (calculated-P/C, this work) 
0.0206 (wetted wall column-GC, Altschuh et al. 1999) 
Cl Cl 
Cl 
O O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3921 
Octanol/Water Partition Coefficient, log KOW: 
4.68 (HPLC-RT correlation, Veith & Morris 1978) 
5.08 (shake flask-UV, Karickhoff et al. 1979; Karickhoff 1981) 
4.30 (HPLC-RT correlation, Veith et al. 1979, 1980) 
4.20 (Mackay et al. 1980) 
4.83 (Belluck & Felsot 1981) 
4.51 (HPLC-k. correlation, McDuffie 1981) 
4.83 (shake flask-UV, Nishimura & Fujita 1983) 
4.68–5.08 (Hansch & Leo 1985) 
4.91, 4.26 (shake flask, RP-TLC-RT correlation, Renberg et al. 1985) 
3.31, 5.08 (Montgomery 1993) 
4.95 (recommended, Sangster 1993) 
5.08 (recommended, Hansch et al. 1995) 
4.58 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
–1.70 (bioaccumulation factor logBF, adipose tissue in female Albino rats, Harris et al. 1974) 
4.68, 3.08, 3.72, 3.92 (Bacillus subtilis, Flavobacterium harrisonii, Aspergillus sp., Chlorella pyrenoidosa, Paris 
et al. 1975; Paris & Lewis 1976) 
4.40 (bacterial sorption, Paris & Lewis 1976) 
2.14 (sheepshead minnow, Parrish et al. 1977) 
3.92, 3.72 (algae, fungi, Wolfe et al. 1977) 
3.92 (fathead minnows, 32 d exposure, Veith et al. 1979, 1980) 
3.70–3.93, 2.54–3.05 (snail, Stonefly, Anderson & Defoe 1980) 
2.27, 3.19 (fish: flowing water, static water; Kenaga 1980b; Kenaga & Goring 1980) 
4.21, 3.91 (calculated-S, KOC, Kenaga 1980) 
1.15 (Triaendoes tardus, Belluck & Felsot 1981) 
4.20, 3.04, 3.91 (estimated-S, KOW, KOC, Bysshe 1982) 
3.92 (fathead minnows, Veith & Kosian 1983) 
4.08 (mussel, Renberg et al. 1985) 
3.18 (soft clams, Hawker & Connell 1986) 
3.92 (calculated, Isnard & Lambert 1988) 
5.40 (calculated field bioaccumulation, Thomann 1989) 
5.29 (rainbow trout lipid base, estimated, Noegrohati & Hammers 1992) 
3.98; 4.05 (Oncorhynchus mykiss, wet wt. basis: quoted exptl.; calculated-QSAR model based on quantum 
chemical parameters, Wei et al. 2001) 
Sorption Partition Coefficient, log KOC: 
2.79 (water-sediment, Wolfe et al. 1977) 
4.90 (av. for isotherms on sediments, Karickhoff et al. 1979) 
3.99–4.61, 4.90–5.00, 4.86–4.96 (sand, fine silt, clay Karickhoff et al. 1979) 
4.90 (soil, quoted, Kenaga 1980a, b; Kenaga & Goring 1980; Bysshe 1982) 
5.03 (soil, calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
6.04 (calculated-S, Mill et al. 1980) 
4.90 (av. soils/sediments, Rao & Davidson 1980) 
4.67, 4.69, 5.54 (estimated-S, KOW, S and mp, Karickhoff 1981) 
4.26 (soil, screening model calculations, Jury et al. 1987b) 
4.99 (RP-HPLC-k. correlation, cyanopropyl column, Hodson & Williams 1988) 
4.63 (soil, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
4.90 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
4.90 (estimated-QSAR and SPARC, Kollig 1993) 
4.90, 4.95 (Montgomery 1993) 
4.90 (soil, calculated-MCI 1., Sabljic et al. 1995) 
© 2006 by Taylor & Francis Group, LLC

3922 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 4.5 d from water was estimated based on Henry’s law constant for a model river 1 m deep 
with a current of 1 m/s and a wind speed of 3 m/s (Howard 1991). 
Photolysis: midsummer direct photolysis t. = 690 h in water, t. = 4100 h in hydrocarbon media; midday t. = 
1100 h average over all seasons in water at latitude 40°N, daily average direct photolysis t. = 4.5 months 
(12-h days) in water in the Central U.S. (Zepp et al. 1976) 
photodecomposition t. > 300 h in distilled water, t. = 2.2 h in Suwannee River water, t. = 5.4 h in Tombigbee 
River water, t. = 2.9 h in Alabama River water with methoxychlor at 40 ppb under sunlight (Zepp et al. 1976) 
t. = 300–2070 h in both air and natural water, based on measured photolysis rates in distilled water under 
midday sunlight and adjusted for approximate winter sunlight intensity (Howard et al. 1991). 
Oxidation: 
photooxidation t. = 2.2–5.4 h in natural water, based on measured photooxidation in river water exposed 
to midday May sunlight (Zepp et al. 1976; quoted, Howard et al. 1991); 
photooxidation t. ~ 1.12–11.2 h in air, based on rate constant for the vapor-phase reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991) 
k(aq.) = (270 ± 80) M–1 s–1 for direct reaction with ozone in water at pH 2 and 24 ± 1°C, with t. = 21 min 
at pH 7 (Yao & Haag 1991). 
kOH(aq.) = 2 . 1010 M–1 s–1 for the reaction with hydroxyl radicals in aqueous solutions at 24 ± 1°C (Haag 
& Yao 1992). 
Hydrolysis: k(alkaline) = 3.8 . 10–4 M–1 s–1 with t. = 2100 d at 27°C, k(neutral) = 2.2 . 10–8 s–1 at pH 3–7 
corresponds to a t. = 367 d at pH 9 and 27°C (Wolf et al. 1977) 
Overall rate constant k = 5.5 . 10–8 s–1 with t. = 147 d; k = 3.0 . 10–8 s–1 with t. = 270 d at 25°C and pH 7 
(Mabey & Mill 1978) 
k(alkaline) = 3.8 . 10–4 M–1 s–1, k(neutral) = 2.2 . 10–8 s–1, 1 . 10–8 M in water at 27°C (Harris 1982) 
t. = 1.05 yr, based on neutral and base catalyzed hydrolysis rate constants Howard et al. 1991) 
k = 0.60 yr–1 at pH 7 and 25°C (Kollig 1993) 
t. = 370 d at pH 2, t. = 370 d at pH 7 and t. = 270 d at pH 12 in natural waters (Capel & Larson 1995) 
Biodegradation: t.(aq. aerobic) = 4320–8760 h (6 months to 1 yr), based on very slow biodegradation observed 
in an aerobic soil die-away test study data (Fogel et al. 1982; quoted, Howard et al. 1991) 
t.(aq. anaerobic) = 1200–4320 h (50 d to 6 months), based on anaerobic soil die-away test study data (Fogel 
et al. 1982; quoted, Howard et al. 1991) 
k = –0.00236 h–1 in nonsterile sediment and k = –0.000639 h–1 in sterile sediment by shake-tests at Range 
Point and k = –0.000139 h–1 in nonsterile water and k = –0.00000327 h–1 in sterile water by shake-tests 
at Range Point (Walker et al. 1988) 
t.(aerobic) = 180 d, t.(anaerobic) = 50 d in natural waters (Capel & Larson 1995). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 14.4–37.5 h–1 (Chironomus tentans larvae in pond sediment-water system, 96-h exposure, calculated 
by using first-order kinetic and concn factors, Muir et al. 1983) 
k1 = 11.4–82.0 h–1 (Chironomus tentans larvae in river sediment-water system, 96-h exposure, calculated 
by using first-order kinetic and concn factors, Muir et al. 1983) 
k1 = 35.8–54.9 h–1 (Chironomus tentans larvae in sediment (sand)-water system, 96-h exposure, calculated 
by using first-order kinetic and concn factors, Muir et al. 1983) 
k1 = 35.8–54.9 h–1 (Chironomus tentans larvae in sediment (sand)-water system, 96-h exposure, calculated 
by using initial uptake data of 0–12 h, Muir et al. 1983) 
k2 = 45.4–38.6 h–1 (Chironomus tentans larvae in pond sediment-water system, calculated by concentration 
decay curve, Muir et al. 1983) 
k2 = 0.030 h–1 (Chironomus tentans larvae in sediment (sand)-water system, calculated by concentration 
decay curve, Muir et al. 1983) 
Half-Lives in the Environment: 
Air: t. ~ 1.12–11.2 h, based on rate constant for the vapor-phase reaction with hydroxyl radicals in air (Atkinson 
1987; quoted, Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3923 
Surface water: midsummer direct photolysis t. = 690 h in water; midday t. = 1100 h average over all seasons 
in water at latitude 40°N, daily average direct photolysis t. = 4.5 months (12-h days) in water in the Central 
U.S. (Zepp et al. 1976) 
t. = 2.2–5.4 h, based on measured photooxidation in river water exposed to midday May sunlight (Zepp et 
al. 1976; quoted, Howard et al. 1991); 
measured k = (270 ± 80) M–1 s–1 for direct reaction with ozone in water at pH 2.7–6.4 and 24 ± 1°C, with 
a t. = 2.1 min at pH 7 (Yao & Haag 1991) 
biodegradation t.(aerobic) = 180 d, t.(anaerobic) = 50 d, hydrolysis t. = 370 d at pH 2, t. = 370 d at pH 
7 and t. = 270 d at pH 12 in natural waters (Capel & Larson 1995). 
Ground water: t. = 1200–8760 h, based on aerobic and anaerobic soil die-away test study data (Fogel et al. 
1982; quoted, Howard et al. 1991). 
Sediment: 
Soil: t. = 1.5 wk at pH 4.7 and 6.5 and t. = 1.0 wk at pH 7.8 (Carlo et al. 1952; quoted, Kaufman 1976); 
t. = 4320–8760 h, based on very slow biodegradation observed in an aerobic soil die-away test study data 
(Fogel et al. 1982; quoted, Howard et al. 1991); 
t. = 42 d in screening model calculations (Jury et al. 1987b); 
selected field t. = 120 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: elimination t. = 9.6 h in pond sediment-water, t. = 23.2 h in sand-water system (Chironomus tentans 
larvae, Muir et al. 1983); 
t. = 0.4–8.5 d on cotton plants, t. = 0.8–1.2 d on mint plants and t. ~ 2.5 d on Bermuda grass (Willis & 
McDowell 1987; quoted, Howard 1991). 
TABLE 18.1.1.58.1 
Reported aqueous solubilities of methoxychlor at various temperatures 
Richardson & Miller 1960 Biggar & Riggs 1974 
shake flask-UV spec. shake flask-GC 
t/°C S/g·m–3 t/°C S/g·m–3 S/g·m–3 S/g·m–3 
particle size 0.01µ 0.05µ 5.0µ 
25 0.10 15 - - 0.020 
35 0.20 25 0.003 0.010 0.045 
45 0.40 35 - - 0.095 
45 - - 0.185 
© 2006 by Taylor & Francis Group, LLC

3924 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 18.1.1.58.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for methoxychlor. 
Methoxychlor: solubility vs. 1/T 
-24.0 
-23.0 
-22.0 
-21.0 
-20.0 
-19.0 
-18.0 
-17.0 
-16.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
x 
nl 
Richardson & Miller 1960 
Biggar & Riggs 1974 (0.01 µ particle size) 
Biggar & Riggs 1974 (0.05 µ particle size) 
Biggar & Riggs 1974 (5.0 µ particle size) 
Weil et al. 1974 
Zepp et al. 1976 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3925 
18.1.1.59 Mevinphos 
Common Name: Mevinphos 
Synonym: Apavinfos, CMDP, Compound 2046, Duraphos, ENT 22374, Fosdrin, Gesfid, Gestid, Meniphos, Menite, 
NA 2783, OS 2046, PD 5, Phosdrin, Phosfene 
Chemical Name: 2-carbomethoxy-1-methylvinyl dimethyl phosphate; 1-methoxycarbonyl-1-propen-2-yl dimethyl phosphate; 
methyl-3-(dimethoxyphosphinoyloxy)but-2-enoate 2-carbomethoxy-1-methylvinyl dimethyl phosphate 
Uses: contact insecticide and acaricide to control chewing insects and spider mites in fruits, vegetables, and ornamentals. 
CAS Registry No: 7786-34-7 [formerly 298-01-1 for (E) isomer & 338-45-4 for (Z) isomer] for cis-isomer and 338-45-4 
for trans-isomer] 
Molecular Formula: C7H13O6P 
Molecular Weight: 224.1 48 
Melting Point (°C): 
–56.1 (Montgomery 1993; Lide 2003) 
21 ((E) isomer, Lide 2003) 
6.9 ((Z) isomer, Lide 2003) 
Boiling Point (°C) 
99–103 (at 0.03 mmHg, Martin 1971; Freed et al. 1977; Milne 1995) 
76.0 (at 0.2 mmHg, Melnikov 1971; Freed et al. 1979) 
110 (at 1.6 mmHg, Hartley & Kidd 1987) 
106–107.5 (at 1 mmHg, Montgomery 1993) 
Density (g/cm3 at 20°C): 
1.24 (Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
1.25 (Montgomery 1993) 
1.235, 1.245 ((E) isomer, (Z) isomer, Tomlin 1995) 
Molar Volume (cm3/mol): 
180.7 (calculated from density) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
miscible (Spencer 1973; Worthing 1979; Freed et al. 1979) 
> 2000 (shake flask-GC, Bowman & Sans 1983a) 
miscible (Hartley & Kidd 1987; Tomlin 1994) 
miscible (Worthing & Walker 1987) 
600000 (20–25°C, selected, Wauchope 1989; Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.293 (20°C, Eichler 1965) 
0.293 (20–25°C, Melnikov 1971) 
0.757 (20°C, GC-RT correlation, Kim et al. 1984; Kim 1985) 
0.017 (20°C, Hartley & Kidd 1987; Tomlin 1994) 
0.0173 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.293 (20°C, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol): 
6.35 . 10–6 (calculated-P/C, this work) 
O O 
P 
O 
O O 
O 
© 2006 by Taylor & Francis Group, LLC

3926 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
0.845 (Melnikov 1971) 
0.954 (Freed et al. 1977) 
0.550 (selected, Dao et al. 1983) 
1.20 (shake flask, Log P Database. Hansch & Leo 1987) 
0.200 (selected, Boehncke et al. 1990) 
0.130 (Tomlin 1994) 
1.20 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
1.64 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.64 (estimated-chemical structure, Lohninger 1994) 
2.30 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.12, 1.56 (soil, cis-mevinphos, estimated-class-specific model, estimated-general model, Gramatica et al. 
2000) 
2.28, 1.67 (soil, trans-mevinphos, estimated-class-specific model, estimated-general model, Gramatica et al. 
2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: t. = 1.8 h for cis- and t. = 3.0 h for trans-isomer at pH 11.6 (Casida et al. 1956; quoted, Montgomery 
1993); 
t. = 30–35 d (Melnikov 1971; quoted, Freed et al. 1977); 
t. = 120 d at pH 6, t. = 35 d at pH 7, t. = 3 d at pH 9, and t. = 1.4 h at pH 11 (Montgomery 1993; Tomlin 
1994). 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: 
Sediment: 
Soil: selected field t. = 3 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: estimated t. = 19 ± 2 and 24 ± 7 h in lettuce in the summer and t. = 20 ± 11 h in the fall, t. = 50 h in 
cauliflower in the summer and t. = 18 ± 1 h in the fall, t. = 25 ± 2 h in celery in the summer and t. = 16 h 
in the fall (Spencer et al. 1992) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3927 
18.1.1.60 Mirex 
Common Name: Mirex 
Synonym: Bichlorendo, Declorane, ENT 25719, Ferriamicide, Paramex, Perclordecone 
Chemical Name: 1,1a,2,2,3,3a,4,5,5,5a,5b,6-dodecachloro-octahydro-1,3,4-methano-1H-cyclobuta(cd) pentalene; 
dodecachloro-pentacyclodecane 
Uses: Insecticide. 
CAS Registry No: 2385-85-5 
Molecular Formula: C10Cl12 
Molecular Weight: 545.542 
Melting Point (°C): 
485 (dec., Smith et al. 1978; Spencer 1982; Kuhne et al. 1995; Milne 1995; Lide 2003) 
Boiling Point (°C): 
Molar Volume (cm3/mol): 
403.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio, at 25°C (assuming .Sfus = 56 J/mol K), F: 3.1 . 10–5 (mp at 485°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.001 (from D. Dollar of Miss. State Chem. Lab. unpublished results, Alley 1973) 
0.085 (shake flask-LSC, Metcalf et al. 1973) 
0.60 (Neely 1978; quoted, Kenaga 1980; Kenaga & Goring 1980) 
7.0 . 10–5 (22°C, shake flask-GC, Smith et al. 1978) 
0.02 (24°C, Verschueren 1983) 
7.0 . 10–5 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or indicated and reported temperature dependence equations): 
8.0 . 10–4 (50°C, Smith, et al. 1978) 
1.3 . 10–4 (20°C, Smith et al. 1978) 
1.0 . 10–4 (20°C, selected, Suntio et al. 1988) 
9.0 . 10–7 (10°C, estimated, McLachlan et al. 1990) 
2.5 . 10–4, 2.9 . 10–4, 2.8 . 10–4 (GC-RT correlation, supercooled liquid, Hinckley et al. 1990) 
5.2 . 10–5 (12°C, extrapolated supercooled liquid value, Hinckley et al. 1990) 
1.1 . 10–4 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol and reported temperature dependence equations): 
1013 (20°C, calculated, Smith et al. 1978) 
53.2 (22°C, gas stripping-GC/ECD, Yin & Hassett 1986) 
log [H/(atm m3/mol)] = 12.709 – 4711/(T/K), temp range: 8–24°C (gas stripping-GC, Yin & Hassett 1986) 
840 (20°C, calculated-P/C, Suntio et al. 1988) 
44.1 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001) 
log KAW = 13.899 – 4585/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
7.50 (Hansch & Leo 1979) 
6.89 (HPLC-RT correlation, Veith et al. 1979; Veith & Kosian 1983) 
Cl 
Cl 
Cl Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

3928 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
5.28 (shake flask, Log P Database, Hansch & Leo 1987) 
5.28 (recommended, Sangster 1993) 
5.28 (recommended, Hansch et al. 1995) 
7.13–7.24 (shake flask/slow stirring-GC/ECD, both phases, Fisk et al. 1999) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.34, 3.07 (Gambusia, Physa, Metcalf et al. 1973) 
2.78 (Oedogonium sp., Metcalf et al. 1973) 
2.18 (bioaccumulation factor log BF, adipose tissue in female Albino rats, Ivie et al. 1974) 
–2.02 (milk biotransfer factor log Bm, correlated-KOW, Dorough & Ivie 1974) 
2.34 (fish in static water, Metcalf 1974) 
–1.25 (beef biotransfer factor log Bb, correlated-KOW, Bond et al. 1975) 
–1.14 (vegetation, correlated-KOW, De La Cruz & Rajanna 1975) 
3.86; 3.51; 3.61; 3.70 (Chlorococcum sp.; Chlamydomonas sp.; Dunaliella tertiolecta; Thallasidsira pseudomana, 
Hollister et al. 1975) 
5.60 (bacterial sorption, Smith et al. 1978) 
4.26 (fathead minnows, 32-d exposure, Veith et al. 1979, 1980) 
2.91 (calculated-S, Kenaga 1980) 
4.71 (fathead minnow to 14C mirex, Huckins et al. 1982) 
4.34 (fish, correlated, Mackay 1982) 
4.26 (fathead minnow, Veith & Kosian 1983) 
4.09, 3.41 (algae, fish, Verschueren 1983) 
6.50 (fish, selected, Paterson & Mackay 1985) 
1.78–2.87 highest value 2.87 but not equilibrated (rainbow trout, 15°C, steady-state BCF on 7- to 96-d laboratory 
study, Oliver & Niimi 1985) 
> 4.08; 2.87 (rainbow trout, kinetic BCF-k1/k2; steady-state BCF in laboratory studies, Oliver & Niimi 1985) 
6.08; 7.18 (rainbow trout, calculated-KOW, Lake Ontario field data, Oliver & Niimi 1985) 
2.87 (fish, Oliver & Niimi 1985; Oliver 1987) 
4.34 (worms, Oliver 1987) 
6.17 (oligochaetes, Connell et al. 1988) 
6.41 (smelt, Oliver & Niimi 1988) 
4.31 (Poecilia reticulata, Gobas et al. 1989; quoted, Devillers et al. 1996) 
6.42, 7.16 (guppy, correlated, Gobas et al. 1989) 
6.40 (Markwell et al. 1989) 
4.72, 7.07 (dry leaf, wet leaf, Bacci et al. 1990) 
7.07 (wet leaf, Bacci et al. 1990) 
5.97, 7.16 (guppy 6.5% lipid: wet wt basis, lipid wt basis, Geyer et al. 2000) 
3.79–4.26, 3.95–4.40 (human, fat: wet wt basis, lipid wt basis, Geyer et al. 2000) 
Bioaccumulation Factor log BAF: 
8.27 (calculated field bioaccumulation, Thomann 1989) 
Sorption Partition Coefficient, log KOC: 
5.56 (natural sediment, Smith et al. 1978) 
7.38 (av. soils/sediments, Smith et al. 1978) 
3.76 (soil, quoted exptl., Kenaga 1980) 
3.08 (soil, calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
6.00, 5.67 (derived from exptl., calculated-MCI ., Meylan et al. 1992) 
6.42 ± 0.39 (suspended particulate matter of the St. Lawrence River, Comba et al. 1993) 
6.00 (20–25°C, soil, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
6.00 (soil, calculated-MCI 1., Sabljic et al. 1995) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3929 
Rate Constants, k, and Environmental Half-Lives, t.: 
Volatilization: k = 5.37 . 10–2 h–1 (Hill et al. 1976) with t. = 500 h from river, t. = 700 h from pond, t. = 1980 h 
from eutrophic lake, and 1 t. = 980 h from oligotrophic lake (Smith et al. 1978). 
Photolysis: rate constants k < 5.0 . 10–8 s–1 (laboratory data, Smith et al. 1978); 
k = 4.2 . 10–3 d–1 (field data, Smith et al. 1978); 
t. = 3.9 . 103 h (aquatic half-life, Haque et al. 1980); 
k = 0.123 d–1 (sunlight, distilled water containing 2.0 mg DOC/L humic acid, Mudambi & Hasset 1988); 
k = 0.033 d–1 (sunlight, distilled water, summer, Mudambi & Hassett 1988); 
k = 0.102 d–1 (sunlight, Lake Ontario water, Mudambi & Hassett 1988); 
k = 0.019 d–1 (sunlight, distilled water, fall, Mudambi & Hassett 1988). 
Oxidation: laboratory data k < 30 M–1 s–1 (Smith et al. 1978); t. >> 0.7 yr (Smith et al. 1978; quoted, Cheung 1984). 
Hydrolysis: laboratory data rate constant k = 1 . 10–10 s–1 (Smith et al. 1978); k = 2 . 10–10 s–1 with t. = 250 yr 
(Cheung 1984); 
degradation rate constant k = 1.93 . 10–4 h–1 (Mackay et al. 1985; quoted, Mackay & Paterson 1991). 
Biodegradation: slow process (Cheung 1984). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 > 8.50 d–1 (rainbow trout, Oliver & Niimi 1985) 
k2 < 0.0007 d–1 (rainbow trout, Oliver & Niimi 1985) 
k2 = 0.017 d–1 with t. = 42 d and k2 = 0.009 d–1 with t. = 78 d for food concn of 21 ng/g and 145 ng/g, 
respectively, in a 30-d uptake followed by 160-d depuration studies for juvenile rainbow trout (Fisk 
et al. 1998) 
Half-Lives in the Environments: 
Air: 
Surface water: overall t. = 0.83 h in river or stream, t. = 420 h in pond, and t. = 1480 h by sorption in both 
eutrophic lake and oligotrophic lake; with photolysis t. > 8000 h and oxidation t. > 1000 h in pond, river, 
eutrophic lake and oligotrophic lake (Smith et al. 1978); 
degradation rate constant k = 1.93 . 10–4 h–1 (Mackay et al. 1985; quoted, Mackay & Paterson 1991); 
t. = 7 d in sunlit, air-equilibrated humic acid solution, or natural water (Mudambi & Hassett 1988; Burns 
et al. 1996). 
Ground water: 
Soil: estimated field t. = 3000 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
t. = 8.2 yr, extremely persistent in soil (Geyer et al. 2000) 
Biota: t. > 1000 d (Skea et al. 1981; Oliver & Niimi 1985); 
t. > 28 d in fathead minnow to 14C mirex (Huckins et al. 1982); 
t. > 500 d (4°C, rainbow trout, Niimi & Palazzo 1985); 
t. = 114 d as observed and t. = 495 d as adjusted (12°C, rainbow trout, Niimi & Palazzo 1985); 
t. = 103 d as observed and t. > 1000 d as adjusted (18°C, rainbow trout, Niimi & Palazzo 1985). 
Depuration t. = 42–78 d in 30-d uptake and 160-d depuration studies (juvenile rainbow trout, Fisk et al. 1998) 
© 2006 by Taylor & Francis Group, LLC

3930 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.61 Monocrotophos 
Common Name: Monocrotophos 
Synonym: Apadrin, Azodrin, Bilobran, Crotos, ENT 27129, Monocron, Nuvacron 
Chemical Name: dimethyl (E)-1-methyl-2-(2-methylcarbamoyl)vinyl phosphate 
Uses: systemic insecticide and acaricide to control pests in cotton, sugar cane, coffee, tobacco, olives, rice hops, sorghum, 
maize, deciduous fruits, citrus fruits, potatoes, sugar beet, tomatoes, soya beans, and ornamentals. 
CAS Registry No: 6923-22-4 
Molecular Formula: C7H14NO5P 
Molecular Weight: 223.164 
Melting Point (°C): 
55 (Lide 2003) 
Boiling Point (°C): 
125 (at 0.0005 mmHg, Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 
1994; Milne 1995) 
Density (g/cm3 at 20°C): 
1.33 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Milne 1995) 
1.22 (Tomlin 1994) 
Molar Volume (cm3/mol): 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.508 (mp at 55°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
miscible (Spencer 1973; Budavari 1989) 
miscible (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
1000000 (Worthing & Walker 1987, Worthing & Hance 1991; Milne 1995) 
1000000 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
9.33 . 10–3 (20°C, Eichler 1965) 
9.33 . 10–3 (20°C, Wolfdietrich 1965; Melnikov 1971; Budavari 1989) 
9.33 . 10–4 (20°C, Hartley & Graham-Bryce 1980) 
5.09 . 10–3 (20°C, GC-RT correlation without mp correlation, Kim et al. 1984; Kim 1985) 
2.30 . 10–3 (20°C, GC-RT correlation with mp correction, Kim 1985) 
9.00 . 10–3 (Hartley & Kidd 1987) 
2.90 . 10–4 (20°C, Worthing & Hance 1991; Tomlin 1994) 
9.33 . 10–3 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
9.00 . 10–3 (20°C, Montgomery 1993) 
0.0295; 0.0039, 0.019 (gradient GC method; estimation using modified Watson method: Sugden’s parachor, 
McGowan’s parachor, Tsuzuki 2000) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
2.08 . 10–6 (20–25°C, calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
–1.97 (calculated, Montgomery 1993) 
–0.22 (calculated, Tomlin 1994) 
–0.20 (recommended, Hansch et al. 1995) 
NH 
O 
P 
O 
O O 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3931 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF 
Sorption Partition Coefficient, log KOC: 
0.0 (soil, 20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
2.29, 1.65 (soil, trans-isomer, estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: calculated t. = 96 d at pH 5, t. = 66 d at pH 7 and t. = 17 d at pH 9 and 20°C (Worthing & Hance 
1991; Montgomery 1993; Tomlin 1994). 
Half-Lives in the Environment: 
Soil: selected field t. = 30 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 1–5 d in laboratory soil (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

3932 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.62 Naled 
Common Name: Naled 
Synonym: Arthodibrom, Dibrom, Bromex, Bromchlophos 
Chemical Name: 1,2-dibromo-2,2-dichloroethyl dimethyl phosphate 
CAS Registry No: 300-76-5 
Uses: insecticide 
Molecular Formula: C4H7Br2Cl2O4P 
Molecular Weight: 380.784 
Melting Point (°C): 
27 (Lide 2003) 
Boiling Point (°C): 
110/0.5 mmHg (Spencer 1982; Hartley & Kidd 1987; Worthing & Walker 1987; Montgomery 1993; Tomlin 
1994) 
Density (g/cm3 at 20°C): 
1.96 (20°C, Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
1.97 (20°C, Worthing 1987) 
Molar Volume (cm3/mol): 
Dissociation Constant, pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
77.23 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.956 (mp at 27°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
practically insoluble in water (Hartley & Kidd 1987; Worthing & Walker 1987) 
0.3, 2000 (quoted, Wauchope et al. 1992) 
2000 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
10 (Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.266 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987; Tomlin 1994) 
6.0 . 10–2, 0.67, 5.20, 31.0, 150 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 12.307 – 4034.2/(T/K); measured range 50.5–120°C (liquid, gas saturation-GC, Rordorf 1989) 
0.267, 0.00267 (Wauchope et al. 1992) 
0.0267 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.267 (20°C, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
1.38 (shake flask-GC/UV, Hussain et al. 1974) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Cl 
O 
P 
O 
Br 
Cl 
Br O 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3933 
Sorption Partition Coefficient, log KOC: 
133, 2.26; 2.26 (soil, quoted values; selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.14, 3.38 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, Gramatica 
et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: degraded by sunlight (Tomlin 1994). 
Oxidation: 
Hydrolysis: completely hydrolyzed in water within 2 d (Windholz 1983; quoted, Montgomery 1993); 
rapidly hydrolyzed in water > 90% in 48 h at room temp. (Spencer 1982; Hartley & Kidd 1987; Worthing 
1987; Tomlin 1994). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: completely hydrolyzed within 2 d (Windholz 1983; quoted, Montgomery 1993); 
rapidly hydrolyzed in water > 90% in 48 h at room temp. (Spencer 1982; Hartley & Kidd 1987; Worthing 
1987; Tomlin 1994). 
Ground water: 
Sediment: 
Soil: field t. = 1 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3934 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.63 Oxamyl 
Common Name: Oxamyl 
Synonym: D 1410, Dioxamyl, Dupont 1410, Nematicide 1410, Thioxamyl, Vydate 
Chemical Name: N,N-dimethylcarbamoyloxyimino-2-(methylthio)acetamide; ethanimidothioic acid, 2-(dimethylamino)- 
N-[[(methylamino)carbonyl]oxy]-2-oxo-methyl ester 
Uses: insecticide/acaricide/nematicide 
CAS Registry No: 23135-22-0 
Molecular Formula: C7H13N3O3S 
Molecular Weight: 219.261 
Melting Point (°C): 
109 (Lide 2003) 
Boiling Point (°C): 
dec (Lide 2003) 
Density (g/cm3 at 20°C): 
0.97 (Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
212.4 (calculated-Le Bas method at normal boiling point) 
226.1 (calculated-density) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.150 (mp at 109°C) 
0.15 (20°C, Suntio et al. 1988) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
281000 (Martin & Worthing 1977) 
280000 (Khan 1980, Spencer 1982; Montgomery 1993; Tomlin 1994; Milne 1995) 
282500 (Briggs 1981, Gerstl & Helling 1987) 
282000 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0306 (Khan 1980; Spencer 1982) 
0.0306 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.0311 (Montgomery 1993) 
0.0310 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol): 
0.00026 (calculated-P/C, Suntio et al. 1988) 
0.260 (calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
–0.432 (Briggs 1973) 
–0.47 (20–25°C, shake flask-14C-labeled compound-LSC, Briggs 1981) 
–0.432 (shake flask-centrifuge-liquid scintillation counting method, Gerstl 1984; Gerstl & Helling 1987) 
HN
O 
O 
N 
S 
N 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3935 
–0.40 (Montgomery 1993) 
–0.44 (pH 5, Tomlin 1994) 
–0.47 (selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
0.707 (soil, sorption isotherm, converted form reported log KOM of 0.47, Briggs 1981) 
1.66, 1.07, 1.20, 1.32, 1.84 (5 Israeli soils, organic matter: 0.11% pH 8.5; 0.68% pH 7.9; 0.95% pH 7.8; 1.23% 
pH 7.2; and 2.03% pH 7.7, reported as KOM, batch equilibrium-adsorption isotherms, Gerstl 1984) 
0.176–1.16, –0.886–0.38 (reported as KOM, estimated-S, estimated-KOW, Gerstl 1984) 
0.778 (soil, screening model calculations, Jury et al. 1987b) 
2.47 (calculated-MCI ., Gerstl & Helling 1987) 
0.70 (soil, Carsel 1989) 
1.40 (soil, Wauchope et al. 1992; Hornsby et al. 1996) 
–0.70 to 1.40 (Montgomery 1993) 
1.00 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.06, 1.68 (soil, estimated-class-specific model, estimated-general model, Gramatica et al. 2000) 
1.43, 1.36 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
1.08 (sediment: organic carbon OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 55.4 h (absorbance wavelength 223 nm) (Montgomery 1993). 
Oxidation: 
k(aq.) = (620 ± 150) M–1 s–1 for direct reaction with ozone in water at pH 2–7 and 24 ± 1°C, with a t. = 54 s 
at pH 7 (Yao & Haag 1991). 
Hydrolysis: hydrolysis t. > 31 d at pH 5, 8 d at pH 7 and t. = 3 h at pH 9 (Tomlin 1994). 
Biodegradation: decomposition rate constants range from k = 0.182 d–1 to 0.021 d–1 corresponding to v = 4 to 
33 d in Bet Dagan soil depending on moisture, and decomposition rate constant ranges from k = 0.23 to 
0.11 d–1 corresponding to t. = 3.1 to 6.5 d in five Israeli soils (Gerstl 1984); 
t. = 6 d in screening model calculations (Jury et al. 1987b); . 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: measured rate constant k = (620 ± 150) M–1 s–1 for direct reaction with ozone in water at pH 
2.0–7.0 and 24 ± 1°C, with t. = 54 s at pH 7 (Yao & Haag 1991). 
Ground water: 
Sediment: 
Soil: t. = 9–15 d (Harvey & Han 1978); 
t. = 12–68 d for soils from Holland depending on the moisture content (Smelt et al. 1979); 
t. = 15 d in several soils at 15°C (Bromilow et al. 1980); 
decomposition in soil was as a function of moisture content, and followed first-order kinetics with reported 
soil t. = 4–13 d at 25°C and, t. = 32.7 d at 15°C, t. = 3.8 d at 35° in Bet Dagan soil; rate constants 
between k = 0.11–0.23 d–1 and with t. ~ 4 d in 5 Israeli soils (Gerstl 1984); 
t. = 6 d in screening model calculations (Jury et al. 1987b); 
t. = 7 d (Worthing & Hance 1991); 
t. = 8–50 d (Ou & Rao 1986) and 
t. = 10.2–13.1, 6.2, 7.1 and 17.8 d in Pitstone, Devizes, Sutton, Veany soils, respectively (Montgomery 1993); 
field t. = 4 d (selected, Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3936 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.64 Parathion 
Common Name: Parathion 
Synonym: AAT, AATP, AC 3422, Alkron, Alleron, American Cyanamid 3422, Aphamite, Aralo, B 404, Bay E-605, 
Bladan, Corothion, Corthion, Corthione, Danthion, DDP, Diethyl parathion, DNDP, DPP, E 605, Ecatox, Ekatox, 
ENT 15108, Ethlon, Ethyl parathion, Etilon, Folidol, Fosfermo, Fosferno, Fosfex, Fosfive, Fosova, Fostern, Fostox, 
Gearphos, Genithion, Kolphos, Kypthion, Lethalaire G54, Lirothion, Murfos, NA 2783, NCI-C00226, Niran, 
Nitrostigmine, Orthophos, Pac, Panthion, Paradust, Paraflow, Paramar, Paraphos, Paraspray, Parathene, Parathionethyl, 
Parawet, Penphos, Pestox plus, Pethion, Phoskil, Phosphemol, Phosphenol, Phosphostigmine, RB, Rhodiasol, 
Rhodiatox, Rhodiatrox, Selephos, SNP, Soprathion, Stathion, Strathion, Sulphos, Super rodiatox, T-47, Thiofos, 
Tiophos, Tox 47, Vapophos, Vitrex 
Chemical Name: O,O-diethyl O-4-(nitrophenyl) phosphorothioate; diethyl 4-nitrophenyl phosphorothioate; phosphorothioc 
acid O,O-diethyl O-(4-nitrophenyl) ester 
Uses: insecticide and acaricide to control chewing and sucking insects and mites in fruits, vegetables, ornamentals and 
field crops. 
CAS Registry No: 56-38-2 
Molecular Formula: C10H14NO5PS 
Molecular Weight: 291.261 
Melting Point (°C): 
6.1 (Melnikov 1971; Freed et al. 1977; Montgomery 1993; Tomlin 1994; Milne 1995; Lide 2003) 
Boiling Point (°C): 
115 (at 0.05 mmHg, Melnikov 1971; Freed et al. 1977) 
375 (Montgomery 1993; Milne 1995) 
105 (at 80 Pa, Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.265 (25°C, Spencer 1982; Hartley & Kidd 1987; Milne 1995) 
1.26 (25°C, Merck Index 1989; Montgomery 1993) 
1.2694 (25°C, Worthing & Hance 1991; Tomlin 1994) 
Molar Volume (cm3/mol): 
251.9 (calculated-Le Bas method at normal boiling point) 
230.3 (calculated from density) 
Dissociation Constant, pKa: 
7.14 (Kortum et al. 1961; Wolfe 1980) 
Enthalpy of Vaporization, .HV (kJ/mol): 
89.92 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
19.87 (DSC method, Plato & Glasgow 1969) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
24 (Macy 1948; Gunther et al. 1968; Melnikov 1971; Spencer 1973) 
18–31 (rm temp., > 95% purity with max. particle size 0.07–5.0µ, shake flask-GC, Robeck et al. 1965) 
11.9 (20°C, NIEHS 1975; quoted, Freed et al. 1977) 
11.9 (20°C, O’Brien 1975) 
24 (Martin & Worthing 1977; Worthing & Walker 1987; Hartley & Kidd 1987) 
24 (Wauchope 1978; Khan 1980; Lyman 1982; Willis & McDowell 1982) 
12.4 (20°C, shake flask-GC, Bowman & Sans 1979, 1983b) 
6.54 (shake flask-GC, Felsot & Dahm 1979) 
O2N 
O 
P 
O 
S 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3937 
20 (Windholz 1983, Budavari 1989) 
14.0 (shake flask-GC or LSC, Gerstl & Mingelgrin 1984) 
11 (20°C, Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
12.9, 15.2 (20°C, 30°C, Montgomery 1993) 
12 (20°C selected, Siebers & Mattusch 1996) 
24 (20° C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
5.04 . 10–3*, 12.3 . 10–3 (20, 30°C, calculated by Spencer et al. 1979-gas saturation, temp range 20–45°C, Bright 
et al. 1950) 
log (P/mmHg) = 7.761 – 3395/(T/K); temp range 25.2–65.5°C (gas saturation, Bright et al. 1950) 
2.56 . 10–3 (20°C, effusion, measured range 25.2–65.5°C, Williams 1951) 
log (P/mmHg) = 10.30 – 4400/(T/K); temp range 25.2–65.5°C (effusion, Williams 1951) 
0.76 . 10–3 (20°C, Wolfdietrich 1965) 
5.07 . 10–3 (20°C, Spencer 1973) 
5.85 . 10–4 (20°C, evaporation rate-gravimetric method Guckel et al. 1973, 1974) 
0.76 . 10–3 (20°C, Guckel et al. 1973, 1974) 
1.29 . 10–3* (25°C, gas saturation method, measured range 25–45°C, Spencer et al. 1979) 
log (P/mmHg) = 12.66 – 5274/(T/K); temp range 24.9–45°C (gas saturation Spencer et al. 1979) 
6.41 . 10–4* (20°C, evaporation rate, measured range 20–60°C, Guckel et al.1982) 
1.29 . 10–3 (Spencer 1983) 
1.30 . 10–3* (25.3°C, gas saturation-GC, measured range 25.3–45°C, Kim et al. 1984; Kim 1985) 
log (P/mmHg) = 10.5655 – 4645.07/(T/K); temp range 25.3–45°C (gas saturation, Kim 1985) 
0.69 . 10–3 (20°C, extrapolated-Clausius-Clapeyron eq., Kim et al. 1984; Kim 1985) 
8.13 . 10–4 (20°C, GC-RT correlation, Kim et al. 1984; Kim 1985) 
5.0 . 10–3 (20°C, Hartley & Kidd 1987) 
1.80 . 10–3* (gas saturation-GC, measured range 25–125°C Rordorf 1989) 
log (PL/Pa) = 13.006 – 4697.2/(T/K); measured range 32.3–160°C (gas saturation-GC, Rordorf 1989) 
6.7 . 10–3 (PL, GC-RT correlation, Hinckley et al. 1990) 
8.90 . 10–4 (20°C, Worthing & Hance 1991; Tomlin 1994) 
0.0533 (20°C, Montgomery 1993) 
6.67 . 10–4 (20°C, selected, Hornsby et al. 1996) 
1.30 . 10–3 (20°C, selected, Siebers & Mattusch 1996) 
0.00316; 0.0066, 0.0013, 0.00059, 0.0025 (gradient GC method; quoted lit. values, Tsuzuki 2000) 
3.23 . 10–3; 1.12 . 10–3, 0.00145 (gradient GC method; estimation using modified Watson method: Sugden’s 
parachor, McGowan’s parachor, Tsuzuki 2000) 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 
0.120 (20°C, calculated-P/C, Mackay & Shiu 1981) 
0.074 (20°C, volatilization rate, Burkhard & Guth 1981) 
0.096 (24°C, calculated-P/C, Chiou et al. 1980) 
0.015 (calculated-P/C, Jury et al. 1984, 1987a; Jury & Ghodrati 1989) 
0.012 (20°C, calculated-P/C, Suntio et al. 1988) 
0.015 (calculated-P/C, Taylor & Glotfelty 1988) 
0.0087 (23°C, Fendinger & Glotfelty 1990) 
0.057 (calculated-P/C, Howard 1991) 
0.030 (calculated-bond contribution method, Meylan Howard 1991) 
0.0087 (calculated-P/C, Montgomery 1993) 
0.020 (selected, Siebers & Mattusch 1996) 
Octanol/Water Partition Coefficient, log KOW: 
3.81 (shake flask-GC, Chiou et al. 1977; Freed et al. 1977) 
3.40 (shake flask-LSC, Felsot & Dahm 1979) 
3.81 (shake flask-GC, Freed et al. 1979) 
© 2006 by Taylor & Francis Group, LLC

3938 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
3.80 (Hansch & Leo 1979) 
3.93 (shake flask-UV, Lord et al. 1980) 
3.93 (shake flask-GC, Briggs 1981) 
3.76 (shake flask-GC, Bowman & Sans 1983b) 
3.83 (Hansch & Leo 1985) 
2.15–3.93 (Montgomery 1993) 
3.83 (recommended, Sangster 1993) 
3.83 (Tomlin 1994) 
3.83 (recommended, Hansch et al. 1995) 
3.45 (RP-HPLC-RT correlation, Finizio et al. 1997) 
4.32 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
2.53 (fish in static water, Metcalf & Sanborn 1975) 
1.81 (tadpoles, Hall & Kolbe 1980) 
2.00, 2.54 (calculated-S, KOC, Kenaga 1980) 
3.14 (earthworms, Lord et al. 1980) 
4.00 (log BCFlipid, Briggs 1981) 
2.68 (calculated-KOW, Hansch & Leo 1985) 
2.48 (Am. oysters after 84 d,; Howard 1991) 
1.48, 2.34 (av., fathead minnow after 70 d, 820,138 d, Howard 1991) 
2.34 (av., fathead minnow after 82–138 d, Howard 1991) 
1.91, 2.27, 2.40, 1.43 (av., bluegill after 12 h, 29 h, 46 h, 504 d, Howard 1991) 
1.95, 2.39, 2.50 (average, brook trout muscle after 8 h, 6 d, 180 d, Howard 1991) 
1.90 (Isnard & Lambert 1988) 
2.53 (Pait et al. 1992) 
Sorption Partition Coefficient, log KOC: 
3.68 (soil, Swoboda & Thomas 1968; quoted, Kenaga 1980; Kenaga & Goring 1980) 
4.02 (average, 4 soils, Hamaker & Thompson 1972) 
3.30 (average, soils, Chiou et al. 1979) 
2.88 (soil, calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
2.90 (calculated-S, Mill et al. 1980) 
4.03 (average soils/sediments, Rao & Davidson 1980) 
3.02 (soil, sorption isotherm, converted from the reported log KOM of 2.78, Briggs 1981) 
3.25, 3.95, 3.42 (estimated-S, calculated-S and mp, calculated-KOW, Karickhoff 1981) 
2.26–3.96 (reported as log KOM, Mingelgrin & Gerstl 1983) 
2.83 (average, 8 Israeli soils, Gerstl & Mingelgrin 1984) 
3.19 (average, 4 Israeli sediments, Gerstl & Mingelgrin 1984) 
3.52, 2.58 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
3.04 (screening model calculations, Jury et al. 1987a, b; Jury & Ghodrati 1989) 
3.68, 3.33 (reported, estimated as log KOM, Magee 1991) 
3.15 (estimated-QSAR and SPARC, Kollig 1993) 
2.50–4.20 (Montgomery 1993) 
3.70 (20°C, selected, Hornsby et al. 1996) 
3.20 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.20; 3.57, 3.14 (soil, quoted exptl.; estimated-class-specific model, estimated-general model, Gramatica et al. 
2000) 
3.05, 3.09, 2.94 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, average, Delle Site 2001) 
3.17, 3.09 (average values for sediments with OC . 0.5%, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: exptl. t. = 14 d in nonstirred aqueous solutions and t. = 9.3 d in stirred aqueous solutions, and 
estimated t. ~ 13 d in nonstirred aqueous solutions and t. ~ 8.7 d in stirred aqueous solutions (Chiou et al. 
1980). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3939 
Photolysis: photoreacted 390 times more rapidly when sorbed by algae than in distilled water (Zepp & 
Schlotzhauer 1983) 
direct photolysis has a t. < 1 d to 10 d in surface waters, the presence of photosensitizers, free radicals, 
hydrogen peroxide, or algae which are found in eutrophic waters may accelerate degradation considerably 
(GEMS 1986; quoted, Howard 1991) 
photodegradation t. = 88 h (Hazardous Substances Data Bank 1989; quoted, Montgomery 1993) 
t. = 55 d without addition of humic substances; t. = 18 d and t. = 9 d with concn of humic acid 20 mg/L 
and 50 mg/L, respectively, under light intensity . . 290 nm (Mansour & Feicht 1994). 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH(calc) = 92 . 10–12 cm3 molecule–1 s–1 (Winer & Atkinson 1990). 
Hydrolysis: 
k(second-order alkaline) = 1.2 . 10–3 M–1 s–1 at 27°C (Ketelaar 1950; quoted, Wolfe 1980) 
t. = 130 d at pH 7.4 and 20°C (NIEHS 1975; quoted, Freed et al. 1977, 1979; Montgomery 1993) 
t. = 5240 h, 180 h, 30 h, 4.47 h at room temp, 50, 70, 90°C, respectively, in estuarine water with salinity 
of 25.7% at pH 7.8; and t. ranging from 15.7–40.5 h in seawater or distilled water containing NaCl, 
NaOH or salt at 30 g/L at pH ranging from 1–8.0 at 70°C (Weber 1976) 
t. = 24 wk at pH 6, t. = 19 wk at pH 7.4 and 20°C (Freed et al. 1979; quoted, Howard 1991; Montgomery 
1993) 
t. = 43 wk at pH 5, t. = 24 wk at pH 6, and t. = 15 wk at pH 8 and 20°C (Chapman & Cole 1982; quoted, 
Howard 1991; Montgomery 1993) 
k(alkaline) = 2.3 . 10–2 M–1 s–1, k(neutral) = 4.5 . 10–8 s–1 in aqueous buffer at 20°C (Harris 1982) 
k = 2.4 yr–1 at pH 7.0 and 25°C (Kollig 1993); t. = 3.5 wk at pH 6 (Montgomery 1993) 
t. = 272 d at pH 4, t. = 260 d at pH 7, and t. = 130 d at pH 9 at 22°C (Tomlin 1994). 
Biodegradation: generally occurs with a half-life of several weeks but in well acclimated water, complete 
degradation may occur in two weeks (Eichelberger & Lichtenberg 1971; Sharom et al. 1980; quoted, Howard 
1991) 
t. > 4250 d from biodegradation rate constant in aquatic systems from river water samples (Williams 1977; 
quoted, Scow 1982); 
k = 0.029 d–1 in soil by die-away tests from soil incubation studies (Rao & Davidson 1980; quoted, Scow 
1982) 
t. = 18 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Rao & Davidson 1980; quoted, 
Jury et al. 1983, 1984, 1987a, b; Jury & Ghodrati 1989) 
k < 0.00016 d–1 of aerobic degradation observed in incubations of river water samples (Lyman et al. 1990; 
quoted, Hemond & Fechner 1994). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: persistence of up to 8 wk in river water (Eichelberger & Lichtenberg 1971) 
t. = 3670 h at pH 5 and t. = 523 h at pH 9 in water at 20°C (Gomaa & Faust 1972) 
estimated t. > 4250 d from biodegradation rate constant in aquatic systems from river water samples 
(Williams 1977; quoted, Scow 1982); 
t. = 5240 h, 180 h, 30 h, 4.47 h at room temp, 50, 70, 90°C, respectively, in estuarine water with salinity 
of 25.7% at pH 7.8; and t. ranging from 15.7–40.5 h in seawater or distilled water containing NaCl, 
NaOH or salt at 30 g/L at pH ranging from 1–8.0 at 70°C (Weber 1976) 
t. = 7.84 d in the Indian River water at 24 ppt salinity; pH 8.16 (Wang & Hoffman 1991); 
photolysis t. = 55 d without addition of humic substances; t. = 18 d and 9 d with concn of humic acid 20 
mg/L and 50 mg/L, respectively, under light intensity .- 290 nm (Mansour & Feicht 1994); 
t. = 120 d at 6°C, t. = 84 d at 22°C in darkness for Milli-Q water at pH 6.1; t. = 120 d at 6°C, t. = 86 d 
at 22°C in darkness, 8 d under sunlight conditions for river water at pH 7.3; t. = 122 d at 6°C, t. = 33 d 
at 22°C in darkness for filtered river water at pH 7.3; t. = 542 d at 6°C, t. = 44 d at 22°C in darkness, 
t. = 18 d under sunlight conditions for seawater at pH 8.1 (Lartiges & Garrigues 1995). 
© 2006 by Taylor & Francis Group, LLC

3940 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Ground water: 
Sediment: 
Soil: persistence of one week (Edwards 1973; quoted, Morrill et al. 1982); 
persistence of less than one month (Wauchope 1978); 
t. > 24 wk in sterile sandy loam and t. < 1.0 wk in nonsterile sandy loam; t. > 24 wk in sterile organic soil 
and t. = 1.5 wk in nonsterile organic soil (Miles et al. 1979); 
estimated first-order t. = 23.9 d from biodegradation rate constant k = 0.029 d–1 in soil by die-away tests 
from soil incubation studies (Rao & Davidson 1980; quoted, Scow 1982); 
moderately persistent in soil with t. = 20–100 d (Willis & McDowell 1982); 
reported t. = 18 d calculated using screening model calculations (Jury et al. 1987a, b; Jury & Ghodrati 
1989; quoted, Montgomery 1993); 
av. degradation rate constant k = 0.030 d–1 in silty clay with t. = 23 d and av. degradation rate constant k 
= 0.0315 d–1 in sandy clay with t. = 22 d (Sattar 1990); 
t. = 14 d (selected, Halfon et al. 1996); 
field t. = 14 d (20–25°C, selected, Hornsby et al. 1996); 
soil t. = 6 d (Pait et al. 1992) 
Biota: biochemical t. = 15 d from screening model calculations (Jury et al. 1987a, b; Jury & Ghodrati 1989). 
TABLE 18.1.1.64.1 
Reported vapor pressures of parathion at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
1. 
Bright et al. 1950 Williams 1951 Spencer et al. 1979 Guckel et al. 1982 
gas saturation dynamic/microdistillation gas saturation-GC evaporation rate 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
calc- eq. 1* observed 
20 5.04 . 10–3 20 2.61 . 10–3 25 1.29 . 10–3 20 6.41 . 10–4 
25 7.96 . 10–3 25.4 4.68 . 10–3 35 4.32 . 10–3 40 7.29 . 10–3 
30 1.23 . 10–2 54.5 0.088 45 0.01680 60 6.10 . 10–2 
35 1.86 . 10–2 70.7 0.373 
40 2.79 . 10–2 100 2.866 calculated from eq. 1 
45 0.04135 140 58.66 20 6.27 . 10–4 
160 142.7 25 1.26 . 10–3 
eq. 1 P/mmHg #extrapolated 30 2.45 . 10–3 
A 7.161 35 4.71 . 10–3 
B 3395 eq. 1 P/mmHg 40 8.83 . 10–3 
A 10.30 45 0.0162 
*calc by Spencer et al. 1979 B 4400 
eq. 1 P/mmHg 
A 12.66 
B 5274 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3941 
TABLE 18.1.1.64.1 (Continued) 
2. 
Kim et al. 1984, Kim 1985 Rordorf 1989 
gas saturation-GC gas saturation-GC 
t/°C P/Pa t/°C P/Pa 
25.3 0.00131 25 0.0018 
34.9 0.00409 50 0.030 
45.0 0.0120 75 0.330 
20.0 0.0693 100 2.60 
25.0 0.00131 125 16.0 
eq. 1 P/mmHg eq. 1 P/Pa 
A 10.5654 A 13.006 
B 4645.07 B 4697.2 
FIGURE 18.1.1.64.1 Logarithm of vapor pressure versus reciprocal temperature for parathion. 
Parathion: vapor pressure vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Bright et al. 1950 
Williams 1951 
Spencer et al. 1979 
Guckel et al. 1982 
Kim et al. 1984, Kim 1985 
Rordorf 1989 
m.p. = 6.1 °C 
© 2006 by Taylor & Francis Group, LLC

3942 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.65 Parathion-methyl 
Common Name: Parathion-methyl 
Synonym: Bladan M, Folidol-M, Metacide, Nitrox 80 
Chemical Name: O,O-dimethyl O-4-(nitrophenyl) phosphorothioate; dimethyl 4-nitrophenyl phosphorothioate 
Uses: insecticide to control chewing and sucking insects, and mites in a wide range of crops, including fruits, vines, 
vegetables, ornamentals, cotton, and also used as acaricide. 
CAS Registry No: 298-00-0 
Molecular Formula: C8H10NO5PS 
Molecular Weight: 263.208 
Melting Point (°C): 
38 (Lide 2003) 
Boiling Point (°C): 
109 (at 0.05 mmHg, Freed et al. 1977) 
119 (at 0.1 mmHg, Hartley & Kidd 1987) 
154 (at 1.0 mmHg, Hartley & Kidd 1987; Tomlin 1994) 
143 (Howard 1991) 
Density (g/cm3 at 20°C): 
1.358 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
Molar Volume (cm3/mol): 
207.5 (calculated-Le Bas method at normal boiling point) 
194.0 (calculated from density) 
Dissociation Constant, pKa: 
7.15 (Kortum et al. 1961; Wolfe 1980) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
24.06 (Plato & Glasgow 1969) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.746 (mp at 38°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
55 (Melnikov 1971) 
60 (Leonard et al. 1976; Khan 1980) 
57 (Martin & Worthing 1977) 
50 (Smith et al. 1978; Wauchope 1978) 
37.7 (19.5°C, shake flask-GC, Bowman & Sans 1979, 1983b) 
55 (20°C, Freed et al. 1979) 
55–60 (Worthing 1979, 1983; Hartley & Kidd 1987) 
60 (Khan 1980) 
53 (Weber et al. 1980) 
55 (20°C, Worthing & Hance 1991; Tomlin 1994) 
60 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
0.00133 (20°C, Wolfdietrich 1965; von Rumker & Horay 1972) 
0.00129 (20°C, Guckel et al. 1973) 
0.0023 (Grover et al. 1976) 
0.00229* (24.9°C, gas saturation-GC, measured range 24.9–45.1°C, Spencer et al. 1979) 
log (P/mmHg) = 14.37 – 3700/(T/K); temp range 24.9–34.9°C (gas saturation, Spencer et al. 1979) 
log (P/mmHg) = 10.61 – 4543/(T/K); above mp 35.2–35.4°C (gas saturation, Spencer et al. 1979) 
O2N 
O 
P 
O 
S 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3943 
0.0013 (Worthing 1979) 
> 0.0133 (20–25°C, Weber et al. 1980) 
0.0020* (gas saturation-GC, measured range 25.4–45.1°C, Kim et al. 1984) 
log (P/mmHg) = 9.0935 – 4063.65/(T/K); temp range 25.4–45°C (gas saturation method, Kim et al. 1984) 
0.00084 (20°C, extrapolated-Clausius-Clapeyron eq., Kim et al. 1984) 
log (P/mmHg) = 17.0502 – 6520.21/(T/K); temp range 25.4–34.3°C (gas saturation, Kim 1985) 
0.0013 (20°C, Hartley & Kidd 1987) 
0.0015 (22°C, selected, Seiber et al. 1989) 
0.023 (GC-RT correlation, supercooled liquid PL, Hinckley et al. 1990) 
0.0024 (selected, Taylor & Spencer 1990) 
0.0002 (20°C, Worthing & Hance 1991; Tomlin 1994) 
0.002 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.00041 (Tomlin 1994) 
0.00955 (gradient GC method; Tsuzuki 2000) 
9.77 . 10–3; 4.90 . 10–3, 0.00389 (gradient GC method; estimation using modified Watson method: Sugden’s 
parachor, McGowan’s parachor, Tsuzuki 2000) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.0101 (Metcalf et al. 1980) 
0.0061 (estimated, Metcalf et al. 1980) 
0.0109 (calculated-P/C, Jury et al. 1987a; Jury & Ghodrati 1989) 
0.021 (20°C, calculated-P/C, Suntio et al. 1988) 
0.0101 (22°C, selected, Seiber et al. 1989) 
0.0062 (wetted wall column method-GC, Fendinger & Glotfelty 1990) 
0.0170 (calculated-bond contribution method, Meylan & Howard 1991) 
0.0062 (23°C, quoted, Schomburg et al. 1991) 
0.00383 (20°C, wetted wall column-GC, Rice et al. 1997b) 
Octanol/Water Partition Coefficient, log KOW: 
2.04 (shake flask-GC, Jaglan & Gunther 1970) 
2.04 (shake flask, Leo et al. 1971) 
2.99 (shake flask, Mundy et al.1978) 
2.68 (shake flask-HPLC, Moody et al.1987) 
3.32 (Hansch & Leo 1979) 
3.32 (Rao & Davidson 1980) 
2.94 (shake flask-GC, Bowman & Sans 1983b) 
1.80 (shake flask-GC, Schimmel et al. 1983) 
2.86 (Hansch & Leo 1985) 
2.86 (recommended, Sangster 1993) 
2.71 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
3.00 (Tomlin 1994) 
2.86 (recommended, Hansch et al. 1995) 
2.71 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
0.778, 0.0 (carp/lipids, carp/muscle, Chigareva 1973) 
1.98 (fish in static water, Metcalf 1974) 
2.69 (bacteria, Smith et al. 1978) 
1.80, 2.89 (calculated-S; calculated-KOC, Kenaga 1980) 
3.039 ± 0.005 (guppy, calculated on an extractable lipid wt. basis, De Bruijn & Hermens 1991) 
2.98 (guppy, calculated on an extractable lipid wt. basis, De Bruijn & Hermens 1991) 
3.04 (Poecilia reticulata, De Bruijn & Hermens 1991) 
1.85 (Pait et al. 1992) 
1.92 (paddy field fish, Tejada 1995) 
© 2006 by Taylor & Francis Group, LLC

3944 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Sorption Partition Coefficient, log KOC: 
3.99 (soil, Hamaker & Thompson 1972; Kenaga 1980; Kenaga & Goring 1980) 
1.699 (av. all sediments, Smith et al. 1978) 
2.63 (av. of 3 soils, Rao & Davidson 1979) 
2.67 (soil, calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
3.71 (Rao & Davidson 1980) 
3.02, 3.47, 2.93 (estimated-S, S and mp, KOW, Karickhoff 1981) 
3.71 (screening model calculations, Jury et al. 1987a, b; Jury & Ghodrati 1989) 
3.84, 1.97 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
3.71–3.99 (soil, Carsel 1989) 
3.00 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.71 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.68 (sediment, estimated, Paraiba et al. 1999) 
3.27, 2.84 (soil, estimated-class-specific model, estimated-general model, Gramatica et al. 2000) 
2.82, 2.74 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: volatilization rate k < 0.01 kg ha–1 d–1 in a flooded rice field (Seiber et al. 1986; Seiber & 
McChesney 1987; quoted, Seiber et al. 1989) 
Photolysis: lab. rate constant k = 2.7 . 10–7 s–1 in early January with photolysis t. = 240 h, 850 h, 850 h and 
170 h in river, pond, eutrophic lake and oligotrophic lake predicted by the one-compartment model (Smith 
et al. 1978; quoted, Howard et al. 1991); 
t. = 8 d in summer and t. = 38 d in winter for direct sunlight photolysis in natural water (Smith et al. 1978; 
quoted, Howard 1991; Howard et al. 1991); 
photolytic t. = 200 h in aquatics (Haque et al. 1980); 
photoreacted 390 times more rapidly when sorbed by algae than in distilled water (Zepp & Schlotzhauer 
1983). 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
k = 3.0 M–1 s–1 (Smith et al. 1978) 
photooxidation half-life of 3.6 d for the vapor-phase reaction with hydroxyl radical in the atmosphere 
(Atkinson 1985; quoted, Howard 1991); 
photooxidation half-life of 1.0–10.5 h based on estimated rate constant for the vapor-phase reaction with 
OH radical in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: 
k = .4 . 10–2 mol min–1 with t. = 125 h for pH <11.0 at 15°C (Ketelaar & Gersmann 1958; quoted, Freed 1976) 
k = 1.1 . 10–7 s–1 with a half-life of 8.4 h at pH 6 buffer at 70°C in 20% ethanol aqueous solution (Ruzicka 
et al. 1967; quoted, Freed 1976; Smith et al. 1978) 
t. = 1.7 wk at pH about 6 and room temp. (Cowart et al. 1971; quoted, Smith et al. 1978) 
k = 1.1 . 10–7 s–1 with t. = 72 d at pH 7 and 25°C (Mabey & Mill 1978; quoted, Howard et al. 1991) 
k = 9 . 10–7 s–1 (Smith et al. 1978) 
k(alkaline) = 5.3 . 10–3 M–1 s–1 at 27°C and pH 10 (Smith et al. 1978; quoted, Wolfe 1980) 
t. = 68 d at pH 5, t. = 40 d at pH 7, t. = 33 d at pH 9 at 25°C (Tomlin 1994). 
Biodegradation: 
k = 1.7 . 10–7 -g cell–1 h–1 (Smith et al. 1978); 
t.(aq. aerobic) = 360–1680 h, based on an unacclimated aerobic river die-away test data (Bourquin et al. 
1979; Spain et al. 1980; quoted, Howard et al. 1991); 
t.(aq. anaerobic) = 24–168 h, based on unacclimated anaerobic soil and sediment grab sample data (Adhya 
et al. 1981; Wolfe et al. 1986; quoted, Howard et al. 1991); 
t. = 15 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Rao & Davidson 1980; quoted, 
Jury et al. 1983, 1987a, b; Jury & Ghodrati 1989); 
k = (0.003 ± 0.0003) h–1 with half-life of 220.9 h in surface aerobic soils at Williamsburg, 
k = (0.0017 ± 0.00009) h–1 with half-life of 410 h in subsurface aerobic soils at Sault Ste. Marie (Ward 1985) 
k = 0.30 d–1 in river sediment, k = 0.02 d–1 in river water (Cripe et al. 1987; quoted, Battersby 1990) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3945 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = (2.59 ± 0.88) . 10–3 mL g–1 d–1 (guppy, De Bruijn & Hermens 1991) 
k2 = (2.38 ± 0.14) d–1 (guppy, De Bruijn & Hermens 1991) 
k2 = 1.71 d–1 (guppy, calculated-KOW, De Bruijn & Hermens 1991) 
k2 = (0.12 ± 0.02) . 10–3 (NADPH) min–1 mg protein–1 (rainbow trout, De Bruijn et al. 1993) 
k2 = (0.11 ± 0.03) . 10–3 (GSH) min–1 mg protein–1 (rainbow trout, De Bruijn et al. 1993) 
Half-Lives in the Environment: 
Air: estimated t. = 3.6 d for the vapor-phase reaction with hydroxyl radical in air (Atkinson 1985; quoted, 
Howard 1991); 
photooxidation t. = 1.0–10.5 h in air based on estimated rate constant for the vapor-phase reaction with 
hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
reaction rate k = 4.77 . 10–4 min–1 in air (Paraiba et al. 1999). 
Surface water: persistence up to 4.0 wk in river water (Eichelberger & Lichtenberg 1971); 
overall t. = 0.6 h in river, t. = 15 h in eutrophic pond, t. = 28.3 h in eutrophic lake and t. = 157.5 h 
oligotrophic lake (Smith et al. 1978); 
t. = 8 d in summer and t. = 38 d in winter for direct sunlight photolysis in natural water (Howard 1991; 
Howard et al. 1991); 
t. > 28 d in 100 mL pesticide-seawater solution under indoor conditions, t. = 6.3 d under outdoor light 
conditions and t. = 18 d under outdoor dark conditions (Schimmel et al. 1983); 
first-order biodegradation rate constant k = 0.30 d–1 in river sediment and k = 0.02 d–1 in river water (Cripe 
et al. 1987; quoted, Battersby 1990); 
t. = 44 h of dissipation from rice field water (Seiber & McChesney 1987; quoted, Seiber et al. 1989) 
t. = 237 d at 6°C, 46 d at 22°C in darkness for Milli-Q water at pH 6.1; t. = 95 d at 0°C, 23 d at 22°C in 
darkness, t. = 11 d under sunlight conditions for river water at pH 7.3; t. = 173 d at 6°C, t. = 18 d at 
22°C in darkness for filtered river water at pH 7.3; t. = 233 d at 6°C, t. = 30 d at 22°C in darkness, 
v = 34 d under sunlight conditions for seawater at pH 8.1 (Lartiges & Garrigues 1995); 
reaction rate k = 3.80 . 10–4 min–1 in water (Paraiba et al. 1999). 
Ground water: t. = 24–1680 h based on estimated aqueous aerobic and anaerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: t. < 1.2 d in 10 g sediment/100 mL pesticide-seawater solution under untreated conditions and t. > 28 d 
under sterile conditions (Schimmel et al. 1983); 
disappearance rate constants: k = (3.5 ± 0.6) . 10–3 min–1 in Beaver Dam sediments samples at pH 6.7, 
k = (2.9 ± 1.2) . 10–3 min–1 in Memorial Park sediments samples at pH 6.5 and k = (2.8 ± 2.4) . 10–3 
min–1 in Hickory Hills sediments samples at pH 6.9 near Athens, Georgia (Wolfe et al. 1986); 
reaction rate k = 2.85 . 10–5 min–1 in sediment (Paraiba et al. 1999). 
Soil: t. = 2,408,640 h, based on unacclimated aerobic soil grab sample data (Davidson et al. 1980; Butler et al. 
1981; quoted, Howard et al. 1991); 
measured dissipation rate k = 0.010–0.034 d–1 (Baker & Applegate 1970; quoted, Nash 1988); 
estimated dissipation rate k = 0.029, 0.042 d–1 (Nash 1988); 
persistence of less than one month (Wauchope 1978); 
non-persistent in soils with t. < 20 d (Willis & McDowell 1982); 
rate constant k = 0.16 d–1 with t. = 4 d under laboratory conditions and rate constant k = 0.046 d–1 with 
t. = 15 d under field conditions (Rao & Davidson 1980); 
t. = 15 d in screening model calculations (Jury et al. 1987a, b; Jury & Ghodrati 1989); selected field 
t. = 5.0 d (Wauchope et al. 1992; quoted, Halfon et al. 1996; Hornsby et al. 1996); 
soil t. = 44 d (Pait et al. 1992). 
Biota: biochemical t. = 15 d from screening model calculations (Jury et al. 1987a, b; Jury & Ghodrati 1989). 
© 2006 by Taylor & Francis Group, LLC

3946 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 18.1.1.65.1 
Reported vapor pressures of parathion-methyl at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Spencer et al. 1979 Kim et al. 1984 
gas saturation-GC gas saturation-GC 
t/°C P/Pa t/°C P/Pa 
24.9 0.00229 25.4 0.00205 
30.0 0.00529 30.1 0.00489 
34.9 0.00960 34.3 0.00879 
38.6 0.0148 38.5 0.0150 
39.7 0.0164 41.7 0.0202 
41.7 0.0207 45.1 0.0278 
45.1 0.0291 20 0.00084# 
25 0.0020# 
mp/°C 34.6 #extrapolated 
eq. 1 P/mmHg eq. 1 P/mmHg 
A 14.37 A 9.9035 
B 5700 B 4063.65 
.HV = 109.2 kJ/mol 
above the melting point 
eq. 1 P/mmHg 
A 10.61 
B 4543 
.HV = 87.03 kJ/mol 
FIGURE 18.1.1.65.1 Logarithm of vapor pressure versus reciprocal temperature for parathion-methyl. 
Parathion-methyl: vapor pressure vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Spencer et al. 1979 
Kim et al. 1984 
m.p. = 38 °C 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3947 
18.1.1.66 Pentachlorophenol 
(See also chapter 14. Phenolic Compounds) 
Common Name: Pentachlorophenol 
Synonym: chlorophen, PCP, penchlorol 
Chemical Name: pentachlorophenol 
Uses: insecticide/fungicide/herbicide; control of termites; as wood preservatives to protect against fungal rots and wood 
boring insects; as a pre-harvest defoliant in cotton; and also as a general pre-emergence herbicide. 
CAS Registry No: 87-86-5 
Molecular Formula: C6Cl5OH 
Molecular Weight: 266.336 
Melting Point (°C): 
191 (Firestone 1977; Weast 1982–83; Hartley & Kidd 1987) 
187 (Schmidt-Bleek et al. 1982) 
174 (Lide 2003) 
Boiling Point (°C): 
310 (Verschueren 1977, 1983; Callahan et al. 1979) 
309–310 (Hartley & Kidd 1987) 
310 (dec, Lide 2003) 
Density (20°C, g/cm3): 
1.987 (Firestone 1977) 
1.978 (Schmidt-Bleek et al. 1982; Verschueren 1983) 
1.980 (22°C, Hartley & Kidd 1987) 
Dissociation Constant, pKa: 
4.80 (Blackman et al. 1955; Sillen & Martell 1971; McLeese et al. 1979; Kaiser et al. 1984) 
5.0 (Farquharson et al. 1958; Renner 1990) 
4.92 (Doedens 1967; Jones 1981; Bintein & Devillers 1994) 
4.74 (Drahonovsky & Vacek 1971; Callahan et al. 1979; Ugland et al. 1981; Konemann 1981; Konemann 
& Musch 1981; Dean 1985; Westall et al. 1985; Lagas 1988; Renner 1990; Lee et al. 1990,91) 
4.71 (Cessna & Grover 1978; Saarikoski & Viluksela 1982; Saarikoski et al. 1986; Tratnyek & Hoigne 
1991) 
5.30 (Gebefugi et al. 1979; Xie 1983; Schellenberg et al. 1984) 
4.70 (Crosby 1981; Hoigne & Bader 1983) 
5.20 (Renberg 1981; Renner 1990; Larsson et al. 1993) 
4.90 (Xie & Dryssen 1984; Xie et al. 1986; Shigeoka et al. 1988; Soderstrom et al. 1994) 
4.75 (Leuenberger et al. 1985) 
4.60 (Nendza & Seydel 1988) 
Molar Volume (cm3/mol): 
207.9 (calculated-Le Bas method at normal boiling point) 
134.3 (calculated-density) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
17.154 (Plato & Glasgow 1969) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming.Sfus = 56 J/mol K) F: 0.0345 (mp at 174°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
15.4 (gravimetric, Carswell & Nason 1938) 
18 (27°C, gravimetric, Carswell & Nason 1938) 
9.59 (shake flask-UV, at pH 5.1, Blackman et al. 1955) 
OH 
Cl 
Cl 
Cl 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

3948 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
14 (20°C, shake flask-UV, at pH 3.0, Bevenue & Beckman 1967) 
10 (shake flask-gravimetric, at pH 5.0, Toyota & Kuwahara 1967) 
14 (gravimetric at pH 5.0, Toyota & Kuwahara 1967) 
20–25 (selected, Gunther et al. 1968;) 
20 (30°C, Firestone 1977) 
14 (20°C, Verschueren 1977, 1983) 
20 (20°C, Korte et al. 1978) 
14 (Kenaga & Goring 1980; Geyer et al. 1982; McKim et al. 1985) 
14, 20–25 (selected lit. values, Geyer et al. 1980, Geyer et al. 1984) 
15 (23°C, Klopffer et al. 1982) 
20 (20°C, Schmidt-Bleek et al. 1982) 
5–10 (at pH 5–6 in contaminated water, Goerlitz et al. 1985) 
14 (recommended at pH 4.5–5.5, IUPAC 1985) 
80 (20°C, Hartley & Kidd 1987) 
41 (predicted-MCI ., Nirmalakhandan & Speece 1988) 
8 ± 2 (shake flask-UV at pH 2.5, Valsaraj et al. 1991) 
32 ± 3 (shake flask-UV at pH 5.0, Valsaraj et al. 1991) 
19 (quoted, Muller & Klein 1992) 
18.4 (shake flask-HPLC/UV, at pH 4.8, Ma et al. 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0227 (20°C, static method, Carswell & Nason 1938) 
0.0147 (20°C, Bevenue & Beckman 1967) 
0.231 (supercooled liq. extrapolated-Antoine eq., Weast 1976–77) 
0.10 (Weast 1972–73) 
0.0211 (Chiou & Freed 1977) 
0.0213 (Firestone 1977) 
0.0147–0.0227 (20°C, Goll 1954; Bevenue & Beckman 1967; Neumuller 1974) 
0.0956 (supercooled liquid, Hamilton 1980; quoted, Bidleman & Renberg 1985) 
0.00415 (23°C, OECD, Klopffer et al. 1982) 
0.0093 (20°C, Schmidt-Bleek et al. 1982) 
0.0147 (20°C, Verschueren 1983; Howard 1991) 
0.1153 (extrapolated-Antoine eq., Boublik et al. 1984) 
0.50 (20°C, quoted, Crossland & Wolff 1985) 
0.115 (capillary GC-RT correlation, Bidleman & Renberg 1985) 
0.127 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
Henry’s Law Constant (Pa m3/mol): 
0.00248 (calculated-P/C, Hellmann 1987) 
0.0127 (estimated-bond contribution, Hellmann 1987) 
0.277 (calculated-P/C, Howard 1991) 
0.079 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
5.01 (quoted unpublished result, Leo et al. 1971) 
5.01 (Firestone 1977) 
5.01, 5.12, 5.86, 3.81 (Hansch & Leo 1979) 
5.01 (calculated, Veith et al. 1979b; McLeese et al. 1979) 
2.97 (Veith et al. 1979) 
3.69 (quoted from Kotzias 1980 unpublished result, Geyer et al. 1982) 
4.16 (Rao & Davidson 1980) 
5.10 (calculated-HPLC-k. correlation, Butte et al. 1981) 
5.19 (calculated-f const., Konemann 1981; Konemann & Musch 1981) 
4.00, 0.0 (at pH 4, 8, Renberg 1981) 
5.08 (RP-HPLC-k. correlation, Miyake & Terada 1982) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3949 
5.15 (shake flask-GC, Saarikoski & Viluksela 1982; Saarikoski et al. 1986) 
5.05 (Kaiser & Valdmanis 1982) 
4.84 (shake flask-GC, apparent value at pH 1.2, Kaiser & Valdmanis 1982) 
1.30 (shake flask-GC, apparent value at pH 10.5, Kaiser & Valdmanis 1982) 
3.69 (Geyer et al. 1982, Schmidt-Bleek et al. 1982) 
3.29 (shake flask average, OECD/EEC Lab. comparison tests, Harnisch et al. 1983) 
5.01 (Verschueren 1983) 
5.85 (calculated as per Leo et al. 1971, Xie 1983) 
5.11 ± 0.07 (exptl.-ALPM, Garst & Wilson 1984) 
3.69, 3.81 (shake flask, OECD 1981 guidelines, Geyer et al. 1984) 
5.24 (shake flask-HPLC/UV, Schellenberg et al. 1984) 
5.04, 5.08, 5.85, 5.22 (shake flask-GC, HPLC-k., calculated-. const., calculated-f const., Xie et al. 1984; 
Bintein & Devillers 1994) 
5.05 (calculated, Xie & Dryssen 1984; quoted, Lagas 1988) 
5.24 (OECD 1981 guidelines, Leuenberger et al. 1985) 
4.71 (RP-HPLC-RT correlation, Chin et al. 1986) 
2.50 (at pH 4.7, Geyer et al. 1987) 
4.47 (CPC-RV correlation, Terada et al. 1987) 
4.07 (OECD 81 method, Kerler & Schonherr 1988) 
5.04 (HPLC-RT correlation, Shigeoka et al. 1988; quoted, Saito et al. 1993) 
5.00 (batch equilibration-UV, Beltrame et al. 1988) 
5.06 (calculated-CLOGP, Muller & Klein 1992) 
5.01, 5.38 (quoted, calculated-original UNIFAC, Chen et al. 1993) 
5.24 (EPA CLOGP Data Base, Hulzebos et al. 1993) 
5.18 (recommended, LOGKOW databank, Sangster 1993) 
5.06, 5.12 (COMPUTOX databank, Kaiser 1993) 
5.12 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
3.75 (fish, Statham et al. 1976) 
3.04 (fish, Korte et al. 1978) 
2.89 (fathead minnow, 32-d exposure, Veith et al. 1979) 
2.89 (fathead minnow, calculated value, Veith et al. 1979b) 
2.64 (algae, calculated, Geyer et al. 1981) 
2.00 (trout, Hattula et al. 1981) 
3.04, 3.10, 3.02 (activated sludge, algae, golden orfe, Freitag et al. 1982) 
2.54 (mussel Mytilus edulis, quoted average, Geyer et al. 1982) 
3.69 (calculated-KOW, Mackay 1982) 
1.60 (killifish, Trujillo et al. 1982) 
1.86, 1.72, 1.60 (low-PCP flowing, high-PCP flowing, high-PCP static soft water; Brockway et al. 1984) 
1.66, 1.62, 1.26 (low-PCP flowing, high-PCP flowing, high-PCP static hard water; Brockway et al. 1984) 
3.10 (alga chlorella fusca in culture flasks, Geyer et al. 1984) 
3.10, 2.72 (algae: exptl, calculated-KOW, Geyer et al. 1984) 
3.10, 3.02, 3.04 (algae, fish, sludge, Klein et al. 1984) 
3.00 (quoted, LeBlanc 1984) 
3.04, 3.10, 2.42 (activated sludge, algae, golden ide, Freitag et al. 1985) 
0.57 (human fat, Geyer et al. 1987) 
2.99 (zebrafish, Butte et al. 1987) 
0.46 (15°C, initial concn. 1.0 mg/L uptake by Allolobophora caliginosa at 24 hours, Haque & Ebing 1988) 
0.38 (15°C, initial concn. 10.0 mg/L uptake by Allolobophora caliginosa at 24 h, Haque & Ebing 1988) 
0.80 (whole Allolobophora caliginosa/soil, uptake from soil after 131 d-exposure in outdoor lysimeters, 
Haque & Ebing 1988) 
1.35 (whole Lumbricus terrestris/soil, uptake from soil after 131 d-exposure in outdoor lysimeters, Haque 
& Ebing 1988) 
2.80, 2.63 (earthworm E. fetida andrei: in Kooyenburg soil, Holten soil, van Gestel & Ma 1988) 
© 2006 by Taylor & Francis Group, LLC

3950 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
–2.66 (daily intake/cow adipose tissue, Travis & Arms 1988) 
4.10 (rainbow trout, field bioaccumulation, Thomann 1989) 
4.38, 4.50, 4.53, 4.90 (earthworm system, Connell & Markwell 1990) 
4.00, 5.30, 3.40, 8.00 (earthworm system, derived data, Connell & Markwell 1990) 
2.97 (P. hoyi, Landrum & Dupuis 1990) 
2.11 (M. relicta, Landrum & Dupuis 1990) 
2.16–2.53 (soft tissue of freshwater mussel, Makela & Oikari 1990) 
2.33; 3.21 (flagfish: whole fish; fish lipid, Smith et al. 1990) 
2.78, 2.11, 1.72 (goldfish at pH 7, pH 8, pH 9, Stehly & Hayton 1990) 
2.89, 1.11 (fathead minnow, bluegill; Saito et al. 1992) 
3.0, 3.4, 3.9, 4.0 (perch bile to water, Soderstrom et al. 1994) 
Sorption Partition Coefficient, log KOC: 
2.95 (soil, calculated-KOW, Kenaga & Goring 1980) 
3.11–5.65 (soil, calculated-KOW, model of Karickhoff et al. 1979, Sabljic 1987a, b) 
3.17–4.54 (soil, calculated-KOW, model of Kenaga & Goring 1980, Sabljic 1987a, b) 
3.37–3.69 (soil, calculated-KOW, model of Briggs 1981, Sabljic 1987a, b) 
3.00–5.54 (soil, calculated-KOW, model of Means et al. 1982, Sabljic 1987a, b) 
2.21–4.49 (soil, calculated-KOW, model of Chiou et al. 1983, Sabljic 1987a, b) 
4.52 (sediment, Schellenberg et al. 1984) 
2.95, 2.41 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
3.73 (quoted average of Kenaga & Goring 1980 and Schellenberg et al. 1984 values, Sabljic 1987a, b) 
3.46 (soil, calculated-MCI ., Sabljic 1987a, b) 
2.95 (soil, calculated-MCI ., Bahnick & Doucette 1988) 
4.04 (estimated, HPLC-k. correlation, Hodson & Williams 1988) 
4.40 (calculated, Lagas 1988) 
3.10, 3.26 (totally dissociated as phenolate-calculated, Lagas 1988) 
5.27, 5.71 (Bluepoint soil at pH 7.8, pH 7.4, Bellin et al. 1990) 
5.58, 5.52 (Glendale soil at pH 7.3, pH 4.3, Bellin et al. 1990) 
3.49, 3.57 (Norfolk soil at pH 4.3, pH 4.4, Bellin et al. 1990) 
4.32–4.65 (Norfolk + lime soil at pH 6.9, Bellin et al. 1990) 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Volatilization/evaporation: t. = 84 h from the rate of loss experiment on watch glass for an exposure period of 
192 h (Dobbs & Grant 1980); 
k = 0.028 d–1 for nondissociated PCP, assuming diffusion coefficient in air to be 7 . 10–6 m2/s and in water 
7 . 10–10 m2/s with wind speed 0.1 m above the pond is 2 m/s and the average temperature is 15°C for 
water depth of 1 m (Crossland & Wolff 1985); 
calculated rate constant k = 5 . 10–4 d–1 to 1 . 10–7 d–1 for total PCP (Crossland & Wolff 1985). 
Photolysis: calculated photolysis t. = 4.75 h from observed rate k = 3.4 . 10–4 s–1 for a depth of 300 cm at pH 
7 with light intensity of 0.04 watts/cm2 between 290 and 330 nm on a midsummer day at the latitude of 
Cleveland, Ohio (Hiatt et al. 1960; quoted, Callahan et al. 1979); 
photolysis t. = 1.5 d was estimated from photolytic destruction by sunlight in an aqueous solution at Davis, 
California (Wong & Crosby 1978; quoted, Callahan et al. 1979); 
exposure of aqueous PCP solutions to either sunlight or laboratory ultraviolet light resulted in rapid 
degradation at pH 7.3 and slower degradation at pH 3.3 (Wong & Crosby 1981); 
photolytic t. = 10–15 d (Brockway et al. 1984); 
k = 0.23 to 0.46 d–1 for direct photo-transformation, is the main loss process for PCP from ponds, with 
t. = 1.5 to 3.0 d (Crossland & Wolff 1985); 
photo-transformation rate constant k = 0.6 h–1 with t. = 1 h for distilled water in summer (mean temperature 
25°C) and k = 0.37 h–1 with t. = 2 h in winter (mean temperature 11°C); k = 0.37 h–1 with t. = 2 h for 
both poisoned estuarine water and estuarine water in summer and k = 0.27 h–1 with t. = 3 h in winter 
during days when exposed to full sunlight and microbes (Hwang et al. 1986); 
photo-mineralization rate constant k = 0.11 h–1 with t. = 6 d for distilled water in summer (mean temperature 
25°C) and k = 0.049 h–1 with t. = 14 d in winter (mean temperature 11°C); k = 0.12 h–1 with t. = 6 d 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3951 
for poisoned estuarine water in summer and k = 0.07 h–1 with t. = 10 d in winter; k = 0.25 h–1 with 
t. = 10 d for estuarine water in summer and 0.10 h–1 with half-life of 7 d for winter during days when 
exposed to full sunlight and microbes (Hwang et al. 1986); 
phototransformation t. = 0.75 h in Xenotest 1200 (Svenson & Bjorndal 1988); 
aqueous photolysis t. = 1–110 h (Hwang et al. 1986; Sugiura et al. 1984; selected, Howard et al. 1991); 
t. = 7.43 d assuming a linear rate of photolysis during 96-h period (Smith et al. 1987); 
photodegradation rate constant k = 0.60 h–1 corresponding to t. = 1.0 h (summer), k = 0.37 h–1 corresponding 
to t. = 2 h (winter) in distilled water; and k = 0.37 h–1 corresponding to t. = 2 h (summer), k = 0.27 h–1 
corresponding to t. = 3.0 h (winter) in estuarine water under irradiation by natural sunlight (quoted from 
Hwang et al. 1987, Sanders et al. 1993). 
Oxidation: rate constant k >> 3.0 . 105 M–1·s–1 for the reaction with ozone in water at pH 2.0 (Hoigne & Bader 
1983); 
photooxidation t. = 66–3480 h in water, based on reported reaction rate constants for reaction of OH and 
RO2 radicals with phenol class in aqueous solution (Mill & Mabey 1985; Guesten et al. 1981; quoted, 
Howard et al. 1991); 
photooxidation t. = 139.2–1392 h, based on an estimated rate constant for the vapor-phase reaction with 
hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991); 
rate constant k = (0.2 ± 5.5) . 106 M–1·s–1 for the reaction with singlet oxygen in aqueous phosphate buffer 
at (27 ± 1)°C (Tratnyek & Hoigne 1991); 
atmospheric t. < 24 h at noon in mid-summer to t. = 216 h in January at latitude of 41.79°N for reaction 
with OH radicals (Bunce et al. 1991). 
Hydrolysis: is not expected to occur (Crossland & Wolff 1985). 
Biodegradation: t. = 1800–2160 h and 480-. h to obtain 75% degradation in mineral medium and seawater, 
respectively (De Kreuk & Hanstveit 1981); 
aqueous aerobic t. = 552–4272 h, based on unacclimated and acclimated aerobic sediment grab sample data 
(Delaune et al. 1983; Baker & Mayfield 1980; quoted, Howard et al. 1991); 
aqueous anaerobic t. = 1008–36480 h, based on unacclimated anaerobic grab sample data for soil and 
ground water (Ide et al. 1972; Baker & Mayfield 1980; quoted, Howard et al. 1991); 
aerobic degradation rate constant k = 0.0017 L µg–1·d–1 (Moos et al. 1983); 
microbial degradation negligible in darkness (Hwang et al. 1986); 
degradation rate constant k = 0.12 ± 0.01 h–1 in the absence of light (Minero et al. 1993). 
Biotransformation: degradation rate k = 3 . 10–14 mol·cell–1·h–1 with microorganisms in Seneca River waters 
(Banerjee et al. 1984). 
Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 18.3 h–1, 19 h–1 (at 1 mM buffer concn), 18.5 h–1 (at 10 mM buffer concn) at pH 8 (guppy P. reticulata 
Peters, Saarikoski et al. 1986) 
k1 = 222 d–1, 1677 d–1 (flagfish: whole fish; fish lipid, Smith et al. 1990) 
k2 = 1.03 d–1, 1.03 d–1 (flagfish: whole fish; fish lipid, Smith et al. 1990) 
k2 = 1.03 d–1, 0.95 d–1 (flagfish: BCF based, toxicity based, Smith et al. 1990) 
k2 = 0.00195 ± 0.00063 h–1 (M. relicta, Landrum & Dupuis 1990) 
k2 = 0.00330 ± 0.00140 h–1 (P. hoyi, Landrum & Dupuis 1990) 
Half-Lives in the Environment: 
Air: t. = 139.2–1392 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radicals 
in air (Howard et al. 1991); 
photolysis t. = 6.5 h in noonday summer sunshine (Howard 1991); 
t. = 216 h at latitude of 43.70°N at noon in January to t. < 24 h in mid-summer for reaction with hydroxyl 
radicals (Bunce et al. 1991). 
Surface water: calculated photolysis t. = 4.75 h from a determined rate k = 3.4 . 10–4 s–1 for a depth of 300 cm 
at pH 7 with light intensity of 0.04 watts/cm2 between 290 and 330 nm on a midsummer day at the latitude 
of Cleveland, Ohio (Hiatt et al. 1960; quoted, Callahan et al. 1979); 
photolysis t. = 1.5 d was estimated from photolytic destruction by sunlight in an aqueous solution at Davis, 
California (Wong & Crosby 1978; quoted, Callahan et al. 1979); 
photolytic t. = 10–15 d (Brockway et al. 1984); 
rate constant k >> 3.0 . 105 M–1 s–1 for the reaction with ozone at pH 2.0 (Hoigne & Bader 1983); 
© 2006 by Taylor & Francis Group, LLC

3952 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
t. = 1.5 to 3.0 d for direct photo-transformation from outdoor ponds (Crossland & Wolff 1985); 
t. = 1 h in summer, t. = 2 h in winter for distilled water; t. = 2 h in summer, t. = 3 h in winter for estuarine 
water; t. = 2 h in summer, t. = 3 h in winter for poisoned estuarine water, based on photo-transformation 
rate constants (Hwang et al. 1986); 
t. = 6 d in summer, t. = 14 d in winter for distilled water; t. = 3 d in summer, t. = 7 d in winter for 
estuarine water; t. = 6 d in summer, t. = 10 d in winter for poisoned estuarine water, based on photomineralization 
rate constants (Hwang et al. 1986); 
t. = 0.75 h and 0.96 h, based on photochemical transformation in Xenotest 1200 (Svenson & Bjorndal 1988); 
t. = 1–110 h, based on aqueous photolysis half-life (Howard et al. 1991); 
photodegradation half-lives ranging from hours to days, more rapid at the surface (Howard 1991); 
photodegradation t. = 1.0 h in summer, 2.0 h in winter in distilled water and t. = 2.0 h in summer, 3.0 h 
in winter in estuarine water under irradiation by natural sunlight (quoted from Hwang et al. 1987, Sanders 
et al. 1993). 
Ground water: t. = 1104–36,480 h, based on estimated unacclimated aqueous aerobic sediment grab sample 
data (Delaune et at. 1983; selected, Howard et al. 1991) and unacclimated anaerobic grab sample data for 
ground water (Baker & Mayfield 1980; selected, Howard et al. 1991). 
Sediment: 
Soil: disappearance t. = 23.2 d from Kooyenburg soil, t. = 47.9 d from Holten soil with earthworm E. fetida 
andrei and t. = 27.4 d from Kooyenburg soil, t. = 31.8 d from Holten soil with earthworm L. rubellus (van 
Gestel & Ma 1988); 
t. = 552–4272 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991); 
t. = 12.0 d in an acidic clay soil with <1.0% organic matter and t. = 6.7 d in a slightly basic sandy loam 
soil with 3.25% organic matter, based on aerobic batch lab. microcosm experiments (Loehr & Matthews 
1992). 
Biota: biological t. ~ 30 d in guppy Lebistes reticulatus (Landner et al. 1977); 
elimination t. = 23, 9.3, 6.9, and 6.2 h for fat, liver muscle, and blood, respectively (rainbow trout, Call 
et al. 1980); 
estimated t. = 7.0 d in trout (Niimi & Cho 1983; quoted, Niimi & Palazzo 1985); 
clearance from flagfish: t. = 0.68 d from whole fish and t. = 0.68 d from fish lipid (Smith et al. 1990). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3953 
18.1.1.67 Permethrin 
Common Name: Permethrin 
Synonym: Ambush, Dragnet, Ectiban, Exmin, FMC 33297, FMC 41665, ICI-PP 557, Kafil, Kestrel, NDRC-143, NIA 
33297, Niagara 33297, Outflank, Outflank-stockade, Perthrine, Picket, Pounce, Pramex, S 3151, SBP-1513, Talcord, 
WL 43479 
Chemical Name: 3-phenoxybenzyl (1RS, 3RS; 1RS, 3SR)-3(2,2-dichlorovinyl)-2,2-dimethylcyclo-propanecarbo-xylate; 
3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylic acid (3-phenoxyphenyl)methyl ester 
Uses: insecticide to control overwintering forms of spider mites, aphids, and scale insects on fruit trees, vines, olives, 
bananas and ornamentals; used as herbicides to control grass and broadleaf weeds in umbelliferous crops, and in 
tree nurseries; also used as acaricide and surfactant. 
CAS Registry No: 52645-53-1 
Molecular Formula: C21H20Cl2O3 
Molecular Weight: 391.288 
Melting Point (°C): 
liquid (tech. grade, Worthing & Hance 1991) 
34 (Lide 2003) 
Boiling Point (°C): 
200 (at 0.01 mmHg, Hartley & Kidd 1987; Milne 1995) 
200 (tech. grade at 0.1 mmHg, Worthing & Hance 1991; Tomlin 1994) 
220 (at 0.05 mmHg, Montgomery 1993) 
>290 (Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.19–1.27 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994; Milne 1995) 
1.214 (tech. grade at 25°C, Worthing & Hance 1991) 
Molar Volume (cm3/mol): 
431 (calculated-Le Bas method at normal boiling point) 
318.1 (calculated-density) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.816 (mp at 34°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.20 (Martin & Worthing 1977) 
0.04 (shake flask-GC, Coats & O’Donnell-Jefferey 1979) 
~ 0.2 (Spencer 1982) 
0.05 (in seawater, Schimmel et al. 1983; Zaroogian et al. 1985; Clark et al. 1989) 
0.20 (20°C, Hartley & Kidd 1987; Tomlin 1994) 
0.20 (30°C, Worthing & Walker 1987, 1991) 
0.006 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.2 (20°C, Montgomery 1993; Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the 
end of this section): 
4.8 . 10–6 (cis isomer, Barlow 1978) 
4.9 . 10–6 (cis isomer, Wells et al. 1986) 
3.7 . 10–6 (trans isomer, Barlow 1978) 
3.1 . 10–6 (trans isomer, Wells et al. 1986) 
4.5 . 10–5 (Hartley & Kidd 1987; Tomlin 1994) 
Cl 
Cl 
O 
O 
O 
© 2006 by Taylor & Francis Group, LLC

3954 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
1.0 . 10–5 (cis isomer, GC-RT correlation, supercooled liquid PL, Hinckley et al. 1990) 
8.1 . 10–6 (trans isomer, GC-RT correlation, supercooled liquid PL, Hinckley et al. 1990) 
1.3 . 10–6 (tech. grade at 20°C, Worthing & Hance 1991) 
2.5 . 10–6 (pure cis isomer at 20°C, Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
1.5 . 10–6 (pre trans isomer at 20°C, Worthing & Hance 1991; Tomlin 1994) 
1.7 . 10–6 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.4 . 10–5* (cis isomer, Knudsen effusion, measured range 40–80°C, Goodman 1997) 
8.71 . 10–6 (solid PS, converted from PL determined by GC-RT correlation, Tsuzuki 2001) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.0867 (wetted wall column-GC, Fendinger & Glotfelty 1990) 
2.50 . 10–5 (calculated-bond contribution method, Meylan & Howard 1991) 
0.00486 (20°C, calculated-P/C, Montgomery 1993) 
0.0157 (20–25°C, calculated-P/C, Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW: 
3.49 (shake flask-GC, Coats & O’Donnell-Jefferey 1979) 
6.60 (calculated, Briggs 1981) 
6.50 (shake flask-GC, Schimmel et al. 1983) 
6.2 ± 0.9 (cis-form, HPLC-RT correlation, Muir et al. 1985) 
5.7 ± 0.7 (trans-form, HPLC-RT correlation, Muir et al. 1985) 
6.10 (tech. grade at 20°C, Worthing & Hance 1991; Tomlin 1994) 
6.67 (HPLC-RT correlation, Hu & Leng 1992) 
2.88–6.10 (Montgomery 1993) 
6.50 (recommended, Sangster 1993) 
6.10 (Milne 1995) 
5.85 (RP-HPLC-RT correlation, Finizio et al. 1997) 
5.73 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
3.18 (calculated-S, Kenaga 1980) 
3.28 (Schimmel et al. 1983) 
3.23, 3.49, 3.52 (Pimephales promelas, Spehar et al. 1983;) 
1.49–1.84 (trans-form on sediment, 24 h BCF for chironomid larvae in water, Muir et al. 1985) 
1.08–2.13 (trans-form on sediment, 24 h BCF for chironomid larvae in sediment, Muir et al. 1985) 
0.95–1.70 (trans-form on sediment, 24 h BCF for chironomid larvae in sediment/pore water, Muir et al. 1985) 
0.90–2.22 (cis-form on sediment, 24 h BCF for chironomid larvae in water, Muir et al. 1985) 
1.46–2.62 (cis-form on sediment, 24 h BCF for chironomid larvae in sediment, Muir et al. 1985) 
1.32–2.47 (cis-form on sediment, 24 h BCF for chironomid larvae in sediment/pore water, Muir et al. 1985) 
4.71, 4.83 (oyster, calculated-KOW & models, Zaroogian et al. 1985) 
4.71, 4.83 (sheepshead minnow, calculated-KOW & models, Zaroogian et al. 1985) 
3.29, 3.39 (Oncorhynchus mykiss, Muir et al. 1994; quoted, Devillers et al. 1996) 
2.79 (quoted, Pait et al. 1992) 
Sorption Partition Coefficient, log KOC: 
4.03 (calculated-S, Kenaga 1980) 
2.76 (cis-form, silt, KP on 34% DOC, Muir et al. 1985) 
2.64 (cis-form, clay, KP on 77% DOC, Muir et al. 1985) 
2.64 (trans-form, silt, KP on 23% DOC, Muir et al. 1985) 
2.64 (trans-form, clay, KP on 0% DOC, Muir et al. 1985) 
5.25 (soil, calculated-. and fragment contribution, Meylan et al. 1992) 
5.00 (soil, 20–25°C, selected, Wauchope et al. 1992; Lohninger 1994; Hornsby et al. 1996) 
1.32–2.79 (Montgomery 1993) 
4.80 (soil, calculated-MCI 1., Sabljic et al. 1995) 
4.42, 4.35 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3955 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: photodegradation rate constant k = 1.73 . 10–3 min–1 and t. = 400 min with TiO2 as catalyst after 
20 h irradiation at 222 nm (Hidaka et al. 1992). 
Oxidation: 
Hydrolysis: 
Biodegradation: 
k = 1.24 . 10–2 h–1 by bacteria strain A. sobria with t. = 56 h, k = 1.13 . 10–2 h–1 by E. carotovora with 
t. = 61 h, k = 8.66 . 10–3 h–1 by Y. frederiksenii with t. = 80 h and k = 1.43 . 10–3 h–1 for the control, 
uninoculated solution with t. = 485 d in aqueous soil-fee phase (cis-permethrin, Lee et al. 2004) 
k = 1.50 . 10–2 h–1 by A. sobria with t. = 45 h, k = 1.51 . 10–2 h–1 by E. carotovora with t. = 46 h, 
k = 1.85 . 10–2 h–1 by Y. frederiksenii with t. = 37 h and k = 2.85 . 10–3 h–1 for the control, uninoculated 
solution with t. = 259 d in aqueous soil-fee phase (trans-permethrin, Lee et al. 2004) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 1.5–2.3 h–1 (Chironomus tentans larvae in pond sediment-water system for trans-permethrin, 96-h 
exposure, Muir et al. 1983) 
k1 = 1.50 h–1 (Chironomus tentans larvae in river sediment-water system for trans-permethrin, 96-h exposure, 
Muir et al. 1983) 
k1 = 3.3–12.1 h–1 (Chironomus tentans larvae in sediment (sand)-water system for trans-permethrin, 96-h 
exposure, Muir et al. 1983) 
k1 = 4.9–14.7 h–1 (Chironomus tentans larvae in sediment (sand)-water system for trans-permethrin, 96-h 
exposure, calculated by using initial uptake data of 0–12 h, Muir et al. 1983) 
k2 = 0.041 h–1 (Chironomus tentans larvae in pond sediment-water system for trans-permethrin, calculated 
by concentration decay curve, Muir et al. 1983) 
k2 = 0.021 h–1 (Chironomus tentans larvae in sediment (sand)-water system for trans-permethrin, calculated 
by concentration decay curve, Muir et al. 1983) 
Half-Lives in the Environment: 
Air: 
Surface water: t. > 21 d in 100 mL pesticide-seawater solution under indoor conditions, t. = 14 d under outdoor 
light conditions and t. > 14 d under outdoor dark conditions (Schimmel et al. 1983); 
biodegradation half-lives by bacteria strains: t. = 56 h by A. sobria, t. = 61 h by E. carotovora, t. = 80 h 
by Y. frederiksenii and t. = 485 d for the control, uninoculated solution for cis-permethrin; t. = 45 h by 
A. sobria, t. = 46 h by E. carotovora, t. = 37 h by Y. frederiksenii and t. = 259 d for the control, 
uninoculated solution for trans-permethrin (Lee et al. 2004) 
Ground water: 
Sediment: half-lives in 10 grams sediment/100 mL pesticide-seawater solution: t. < 2.5 d for untreated sediment 
and t. > 28 d for sterile sediment (Schimmel et al. 1983). 
Soil: reported t. < 38 d in soil containing 1.3–51.3% organic matter at pH 4.2–7.7 (Holmstead et al. 1978; quoted, 
Worthing & Hance 1991; Montgomery 1993; Tomlin 1994); 
selected field t. = 30 d (Wauchope et al. 1992; Hornsby et al. 1996); 
soil t. = 30 d (Pait et al. 1992); 
t. = 32 d for forest soil (Dowd et al. 1993). 
Biota: elimination t. ~ 16.7 h in pond sediment-water, t. = 32.9 h in sand-water systems (Chironomus tentans 
larvae, Muir et al. 1983) 
© 2006 by Taylor & Francis Group, LLC

3956 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 18.1.1.67.1 
Reported vapor pressures of cis-permethrin at 
various temperatures 
Goodman 1997 
Knudsen effusion 
t/°C P/Pa 
40 1.4 . 10–5 
50 1.10 . 10–4 
60 5.30 . 10–4 
70 2.30 . 10–3 
80 8.90 . 10–3 
log P = A – B/(T/K)
P/Pa 
A 18.70 
B 7677 
FIGURE 18.1.1.67.1 Logarithm of vapor pressure versus reciprocal temperature for cis-permethrin. 
cis -Permethrin: vapor pressure vs. 1/T 
-7.0 
-6.0 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Goodman 1997 
m.p. = 34 °C 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3957 
18.1.1.68 Phenthoate 
Common Name: Phenthoate 
Synonym: Cidial, Elsan 
Chemical Name: ethyl 2-dimethoxyphosphinothioylthio(phenyl)acetate; ethyl 2-dimethoxy-thiophosphorylthio- 
2-phenylacetate; S-.-ethoxycarbonylbenzyl O,O-dimethyl phosphorodithioate; ethyl .-[(dimethoxy-phosphinothioyl)
thio]benzeneacetate 
Uses: insecticide to control aphids, scale insects, jassids, lepidopterous larvae, bollworms, mealybugs, psyllids, thrips, 
spider mites, etc. in citrus fruit, pome fruit, olives, cotton, cereals, rice, coffee, tea, sunflower, sugar cane, tobacco, 
ornamentals, and vegetables; also used as acaricide and for control of mosquito larvae. 
CAS Registry No: 2597-03-7 
Molecular Formula: C12H17O4PS2 
Molecular Weight: 320.364 
Melting Point (°C): 
17.5 (Khan 1980; Spencer 1982) 
17–18 (Worthing & Hance 1991; Tomlin 1994) 
Boiling Point (°C): 78–80 (Spencer 1982) 
Density (g/cm3 at 20°C): 
1.226 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
Molar Volume (cm3/mol): 
261.3 (calculated from density) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 K/ml K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
200 (Martin & Worthing 1977) 
11 (20–25°C, shake flask-GC, Kanazawa 1981) 
11 (20°C, Khan 1980; Hartley & Kidd 1987) 
11 (24°C, Worthing & Walker 1987, 1991; Tomlin 1994) 
11 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.005 (40°C, Hartley & Kidd 1987) 
0.0053 (40°C, Worthing & Hance 1991; Tomlin 1994) 
3.5 . 10–4 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
9.77 . 10–4; 2.45 . 10–4, 6.76 . 10–4 (gradient GC method; estimation using modified Watson method: Sugden’s 
parachor, McGowan’s parachor, Tsuzuki 2000) 
Henry’s Law Constant (Pa·m3/mol): 
0.01019 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.89 (shake flask-GC, Kanazawa 1981) 
3.96 (shake flask/slow stirring-GC, De Bruijn et al. 1991) 
3.69 (Worthing & Hance 1991; Tomlin 1994) 
3.32 (RP-HPLC-RT correlation, Saito et al. 1993) 
3.69 (recommended, Hansch et al. 1995) 
P 
S 
O 
O 
S 
O
O 
© 2006 by Taylor & Francis Group, LLC

3958 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioconcentration Factor, log BCF: 
1.49 (calculated-S, Kenaga 1980) 
1.56 (topmouth gudgeon Pseudorasbora parva, Kanazawa 1981) 
2.85 (whole body willow shiner after 168 h exposure, Tsuda et al. 1992) 
1.57, 1.43, 1.30, 1.51 (whole body carp: 24 h, 72 h, 120 h and 168 h; Tsuda et al. 1993) 
Sorption Partition Coefficient, log KOC: 
2.38 (soil, calculated-S, Kenaga 1980) 
3.00 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
excretion rate constant k = 0.05 h–1 from whole body willow shiner (Tsuda et al. 1992); 
excretion rate constant k = 0.52 h–1 with t. = 1.3 h (Tsuda et al. 1993). 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: 
Sediment: 
Soil: selected field t. = 11 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996); 
t. = 10 d in silty clay loam and other soils (Tomlin 1994). 
Biota: excretion rate constant k = 0.05 h–1 from whole body willow shiner (Tsuda et al. 1992); 
excretion rate constant k = 0.52 h–1 with t. = 1.3 h (Tsuda et al. 1993). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3959 
18.1.1.69 Phorate 
Common Name: Phorate 
Synonym: AC 3911, American Cyanamid 3911, ENT 24042, Foraat, Gramitox, Granutox, Rampart, Thimate, Thimet, 
Timet, Vegfu, Vergfru foratox 
Chemical Name: O,O-diethyl-S-(ethylthio)methyl phosphorodithioate; O,O-diethyl-S-ethylmercaptomethyl dithiophosphate; 
phosphorodithioic acid O,O-diethyl S-((ethylthio)methyl) ester 
Uses: insecticide to control mites, chewing and sucking insects in fruits and vegetables, cotton, and some ornamentals; 
also used as acaricide and nematicide. 
CAS Registry No: 298-02-2 
Molecular Formula: C7H17O2PS3 
Molecular Weight: 260.378 
Melting Point (°C): 
–42.9 (Spencer 1982) 
<–15 (Montgomery 1993; Lide 2003) 
Boiling Point (°C): 
118–120 (at 0.8 mmHg, Hartley & Kidd 1987; Montgomery 1993; Milne 1995) 
125–127 (at 2 mmHg, Budavari 1989; Milne 1995) 
118–120 (tech. grade at 0.8 mmHg, Worthing & Hance 1991) 
Density (g/cm3 at 20°C): 
1.156 (25°C, Merck Index 1989; Montgomery 1993; Milne 1995) 
1.167 (tech. grade at 25°C, Spencer 1982; Worthing & Hance 1991) 
Molar Volume (cm3/mol): 
259.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
19 (26°C, 95% pure, shake flask-GC, Lord & Burt 1964) 
14 (15°C, shake flask-GC, Lord & Burt 1964) 
85 (Gunther et al. 1968) 
70 (Melnikov 1971; Briggs 1981) 
50 (Spencer 1973, 1982) 
50 (Martin & Worthing 1977; Hartley & Kidd 1987) 
80–85 (Wauchope 1978) 
20 (shake flask-GC, Felsot & Dahm 1979) 
17.9 (20°C, shake flask-GC, Bowman & Sans 1979, 1983b) 
50 (room temp., Worthing & Walker 1987; Budavari 1989, Milne 1995) 
50 (tech. grade at room temp., Worthing & Hance 1991) 
22 (20–25°C, selected, Wauchope 1989; Wauchope et al. 1992; Hornsby et al. 1996) 
20 (24°C, Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.112 (20°C, Wolfdietrich 1965; Spencer 1973, 1982) 
0.25 (Woolford 1975) 
0.148 (gas saturation method, Sutherland et al. 1980) 
0.074 (gas saturation-GC, Kim et al. 1984) 
0.042 (20°C, extrapolated-Clausius-Clapeyron eq., Kim et al. 1984) 
O 
P 
S 
S 
S 
O 
© 2006 by Taylor & Francis Group, LLC

3960 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.0109 (20°C, GC-RT correlation, Kim et al. 1984; Kim 1985) 
0.11 (20°C, Hartley & Kidd 1987) 
0.112 (20°C, Budavari 1989; Montgomery 1993) 
0.11 (GC-RT correlation method, Hinckley et al. 1990) 
0.085 (tech. grade, Worthing & Hance 1991) 
0.0853 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.769 (calculated-P/C, Jury et al. 1984, 1987a, 1990; Jury & Ghodrati 1989) 
0.65 (20°C, calculated-P/C, Suntio et al. 1988) 
0.648 (20–24°C, calculated-P/C, Montgomery 1993) 
1.010 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
3.33 (shake flask-GC, Felsot & Dahm 1979) 
2.92 (Rao & Davidson 1980) 
4.26 (shake flask-UV, Lord et al. 1980) 
4.26 (20°C, shake flask-GC, Briggs 1981) 
3.83 (22°C, shake flask-GC, Bowman & Sans 1983b) 
3.24 (shake flask, Log P Database, Hansch & Leo 1987) 
3.92 (Worthing & Hance 1991) 
2.91–3.92 (Montgomery 1993) 
2.92 (recommended, Sangster 1993) 
3.92 (Milne 1995) 
3.56 (selected, Hansch et al. 1995) 
4.25 (RP-HPLC-RT correlation, Finizio et al. 1997) 
3.94 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
1.83, 2.34 (calculated-S, calculated-KOC, Kenaga 1980) 
3.34 (earthworms, Lord et al. 1980) 
–1.70 (vegetation, correlated-KOW, Travis & Arms 1988) 
Sorption Partition Coefficient, log KOC: 
3.51 (soil, Hamaker & Thompson 1972; Kenaga 1980; Kenaga & Goring 1980) 
2.71 (soil, calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
2.82 (Rao & Davidson 1980; quoted, Jury et al. 1983, 1984, 1990) 
2.82 (soil, sorption isotherm, converted form reported log KOM of 2.82, Briggs 1981) 
2.32–3.60 (reported as log KOM, Mingelgrin & Gerstl 1983) 
2.82 (screening model calculations, Jury et al. 1987a, b; Jury & Ghodrati 1989) 
2.58, 2.88 (reported as log KOM, estimated as log KOM, Magee 1991) 
2.73 (soil, Worthing & Hance 1991) 
3.00 (soil, 20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
2.64 (estimated-QSAR & SPARC, Kollig 1993) 
2.51–2.80 (Montgomery 1993) 
2.82 (selected, Lohninger 1994) 
2.70 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.70; 2.98, 3.12 (soil, quoted exptl.; estimated-class-specific model, estimated-general model, Gramatica et al. 
2000) 
2.63 (soil: organic carbon OC -0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3961 
Hydrolysis: neutral hydrolysis rate constant k = 7.2 . 10–3 h–1 with a calculated t. = 96 h at pH 7 (Ellington et 
al. 1987, 1988; quoted, Montgomery 1993); 
calculated rate constant k -100 . 10–12 cm3/molecule·s for the vapor-phase reaction with hydroxyl radical in 
air (Winer & Atkinson 1990); 
t. = 3.2 d at pH 7 and t. = 3.9 d at pH 9 (Worthing & Hance 1991); 
rate constant k = 62 yr–1 at pH 7.0 and 25°C (Kollig 1993). 
Biodegradation: t. = 82 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Rao & Davidson 
1980; quoted, Jury et al. 1983); 
t. = 82 d in soil (Jury et al. 1984, 1987a, b, 1990; Jury & Ghorati 1989); 
first-order rate constant k = –0.0403 h–1 in nonsterile sediment and k = –0.0209 h–1 in sterile sediment by 
shake-tests at Range Point and first-order rate constant k = –0.0206 h–1 in nonsterile water and 
k = –0.0186 h–1 in sterile water by shake-tests at Range Point (Walker et al. 1988); 
first-order rate constants k = –0.0241 h–1 in nonsterile sediment and k = –0.0185 h–1 in sterile sediment by 
shake-tests at Davis Bayou and first-order rate constants k = –0.0262 h–1 in nonsterile water and 
k = –0.0185 h–1 in sterile water by shake-tests at Davis Bayou (Walker et al. 1988). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: 
Sediment: 
Soil: t. = 68 d in a sandy soil (Way & Scopes 1968; quoted, Montgomery 1993); 
estimated persistence of 2 wk (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury et al. 
1987a); 
persistence of less than one month (Wauchope 1978); 
biodegradation t. = 82 d in soil (Jury et al. 1984, 1987a, b, 1990; Jury & Ghodrati 1989; quoted, Montgomery 
1993); 
t. = 2–14 d (Worthing & Hance 1991); 
estimated field t. = 60 d (Wauchope et al. 1992; quoted, Richards & Baker 1993; selected, Halfon et al. 
1996; Hornsby et al. 1996); 
soil t. = 25 d (Pait et al. 1992). 
Biota: t. = 1.4 d half-lives in coastal Bermuda grass and alfalfa (Leuck & Bowman 1970; quoted, Montgomery 
1993) and t. = 3.6 d (Dobson et al. 1960; quoted, Montgomery 1993); 
biochemical t. = 82 d from screening model calculations (Jury et al. 1987a, b; Jury & Ghodrati 1989). 
© 2006 by Taylor & Francis Group, LLC

3962 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.70 Phosmet 
Common Name: Phosmet 
Synonym: APPA, Decemthion, Decemthion p-6, ENT 25,705, Ftalophos, Imidan, Percolate, Phthalophos, Prolate, R 1504, 
Safidon, Smidan, Stauffer R-1504 
Chemical Name: O,O-dimethyl S-phthalimidomethyl phosphorodithioate; N-dimethoxyphosphino-thioylthiomethyl)
phthalimide; S-[(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)methyl] O,O-dimethyl phosphorodithioate; phosphorodithioic 
acid, S-[(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)methyl] O,O-dimethyl ester 
Uses: nonsystemic acaricide and insecticide. 
CAS Registry No: 732-11-6 
Molecular Formula: C11H12NO4PS2 
Molecular Weight: 317.321 
Melting Point (°C): 
72.0–72.7, 66.5–69.5 (pure, technical grade, Montgomery 1993; Tomlin 1994) 
72 (Lide 2003) 
Boiling Point (°C): 
decompose rapidly >100°C (Montgomery 1993) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
263.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
30.96 (Plato & Glasgow 1969) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.346 (mp at 72°C) 
0.3 (20°C, Suntio et al. 1988) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
25 (Bright et al. 1950, Melnikov 1971; Spencer 1982) 
25 (Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
20 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
22–25 (Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
6.03 . 10–4 (20°C, Freed et al. 1977) 
0.133 (50°C, Spencer 1982; Hartley & Kidd 1987) 
6.53 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
6.03 . 10–5, 0.133 (30, 50°C, Montgomery 1993) 
6.50 . 10–5 (Tomlin 1994) 
2.0 . 10–5; 5.90 . 10–5 (gradient GC method; quoted lit. value, Tsuzuki 2000) 
Henry’s Law Constant (Pa·m3/mol): 
9.50 . 10–4 (calculated-P/C, Suntio et al. 1988) 
9.53 . 10–4 (calculated-P/C, Montgomery 1993) 
7.62 . 10–4 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.83 (20°C, shake flask-GC, Chiou et al. 1977) 
2.83 (Rao & Davidson 1980) 
N 
O
O 
S P O 
S
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3963 
2.78 (22°C, shake flask-GC, Bowman & Sans 1983) 
2.81 (shake flask/slow stirring-GC, De Bruijn & Hermens 1991) 
2.78–3.04 (Montgomery 1993) 
2.78 (recommended, Sangster 1993) 
2.95 (Tomlin 1994) 
3.40 (Milne 1995) 
2.78 (recommended, Hansch et al. 1995) 
3.06 (RP-HPLC-RT correlation, Nakamura et al. 2001) 
Bioconcentration Factor, log BCF: 
0.90 (bluegill sunfish/fathead minnows, Saito et al. 1992) 
1.04 (channel catfish, Saito et al. 1992) 
1.56 (av. whole body willow shiner after 24–168 h exposure, Tsuda et al. 1992) 
0.23 (av. whole body carp after 24–168 h exposure, Tsuda et al. 1993) 
Sorption Partition Coefficient, log KOC: 
2.91 (soil, Wauchope et al. 1992, Hornsby et al. 1996) 
2.06, 2.34 (soil, estimated-class-specific model, estimated-general model, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 53.25 h for absorbance wavelength at 243 nm (Montgomery 1993). 
Oxidation: 
Hydrolysis: t. = 7.2 d at pH 6.1 and t. = 7.1 h at pH 7.4 at 20°C; t. = 1.1 h at 37.5°C (Freed et al. 1979; quoted, 
Montgomery 1993); 
t. = 13 d at pH 4.5, t. < 12 h at pH 7 and t. < 4 h at pH 8.3 in buffered aqueous solution at 20°C (Montgomery 
1993); 
t. = 7.0 d at pH 6.1, and t. = 7.1 h at pH 7.4 at 20°C (Lartiges & Garrigues 1995). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k2 = 0.28 h–1 (whole body willow shiner, Tsuda et al. 1992) 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 33 d at 6°C, t. = 5 d at 22°C in darkness for Milli-Q water at pH 6.1 (Lartiges & Garrigues 
1995). 
Ground water: 
Sediment: 
Soil: field t. = 10 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: t. = 6.5 d in Bermuda grass (Montgomery 1993). 
© 2006 by Taylor & Francis Group, LLC

3964 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.71 Pirimicarb 
Common Name: Pirimicarb 
Synonym: Pirimor, Aphox, Abol, Aficida, Fernos, Rapid 
Chemical Name: 2-dimethylamino-5,6-dimethylpyrimidin-4-yl dimethylcarbamate 
CAS Registry No: 23103-98-2 
Uses: insecticide 
Molecular Formula: C11H18N4O2 
Molecular Weight: 238.287 
Melting Point (°C): 
90.5 (Spencer 1982; Hartley & Kidd 1987; Worthing 1987; Tomlin 1994; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.21 (Tomlin 1994) 
Molar Volume (cm3/mol): 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.228 (mp at 90.5°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
2700 (Kenaga 1980b; Spencer 1982; Hartley & Kidd 1987; Worthing & Walker 1987) 
2000 (pH 4, 20°C, Tomlin 1994) 
2700 (selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C): 
0.004 (30°C, Spencer 1982. Hartley & Kidd 1987; Worthing & Walker 1987) 
0.00097 (Tomlin 1994) 
0.004 (selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
1.70 (Tomlin 1994) 
1.70 (recommended, Hansch et al. 1995) 
1.70 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
0.845 (calculated-Solubility, Kenaga 1980b) 
Sorption Partition Coefficient, log KOC: 
1.76 (soil, Kenaga 1980b) 
1.57 (soil, estimated and selected value, Augustijn-Beckers et al. 1994) 
1.36 (soil, estimated and selected, Hornsby et al. 1996) 
1.90, 1.52 (soil: quoted, calculated-MCI ., Meylan et al. 1992) 
N 
N 
O N
N 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3965 
1.90 (soil, calculated-MCI ., Sabljic et al 1995) 
1.90; 2.30, 1.80 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: aqueous solutions are unstable to UV light with t. < 1 d at pH 5.7 or 9 (Tomlin 1994). 
Oxidation: 
Hydrolysis: 
Biodegradation: t. = 7–234 d depending on soil type, organic matter ranging from 1.7–51.9% at pH 5.5–8.1 
(Tomlin 1994). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: aqueous solutions are unstable to UV light with t. < 1 d at pH 5.7 or 9 (Tomlin 1994). 
Ground water: 
Sediment: 
Soil: t. = 7–234 d depending on soil type, organic matter ranging from 1.7–51.9% at pH 5.5–8.1 (Tomlin 1994); 
field t. ~ 10 d (estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3966 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.72 Propoxur 
Common Name: Propoxur 
Synonym: Baygon, Blattanex, Under, arprocarb, PHC, Sendran, Suncide, Aracarb, Tugon Fliegendugel 
Chemical Name: 2-(1-methylethoxy)phenol methyl carbamate 
CAS Registry No: 114-26-1 
Uses: insecticide to control cockroaches, flies, fleas, mosquitoes, bugs, ants, millipedes and other insect pests in food 
storage areas, houses, animal houses, etc.; also to control sucking and chewing insects in fruits, vegetables, 
ornamentals, vines, maize, lucerne, soya beans, cotton, sugar cane, rice cocoa, forestry, etc. 
Molecular Formula: C11H15NO3 
Molecular Weight: 209.242 
Melting Point (°C) 
91.50 (Spencer 1982; Howard 1991; Kuhne et al. 1995) 
84–87 (Montgomery 1993) 
87 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
244.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.246 (mp at 87°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
2000 (20°C, Spencer 1973; 1982) 
2000 (Kenaga 1980; Kanazawa 1981) 
2000 (20°C, Worthing & Walker 1983, 1987, Worthing & Hance 1991) 
1860 (20°C, shake flask-GC, Bowman & Sans 1983) 
1800 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1740, 1930, 2440 (10, 20, 30°C, Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
1.333 (120°C, Melnikov 1971; Spencer 1973, 1982) 
4.13 . 10–4 (20°C, Hartley & Graham-Bryce 1980) 
4.13 . 10–5 (20°C, selected exptl. value from literature, Kim 1985) 
0.0593, 0.0113 (20°C, GC-RT correlation, GC-RT correlation with mp correction, Kim 1985) 
4.00 . 10–4 (20°C, Howard 1991) 
1.69 . 10–3 (20–25°C, selected, Wauchope et al. 1992, Hornsby et al. 1996) 
1.30 . 10–3 (20°C, Montgomery 1993; Siebers et al. 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.1308 (20°C, calculated-P/C, Suntio et al. 1988) 
4.46 . 10–5 (calculated-P/C, Howard 1991) 
1.32 . 10–4 (calculated-P/C, Montgomery 1993) 
1.40 . 10–4 (calculated-P/C, Siebers et al. 1994) 
1.98 . 10–6 (calculated-P/C, this work) 
O 
O 
NH
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3967 
Octanol/Water Partition Coefficient, log KOW: 
1.52 (shake flask-UV, Fujita et al. 1974) 
1.50 (Hansch & Leo 1979) 
1.45 (Rao & Davidson 1980) 
1.52 (Kenaga & Goring 1980; Kanazawa 1981) 
1.552 (shake flask-GC, Bowman & Sans 1983) 
1.52 (Hansch & Leo 1985) 
1.75 (RP-HPLC-RT correlation, Trapp & Pussemier 1991) 
1.45–1.56 (Montgomery 1993) 
1.52 (recommended, Sangster 1993) 
1.52 (recommended, Hansch et al. 1995) 
1.99 (RP-HPLC-RT correlation, Nakamura et al. 2001) 
Bioconcentration Factor, log BCF: 
0.924 (calculated, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
1.67 (measurements for average of 2 soils, Kanazawa 1981, 1989) 
1.86 (calculated, Howard 1991) 
1.48 (soil, Wauchope et al. 1992; Hornsby et al. 1996) 
0.48–1.97 (Montgomery 1993) 
1.48 (estimated-chemical structure, Lohninger 1994) 
1.67 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.63, 1.88 (soil, estimated-class-specific model, estimated-general model, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: atmospheric and/or aqueous photolysis t. = 62.5–87.9 h, based on measured rate of photolysis on 
bean leaves in sunlight (Ivie & Casida 1971; quoted, Howard et al. 1991) and in aqueous solution under 
simulated sunlight (Jensen-Korte et al. 1987; quoted, Howard et al. 1991); 
photolyze in water with t. = 88 h and decreased with humic material to 13–41 h; t. = 87.9 h in water when 
irradiated with light >290 nm (Howard 1991). 
Oxidation: photooxidation t. = 0.71–7.1 h in air, based on estimated rate constant for the vapor-phase reaction 
with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
vapor-phase photooxidation t. = 4.3 h for reaction with ambient OH radical (Howard 1991). 
Hydrolysis: t. = 40 min at pH 10 and 20°C, hydrolyzes at a rate of 1.5% d–1 in 1% aqueous solution at pH 7 
(Spencer 1982); 
t. = 16, 1.6 and 0.17 d at pH 8, 9, 10, but stable between pH 3–7, t. = 40 min at pH 10 (Howard 1991); 
t. = 290 d at pH 7, t. = 17.9 d at pH 8 and t. = 48 min at pH 10 (Montgomery et al. 1993); 
hydrolysis t. = 16 d, 1.6 d and 4.2 h in water at pH 8, 9 and 10 (Aly & El-Dib 1971; quoted, Montgomery 
1993). 
Biodegradation: aqueous aerobic t. = 168–672 h, based on unacclimated aqueous aerobic screening test data 
(Gummer 1979; Kanazawa 1987; quoted, Howard et al. 1991); aqueous anaerobic t. = 672–2688 h, based 
on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991); 
t. = 44 d under aerobic conditions and t. = 59 d under anaerobic conditions in water used a combination of 
activated sludge, silt loam soil and sediment as an inoculum; t. = 78 d under aerobic conditions and 
t. = 125 d under anaerobic conditions at pH 6.9 (Howard 1991). 
Biotransformation: metabolism rate k = 3.70 . 10–3 h–1 leading to an irradiated moist soil t. = 180 h (Graebing & 
Chib 2004) 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.71–7.1 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl radical in air 
(Atkinson 1987; quoted, Howard et al. 1991); 
t. ~ 4 h reacting with photochemically produced hydroxyl radical in air (Howard 1991). 
© 2006 by Taylor & Francis Group, LLC

3968 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Surface water: t. = 38–672 h, based on estimated hydrolysis half-life at pH 9 (Aly & El-Dib 1971; quoted, 
Howard et al. 1991) and estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991); 
t. = 1 d to 1 wk by degradation, photolyze rapidly with t. = 13 to 88 h (Howard 1991). 
Ground water: t. = 38–1344 h, based on estimated hydrolysis half-life at pH 9 (Aly & El-Dib 1971; quoted, 
Howard et al. 1991) and estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Sediment: 
Soil: t. = 38–672 h, based on estimated hydrolysis half-life at pH 9 (Aly & El-Dib 1971; quoted, Howard et al. 
1991) and estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991) 
Field t. = 14–50 d (Wauchope et al. 1992) 
On sandy loam soil: first-order rate constants for photolytic decline, k = 1.65 . 10–3 h–1 irradiated in moisturemaintained 
soil, k = 0.91 . 10–3 h–1 irradiated in air-dried soil, k = 0.91 . 10–3 h–1 in dark control moist 
soil and k = 0.23 . 10–3 h–1 in dark control air-dried sandy loam soil from Madia, CA. The initial 
metabolism rate k = 3.70 . 10–3 h–1 leading to an irradiated moist soil t. = 180 h; in the dark t. = 380 h 
in moist soil Graebing & Chib 2004) 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3969 
18.1.1.73 Ronnel 
Common Name: Ronnel 
Synonym: Blitex, Dermafos, Dermaphos, dimethyl trichlorophenyl thiophosphate, Dow ET 14, Dow ET 57, Ectoral, 
ENT 23284, Etrolene, Fenchlorfos, Fenchlorphos, Gesektin K, Karlan, Korlan, Nanchor, Nanker, Nankor, OMS 
123, Phenchlorfos, Remelt, Rovan, trichlorometafos, Trolen, Trolene, Viozene 
Chemical Name: O,O-dimethyl O-(2,4,5-trichlorophenyl)thiophosphate; O,O-dimethyl O-2,4,5-trichlorophenyl phosphorothioate; 
phosphoric acid O,O-dimethyl O-(2,4,5-trichlorophenyl)ester 
Uses: insecticide. 
CAS Registry No: 299-84-3 
Molecular Formula: C8H8Cl3O3PS 
Molecular Weight: 321.546 
Melting Point (°C): 
40–42 (Spencer 1982) 
41 (Montgomery 1993; Milne 1995; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.48 (25°C, Montgomery 1993) 
Molar Volume (cm3/mol): 
257.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
23.85 (Plato & Glasgow 1969) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.697 (mp at 41°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
44 (Gunther et al. 1968; Melnikov 1971) 
1.08 (20°C, shake flask-GC, Chiou et al. 1977) 
1.08 (20–25°C, shake flask-GC/ECD, Freed et al. 1979) 
2.5 (20°C, Spencer 1982) 
0.60 (20°C, shake flask-GC, Bowman & Sans 1979, 1983) 
0.98 (20°C, corrected supercooled liq. value, shake flask-GC, Bowman & Sans 1979,83) 
6.0 (Dow Chemical unpublished data, Kenaga 1980a, b; Kenaga & Goring 1980) 
40 (22°C, Khan 1980) 
1.0 (20°C, shake flask-HPLC, Ellgehausen et al. 1981) 
1.61 (20°C, selected, Suntio et al. 1988) 
40 (Montgomery 1993; Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0533 (20°C, Eichler 1965; Melnikov 1971) 
0.0071 (20–25°C, Freed et al. 1979) 
1.067 (Spencer 1982) 
0.0017 (20°C, GC-RT correlation without mo correlation, Kim et al. 1984; Kim 1985) 
0.0011 (20°C, GC-RT correlation with mp correction, Kim et al. 1984; Kim 1985) 
0.016 (20°C, selected, Suntio et al. 1988) 
0.0045 (20°C, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
3.22 (20°C, calculated-P/C, Suntio et al. 1988) 
0.857 (20–25°C, calculated-P/C, Montgomery 1993) 
Cl 
O 
P 
O
O 
Cl 
Cl 
S 
© 2006 by Taylor & Francis Group, LLC

3970 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW at 25°C or as indicated: 
4.88 (20°C, shake flask-GC, Chiou et al. 1977) 
4.67 (Kenaga 1980b; Kenaga & Goring 1980) 
4.88 (20–25°C, shake flask-GC/ECD, Freed et al. 1979) 
5.34 (shake flask-HPLC, Ellgehausen et al. 1981) 
4.81 (20°C, shake flask-GC, Bowman & Sans 1983) 
5.068 ± 0.004 (shake flask/slow-stirring method, De Bruijn et al. 1989) 
4.67–5.068 (Montgomery 1993) 
4.88 (recommended, Sangster 1993) 
5.07 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.35 (calculated-S, Kenaga 1980a, b) 
–1.38 (average beef fat diet, Kenaga 1980b) 
4.64 (guppy Poecilia reticulata, lipid wt basis, De Bruijn & Hermens 1991) 
Sorption Partition Coefficient, log KOC: 
3.20 (soil, calculated-S as per Kenaga & Goring 1978, Kenaga 1980a, b) 
2.90 (soil, calculated-MCI ., Gerstl & Helling 1987) 
2.76 (calculated, Montgomery 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: estimated t. ~ 3 d at pH 6 (Montgomery 1993). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 0.01337 mL g–1 d–1 (guppy, 0.5–420 h exposure, De Bruijn & Hermens 1991) 
k2 = 0.38 d–1 (guppy, De Bruijn & Hermens 1991) 
k2 = 0.14 d–1 (calculated-KOW, De Bruijn & Hermens 1991) 
Half-Lives in the Environment: 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3971 
18.1.1.74 Terbufos 
Common Name: Terbufos 
Synonym: AC 92100, Counter, ST-100 
Chemical Name: S-(tert-butylthio)methyl O,O-diethyl phosphorodithioate; S-[[(1,1-dimethylethyl)thio]methyl] 
O,O-diethyl phosphorodithioate; phosphorodithioic acid S-((tert-butylthio)methyl) O,O-diethyl ester 
Uses: insecticide in soil to control insects and also used as nematocide to control nematodes in beet, maize, cotton, 
sorghum, onions, cabbage, and bananas. 
CAS Registry No: 13071-79-9 
Molecular Formula: C9H21O2PS3 
Molecular Weight: 288.431 
Melting Point (°C): 
–29.2 (Worthing & Hance 1991; Howe et al. 1994; Montgomery 1993; Tomlin 1994; Milne 1995) 
Boiling Point (°C): 
69 (at 0.01 mmHg, Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
312 (Brecken-Folse et al. 1994; Howe et al. 1994) 
Density (g/cm3 at 20°C): 
1.105 (24°C, Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
261 (24°C, calculated from density) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
12 (Martin & Worthing 1977) 
5.07 (shake flask-GC, Felsot & Dahm 1979) 
. 10 (Spencer 1982) 
5.5 (19°C, shake flask-GC, Bowman & Sans 1983a, b) 
10–15 (Worthing & Hance 1991) 
5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
15 (calculated, Pait et al. 1992) 
4.5 (27°C, Montgomery 1993; quoted, Tomlin 1994; Majewski & Capel 1995) 
0.10 (Howe et al. 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0346 (Worthing & Hance 1991; Tomlin 1994) 
0.0427 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.0351 (20°C, Montgomery 1993) 
0.0174; 0.0346 (liquid PL, GC-RT correlation; quoted lit., Donovan 1996) 
0.0148; 0.00912, 0.0151 (gradient GC method; estimation using modified Watson method: Sugden’s parachor, 
McGowan’s parachor, Tsuzuki 2000) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
2.229 (20–27°C, calculated-P/C, Montgomery 1993) 
2.463 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
3.68 (shake flask-LSC, Felsot & Dahm 1979) 
2.22 (Rao & Davidson 1980) 
O 
P 
S S 
O 
S 
© 2006 by Taylor & Francis Group, LLC

3972 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
4.477 (shake flask-GC, Bowman & Sans 1983b) 
4.52 (Worthing & Hance 1991; Tomlin 1994) 
2.22–4.70 (Montgomery 1993) 
4.48 (recommended, Sangster 1993) 
3.54 (22°C, shake flask, Brecken-Folse et al. 1994) 
0.832 (12°C in reconstituted test water at pH 7.5, Howe et al. 1994) 
4.52 (Milne 1995) 
4.48 (recommended, Hansch et al. 1995) 
4.86 (RP-HPLC-RT correlation, Finizio et al. 1997) 
4.51 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
2.73 (topmouth gudgeon, Metcalf & Sanborn 1975) 
2.18 (calculated-S, Kenaga 1980; quoted, Pait et al. 1992) 
1.0 (Triaenodes tardus, Belluck & Felsot 1981) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
3.04 (soil, calculated-S per Kenaga & Goring 1978, Kenaga 1980) 
2.76, 3.29 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
2.70 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.46–3.03 (Montgomery 1993) 
2.82 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.80, 3.30 (soil, estimated-class-specific model, estimated-general model, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Soil: t. = 9–27 d in soil (Worthing & Hance 1991; quoted, Montgomery 1993; Tomlin 1994); 
selected field t. = 5.0 d (Wauchope et al. 1992; quoted, Richards & Baker 1993; Hornsby et al. 1996); 
soil t. = 5 d (Pait et al. 1992). 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3973 
18.1.1.75 Thiodicarb 
Common Name: Thiodicarb 
Synonym: Bismethomyl thioether, Dicarbosulf 
Chemical Name: dimethyl N,N.-(thiobis(methylimino)carbonyloxy)bis(ethanimidothioate) 
CAS Registry No: 59669-26-0 
Uses: insecticide/molluscicide 
Molecular Formula: C10H18N4O4S3 
Molecular Weight: 354.470 
Melting Point (°C): 
168–172 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
173–174 (Tomlin 1994) 
173 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 1.40 (Montgomery 1993) 
Molar Volume (cm3/mol): 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0353 (mp at 173°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
35 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
19.1 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C): 
0.0043 (20°C, Hartley & Kidd 1987; Montgomery 1993) 
1.33 . 10–5 (20–25°C, Wauchope et al. 1992; Hornsby et al. 1996) 
0.0054 (20°C, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol): 
0.044 (calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
1.70 (shake flask-HPLC, Drabel & Bachmann 1983) 
1.2–1.6 (Montgomery 1993) 
1.70 (recommended, Sangster 1993) 
1.70 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
1.81–3.07; 2.54 (quoted range of reported data; mean, Wauchope et al. 1992) 
2.54 (soil, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
S 
N 
O N 
O 
N O 
O 
N 
S 
© 2006 by Taylor & Francis Group, LLC

3974 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
3.06; 2.25; 2.10–2.69; 2.32–2.52; 2.57 (various soils: clay; loam; sand; sandy loam; silty loam (quoted, Montgomery 
1993) 
1.81–3.07 (various soils, Montgomery 1993) 
2.54; 1.68, 2.57 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t. : 
Hydrolysis: t. ~ 9 d at pH 3 (Montgomery 1993); 
stable at pH 6, rapidly hydrolyzed at pH 9 and slowly at pH 3, t. ~ 9 d (Tomlin 1994). 
Half-Lives in the Environment: 
Air: 
Surface water: hydrolysis t. ~ 9 d at pH 3 (Montgomery 1993); 
stable at pH 6, rapidly hydrolyzed at pH 9 and slowly at pH 3, t. ~ 9 d (Tomlin 1994). 
Ground water: 
Sediment: 
Soil: t. = 3–8 d in various soils (Hartley & Kidd 1987) 
field t. = 7 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3975 
18.1.1.76 Toxaphene 
Common Name: Toxaphene 
Synonym: Agricide maggot killer, Alltex, Alltox, Camphochlor, Chem-Phene, chlorinated Camphene, Chloro-camphene, 
Coopertox, Crestoxo, Cristoxo, ENT 9735, Estonox, Fasco terpene, Geniphene, Gy-phene, Hercules 3956, Huilex, 
Kamfochlor, Melipax, Motox, NA 2761, NCI-C00259, Octachlorcamphene, Polychlorocamphene, Strobane-T, 
Texadust, Toxakil, Toxon 63 
Chemical Name: mixtures of chlorinated camphene and bornane 
Uses: pesticide used primarily on lettuce, cotton, corn, tomatoes, peanuts, wheat and soybean. 
CAS Registry No: 8001-35-2 
Molecular Formula: C10H16Cl8 
Molecular Weight: 413.812 
Note: A large number of isomers exist, thus the commercial product is a mixture and the properties below should 
be regarded as average values for the specific mixture. Considerable variability in properties is thus expected. 
Melting Point (°C): 
65–90 (Howard 1991; Montgomery 1993; Milne 1995) 
35 (dec., Milne 1995) 
Boiling Point (°C): 
246, 351, 360 (estimated from structure, Tucker et al. 1983) 
Density (g/cm3 at 20°C): 
1.65 (25°C, Spencer 1982; Montgomery 1993) 
Molar Volume (cm3/mol): 
358.8 (calculated-Le Bas method at normal boiling point) 
366.8 (calculated-Le Bas method) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 20°C (assuming .Sfus = 56 J/mol K), F: 
0.30 (Mackay et al. 1986) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated and the reported temperature dependence equations): 
3.0 (Brooks 1974) 
0.74 (generator column-GC/ECD, Weil et al. 1974) 
0.40 (Leonard et al. 1976; Wauchope 1978) 
0.40 (Sanborn et al. 1976; Weber et al. 1980) 
0.40 (Martin & Worthing 1977) 
0.50 (shake flask-GC, Paris et al. 1977) 
3.0 (22°C, Khan 1980; Spencer 1982) 
0.3–3.0 (U.S. EPA 1984; McLean et al 1988) 
3.0 (Worthing & Walker 1987) 
0.50 (20°C, selected, Suntio et al. 1988) 
0.55 (20°C, Montgomery 1993) 
0.63 (calculated from vapor pressure and HLC, Wania & Mackay 1993) 
log [C/(mol/m3)] = 0.77 – 1071/(T/K) (Wania & Mackay 1993) 
3.0 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
4.0 . 10–5 (20°C, Spencer 1973) 
27–53 (Brooks 1974; Khan 1980) 
1.3 . 10–4 (Leonard et al. 1976) 
1.3 . 10–4 (20–25°C, Weber et al. 1980) 
1.3 . 10–4 (30°C, Seiber et al. 1981) 
2.0 . 10–5, 4.5 . 10–5, 0.667 (estimated-bp, Tucker et al. 1983) 
© 2006 by Taylor & Francis Group, LLC

3976 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
27.0 (U.S. EPA 1984; quoted, McLean et al. 1988) 
8.92 . 10–4 (20°C, estimated, Murphy et al. 1987) 
0.0005 (20°C, selected, Suntio et al. 1988) 
27–54 (20°C, Montgomery 1993) 
0.0016 (calculated from the eq. below, Wania & Mackay 1993) 
log (P/Pa) = 12.25 – 4487/(T/K) (Wania & Mackay 1993) 
5.3 . 10–4 (20–25°C, selected, Hornsby et al. 1996) 
(2.3–7.10) . 10–4 (supercooled PL, capillary GC-RT correlation, for 21 toxaphene components-chlorinated 
bornane and camphene congeners, Bidleman et al. 2003) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional 
data at other temperatures designated * are compiled at the end of this section): 
490 (gas stripping-GC, Warner et al. 1980) 
6380 (calculated-P/C, Kavanaugh & Trussel 1980) 
45.59 (estimated-group method per Hine & Mookerjee 1975, Tucker et al. 1983) 
0.0238 (calculated-P/C, Mackay et al. 1986) 
496 (gas stripping-GC, Warner et al. 1987) 
0.608 (20°C, estimated, Murphy et al. 1987; quoted, Howard 1991) 
0.62 (20°C, average value for toxaphene complex mixture, Murphy et al. 1987) 
520 (quoted from WERL Treatability Database, Ryan et al. 1988) 
0.42 (20°C, calculated-P/C, Suntio et al. 1988) 
3097 (calculated-P/C, Jury et al. 1990) 
0.067 (0°C, selected, Cotham & Bidleman 1991) 
6382 (Montgomery 1993) 
1.054 (calculated-temp dependence eq., Wania & Mackay 1993) 
log [H/(Pa·m3/mol)] = 11.48 – 3416/(T/K) (Wania & Mackay 1993) 
0.36* (technical toxaphene, gas stripping-GC, measured range 10–40°C, Jantunen & Bidleman 2000) 
log [H/(Pa m3/mol)] = 10.42 – 3209/(T/K); temp range 10–40°C (technical toxaphene, gas stripping-GC, 
Jantunen & Bidleman 2000) 
Octanol/Water Partition Coefficient, log KOW: 
3.52 (shake flask-GC, Paris et al. 1977) 
5.30 (HPLC-RT correlation, Veith et al. 1979) 
3.23 (Rao & Davidson 1980) 
5.28 (Veith & Kosian 1983) 
4.83 (from Veith’s personal communication, Zaroogian et al. 1985) 
5.50 (Garten & Trabalka 1983) 
3.85 (Ryan et al. 1988) 
5.50 (Isnard & Lambert 1988, 1989; Travis & Arms 1988; Wania & Mackay 1993) 
4.63 (estimated-QSAR & SPARC, Kollig 1993) 
3.23–5.50 (Montgomery 1993) 
4.77–6.64 (range for 36 toxaphene components/congeners, shake flask/slow stirring-GC/ECD, Fisk et al. 1999) 
Bioconcentration Factor, log BCF: 
–2.79 (beef biotransfer factor log Bb, correlated-KOW, Radeleff et al. 1952; Claborn et al. 1953,60) 
–3.20 (milk biotransfer factor log Bm, correlated-KOW, Saha 1969) 
3.53 (Bacillus subtilis, Paris et al. 1975, 1977) 
3.72 (Flavobacterium harrisonii, Paris et al. 1975, 1977) 
4.23 (Aspergillus sp., Paris et al. 1975, 1977) 
4.04 (Chlorella prenoidosa, Paris et al. 1975, 1977) 
3.63 (Gambusia, Sanborn et al. 1976) 
4.84 (fathead minnows, Mayer et al. 1977) 
3.51–4.23 (microorganisms, Paris et al. 1977) 
3.59 (pinfish, 4-d exposure, Schimmel et al. 1977; Veith & Kosian 1983) 
3.64 (sheepshead minnow, 4-d exposure, Schimmel et al. 1977) 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3977 
3.49–4.52, 2.60–3.08 (fish, shrimp, Reish et al. 1978) 
4.42, 3.63 (fish: flowing water, static water; Kenaga & Goring 1980) 
4.42, 3.02 (fish, calculated-solubility, Kenaga 1980) 
3.59 (pinfish, Veith & Kosian 1983) 
3.64 (sheepshead minnow, Veith & Kosian 1983) 
3.81, 3.72 (fish: flowing system, microcosm, Garten & Trabalka 1983) 
3.84, 3.98 (algae: snail, Garten & Trabalka 1983) 
3.44, 3.41 (oyster, calculated-KOW and models, Zaroogian et al. 1985) 
3.44, 3.41 (pinfish, calculated-KOW and models, Zaroogian et al. 1985) 
3.44, 3.41 (sheepshead minnow, calculated-KOW & models, Zaroogian et al. 1985) 
4.52, 6.44 (oyster, flow-through 6 months: wet wt basis, lipid wt basis, Geyer et al. 2000) 
4.57, 6.50 (oyster, flow-through 6 months: wet wt basis, lipid wt basis, Geyer et al. 2000) 
4.84, 6.06 (fathead minnow, flow-through 96-d: wet wt basis, lipid wt basis, Geyer et al. 2000) 
4.80, 5.80 (fathead minnow, flow-through 150-d: wet wt basis, lipid wt basis, Geyer et al. 2000) 
>4.73, >5.84 (channel catfish, flow-through 100-d: wet wt basis, lipid wt basis, Geyer et al. 2000) 
3.04, 3.204 (human, fat: wet wt basis, lipid wt basis, Geyer et al. 2000) 
Sorption Partition Coefficient, log KOC: 
3.86 (calculated-S, Kenaga 1980; quoted, Howard 1991) 
4.99 (soil, McDowell et al. 1981; quoted, Nash 1988) 
4.32 (soil, screening model calculations, Jury et al. 1987a, b, 1990; Jury & Ghodrati 1989) 
5.32 (sediment, Bomberger et al. 1983; quoted, Howard 1991) 
3.17 (calculated-KOW as per Kenaga & Goring 1980, Chapman 1989) 
4.31 (estimated-QSAR and SPARC, Kollig 1993) 
3.18 (calculated, Montgomery 1993) 
5.00 (20–25°C, selected, Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: volatilization t. = 2650 d from chemical below soil surface (Jury et al. 1990). 
Photolysis: 
Hydrolysis: estimated t. > 10 yr at pH 5–8 and 25°C (Callahan et al. 1979; quoted, Howard 1991) 
k = (8.0 ± 2.2) . 10–6 h–1 at pH 7 with a calculated t. = 10 yr (Ellington et al. 1987, 1988) 
k = 7.0 . 10–2 yr–1 at pH 7.0 and 25°C (Kollig 1993). 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
t. = 4–5 d for the vapor-phase reaction with hydroxyl radicals (Howard 1991) 
k(aq.) = 8 . 108 M–1 s–1 for the reaction (Fenton with reference to lindane) with hydroxyl radical in aqueous 
solutions at pH 1.9 ± 0.1 and at 24 ± 1°C (Buxton et al. 1988; quoted, Faust & Hoigne 1990; Haag & 
Yao 1992) 
k(aq.) < 1.3 M–1 s–1 for direct reaction with ozone in water at pH 5.6 and 21°C, with t. > 7 h at pH 7 (Yao 
& Haag 1991). 
k(aq.) = (1.2–8.1) . 108 M–1 s–1 for the reaction (Fenton with reference to lindane) with hydroxyl radical in 
aqueous solutions at pH 1.9 ± 0.1 and at 24 ± 1°C (Haag & Yao 1992) 
Biodegradation: very resistant to degradation in soils with reported from t. = 0.8 yr (Adams 1967; quoted, 
Howard 1991) to 14 yr (Nash & Woolson 1967; quoted, Howard 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k2 = 0.016 d–1 with t. = 43 d and k2 = 0.022 d–1 with t. = 32 d for food concn of 21 ng/g and 136 ng/g, 
respectively, in a 30-d uptake followed by 160-d depuration studies for a C7-CHB toxaphene congener 
(juvenile rainbow trout, Fisk et al. 1998) 
k2 = 0.007 d–1 with t. = 95 d and k2 = 0.016 d–1 with t. = 43 d for food concn of 18 ng/g and 121 ng/g, 
respectively, in a 30-d uptake followed by 160-d depuration studies for a C8-CHB toxaphene congener 
(juvenile rainbow trout, Fisk et al. 1998) 
© 2006 by Taylor & Francis Group, LLC

3978 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
k2 = 0.008 d–1 with t. = 83 d and k2 = 0.017 d–1 with t. = 42 d for food concn of 17 ng/g and 134 ng/g, 
respectively, in a 30-d uptake followed by 160-d depuration studies for C9-CHB toxaphene congener 
(juvenile rainbow trout, Fisk et al. 1998) 
k2 = 0.068 yr–1, 0.093 yr–1, 0.160 yr–1 in Lake Michigan, Lake Huron and Lake Ontario, respectively, in lake 
trout (lipid-adjusted, Glassmeyer et al. 2000) 
k2 = 0.085 yr–1, 0.086 yr–1, 0.165 yr–1 in Lake Michigan, Lake Huron and Lake Ontario, respectively, in lake 
trout (wet weight, Glassmeyer et al. 2000) 
Half-Lives in the Environment: 
Air: t. = 4–5 d for the vapor-phase reaction with hydroxyl radicals (GEMS 1986; quoted, Howard 1991). 
Surface water: measured k < 1.3 M–1 s–1 for direct reaction with ozone in water at pH 2 and 21°C, with t. > 7 h 
at pH 7 (Yao & Haag 1991); 
half-lives in lake water: t. = 18–31 yr in Lake Superior, t. = 5–8 yr in Lake Michigan, t. ~ 8.5 yr in Lake 
Huron and t. ~ 6 yr in Lake Ontario (Glassmeyer et al. 2000). 
Ground water: 
Sediment: 
Soil: very persistent with reported half-life from t. = 0.8 yr (Adams 1967; quoted, Howard 1991) to 14 yr 
(Nash & Woolson 1967; quoted, Howard 1991); 
t. > 50 d when subject to plant uptake via volatilization (Callahan et al. 1979; quoted, Ryan et al. 1988) 
measured dissipation rate k = 0.010 d–1 (Seiber et al. 1979; quoted, Nash 1988); 
t. = 9 d in screening model calculations (Jury et al 1987b); 
estimated dissipation rate k = 0.0011 and 0.013 d–1 (Nash 1988); 
t. = 3650 d for volatilization to atmosphere from chemical below soil surface (Jury et al. 1990); 
field t. = 9 d (20–25°C, selected, Hornsby et al. 1996) 
t. = 0.8–14 yr in soil, t. = 10–18 yr in the environment (Geyer et al. 2000) 
Biota: field t. = 15.6 d in fruit tree leaves (Decker et al. 1950; quoted, Nash 1983); 
microagroecosystem t. = 19 d in cotton leaves (Nash & Harris 1977; quoted, Nash 1983); 
field t. ca. 6.3 d in cotton canopy (Willis et al. 1980; quoted, Nash 1983); 
t. = 524 d for white suckers, and t. = 232 to 322 d for lake trout (total toxaphene, Delorme et al. 1993); 
average fish half-lives in the Great Lakes. t. = 9.1 yr in Lake Michigan, t. = 7.7 yr in Lake Huron and 
t. = 4.3 yr in Lake Ontario (lake trout, Glassmeyer et al. 2000) 
Depuration t. = 32–96 d for a 30-d uptake and 160-d depuration studies (Juvenile rainbow trout, Fisk et al. 
1998) 
TABLE 18.1.1.76.1 
Reported Henry’s law constants of toxaphene at 
various temperatures 
Jantunen et al. 2000 
air stripping-GC 
t/°C H/(Pa m3/mol) 
10 0.10 
20 0.36 
30 0.69 
35 0.86 
40 1.50 
log H = A – B/(T/K) 
H/(Pa m3/mol) 
A 10.42 ± 0.54 
B 3209 ± 162 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3979 
FIGURE 18.1.1.76.1 Logarithm of Henry’s law constant versus reciprocal temperature for toxaphene. 
Toxaphene: Henry's law constant vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
m. aP( 
/ H 
nl 
3 
) l om/ 
Jantunen et al. 2000 
© 2006 by Taylor & Francis Group, LLC

3980 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.1.1.77 Trichlorfon 
Common Name: Trichlorfon 
Synonym: Aerol 1, Agroforotox, Anthion, Bay 15922, Bayer 15922, Bilarcil, Bovinox, Britten, Britton, Cekufon, 
Chlorak, Chlorfos, Chlorphos, Chloroftalm, Chloroxyphos, Ciclosom, Combat, Combot, Danex, DEP, Depthon, 
DETF, Dimetox, Dipterax, Diptevur, Ditrifon, Dylox, Dyrex, Dyvon, ENT 19763, Equino-acid, Flibol E, Forotox, 
Foschlor, Hypodermacid, Leivasom, Loisol, Masoten, Mazoten, Methyl chlorophos, Metifonate, Metrifonate, 
Metriphonate, NA 2783, NCI-C54831, Neguvon, Phoschlor, Proxol, Ricifon, Ritsifon, Soldep, Sotipox, Trichlorphon, 
Trichlorphene, Trinex, Tugon, Volfartol, Votexit, Wotexit 
Chemical Name: dimethyl 2,2,2-trichloro-hydroxyethylphosphorate; 2,2,2-trichloro-hydroxy-ethylphosphoric acid dimethyl ester 
Uses: insecticide to control flies and roaches. 
CAS Registry No: 52-68-6 
Molecular Formula: C4H8Cl3O4P 
Molecular Weight: 257.437 
Melting Point (°C): 
77 (Lide 2003) 
Boiling Point (°C): 
100 (at 0.1 mmHg, Spencer 1973; Montgomery 1993; Milne 1995) 
Density (g/cm3 at 20°C): 
1.73 (Spencer 1982; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
194.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.309 (mp at 77°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
154000 (Spencer 1973, 1982; Martin & Worthing 1977; Worthing 1979) 
> 5000 (20°C, shake flask-GC, Bowman & Sans 1983a) 
150000 (Davies & Lee 1987) 
120000 (20°C, Worthing & Hance 1991; Tomlin 1994) 
120000 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
154000 (Montgomery 1993; Milne 1995) 
90000 (Brecken-Folse et al. 1994) 
9000 (Howe et al. 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.00095 (20°C, vapor density, MacDougall 1964) 
0.00104 (20°C, Eichler 1965; Melnikov 1971; Spencer 1973; Hartley & Graham-Bryce 1980) 
0.0640 (20°C, GC-RT correlation without mp correction, Kim et al. 1984; Kim 1985) 
0.0187 (20°C, GC-RT correlation with mp correction, Kim et al. 1984; Kim 1985) 
0.00021 (20°C, Worthing & Hance 1991; Tomlin 1994) 
0.00027 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.00104 (20°C, Montgomery 1993) 
0.00051 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.7 . 10–6 (20°C, calculated-P/C, Suntio et al. 1988) 
1.7 . 10–6 (calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
0.48 (Dow Chemical data, Kenaga & Goring 1980) 
O 
P 
Cl 
Cl 
Cl 
OH 
O 
O 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3981 
0.431 (shake flask-GC, Bowman & Sans 1983b) 
0.76 (HPLC-RT correlation, Kawamoto & Urano 1989) 
0.43–0.76 (Montgomery 1993) 
0.51, 0.72 (shake flask, RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
1.70 (22°C, shake flask, Brecken-Folse et al. 1994) 
0.304 (12°C in reconstituted test water at pH 7.5, Howe et al. 1994) 
0.51 (recommended, Sangster 1993) 
0.43 (Tomlin 1994) 
0.51 (recommended, Hansch et al. 1995) 
0.72 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
–0.155 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
0.778 (calculated-S as per Kenaga & Goring 1978, Kenaga 1980) 
1.90 (correlated, Kawamoto & Urano 1989) 
1.73 (soil, calculated-MCI . and fragments contribution, Meylan et al. 1992) 
1.00 (soil, 20–25°C, selected, Wauchope et al. 1992; quoted, Dowd et al. 1993; Lohninger 1994; Hornsby et al. 1996) 
0.99–1.58 (Montgomery 1993) 
1.90 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.30 (sediment, estimated, Paraiba et al. 1999) 
1.90; 1.87, 2.25 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: photooxidation t. = 1–101 h, based on an estimated rate constant for the vapor-phase reaction with 
hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: first-order hydrolysis t. = 68 h, based on first-order rate constant at pH 7 and 25°C (Chapman & 
Cole 1982; quoted, Howard et al. 1991); 
t. = 510 d at 22°C and at pH 4, t. = 46 h at pH 7, and t. < 30 min at pH 9 (Tomlin 1994). 
Biodegradation: k(aerobic) = 0.28 d–1 with t. = 2.5 d at 20°C by aerobic activated sludge cultivated by an artificial 
sewage (batch contacting method, Kawamoto & Urano 1990) 
aqueous aerobic t. = 24–1080 h, based on unacclimated soil grab sample data (Guirguis & Shafik 1975; 
Kostovetskii et al. 1976; quoted, Howard et al. 1991); 
aqueous anaerobic t. = 96–4320 h, based on unacclimated aerobic biodegradation half-life (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 1–101 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl 
radicals in air (Atkinson 1987; quoted, Howard et al. 1991); 
reaction rate k = 1.90 . 10–4 min–1 in air (Paraiba et al. 1999). 
Surface water: t. = 22–588 h, based on aqueous hydrolysis half-lives at pH 6 and 8 and 25°C (Chapman & Cole 
1982; quoted, Howard et al. 1991); 
t. = 2.5 d at 20°C by aerobic activated sludge (Kawamoto & Urano 1990) 
reaction rate k = 1.90 . 10–4 min–1 in water (Paraiba et al. 1999). 
Ground water: t. = 22–588 h, based on aqueous hydrolysis half-lives at pH 6 and 8 and 25°C (Chapman & Cole 
1982; quoted, Howard et al. 1991). 
Sediment: reaction rate k = 1.90 . 10–5 min–1 in sediment (Paraiba et al. 1999). 
Soil: t. = 24–1080 h, based on unacclimated soil grab sample data (Guirguis & Shafik 1975; Kostovetskii et al. 
1976; quoted, Howard et al. 1991); 
selected field t. = 10 d (Wauchope et al. 1992; Dowd et al. 1993; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3982 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.2 SUMMARY TABLES 
TABLE 18.2.1 
Common names, chemical names and physical properties of insecticides 
Name Synonym Chemical name 
Molecular 
formula 
Molecular 
weight, 
MW g/mol m.p. °C 
Fugacity 
ratio, F at 
25°C pKa 
Acephate [30560-19-1] Orthene O,S-dimethyl acetylphosphoramidothioate C4H10NO3PS 183.166 88 0.241 
Aldicarb [116-06-3] Temik 2-methyl-2-(methylthio)-propionaldehyde 
O-(methylcarbamoyl) oxime 
C7H14N2O2S 190.263 99 0.188 
Aldrin [309-00-2] Aldrec, Aldrex, Aldrite, 
Octalene 
1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro- 
1,4-endoexo-5,8-dimethano-naphthalene 
C12H8Cl6 364.910 104 0.168 
Aminocarb [2032-59-9] Matacil 4-dimethylamino-m-tolyl methylcarbamate C11H16N2O2 208.257 94 0.210 
Azinphos-methyl [86-50-0] Guthion O,O-dimethyl-S-[4-oxo-1,2,3-benzotriazin-3(4H)- 
yl)methyl]phosphorodithioate 
C10H12N3O3PS2 317.324 73 0.338 
Bendiocarb [22781-23-3] Bencarbate, Dycarb, 
Garvox, Multamat 
2,2-dimethyl-1,3-benzodioxol-4-ylmethylcarbamate 
C11H13NO4 223.226 130 0.0933 8.8 
Bromophos [2104–96–3] Nexion, S-1942, 
Omexan, Brofene 
O-4-bromo-2,5-dichlorophenyl-O,O-dimethyl 
phosphorothioate 
C8H8BrCl2PS 317.999 54 0.519 
Bromophos-ethyl 
[4824–78–6] 
Nexagen, Filariol O-(4-bromo-2,5-dichlorophenyl) O,O-diethyl 
phosphorothioate 
C10H12Cl2O3PS 394.049 
Carbaryl [63-25-2] Sevin 1-naphthyl-N-methyl carbamate C12H11NO2 201.221 145 0.0665 
Carbofuran [1563-66-2] Furadan, Yaltox 2,3-dihydro-2,2-dimethylbenzofuran-7-yl 
methylcarbamate 
C12H15NO3 221.252 151 0.0580 
Carbophenothion 
[786–19–6] 
Carbofenotion, 
Acarithion, Akarithion 
S-chlorophenylthio methyl O,O-diethyl 
phosphorothioate 
C11H16ClO2PS3 342.866 liquid 1 
Carbosulfan [55285–14–8] Marshal, Adventage 
Posse, FMC 35001 
2,3-dihydro-2,2-dimethylbenzofuran-7- 
yl(dibutylaminothio) methylcarbamate 
C20H32N2O3S 380.544 liquid 1 
Chlordane [57-74-9] Aspon-chlordane, 
Chlorindan, Octachlor 
1,2,4,5,7,8,8-octachloro-3a,4,7,7a-tetrahydro-4,7- 
methanoindane 
C10H6Cl8 409.779 106 0.160 
cis- or .-chlordane [5103–71–9] C10H6Cl8 409.799 107–109 0.153 
trans- or .-chlordane [5103–74–2] C10H6Cl8 409.799 103–105 0.168 
.-chlordane [5564–34–7] C10H6Cl8 409.799 131 0.0912 
technical grade.[12789–03–6] 
Chlorfenvinphos [470-90-6] Birlane, Sapecron 2-chloro-1-(2,4-dichlorophenyl) vinyl diethyl 
phosphate 
C12H14Cl3O4P 359.569 B19 1 
Chlorpyrifos [2921-88-2] Brodan, Dursban, 
Dowco 179 
O,O-diethyl O-3,5,6-trichloro 2-pyridyl 
phosphorothioate 
C9H11Cl3NO3PS 350.586 42 0.681 
Chlorpyrifos-methyl 
[5598–13–0] 
Reldan, Dowco 214 O,O-dimethyl O-3,5,6-trichloro-2-pyridyl 
phosphorothioate 
C7H7Cl3NO3PS 322.534 43 0.666 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3983 
Crotoxyphos [7700-17-6] Ciodrin dimethyl(E)-1-methyl-2-(1-phenyl-ethoxycarbonyl 
)vinyl phosphate 
C14H19O6P 314.271 liquid 1 
Cyhalothrin [68085–85–8] Cyhalothrin (RS)-.-cyano-3-phenoxybenzyl(Z)-(1RS,3RS)- (2- 
chloro-3,3,3-trifluoropropanyl)-2,2- 
dimethylcyclopropanecarboxylate 
C23H19ClF3NO3 449.850 
lamba-Cyhalothrin 
[91465–08–6] 
C23H19ClF3NO3 449.850 49.2 0.579 
Cypermethrin [52315-07-8] Polytrin, Ambush C, 
Kakfil Super, BSI, draft 
E-ISO 
(RS)-.-cyano-3-phenoxybenzyl (1RS,3RS; 
1RS,3RS)-3-(2,2-dichlorovinyl)-2,2-= 
dimethylcyclopropanecarboxylate 
C22H19Cl2NO3 416.297 70 0.362 
.-cypermethrin [67375-30-8] C22H19Cl2NO3 416.297 78-81 0.292 
.-cypermethrin [65731–84–2] C22H19Cl2NO3 416.297 64–71 
.-cypermethrin [52315–07–8] C22H19Cl2NO3 416.297 –22.4 1 
DDD 
p,p'-DDD [72-54-8] p,p'-TDE 1,1-Dichloro-2,2-bis (4-chlorophenyl)ethane C14H10Cl4 320.041 109.5 0.148 
o,p'-DDD [53-10-0] 1,1-dichloro-(2-chlorophenyl)-2-(4-chlorophenyl)e 
thane 
C14H10Cl4 320.041 112 0.140 
DDE 
p,p'-DDE [72-55-9] p,p'-DDE 1,1-dichloro-2,2-bis-(p-chlorophenyl)-ethylene C14H8Cl4 318.026 89 0.236 
o,p'-DDE [3424-82-6] o,p'-DDE 1,1-Dichloro-2(2-chlorophenyl)-2-(4-chlorophenyl 
)ethylene 
C14H8Cl4 318.026 88-90 0.236 
DDT Agritan C14H9Cl5 354.486 108.5 0.152 
p,p'-DDT [50-29-3] 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)-ethane 
o,p'-DDT [789-02-6] 1,1,1-trichloro-2-(chlorophenyl)-2-(4-chlorophenyl 
)-ethane 
C14H9Cl5 354.486 
Deltamethrin [62918-63-5] Decis, K-Othrine Butox, 
Butoflin 
(S)-.-cyano-3-phenoxybenyl(1R,3R)-3-(2,2-dibro 
mvinyl)-2,2-dimethycyclo-propanecarboxylate 
C22H19Br2NO3 505.199 98-101 0.186 
Demeton [8065-48-3] Systox O,O-diethyl O-2-ethylthioethyl phosphorothioate C8H19O3PS2 258.339 liquid 1 
Demeton-S-methyl 
[919-86-8] 
Metasystoxi S-2-ethylthioethyl O,O-dimethyl phosphorothioate C6H15O3PS2 230.285 liquid 1 
Dialifor [10311-84-9] Torak S-2-chloro-1-phthalimidoethyl O,O-diethylphos 
phorodithioate 
C14H17ClNO4PS2 393.846 68 0.379 
Diamidaphos [1754-58-1] Nellite phenyl N,N'-dimethylphosphoro-diamidate C8H13N2O2P 200.175 103.5 0.170 
Diazinon [333-41-5] Basudin, Diazide, 
Spectracide 
O,O-diethyl O-2-isopropyl-6-methyl-pyrimidin-4- 
yl phosphorothioate 
C12H21N2O3PS 304.345 liquid 1 
Dicapthon [2463-84-5] Dicaptan O-(2-chloro-4-nitrophenyl)-O,O-dimethyl 
phosphorothioate 
C8H9ClNO5PS 297.653 53 0.531 
Dichlofenthion [97-17-6] Mobilawn O-2,4-dichlorophenyl O,O-=diethyl 
phosphorothioate 
C10H13Cl2O3PS 315.153 liquid 1 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3984 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 18.2.1 (Continued) 
Name Synonym Chemical name 
Molecular 
formula 
Molecular 
weight, 
MW g/mol m.p. °C 
Fugacity 
ratio, F at 
25°C pKa 
Dichlorvos [62-73-7] Vapona, Nuvan, DDVP, 
Dedevap 
2,2-dichlorovinyl-O,O-dimethyl phosphate C4H7Cl2O4P 220.976 liquid 1 
Dicrotophos [141-66-2] Carbicron, Ektafos, 
Bidrin 
(E)-2-dimethylcarbamoyl-1-methylvinyl dimethyl 
phosphate 
C8H16NO5P 237.191 liquid 1 
Dieldrin [60-57-1] HEOD 1,2,3,4,10,10-hexachloro-6,7-epoxy- 
1,4,4a,5,6,7,8,8a-octahydro-exo-1,4-endo-5,8- 
dimethanonaphthalene 
C12H8Cl6O 380.909 175.5 0.0334 
Diflubenzuron 
[35367-38-5] 
Deflubenzon, Dimilin 1-(4-chlorophenyl)-3-(2,6-difluoro-benzol) urea C14H9ClF2N2O2 310.683 239 0.00795 
Dimethoate [60-51-5] Cygon O,O-dimethyl-S-(N-methyl-carbamoyl-methyl 
phosphorodithioate 
C5H12NO3PS2 229.258 52 0.543 
Dinoseb [88-85-7] Antox, Aretit, BNP 30, 
DNBP 
2-sec-butyl-4,6-dinitrophenol C10H12N2O5 240.212 40 0.713 
Disulfoton [298-04-4] Di-Syston, Dithiosystox O,O-diethyl-S-(ethylthio)-ethyl phosphorodithioate C8H19O2PS3 274.405 –25 1 
Endosulfan [115-29-7] Thiodan, Cyclodan, 
Malix, Thifor 
5-norbornene-2,3-dimethanol-1,4,5,6,7,7-hexachlo 
rocyclic sulfite 
C9H6Cl6O3S 406.925 106 0.160 
.-Endosulfan.[959–98–8] C9H6Cl6O3S 406.925 106 0.160 
.-Endosulfan [33213–65–9] C9H6Cl6O3S 406.925 207-209 0.0160 
Endosulfan sulfate 
[1031–07–8] 
C9H6Cl6O4S 422.925 181 0.0295 
Endrin [72-20-8] endrine, nendrin 1,2,3,4,10,10-hexachloro-6,7-epoxy- 
1,4,4a,5,6,7,8,8a-octahydro-=exo-1,4-exo-5,8- 
dimethanonaphthalene 
C12H8Cl6O 380.909 dec 245 0.00694 
Ethiofencarb [29973–13–5] Croneton, Bay-Hox- 
1901 
.-ethylthio-o-tolyl methylcarbamate C11H15NO2S 225.307 33.4 0.827 
Ethion [563-12-2] Nialate, diethion O,O,O',O'-tetraethyl-S,S'-methylene 
bis(phosphorodithioate) 
C9H22O4P2S4 384.476 –13 1 
Ethoprophos [13194-48-4] Mocap, ethoprop O-ethyl-S,S-dipropyl-phosphorodithioate C8H19O2PS2 242.340 liquid 1 
Fenitrothion [122-14-5] Sumithion, Folithion 
Cyfen 
O,O-dimethyl O-4-nitro-m-tolyl phosphorothioate C9H12NO5PS 277.234 liquid 1 
Fenoxycarb [79127-80-3] Logic, Pictyl, Varodo ethyl 2-(4-phenoxyphenoxy)ethyl-carbamate C17H19NO4 301.338 53 0.531 
Fenpropathrin 
[64257–84–7] 
Rody, Danitol, Meothrin, 
S-3206 
(R,S)-.-cyano-3-phenoxybenzyl 2,2,3,3- 
tetramethylcyclopropanecarboxylate 
C22H23NO3 349.423 47 0.608 
Fensulfothion [115–90–2] Dassnit, Terracur O,O-diethyl O-4-methylsulphinylphenyl 
phosphorothioate 
C11H17O4PS2 308.354 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3985 
Fenthion [55-38-9] Baytex, Baycid, 
Mercaptophos, 
O,O-dimethyl-O-(3-methyl-4-(methylthio)phenyl) 
phosphorothioate 
C10H15O3PS2 278.328 liquid 1 
Fenvalerate [51630-58-1] Sumicidin, Belmark, 
Pydrin 
(RS)-.-cyano-3-phenoxybenzyl 
(RS)-2-(4-chlorophenyl)-3-methylbutyrate 
C25H22ClNO2 419.901 liquid 1 
Flucythrinate [70124-77-5] Cybolt, Cythrin, Pay-Off (RS)-.-cyano-3-phenoxybenzyl 
(S)-2-(4-difluoromethoxyphenyl)-3-methylbutyrate 
C26H23F2NO4 451.463 liquid 1 
Fonofos [944-22-9] Dyfonate, Fonophos O-ethyl-S-phenyl (RS)-ethyl-phosphorodithioate C10H15OPS2 246.329 liquid 1 
Heptachlor [76-44-8] Methanoindene 1,4,5,6,7,8,8-heptachloro-3a-4,7-7a-tetrahydro-4,7 
-endo-methanoindene 
C10H5Cl7 373.318 95.5 0.203 
Heptachlor epoxide 
[1024–57–3] 
1,4,5,6,7,8-heptachloro-2,3-epoxy-2,3,3a-4,7,7atetrahydro-
4,7-methanoindene 
C10H5Cl7O 389.317 160 0.0474 
Hexachlorocyclohexane BHC, HCH 1,2,3,4,5,6-Hexachlorocyclohexane C6H6Cl6 290.830 
.-HCH.[319–84–6] .-BHC 1,2,3,4,5,6-Hexachlorocyclohexane 290.830 158 0.0496 
.-HCH.[319–85–7] .-BHC 1,2,3,4,5,6-Hexachlorocyclohexane 290.830 309 0.00164 
.-HCH (Lindane) Gammexane 1,2,3,4,5,6-hexachlorocyclohexane C6H6Cl6 290.830 112.5 0.139 
.-HCH.[319–86–8] .-BHC 1,2,3,4,5,6-hexachlorocyclohexane C6H6Cl6 290.830 141.5 0.0719 
Iodofenphos [25311–71–1] Nuvanol N O-2,5-dichloro-4-iodophenyl O,O-dimethyl 
phosphorothioate 
C8H8Cl2IO3PS 345.395 oil 1 
Isophorone [78–59–1] Isooctaphenone 3,5,5-trimethyl-2-cyclohexene-1-one C9H14O 138.206 –8.1 1 
Kepone [143-50-0] Chlordecone decachlorooctahydro-1,3,4-metheno-2H-cyclobuta 
[cd]pentalen-2-one 
C10H10O 490.636 350 dec 0.00065 
Leptophos [21609-90-5] Phosvel O-(4-bromo-2,5-dichlorophenyl) O-methyl 
phenylphosphorothioate 
C13H10BrCl2O2P 
S 
412.066 71 0.345 
Lindane [58-89-9] .-BHC, .-HCH 1,2,3,4,5,6-hexachlorocyclohexane C6H6Cl6 290.830 112.5 0.139 
Malathion [121-75-5] Karbofos, Cythion, 
mercaptothion 
S-[1,2-bis(ethoxycarbenyl)ethyl]-O,O-dimethyl 
phosphorodithioate 
C10H19O6PS 330.358 1.4 1 
Mecarbam [2595-54-2] Afos S-(N-ethyoxycarbonyl-N-methyl-carbamoylmethyl 
) O,O-diethyl 
C10H20NO5PS2 329.374 oil 1 
Methamidophos 
[10265-92-6] 
Monitor, Tamaron O,S-dimethylphosphoramidothioate C2H8NO2PS 141.130 46 0.622 
Methiocarb [2032-65-7] Mesurol, Draza 4-methylthio-3,5-xylyl methylcarbamate C11H15NO2S 225.308 120 0.117 
Methomyl [16752-77-5] Lannate S-methyl-N-(methylcarbamoyl-oxy)- 
thioaceticimidate 
C5H10N2O2S 162.210 78 0.302 
Methoxychlor [72-43-5] Marlate 1,1,1-trichloro-2,2-bis(4-methoxy-phenyl)ethane C16H15Cl3O2 345.648 87 0.246 
Mevinphos [7786-34-7] Apavinfos, Duraphos 2-carbomethoxy-1-methylvinyl dimethyl phosphate C7H13O6P 224.148 –56.1 1 
Mirex [2385-85-5] Dechlorane 1,1a,2,2,3a,4,5,5,5a,5b,6-dodeca-chlorooctahydro- 
1,3,4-metheno-1H-cyclobuta(cd)pentalene 
C10Cl12 545.543 485 dec 0.000031 
Monocrotophos 
[6923-22-4] 
Nuvacron, Azodrin dimethyl (E)-1-methyl-2-(methyl-carbamoyl)vinyl 
phosphate 
C7H14NO5P 223.164 55 0.508
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3986 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 18.2.1 (Continued) 
Name Synonym Chemical name 
Molecular 
formula 
Molecular 
weight, 
MW g/mol m.p. °C 
Fugacity 
ratio, F at 
25°C pKa 
Naled [300–76–5] Arthodibrom, Dibrom, 
Bromex, Bromchlophos 
1,2-dibromo-2,2-dichloroethyl dimethyl phosphate C4H7Br2Cl2O4P 380.784 27 0.956 
Oxamyl [23135-22-0] Vydate N'N'-dimethyl-2-methylcarbamoyloxyimino-2- 
(methylthio)acetamine 
C7H13N3O3S 219.261 109 0.150 
Parathion [56-38-2] Folidol, Bladan, Niran O,O-diethyl O-4-nitrophenyl phosphorothioate C10H14NO5PS 291.261 6.1 1 
Parathion-methyl 
[298-00-0] 
Dalf, Nitrox O,O-dimethyl O-(p-nitrophenyl) phosphorothioate C8H10NO5PS 263.208 38 0.746 
Pentachlorophenol 
[87–86–5] 
PCP pentachlorophenol C6H5OH 266.336 174 0.0345 4.74 
Pentachlorophenol sodium salt (Pentacon) 
Permethrin [52645-53-1] Ambush, Kafil, Picket, 
Pramex 
3-phenoxybenzyl(1RS,3RS;1RS,3RS)-3(2,2-dichlor 
ovinyl)-2,2-=dimethylcyclo-prapanecarboxylate 
C21H20Cl2O3 391.288 34 0.816 
cis-Permethrin 63-65 0.414 
trans-Permethrin 44-47 0.629 
technical grade 
Phenthoate [2597-03-7] Cidial, Elsan ethyl 
2-dimethoxythiophosphorythio-2-phenylacetate 
C12H17O4PS2 320.364 17-18 1 
Phorate [298-02-2] Forsaat, Gramitox O,O-diethyl-S-(ethylthio)methyl phosphordithioate C7H17O2PS3 260.378 <–15 1 
Phorate-sulfone 292.3 
Phorate-sulfoxide 276.4 
Phosmet [732-11-6] Imidan S-[(1,3-dihydro-1,3-dioxo-2H-isoindol-2-yl)methy 
l] 
C11H12NO4PS2 317.321 72 0.346 
Phosphamidon 
[13171-21-6] 
Dimecron 2-chloro-2-diethylcarbamoyl-1-methylvinyl 
dimethyl phosphate 
C10H19ClNO5P 299.689 –45 1 
Pirimicarb [23103-98-2] Pirimor, Aphox 2-dimethylamino-5,6-dimethyl-pyrimidin-4-yl 
dimethylcarbamate 
C11H18N4O2 238.287 90.5 0.228 
Profenofos [41198-08-7] Selecron O-4-bromo-2-chlorophenyl O-ethyl S-propyl 
phosphorothioate 
C11H15BrClO3PS 373.631 liquid 1 
Propoxur [114-26-1] Baygon 2-(1-Methylethoxy)phenol methyl carbamate C11H15NO3 209.242 87 0.246 
Ronnel [299-84-3] Fenchlorphos, Korlan, 
Etrolene, Trolene 
O,O-dimethyl O-2,4,5-trichlorophenylphosphorothioate 
C8H8Cl3O3PS 321.546 41 0.697 
Sulfotep [3689-24-5] dithio, thiotep, ENT, 
Bladafum 
O,O,O',O'-tetraethyl dithiopyrophosphate C8H20O5P2S2 322.320 liquid 1 
Terbacil [5902-51-2] Sinbar, Turbacil 5-chloro-3-(1,1-dimethyl)-6-methyl-2,4-(1H,3H)-p 
yrimidine-dione 
C9H13Cl2N2O3 216.664 176 0.0330 9.0 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3987 
Terbufos [13071-79-9] Contraven, Counter S-tert-butylthiomethyl O,O-diethyl 
phosphorodithioate 
C9H21O2PS3 288.431 liquid 1 
Terbufos sulfone 320.41 
Terbufos sulfoxide 304.41 
Tetramethrin [7696-12-0] Neo-Pynamin, 
phthalthrin 
cyclohex-1-ene-1,2-dicarboximidomethyl 
(1RS,3RS;1RS,3SR)-2,2-dimethyl-3-methylprop-1- 
enyl)cyclopropanecarboxylate 
C19H25NO4 331.407 65-80 
Thiobencarb [28249-77-6] Benthiocarb, Bolero, 
Saturno 
S-(4-chlorophenyl)methyl diethyl-carbamothioate C12H16ClNOS 257.779 1.7 1 
Thiodicarb [59669-26-0] Cicarbosulf, Larvin, 
Lepicron 
dimethyl N,N'-thiobis(methylimino)-carbonyloxy 
bisethanimidothioate 
C10H18N4O4S3 354.470 173 0.0353 
Toxaphene [8001-35-2] Camphechlor chlorinated camphene (67–69% Cl content) - 
mixture 
C10H10Cl8 413.812 65-90 
Trichlorfon [52-68-6] Tugon, Chlorophos, 
Dipterex, Neguvon 
dimethyl 
2,2,2-trichloro-1-hydroxy-ethylphosphonate 
C4H8Cl3O4P 257.437 77 0.309 
Zinophos [297-92-2] Thionazin, Namafos 
Cynem 
O,O-diethyl-O-pyrazin-2-yl phosphorothioate C8H13N2O3PS 248.239 –1.69 1 
© 2006 by Taylor & Francis Group, LLC

3988 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 18.2.2 
Summary of selected physical-chemical properties of insecticides at 25°C 
Selected properties Henry’s law 
constant 
H/(Pa·m3/mol) 
calcd P/C 
log KOC 
reported 
Compound 
Vapor pressure Solubility 
PS/Pa PL/Pa S/(g/m3) CS/(mol/m3) CL/(mol/m3) log KOW 
Acephate 2.26 . 10–4 8.96 . 10–4 818000 4465 17710 –1 5.06 . 10–8 0.301 
Aldicarb 0.004 0.0216 6000 31.54 170 1.1 1.27 . 10–4 1.48 
Aldrin 0.005 0.0302 0.02 5.48 . 10–5 3.31 . 10–4 3.01 91.23 2.61 
Aminocarb 0.00227 0.0109 915 4.39 21.1 1.73 5.17 . 10–4 2.00 
Azinphos-methyl 3.0 . 10–5 9.05 . 10–5 30 0.0945 0.285 2.7 3.17 . 10–4 2.61 
Bendiocarb 6.6 . 10–4 7.21 . 10–3 40 0.179 1.96 3.68 . 10–3 2.76 
Carbaryl 2.67 . 10–5 3.83 . 10–4 120 0.596 8.56 2.36 4.48 . 10–5 2.36 
Carbofuran 8.0 . 10–5 1.41 . 10–3 351 1.59 28.0 2.32 5.04 . 10–5 2.02 
Chlordane 
cis- or .-chlordane 4.0 . 10–4 2.65 . 10–3 0.056 1.37 . 10–4 9.07 . 10–4 6.0 0.342 5.5 
trans- or .-chlordane 5.2 . 10–4 3.15 . 10–3 0.056 1.37 . 10–4 8.30 . 10–4 6.0 0.262 5.5 
Chlorfenvinphos 1.0 . 10–4 1.0 . 10–4 124 0.345 0.345 3.82 2.90 . 10–4 2.47 
Chlorpyrifos 0.00227 3.34 . 10–3 0.73 2.08 . 10–3 3.07 . 10–3 4.92 1.09 3.78 
Chlorpyrifos-methyl 0.006 9.68 . 10–3 4.76 0.0148 0.0238 0.407 3.48 
Crotoxyphos 0.0019 1.90 . 10–3 1000 3.18 3.18 2.23 5.97 . 10–4 2.23 
Cypermethrin# 1.87 . 10–7 6.62 . 10–7 0.004 9.61 . 10–6 3.40 . 10–5 6.6 0.0195 2.59 
.-cypermethrin 2.30 . 10–7 8.21 . 10–7 0.01 2.40 . 10–5 8.41 . 10–5 6.94* 0.0098 
.-cypermethrin 1.80 . 10–7 5.13 . 10–7 0.0934 2.24 . 10–4 6.4 . 10–4 4.70* 8.02 . 10–7 
.-cypermethrin 2.50. 10–7 2.5 . 10–7 0.045 1.08 . 10–4 1.08 . 10–4 2.31 . 10–3 
DDD 
p,p'-DDD 1.30 . 10–4 6.93 . 10–4 0.05 1.56 . 10–4 1.08 . 10–3 5.5 0.640 5.0 
o,p'-DDD 2.0 . 10–4* 1.39 . 10–3 0.10* 6.0 
DDE 
p,p'-DDE 8.66 . 10–4 3.72 . 10–3 0.04 1.26 . 10–4 5.40 . 10–4 5.7 7.95 5.0 
o,p'-DDE 8.0 . 10–4 3.44 . 10–3 0.1 3.14 . 10–4 1.35 . 10–3 5.8 2.54 
DDT 
p,p'-DDT 2.0 . 10–5 1.35 . 10–4 0.0055 1.55 . 10–5 1.11 . 10–4 6.19 2.36 5.4 
o,p'-DDT 2.53 . 10–5 1.72 . 10–4 0.026 7.33 . 10–5 4.96 . 10–4 0.347 
Deltamethrin 1.0 . 10–5 5.52 . 10–5 0.002 3.96 . 10–6 2.18 . 10–5 2.53 5.66 
Demeton 0.0347 0.0347 60 0.232 0.232 0.15 1.85 
Demeton-S-methyl 0.04 0.040 3300 14.3 14.3 2.79 . 10–3 
Dialifor 6.50 . 10–5 1.73 . 10–4 0.18 4.57 . 10–4 1.22 . 10–3 4.7 0.14 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3989 
Diamidaphos 50000 
Diazinon 0.008 8.0 . 10–3 60 0.197 0.197 3.3 0.0406 2.76 
Dicapthon 5.0 . 10–4 1.19 . 10–3 6.25 0.021 0.05 3.6 0.0238 
Dichlofenthion 25 25.0 0.25 7.93 . 10–4 7.93 . 10–4 5.1 31646 
Dichlorvos 7.02 7.02 8000 36.20 36.20 1.45 0.194 1.45 
Dicrotophos 0.0213 0.0213 1000000 4216 4216 5.05 . 10–6 1.88 
Dieldrin 0.0005 0.016 0.17 4.46 . 10–4 0.0142 5.20 1.120 4.08 
Diflubenzuron 1.20 . 10–7 1.31 . 10–5 0.08 2.57 . 10–4 0.0281 0.78 4.66 . 10–4 3.01 
Dimethoate 0.01 0.019 20000 87.23 163.2 0.8 1.15 . 10–4 1.3 
Dinoseb 10 14.07 47 0.196 0.275 51.11 2.09 
Disulfoton 0.02 0.132 25 0.0911 0.603 4.02 0.220 3.25 
DNOC 0.011 0.044 150 1.013 4.063 0.0109 
Endosulfan 0.0013 0.5 1.23 . 10–3 3.6 1.06 4.09 
.-Endosulfan 0.0013 0.008 0.5 1.23 . 10–3 0.008 3.62 3.4 
.-Endosulfan 0.0061 0.394 0.45 1.11 . 10–3 0.071 3.83 3.5 
Endrin 2.0 . 10–5 1.32 . 10–3 0.23 6.04 . 10–4 0.0399 5.2 0.0331 4 
Ethion 1.5 . 10–4 1.50 . 10–4 1.8 4.68 . 10–3 4.68. 10–3 5.7 0.0320 4.19 
Ethoprophos 0.0507 0.0507 750 3.095 3.095 3.59 0.0164 1.85 
Fenitrothion 1.3 . 10–4 1.30 . 10–4 30 0.108 0.108 3.4 1.20 . 10–3 3.3 
Fenoxycarb 1.70 . 10–6 3.29 . 10–6 6 0.0199 0.039 4.3 8.54 . 10–5 3.0 
Fenthion 0.004 4.0 . 10–3 50 0.180 0.180 4.1 0.0223 3.18 
Fenvalerate 4.27 . 10–6 4.27 . 10–6 0.085 2.02 . 10–4 2.02 . 10–4 6.2 0.0211 4.0 
Flucythrinate 1.20 . 10–6* 1.20 . 10–6 0.5* 1.11 . 10–3 1.11 . 10–3 6.2 1.08 . 10–3 5.0 
Fonofos 0.045 0.045 16 0.0650 0.065 3.9 0.693 2.94 
Heptachlor 0.053 0.267 0.056 1.50 . 10–4 7.56 . 10–4 5.27 353.4 4.38 
Heptachlor epoxide 0.35 8.99 . 10–4 0.0190 5.0 4.0 
Hexachlorocyclohexane 
.-BHC 0.003 0.10 1 3.44 . 10–3 0.115 3.81 0.872 3.81 
.-BHC 4.0 . 10–5 0.0264 0.1 3.44 . 10–4 0.227 3.8 0.116 3.36 
.-BHC 0.002 0.0268 8 0.0275 0.369 4.14 0.0727 
Iodofenphos 4.4 . 10–4 4.4 . 10–4 18 0.0521 0.0521 4.04 8.45 . 10–3 
Isophorone 50 50.0 12000 86.83 86.83 1.7 0.576 
Kepone 2.93 . 10–5 0.05 3 0.0061 10.02 5.4 0.005 4.74 
Leptophos 3.0 . 10–6 6.08 . 10–6 0.005 1.21 . 10–5 2.46 . 10–5 5.9 0.247 3.97 
Lindane 0.00374 0.0274 7.3 0.0251 0.184 3.7 0.149 3.0 
Malathion 0.001 0.001 145 0.439 0.439 2.8 2.28 . 10–3 3.26 
Mecarbam negligible < 1000 
Methamidophos 0.0023 3.59 . 10–3 200000 142 2210 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3990 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 18.2.2 (Continued) 
Selected properties Henry’s law 
constant 
H/(Pa·m3/mol) 
calcd P/C 
log KOC 
reported 
Compound 
Vapor pressure Solubility 
PS/Pa PL/Pa S/(g/m3) CS/(mol/m3) CL/(mol/m3) log KOW 
Methiocarb 0.016* 0.130 30 0.133 1.082 2.92 0.120 2.48 
Methomyl 0.0067 0.0229 58000 358 1223 0.60 1.87 . 10–5 
Methoxychlor 0.00013 5.46 . 10–4 0.045* 1.30 . 10–4 5.47 . 10–4 5.08 0.999 4.9 
Mevinphos 0.017 0.0170 600000 268 2677 0.5 6.35 . 10–6 1.64 
Mirex 0.0001 3.545 6.5 . 10–5 1.19 . 10–7 4.22 . 10–3 6.9 839.4 6.0 
Monocrotophos 0.00933 0.0185 1000000 448 8870 B0.20 2.08 . 10–6 
Oxamyl 0.0306 0.173 282000 1290 7261 B0.47 2.38 . 10–5 1.4 
Parathion 6.0 . 10–4 6.0 . 10–4 12.4 0.0426 0.0426 3.8 0.0141 4.02 
Parathion methyl 0.002 2.69 . 10–3 25 0.095 0.128 3.0 0.0211 3.7 
Pentachlorophenol 0.00415 0.12 14 0.053 1.565 5.05 0.79 4 
Permethrin 1.70 . 10–6 2.34 . 10–6 0.006 1.53 . 10–5 2.11 . 10–5 6.1 0.111 4.8 
Phenthoate 3.5 . 10–4 3.50 . 10–4 11 0.0343 0.034 3.69 0.0102 3.00 
Phorate 0.085 0.085 22 0.0845 0.084 3.56 1.01 2.82 
Phosmet 6.0 . 10–5 1.75 . 10–4 25 0.0788 0.229 2.8 7.62 . 10–4 2.8 
Phosphamidon 0.003 0.003 2.5 8.34 . 10–3 0.0083 0.360 0.845 
Pirimicarb 0.003 0.0133 2200 9.232 41.03 3.25 . 10–4 
Profenofos 1.2 . 10–4 1.20 . 10–4 28 0.0749 0.075 1.60 . 10–3 3.34 
Propoxur 1.70 . 10–5 7.73 . 10–5 1800 8.603 39.12 1.5 1.98 . 10–6 1.48 
Pyrethrins 1.33 . 10–6 0.001 3.05 . 10–6 0.437 5 
Ronnel (Fenchlorofos) 0.107 0.154 0.6 1.87 . 10–3 2.69 . 10–3 5.07 57.35 2.9 
Sulfotep 0.0227 0.0227 25 0.0776 0.0776 0.293 
Terbacil 4.13 . 10–5 1.29 . 10–3 710 3.276 102.06 1.26 . 10–5 1.74 
Terbufos 0.0427 0.0427 5 0.0173 0.017 4.48 2.463 2.70 
Thiobencarb 0.00293 19.2 0.0745 0.0393 2.95 
Thiodicarb 0.00431 0.117 35 0.0987 2.68 0.0437 
Toxaphene 0.0009 0.5 1.21 . 10–3 5.50 0.745 5 
Trichlorfon 0.001 3.83 . 10–3 154000 598 2290 0.51 1.67 . 10–6 1.00 
Zinophos 0.4 0.40 1000 4.029 4.03 0.0993 
# isomer not specified 
* The reported values for this quantity vary considerably, whereas this selected value represents the best judgment of the authors. The reader is cautioned that it may be subject to a large error. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3991 
TABLE 18.2.3 
Suggested half-life classes of insecticides in various environmental compartments at 25°C 
Compound Air class Water class Soil class Sediment class 
Aldicarb 1 5 6 8 
Aldrin 4 8 8 9 
Carbaryl 3 4 5 6 
Carbofuran 1 4 5 6 
Chlordane 4 8 8 9 
Chloropyrifos 2 4 4 6 
DDE 4 9 9 9 
p,p'-DDT 4 7 8 9 
Diazinon 5 6 6 7 
Dieldrin 4 8 8 9 
Heptachlor 3 5 6 7 
.-HCH (lindane) 5 8 8 9 
Malathion 2 3 3 5 
Methoxychlor 2 4 6 7 
Mirex 4 6 9 9 
Parathion 2 5 5 6 
Parathion-methyl 2 5 5 6 
Propoxur 1 5 5 6 
Toxaphene 4 9 9 9 
Class Mean half-life (hours) Range (hours) 
1 5 < 10 
2 17 (~ 1 day) 10–30 
3 55 (~ 2 days) 30–100 
4 170 (~ 1 week) 100–300 
5 550 (~ 3 weeks) 300–1,000 
6 1700 (~ 2 months) 1,000–3,000 
7 5500 (~ 8 months) 3,000–10,000 
8 17000 (~ 2 years) 10,000–30,000 
9 ~ 5 years > 30,000 
© 2006 by Taylor & Francis Group, LLC

3992 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
18.3 REFERENCES 
Abdullah, A.R., Bajet, C.M., Matin, M.A., Nhan, D.D., Sulaiman, A.H. (1997) Ecotoxicology of pesticides in the tropical paddy 
field ecosystem. Environ. Toxicol. Chem. 16(1), 59–70. 
Albert, A. (1963) Ionization constants. In: Physical Methods in Heterocyclic Chemistry. Katritzky, A.R., Editor, Academic Press, 
New York. 
Adachi, K., Mitsuhashi, T., Ohkuni, N. (1984) Pesticides and trialkyl phosphates in tap water. Hyogo-Ken Eisei Kenkyusho Kenkyu 
Hokoku 19, 1–6. 
Adams, Jr., R.S. (1967) The fate of pesticide residues in soil. J. Minn. Acad. Sci. 34, 44–48. 
Adams, W.J. (1987) Chapter 16, Bioavailability of neutral lipophilic organic chemicals contained on sediments: A review. In: Fate 
and Effects of Sediment-Bound Chemicals in Aquatic Systems. Dickson, K.L., Maki, A.W., Brungs, W.A., Eds., Pergamon 
Press, New York. 
Addison, J.B. (1981) Measurement of vapour pressures of fenitrothion and metacil. Chemosphere 10, 355–364. 
Adhya, T.K., Sudhakar-Barik, R., Sethunathan, N. (1981) Fate of fenitrothion, methyl parathion and parathion in anoxic sulfurcontaining 
soil systems. Pest. Biochem. Phys. 16, 14. 
Agency for Toxic Substances and Disease Registry (1988) Toxicological profile for chlordane. Agency for Toxic Substances and 
Disease Registry, Atlanta, Georgia. 
Agency for Toxic Substances and Disease Registry (1988) Toxicological profile for DDT, DDE, and DDD. Agency for Toxic 
Substances and Disease Registry, Atlanta, Georgia. 
Ahmad, A., Walgenbach, D.D., Sutter, G.R. (1979) Degradation rates of technical carbofuran and a granular formulation in four soils 
with known insecticide use history. Bull. Environ. Contam. Toxicol. 23, 572–574. 
Ali, S. (1978) Degradation and Environmental Fate of Endosulfan Isomers and Endosulfan Sulfate in Mouse, Insect and Laboratory 
Ecosystem. Diss. Abstr. Int. B. 39(5), 2117., Ph.D. Thesis, University of Illinois. 
Alison, D.T., Hermanutz, R.O. (1977) Toxicity of Diazinon to Brook Trout and Fathead Minnows. EPA 600/3-77-060, U.S. EPA, 
Duluth, Minnesota. 
Alley, E.G. (1973) The use of mirex in control of the imported fire ant. J. Environ. Quality 2(1), 52–61. 
Altschuh, J., Bruggemann, Santl, H., Eichinger, G., Piringer, O.G.(1999) Henry’s law constants for a diverse set of organic chemicals: 
Experimental determination and comparison of estimation methods. Chemosphere 39, 1871–1887. 
Aly, O.M., El-Dib, M.A. (1971) Studies on the persistence of some carbamate insecticides in the aquatic environment. I. Hydrolysis 
of sevin, baygon, pyrolan, and dimetilan in waters. Water Res. 5, 1191–1205. 
Anderson, R.L., Defoe, D.L. (1980) Toxicity and bioaccumulation of endrin and methoxychlor in aquatic invertebrates and fish. 
Environ. Pollut. Ser. A22, 111. 
Andrews, A.K., Van Valin, C.C., Stebbings, B.E. (1966) Some effects of heptachlor on bluegills (Lepomis macrochirus). Trans. Amer. 
Fish Soc. 95, 297. 
Ankley, G.T., Call, D.J., Cox, J.S., Kahl, M.D., Hoke, R.A., Kosian, P.A. (1994) Organic carbon partitioning as a basis for predicting 
the toxicity of chlorpyrifos in sediments. Environ. Toxicol. Chem. 13, 621–626. 
Argyle, R.L., Williams, G.C., Dupree, H.K. (1973) Endrin uptake and release by fingering channel catfish (Ictalurus puncatus). J. Fish 
Res. Board Can. 30, 1743. 
Armbrust, K.L. (2000) Pesticide hydroxyl radical rate constants: measurements and estimates of their importance in aquatic environments. 
Environ. Toxicol. Chem. 19, 2175–2180. 
Ashton, F.M., Crafts, A.S. (1981) Mode of Action of Herbicides. John Wiley & Sons, New York. 
Atkins, D.H.F., Eggleton, A.E.J. (1971) Studies of atmospheric wash-out and deposition of .-BHC, dieldrin and p,p.-DDT using 
radio-labelled pesticides. In: Proc. Symp. on Nucl. Tech. Environ. Pollut., pp. 521–533, Vienna. 
Atkinson, R. (1985) Kinetics and mechanisms of the gas-phase reactions of hydroxyl radicals with organic compounds under 
atmospheric conditions. Chem. Rev. 85, 69–201. 
Atkinson, R. (1987) Structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals 
with organic compounds. Int. J. Chem. Kinetics 19, 799–828. 
Atkinson, R., Carter, W.P.L. (1984) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under 
atmospheric conditions. Chem. Rev. 84, 437–470. 
Atkinson, R., Kwok, E.S.C., Arey, J. (1992) Photochemical processes affecting the fate of pesticides in the atmosphere. Brighton 
Crop Prot. Conf. - Pests Dis. 2, 469–476. 
Atlas, E., Foster, R., Giam, C.S. (1982) Air-sea exchange of high molecular weight organic pollutants: laboratory studies. Environ. 
Sci. Technol. 16, 283–286. 
Augustijn-Beckers, P.W.M., Hornsby, A.G., Wauchope, R.D. (1994) The SCS/ARS/CES pesticide-properties database for environmental 
decision - making. II. Additional compounds. Rev. Environ. Contam. Toxicol. 137, 1–82. 
Babers, F.H. (1955) The solubility of DDT in water determined radiometrically. J. Am. Chem. Soc. 77, 4666. 
Bacci, E., Calamari, D., Gaggi, C., Vighi, M. (1990) Bioconcentration of organic chemical vapors in plant leaves: Experimental 
measurements and correlation. Environ. Sci. Technol. 24, 885–889. 
Bacci, E., Gaggi, C. (1987) Chlorinated hydrocarbon vapours and plant foliage: Kinetics and applications. Chemosphere 16, 
2515–2522. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3993 
Bahner, L.H., Oglesby, J.L. (1979) Test of a model for predicting kepone accumulation in selected estuarine species. In: Aquatic 
Toxicology SPT 667, pp. 221–231. American Standard of Testing Materials, Philadelphia, PA. 
Bahnick, D.A., Doucette, W.J. (1988) Use of molecular connectivity indices to estimate soil sorption coefficients for organic chemicals. 
Chemosphere 17, 1703–1715. 
Baker, M.D., Mayfield, C.I. (1980) Microbial and non-biological decomposition of chlorophenols and phenols in soil. Water Air Soil 
Pollut. 13, 411. 
Baker, R.A., Editor (1991) Organic Substances and Sediments in Water. Vol. 1 and 2. Lewis Publishers, Chelsea, Michigan. 
Baker, R.D., Applegate, H.G. (1970) Effect of temperature and ultraviolet radiation on the persistence of methyl parathion and DDT 
in soils. Argon. J. 62, 509. 
Ballschmiter, K., Wittlinger, R. (1991) Interhemisphere exchange of hexachlorohexanes, hexachlorobenzene, polychlorobiphenyls 
and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane in the lower troposphere. Environ. Sci. Technol. 25, 1103–1111. 
Balson, E.W. (1947) Studies in vapour pressure measurement. III. An infusion manometer sensitive to 5 . 10–4 mmHg. Vapour 
pressures of DDT and other slightly volatile substances. Trans. Faraday Soc. 43, 54–60. 
Banerjee, S., Baughman, G.L. (1991) Bioconcentration factors and lipid solubility. Environ. Sci. Technol. 25, 536–539. 
Banerjee, S., Howard, P.H., Rosenberg, A.M., Dombrowski, A.E., Sikka, H., Tullis, D.L. (1984) Development of general kinetic 
model for biodegradation and its application to chlorophenols and related compounds. Environ. Sci. Technol. 18, 416–422. 
Barlow, F. (1978) Presented at the 4th International Congress of Pesticide Chemistry. Zurich, Switzerland, July 24–28, 1978. 
Baron, R.L., Walton, M.S. (1971) Dynamics of HEOD (dieldrin) in adipose tissue of the rats. Toxicol. Appl. Pharmacol. 18, 958–963. 
Barron, M.G., Plakas, S.M., Wilga, P.C. (1991) Chlorpyrifos pharmacokinetics and metabolism following intravascular and dietary 
administration in channel catfish. Toxicol. Appl. Pharmacol. 108, 474–482. 
Battersby, N.S. (1990) A review of biodegradation kinetics in the aquatic environment. Chemosphere 21(10–11), 1243–1284. 
Baughman, G.L., Lassiter, R.R. (1978) Prediction of environmental pollutant concentration. In: Estimating the Hazard of Chemical 
Substances to Aquatic Life. ASTM STP 657, Cairns, Jr., J., Dickson, K.L., Maki, A.W., Editors, American Society for Testing 
and Materials, Philadelphia, Pennsylvania. 
Baughman, G.L., Paris, D.F. (1981) Microbial bioconcentration of organic pollutants from aquatic systems-A critical review. CRC 
Critical Review in Microbiology. CRC Press, Boca Raton, Florida. 
Beall, M.L., Nash, R.G. (1972) Insecticide depth in soil - Effect on soyabean uptake in the greenhouse. J. Environ. Qual. 1, 283–288. 
Beck, E.W., Johnson, Jr., J.C., Woodham, D.W., Leuck, D.B., Dawsey, L.H., Robbins, J.E., Bowman, M.C. (1966) J. Econ. Entomol. 
59, 1444. 
Behrendt, H., Bruggemann, R. (1993) Modeling the fate of organic chemicals in the soil plant environment: Model study of root 
uptake of pesticides. Chemosphere 27(12), 2325–2332. 
Bellin, C.A., O’Connor, G.A., Yin, Y. (1990) Sorption and degradation of pentachlorophenol in sludge-amended soils. J. Environ. 
Qual. 19, 603–608. 
Belluck, D., Felsot, A. (1981) Bioconcentration of pesticides by egg masses of the caddisfly, Triaenodes tardus milne. Bull. Environ. 
Contam. Toxicol. 26, 299–306. 
Beltrame, P., Beltrame, P.L., Cartini, P., Guardione, D., Lanzetta, C. (1988) Inhibiting action of chlorophenols on biodegradation of 
phenol and its correlation with structured structural properties of inhibitors. Biotechn. Bioeng. 31, 821–828. 
Bender, M.E. (1969) Uptake and retention of malathion by the carp. Prog. Fish-Cult. 31, 155–159. 
Bennett, H.J., Day, J.W. (1970) Absorption of endrin by the bluegill sunfish, Lepomis macrochirus. Pest. Monit. J. 3, 201. 
Berdanier, C.D., de Dennis, S.K. (1977) Effect of exercise on the responses of rats to DDT. J. Toxicol. Environ. Health 2, 651–656. 
Beste, C.E., Humburg, N.E. (1983) Herbicide Handbook of the Weed Science Society of America. 5th Edition, Weed Science Society, 
Champaign, Illinois. 
Bevenue, A., Beckman, H. (1967) Pentachlorophenol: A discussion of its properties and its occurrence as a residue in human and 
animal tissues. Res. Rev. 19, 83–134. 
Bhavnagary, H.M., Jayaram, M. (1974) Determination of water solubilities of lindane and dieldrin at different temperatures. Bull. 
Grain Technol. 12(2), 95–99. 
Biddinger, G.R., Gloss, S.P. (1984) The importance of trophic transfer in the bioaccumulation of chemical contaminants in organic 
ecosystem. Res. Rev. 91, 103–145. 
Bidleman, T.F. (1984) Estimation of vapor pressures for nonpolar organic compounds by capillary gas chromatography. Anal. Chem. 
56, 2490–2496. 
Bidleman, T.F., Billings, W.N., Foreman, W.T. (1986) Vapor-particle partitioning of semivolatile organic compounds-Estimation from 
field collections. Environ. Sci. Technol. 20(10), 1038–1043. 
Bidleman, T.F., Leone, A.D., Falconer, R.L. (2003) Vapor pressures and enthalpies of vaporization for toxaphene congeners. J. Chem. 
Eng. Data 48, 1122–1127. 
Bidleman, T.F., Renberg, L. (1985) Determination of vapor pressures for chloroguaiacols, chloroveratrols, and nonylphenol by gas 
chromatography. Chemosphere 14, 1475–1481. 
Bierman, V., Swain, W. (1982) Mass balance modeling of DDT dynamics in Lakes Michigan and Superior. Environ. Sci. Technol. 
16, 572–579. 
Biggar, J.W., Riggs, I.R. (1974) Apparent solubility of organochlorine insecticides in water at various temperatures. Hilgardia 42(10), 
383–391. 
© 2006 by Taylor & Francis Group, LLC

3994 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Biggar, J.W., Doneen, L.D., Riggs, I.R. (1966) Soil interaction with organically polluted water. Summary Report, Department of 
Water Science and Engineering, University of California, Davis, California. 
Biggar, J.W., Dutt, G.R., Riggs, I.R. (1967) Predicting and measuring the solubility of p,p.-DDT in water. Bull. Environ. Contam. 
Toxicol. 2(3), 90. 
Bilkert, J.N., Rao, P.S.C. (1985) Sorption and leaching of three nonfumigant nematocides in soils. J. Environ. Sci. Health B20, 1–26. 
Bintein, S., Devillers, J. (1994) QSAR for organic chemical sorption in soils and sediments. Chemosphere 28, 1171–1188. 
Bishop, W.E., Maki, A.W. (1980) A critical comparison of two bioconcentration test methods. In: Aquatic Toxicology. ASTM STP 
707, pp. 61–77, American Society for Testing and Materials, Philadelphia, Pennsylvania. 
Blackman, G.E., Parke, M.H., Garton, G. (1955) The physiological activity of substituted phenols. I. Relationships between chemical 
structure and physiological activity. Arch. Biochem. Biophys. 54(1), 55–71. 
Blum, D.J.W., Suffet, I.H., Duguet, J.P. (1994) Quantitative structure-activity relationship using molecular connectivity for the activated 
carbon adsorption of organic chemicals in water. Water Res. 28, 687–699. 
Boehncke, A., Seiber, J., Nolting, H.-G. (1990) Investigations of the evaporation of selected pesticides from natural and model surfaces 
in field and laboratory. Chemosphere 21(9), 1109–1124. 
Boehncke, A., Martin, K., Muller, M.G., Cammenga, H.K. (1996) The vapor pressure of lindane (.-1,2,3,4,5,6-hexachlorocyclohexane)- 
A comparison of Knudsen effusion measurements with data from other techniques. J. Chem. Eng. Data 41, 543–545. 
Bomberger, D.C., Gwinn, J.L., Mabey, W.R., Tus, D., Chou, T.W. (1983) Environmental fate and transport at the terrestrial-atmospheric 
interface. ACS Symp. Ser. 225, 197–214. 
Bond, C.A., Woodham, D.W., Ahrens, E.H., Medley, J.G. (1975) The accumulation and disappearance of mirex residues. II. In milk 
and tissues of cows fed two concentrations of the insecticide in their diet. Bull. Environ. Contam. Toxicol. 14, 25–31. 
Bondarenko, S., Gan, J. (2004) Degradation and sorption of selected organophosphate and carbamate insecticides in urban stream 
sediments. Environ. Toxicol. Chem. 23, 1809–1914. 
Boublik, T., Fried, V., Hala, E. (1984) The Vapor Pressures of Pure Substances. 2nd Edition, Elsevier, Amsterdam, The Netherlands. 
Bourquin, A.W., Garnas, R.I., Pritchard, P.H., Wilkes, F.G., Cripe, C.R., Rubinstein, N.I. (1979) Interdependent microcosms for the 
assessment of pollutants in the marine environment. Int. J. Environ. Studies 13, 131–140. 
Bowery, T.G. (1964) In: Analytical Methods for Pesticides, Plant Growth Regulators, and Food Additives. Vol. 2, Zweig, G., Editor, 
Academic Press, New York. 
Bowman, B.T., Sans, W.W. (1979) The aqueous solubility of twenty-seven insecticides and related compounds. J. Environ. Sci. Health 
B14(6), 625–634. 
Bowman, B.T., Sans, W.W. (1983a) Further water solubility determination of insecticidal compounds. J. Environ. Sci. Health B18 (2), 
221–227. 
Bowman, B.T., Sans, W.W. (1983b) Determination of octanol-water partitioning coefficients (KOW) of 61 organophosphorous and 
carbamate insecticides and their relationship to respective water solubility (S) values. J. Environ. Sci. Health B18 (6), 667–683. 
Bowman, M.C., Acree, Jr., F., Corbett, M.K. (1960) Solubility of carbon-14 DDT in water. J. Agric. Food Chem. 8 (5), 406–408. 
Bowman, M.C., Schechter, M.S., Carter, R.L. (1965) Behavior of chlorinated insecticides in a broad spectrum of soil types. J. Agric. 
Food Chem. 13, 360–365. 
Branson, D.R. (1978) Predicting the fate of chemicals in the aquatic environment from laboratory data. pp. 55–70. In: Estimating 
the Hazard of Chemical Substances to Aquatic Life. ASTM STP 657, Cairns, Jr., J., Dickson, K.L., Maki, A.W., Editors, 
American Society for Testing and Materials, Philadelphia, Pennsylvania. 
Brecken-Folse, J.A., Mayer, F.L., Pedigo, L.E., Marking, L.L. (1994) Acute toxicity of 4-nitrophenol, 2,4-dinitrophenol, terbufos and 
trichlorfon to grass shrimp (Palaemonetes spp.) and sheepshead minnows (Cyprinodon variegatus) as affected by salinity 
and temperature. Environ. Toxicol. Chem. 13, 67–77. 
Briggs, G.G. (1973) A simple relationship between soil adsorption of organic chemicals and their octanol/water partitioning coefficients. 
Proc. 7th British Insecticide and Fungicide Conference 1, 83–86. 
Briggs, G.G. (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water 
solubilities, bioconcentration factors, and the Parachor. J. Agric. Food Chem. 29, 1050–1059. 
Bright, N.F.H., Cuthill, J.C., Woodbury, N.H. (1950) The vapor pressure of parathion and related compounds. J. Sci. Food Agric. 1, 344. 
Brockway, D.L., Smith, P.D., Stancil, F.E. (1984) Fates and effects of pentachlorophenol in hard- and soft-water microcosms. 
Chemosphere 13(12), 1363–1377. 
Bromilow, R.H., Baker, R.J., Freeman, M.A.H., Gorog, K. (1980) The degradation of aldicarb and oxamyl in soil. Pest. Sci. 11(4), 
389–395. 
Bromilow, R.H., Leistra, M. (1980) Measured and simulated behavior of aldicarb and its oxidation products in fallow soils. Pest. Sci. 
11, 389–395. 
Brooke, D., Nielsen, I., De Bruijn, J., Hermens, J. (1990) An interlaboratory evaluation of the stir-flask method for the determination 
of octanol water partition coefficients. (LOG POW). Chemosphere 21, 119–133. 
Brooke, D.N., Dobbs, A.J., Williams, N. (1986) Octanol/water partition coefficients (P): Measurement, estimation, and interpretation, 
particularly for chemicals with P > 105. Ecotoxicol. Environ. Saf. 11, 251–260. 
Brooks, G.T. (1974) Chlorinated Insecticides: Volume I: Technology and Applications. CRC Press, Cleveland, Ohio. 
Bro-Rasmussen, F., Noddegaard, E., Voldum-Claussen, K. (1970) Comparison of the disappearance of eight organophosphorus 
insecticides from soil in laboratory and in outdoor experiments. Pest. Sci. 1, 179–182. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3995 
Broto, P., Moreau, G., Vandycke, C. (1984) Molecular structures: Perception, autocorrelation descriptor and SAR studies. System of 
atomic contribution for the calculation of the n-octanol/water partition coefficients. Eur. J. Med. Chem. Chim. Term. 19, 71–78. 
Brouwer, D.H., Ravensberg, J.C., De Kort, W.L.A.M., Van Hemmen, J.J. (1994) A personal sampler for inhalable mixed-phase 
aerosols: modification to an existing sample and validation test with three pesticides. Chemosphere 28, 1135–1146. 
Bruggeman, W.A., Martron, L.B.J.M., Kooiman, D., Hutzinger, O. (1981) Accumulation and elimination kinetics of di-, tri-, and 
tetrachlorobiphenyls by goldfish after dietary and aqueous exposure. Chemosphere 10, 811–832. 
Brusseau, M.L., Rao, P.S.C. (1989) The influence of sorbate-organic matter interactions on sorption nonequilibrium. Chemosphere 
18, 1691–1706. 
Brust, H.F. (1966) A summary of chemical and physical properties of Dursban. Down to Earth 22(3), 21–22. 
Budavari, S., Editor (1989) The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals. 11th Edition, Merck and Co., 
Rahway, New Jersey. 
Buehler, S.S., Basu, I., Hites, R. (2004) Causes of variability in pesticide and PCB concentrations in air near the Great Lakes. Environ. 
Sci. Technol. 38, 414–422. 
Bunce, N.J., Nakai, J.S., Yawching, M. (1991) A model for estimating the rate of chemical transformation of a VOC in the troposphere 
by two pathways: Photolysis by sunlight and hydroxyl radical attack. Chemosphere 22, 305–315. 
Burkhard, L.P., Kuehl, D.W., Veith, G.D. (1985) Evaluation of reverse phase liquid chromatography/mass spectrometry for estimation 
of n-octanol/water partition coefficients. Chemosphere 14, 1551–1560. 
Burkhard, N., Guth, J.A. (1979) Photolysis of organophosphorous insecticides on soil surfaces. Pest. Sci. 10, 313–319. 
Burkhard, N., Guth, J.A. (1981) Rate of volatilisation of pesticides from soil surfaces: Comparison of calculated results with those 
determined in a laboratory model system. Pest. Sci. 12(1), 37–44. 
Burmaster, D.E., Menzie, C.A., Freshman, J.S., Burris, J.A., Maxwell, N.I., Drew, S.R. (1991) Assessment of methods for estimating 
aquatic hazards at superfund-type sites: A cautionary tale. Environ. Toxicol. Chem. 10, 827–842. 
Burns, S.E., Hassett, J.P., Rossi, M.V. (1996) Binding effects on jumic-mindiated photoreaction: intrahumic dechlorination of mirex 
in water. Environ. Sci. Technol. 30, 2934–2941. 
Buser, H-R., Muller, M.D. (1995) Isomer and enantioselective degradation of hexachloro-cyclohexane isomers in sewage sludge 
under anaerobic conditions. Environ. Sci. Technol. 29, 664–672. 
Butler, P.A. (1971) Influence of pesticides on marine ecosystems. Proc. Roy. Soc. London (Ser. B) 177, 321–329. 
Butler, L.C., Stauff, D.C., Davis, R.L. (1981) Methyl parathion persistence in soil following simulated spillage. Arch. Environ. Contam. 
Toxicol. 10, 451–458. 
Butte, W., Fox, K., Zauke, G.P. (1991) Kinetics of bioaccumulation and clearance of isomeric hexachlorocyclohexanes. Sci. Total 
Environ. 109/110, 377–382. 
Butte, W., Fooken, C., Klussman, R., Schuller, D. (1981) Evaluation of lipophilic properties for a series of phenols, using reversedphase 
high performance liquid chromatography and high-performance thin-layer chromatography. J. Chromatogr. 214, 59–67. 
Butte, W., Willing, A., Zanke, G.P. (1987) Bioaccumulation of phenols in zebrafish determined by a dynamic flow through test. In: 
QSAR in Environmental Toxicology II. Kaiser, K.L.E., pp. 43–53, Editor, D. Reidel Publishing Company, Dordrecht, The 
Netherlands. 
Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B. (1988) Critical review of rate constants for reactions of hydrated electrons, 
hydrogen atoms and hydroxyl radicals (.OH/.O-) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886. 
Bysshe, S.E. (1982) Chapter 5, Bioconcentration factor in aquatic organisms. In: Handbook on Chemical Property Estimation Methods, 
Environmental Behavior of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, McGraw-Hill, New York. 
Calamari, D., Bacci, E., Forcardi, S., Gaggi, C., Morosini, M., Vighi, M. (1991) Role of plant biomass in the global environmental 
partitioning of chlorinated hydrocarbons. Environ. Sci. Technol. 25, 1489–1495. 
Call, D.J., Brooke, L.T., Lu, P.Y. (1980) Uptake, elimination and metabolism of three phenols by fathead minnows. Arch. Environ. 
Contam. Toxicol. 9, 699–714. 
Callahan, M.A., Slimak, M.W., Gabel, N.W., May, I.P., Fowler, C.F., Freed, J.R., Jennings, P., Durfee, R.L., Whitmore, F.C., Maestri, 
B., Mabey, W.R., Holt, B.R., Gould, C. (1979) Water-Related Environmental Fate of 129 Priority Pollutants. Vol. 1, EPA 
Report No. 440/4–79–029a, Versar, Springfield, Virginia. 
Canton, J.H., Greve, P.A., Sloof, W., van Esch, G.J. (1975) Toxicity accumulation and elimination studies of alpha-hexacyclohexane 
(alpha-HCH) with fresh water organisms of different trophic levels. Water Res. 9, 1163–1169. 
Capel, P.D., Larson, S.J. (1995) A chemodynamic approach for estimating losses of target organic chemicals from water during 
sample holding time. Chemosphere 30, 1097–1107. 
Carlberg, G.E., Martinsen, K., Kringstad, A., Gjessing, E., Grande, M., Kallqvist, T., Skare, J.U. (1986) Influence of aquatic humus 
on the bioavailability of chlorinated micropollutants in Atlantic salmon. Arch. Environ. Contam. Toxicol. 15, 543–548. 
Carlo, C.P., Ashdown, D., Heller, V.G. (1952) The persistence of parathion, toxaphene and methoxychlor in soil. Okla. Agric. Exp. 
Stn. Tech. Bull. No. T-42, 3–11. 
Caro, J.H., Taylor, A.W., Freeman, H.P. (1976) Comparative behaviour of dieldrin and carbofuran in the field. Arch. Environ. Contam. 
Toxicol. 3, 437–447. 
Caron, G., Suffet, I.H., Belton, T. (1985) Effect of dissolved organic carbon on the environmental distribution of nonpolar organic 
compounds. Chemosphere 14, 993–1000. 
© 2006 by Taylor & Francis Group, LLC

3996 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Carringer, R.D., Weber, J.B., Monaco, T.J. (1975) Adsorption-desorption of selected pesticides by organic matter and Montmorillonite. 
J. Agric. Food Chem. 23(3), 568–572. 
Carsel, R.F. (1989) Hydrologic processes affecting the movement of organic chemicals in soils. In: Reactions and Movement of 
Organic Chemicals in Soils. SSSA Special Publication No. 22, Sawhney, B.L., Brown, K., Editors, pp. 439–445, Soil Science 
Society of America and Society of Agronomy, Madison, Wisconsin. 
Carswell, T,G., Nason, H.K. (1938) Properties and uses of pentachlorophenol. Ind. Eng. Chem. 30, 622–626. 
Casida, J.E., Gatterdam, P.E., Getzin, Jr., L.W., Chapman, R.K. (1956) Residual properties of the systemic insecticide O,O-dimethyl 
1-carbomethoxy-1-propen-2-yl phosphate. J. Agric. Food Chem. 4(3), 236–243. 
Castro, T.F., Yoshida, T. (1971) Degradation of organochlorine insecticides in flooded soils in the Philippines. J. Agric. Food Chem. 
19, 1168–1170. 
Cessna, A.J., Grover, R. (1978) Spectrophotometric determination of dissociation constants of selected acidic herbicides. J. Agric. 
Food Chem. 26, 289–292. 
Chapman, P.M. (1989) Review of current approaches to developing sediment quality criteria. Environ. Toxicol. Chem. 8, 589–599. 
Chapman, R.A., Cole, C.M. (1982) Observations on the influence of water and soil pH on the persistence of insecticides. J. Environ. 
Sci. Health B17, 487–504. 
Chen, F., Holten-Andersen, J., Tyle, H. (1993) New developments of the UNIFAC model for environmental application. Chemosphere 
26, 1325–1354. 
Chessells, M., Hawker, D.W., Connell, D.W. (1992) Influence of solubility on bioconcentration of hydrophobic compounds. Ecotoxicol. 
Environ. Saf. 23, 260–273. 
Cheung, B. (1984) Environmental modelling studies of hazardous substances in Ontario. M.A. Sc. Thesis, University of Toronto, 
Toronto, Canada. 
Chigareva, O.I. (1973) Metaphos distribution in fish organs and tissues. Tr., Vses. Nauchno-Issled. Inst. Vet. Sanit. 46, 102. 
Chin, Y.P., Weber, Jr., W.J., Chiou, C.T. (1991) Chapter 14, A thermodynamic partition model for binding of nonpolar organic 
compounds by organic colloids and implications for their sorption to soils and sediments. In: Organic Substances and 
Sediments in Water. Vol. 1. Baker, R.A., Editor, pp. 251–273, Lewis Publishers, Inc., Chelsea, Michigan. 
Chin, Y.P., Weber, Jr., W.J., Voice, T.C. (1986) Determination of partition coefficients and aqueous solubilities by reverse phase 
chromatography-II. Water Res. 20(11), 1443–1450. 
Chiou, C.T. (1981) Partition coefficient and water solubility in environmental chemistry. In: Hazard Assessment of Chemicals. Current 
Development. Vol. 1, Saxena, J., Fisher, F., Eds, pp. 117–153, Academic Press, N.Y. 
Chiou, C.T. (1985) Partition coefficients of organic compounds in lipid-water systems and correlations with fish concentration factors. 
Environ. Sci. Technol. 19, 57–62. 
Chiou, C.T., Freed, V.H. (1977) Chemodynamic Studies on Bench Mark Industrial Chemicals. NSF/RA-770286 prepared for Research 
Applied to National Needs, National Science Foundation, Washington DC. 
Chiou, C.T., Freed, V.H., Schmedding, D.W., Kohnert, R. (1977) Partition coefficient and bioaccumulation of selected organic 
chemicals. Environ. Sci. Technol. 11(5), 475–478. 
Chiou, C.T., Freed, V.H., Peters, L.J., Kohnert, R.L. (1980) Evaporation of solutes from water. Environ. Internat. 3, 231–236. 
Chiou, C.T., Kile, D.E., Brinton, T.I., Malcolm, R.L., Leenheer, J.A., MacCarthy, P. (1987) A comparison of water solubility 
enhancements of organic solutes by aquatic humic materials and commercial humic acids. Environ. Sci. Technol. 21, 1231. 
Chiou, C.T., Kile, D.E., Rutherford, D.W. (1991) The natural oil in commercial linear alkylbenzenesulfonate and its effect on organic 
solute solubility in water. Environ. Sci. Technol. 25, 660–665. 
Chiou, C.T., Malcolm, R.L., Brinton, T.I., Kile, D.E. (1986) Water solubility enhancement of some organic pollutants and pesticides 
by dissolved humic and fulvic acids. Environ. Sci. Technol. 20, 502–508. 
Chiou, C.T., Peters, L.J., Freed, V.H. (1979) A physical concept of soil-water equilibria for nonionic organic compounds. Science 
206, 831–832. 
Chiou, C T., Porter, P.E., Schmedding, D.W. (1983) Partition equilibria of nonionic organic compounds between soil organic matter 
and water. Environ. Sci. Technol. 17, 227–231. 
Chiou, C.T., Schmedding, D.W. (1981) Measurement and interrelation of octanol-water partition coefficient and water solubility of 
organic chemicals. In: Test Protocols for Environmental Fate and Movement of Toxicants. J. Assoc. Anal. Chem., Arlington, 
Virginia. 
Chiou, C.T., Schmedding, D.W., Manes, M. (1982) Partitioning of organic compounds in octanol-water system. Environ. Sci. Technol. 
16, 4–10. 
Cho, H.-H., Park, J.-W., Liu, C.K. (2002) Effect of molecular structures on the solubility enhancement of hydrophobic organic 
compounds by environmental amphiphiles. Environ. Toxicol. Chem. 21, 999–1003. 
Choi, W.-W., Chen, K.Y. (1976) Associations of chlorinated hydrocarbons with fine particles and humic substances in nearshore 
surficial sediments. Environ. Sci. Technol. 10(8), 782–786. 
Claborn, H.W., Bowers, J.W., Wells, R.W., Redeleff, R.D., Nickerson, W.J. (1953) Meat contamination from pesticides. Agric. Chem. 8, 
37–39, 119, 121. 
Claborn, H.W., Redeleff, R.D., Bushland, R.C. (1953) Pesticide Residue in Meat and Milk. Agriculture Research Service, U.S. Dept. 
of Agriculture, Washington DC. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3997 
Clark, J.R., Goodman, L.R., Borthwick, P.W., Patrick, Jr., J.M., Cripe, G.M., Moody, P.M., Moore, J.C., Lores, E.M. (1989) Toxicity 
of pyrethroids to marine invertebrates and fish: A literature review and test results with sediment-sorbed chemicals. Environ. 
Toxicol. Chem. 8, 393–401. 
CLOGP (1986) Medchem Project of Pomona College, Claremont, California. 
Coats, J.R., O’Donnell-Jeffery, N.L. (1979) Toxicity of four synthetic pyrethroid insecticides to rainbow trout. Bull. Environ. Contam. 
Toxicol. 23, 250–258. 
Comba, M.E., Nostrom, R.J., Macdonald, C.R., Kaiser, K.L.E. (1993) A Lake Ontario-Gulf of St. Lawrence dynamic mass budget 
for mirex. Environ. Sci. Technol. 27, 2198–2206. 
Connell, D.W., Bowman, M., Hawker, D.W. (1988) Bioconcentration of chlorinated hydrocarbons from sediment by oligochaetes. 
Ecotoxicol. Environ. Saf. 16, 293–302. 
Connell, D.W., Hawker, D.W. (1986) Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotoxicol. Environ. 
Saf. 11, 184–197. 
Connell, D.W., Markwell, R.D. (1990) Bioaccumulation in the soil to earthworm system. Chemosphere 20(1–2), 91–100. 
Conte, F.S., Parker, J.C. (1975) Effect of aerially-applied malathion on juvenile brown and white shrimp Penaeus aztecus and Penaeus 
setiferus. Trans. Am. Fish Soc. 104, 793–799. 
Cook, R.F. (1973) Carbofuron. In: Analytical Methods for Pesticides and Plant Growth Regulators. Vol. 7, Zweig, G., Editor, pp. 
187–210, Academic Press, New York. 
Coppedge, J.R., Lindquist, D.A., Bull, D.L., Dorough, H.W. (1967) Fate of 2-methyl-2-(methylthio)propinaldehyde O-(methylcarbamoyl) 
oxime (Temik) in cotton plants and soil. J. Agric. Food Chem. 15(5), 902–910. 
Corwin, D.L., Farmer, W.J. (1984) Non-single-valued adsorption-desorption of bromacil and diquat by freshwater sediments. Environ. 
Sci. Technol. 18, 507–514. 
Cotham, W.E., Bidleman, T.F. (1989) Degradation of malathion, endosulfan and fenvalerate in seawater and seawater/sediment 
microcosms. J. Agric. Food Chem. 37, 824–828. 
Cotham, W.E., Bidleman, T F. (1991) Estimating the deposition of organic contaminants to the Arctic. Chemosphere 22, 165–188. 
Cotham, W.E., Bidleman, T.F. (1992) Laboratory investigations of the partitioning of organochlorine compounds between the gas 
phase and atmospheric aerosols on glass fiber filters. Environ. Sci. Technol. 26, 469–478. 
Cowart, R.P., Bonner, F.L., Epps, Jr., E.A. (1971) Rate of hydrolysis of seven organophosphate pesticides. Bull. Environ. Contam. 
Toxicol. 6, 231–234. 
Cox, J.L. (1970) Low ambient level uptake of 14C-DDT by three species of marine phytoplankton. Bull. Environ. Contam. Toxicol. 
5, 218. 
Cripe, C.R., Walker, W.W., Pritchard, P.H., Bourquin, A.W. (1987) A shake-flask test for estimation of biodegradability of toxic organic 
substances in the aquatic environment. Ecotox. Environ. Saf. 14, 239–251. 
Crosby, D.G., Tucker, R.K. (1971) Accumulation of DDT by Daphnia magna. Environ. Sci. Technol. 5, 714–716. 
Crosby, T. (1981) Environmental chemistry of pentachlorophenol. Pure Appl. Chem. 53, 1051–1080. 
Crossland, N.O., Wolff, C.J.M. (1985) Fate and biological effects of pentachlorophenol in outdoor ponds. Environ. Toxicol. Chem. 
4, 73–86. 
Dao, T.H., Lavy, T.L., Dragun, J. (1983) Rationale of the solvent selection for soil extraction of pesticide residues. Res. Rev. 87, 91–104. 
David, W.A.L., Metcalf, R.L., Winton, M. (1960) The systematic insecticidal properties of certain carbamates. J. Econ. Entmol. 53, 
1021–1025. 
Davidson, J.M., Ou, L.T., Rao, P.S.C. (1980) Adsorption, movement, and biological degradation of high concentration of selected 
pesticides in soils. EPA-600-/2–80–124. U S EPA, Cincinnati, Ohio. 
Davies, J.E., Lee, J.A. (1987) Changing profiles in human health effects of pesticides. Pestic. Sci. Biotechnol. 53. 
Davies, R.P., Dobbs, A.J. (1984) The prediction of bioconcentration in fish. Water Res. 18(10), 1253–1262. 
Dean, J., Editor (1985) Lange’s Handbook of Chemistry. 13th Edition, McGraw-Hill, New York. 
Dearth, M.A., Hites, R.A. (1991) Depuration rates of chlordane compounds from rat fat. Environ. Sci. Technol. 25(6), 1125–1128. 
De Bruijn, J., Busser, F., Seinen, W., Hermens, J. (1989) Determination of octanol/water partition coefficients for hydrophobic organic 
chemicals with the “slow-stirring” method. Environ. Toxicol. Chem. 8, 499–512. 
De Bruijn, J., Hermens, J. (1991) Uptake and elimination kinetics of organophosphorus pesticides in the guppy (Poecilia reticulata): 
Correlations with the octanol/water partition coefficient. Environ. Toxicol. Chem. 10, 791–804. 
De Bruijn, J., Seinen, W., Hermens, J. (1993) Biotransformation of organophosphorus compounds by rainbow trout (Oncorhynchus 
mykiss) liver in relation to bioconcentration. Environ. Toxicol. Chem. 12, 1041–1050. 
Decker, G.C., Weinman, C.J., Bann, J.M. (1950) A preliminary report on the rate of insecticide residue loss from treated plants. 
J. Econ. Entomol. 43, 919. 
Delle Site, A. (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for 
selected pollutants. A review. J. Phys. Chem. Ref. Data 30, 187–439. 
De Kock, A.C., Lord, D.A. (1987) A simple procedure for determining octanol-water partition coefficients using reverse phase high 
performance liquid chromatography (RPHPLC). Chemosphere 16(1), 133–142. 
De Kreuk, J.F., Hanstveit, A O. (1981) Determination of the biodegradability of the organic fraction of chemical wastes. Chemosphere 
10, 561–575. 
© 2006 by Taylor & Francis Group, LLC

3998 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
De La Cruz, A.A., Rajanna, B. (1975) Mirex incorporation in the environment: Uptake and distribution in crop seedlings. Bull. 
Environ. Contam. Toxicol. 14, 38–42. 
Delaune, R.D., Gambrell, R.P., Reddy, K.S. (1983) Fate of pentachlorophenol in estuarine sediment. Environ. Pollut. Series B6, 
297–308. 
Delorme, P.D., Muir, D.C.G., Lockhart, W.L., Mills, K.H., Ward, F.J. (1993) Depuration of toxaphene in lake trout and white suckers 
in a natural ecosystem following a single I.P. dose. Chemosphere 27(10), 1965–1973. 
Demayo, A. (1972) Gas chromatographic determination of the rate constant for the hydrolysis of heptachlor. Bull. Environ. Contam. 
Toxicol. 8(4), 234–237. 
Demozay, D., Marechal, G. (1972) Physical and chemical properties in lindane: Monograph of an insecticide, E. Ulman, pp. 15–21, 
K. Schiller, Freiburg im Breisgau. 
Deneer, J.W. (1993) Uptake and elimination of chlorpyrifos in the guppy at sublethal and lethal aqueous concentrations. Chemosphere 
26(9), 1607–1616. 
Deneer, J.W. (1994) Bioconcentration of chlorpyrifos by the three-spined stickleback under laboratory and field conditions. Chemosphere 
29(7), 1561–1575. 
Deutsche Forschungsgemeinschaft (1983) Hexachlorcyclohexan als Schadstoff in Lebensmitteln. Verlag Chemie, Weinheim, Germany. 
13p. 
Devillers, J., Bintein, S., Domine, D. (1996) Comparison of BCF models based on log P. Chemosphere 33(6), 1047–1065. 
Devillers, J., Thioulouse, J., Domine, D., Chastrette, M., Karcher, W. (1991) Multivariate analysis of the input and output data in the 
fugacity model level I. In: Applied Multivariate Analysis in SAR and Environmental Studies. Devillers, J., Karcher, W. 
Editors, Kluwer Academic Publishers, Dordrecht, The Netherlands. 
Dickson, W. (1956) The vapour pressure of 1:1:p:p’-dichlorodiphenyl trichloroethane (D.D.T.). Trans. Farad. Soc. 52, 31–35. 
Dierberg, F.E., Pfeuffer, R.J. (1983) Fate of ethion in canals draining a Florida citrus grove. J. Agric. Food Chem. 31, 704–709. 
Dilling, W.L., Lickly, L.C., Lickly, T.D., Murphy, P.G., McKellar, R.L. (1984) Organic photochemistry. 19. Quantum yields for 
O,O-diethyl O-(3,5,6-trichloro-2-pyridinal) phosphorothioate and 3,5,6-trichloro-2-pyridinol in dilute aqueous solutions and 
their environmental transformation rates. Environ. Sci. Technol. 18, 540–543. 
Di Toro, D.M. (1985) A particle interaction model of reversible organic chemical sorption. Chemosphere 14, 1503–1538. 
Dobbs, A.J., Cull, M.R. (1982) Volatilization of chemicals-relative loss rates and the estimation of vapor pressures. Environ. Pollut. 
(series B) 3, 289–298. 
Dobbs, A.J., Grant, C. (1980) Pesticide volatilisation rates—A new measure of the vapour pressure of pentachlorophenol at room 
temperature. Pest. Sci. 11, 29–32. 
Doedens, J.D., Editor (1967) Lange’s Handbook of Chemistry. McGraw-Hill, New York. 
Domsch, K H. (1984) Effects of pesticides and heavy metals on biological processes in soil. Plant Soil 76, 367–378. 
Donovan, S.F. (1996) New method for estimating vapor pressure by the use of gas chromatography. J. Chromatogr. A, 749, 
123–129. 
Donovan, S.F., Pescatore, M.C. (2002) Method for measuring the logarithm of the octanol-water partition coefficient by using 
short octadecyl-poly-poly(vinyl alcohol) high-performance liquid chromatography columns. J. Chromatog. A, 952, 
47–61. 
Dorfler, U., Adler-Kohler, R., Schneider, P., Scheunert, I., Korte, F. (1991) A laboratory model system for determining the volatility 
of pesticides from soil and plant surfaces. Chemosphere 23, 485–496. 
Dorough, H.W., Hemken, R.W. (1973) Chlordane residues in milk and fat of cows fed HCS 3260 (High Purity Chlordane) in the 
diet. Bull. Environ. Contam. Toxicol. 10, 208–216. 
Dorough, H.W., Ivie, G.W. (1974) Fate of mirex-carbon-14 during and after a 28-day feeding period to a lactating cow. J. Environ. 
Qual. 3(1), 65–67. 
Dorough, H.W., Huhtanen, K., Marshall, T.C., Bryant, H.E. (1978) Fate of endosulfan in rats and toxicological conditions of apolar 
metabolites. Pest. Biochem. Physio. 8, 241–252. 
Dorough, H.W., Pass, B.C. (1973) Residues in corn and soils treated with technical chlordane and high-purity chlordane (HS3260). 
J. Econ. Entomol. 65, 976–979. 
Dowd, J.F., Bush, P.B., Neary, D.G., Taylor, J.W., Berisford, Y.C. (1993) Modeling pesticide movement in forested watersheds: Use 
of PRSM for evaluating pesticide options in loblolly pine stand management. Environ. Toxicol. Chem. 12, 429–439. 
Drahonovsky, J., Vacek, Z. (1971) Dissoziations konstanten und austauscherchromatographie chlorieter phenole. Coll. Czech. Chem. 
Commun. 36(10), 3431–3440. 
Drabel, J., Bachmann, F. (1983) Proinsecticides: structure-activity relationships in carbamoylsulfenyl N-methylcarbamates. In: 
Synthesis and Structure-Activity Relationships. Doyle, P., Fujita, T., Eds., pp. 271–277, Pergamon Press, Oxford, England. 
Eadie, B.J., Robbins, J.A. (1987) 11. The role of particulate matter in the movement of contaminants in the Great Lakes. In: Sources 
and Fates of Aquatic Pollutants. Hites, R.A., Eisenreich, S.J., Editors, pp. 318–364, Advances Chemistry Series 216, American 
Chemical Society, Washington DC. 
Eadsforth, C.V. (1986) Application of reverse-phase HPLC for determination of partition coefficients. Pest. Sci. 17, 311–325. 
Eadsforth, C.V., Moser, P. (1983) Assessment of reverse phase chromatographic methods for determining partition coefficients. 
Chemosphere 12, 1459–1475. 
Edwards, C.A. (1973) Persistence Pesticides in the Environment. 2nd edition, CRC Press, Cleveland, Ohio. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 3999 
Eichelberger, J.W., Lichtenberg, J.J. (1971) Persistence of pesticides in river water. Environ. Sci. Technol. 5, 541–544. 
Eichler, W., Editor (1965) Hanbuch der Insectizidkunde. Veb. Verlag Volk. Gesundheit, Berlin. 
Elgar, K.E. (1983) Pesticides residues in water - an appraisal. In: Pesticide Chemistry: Human Welfare and The Environment. Vol. 4, 
Miyamoto, J., Kearney, P.C., Editors, International Union of Pure and Applied Chemistry, Pergamon Press, Oxford, England. 
Ellgehausen, H., D’Hondt, C., Fuerer, R. (1981) Reversed-phase chromatography as a general method for determining octanol/water 
partition coefficients. Pest. Sci. 12, 219–227. 
Ellgehausen, H., Guth, J.A., Esser, H.O. (1980) Factors determining bioaccumulation potential of pesticides in the individual compartments 
of aquatic food chains. Ecotoxicol. Environ. Saf. 4, 134–157. 
Ellington, J.J. (1989) Hydrolysis Rate Constants for Enhancing Property-Reactivity Relationships. EPA/600/3-89/063. NTIS PB89- 
220479. US EPA, Environmental Research Laboratory, Athens, Georgia. 
Ellington, J.J., Stancil, F.E., Payne, W.D. (1986) Measurement of Hydrolysis Rate Constants for Evaluation of Hazardous Waste 
Land Disposal. Volume 1, Data on 32 chemicals. U.S. EPA-600/3-86/043, Washington DC. 
Ellington, J.J., Stancil, F.E., Payne, W.D. (1987) Measurement of Hydrolysis Rate Constants for Evaluation of Hazardous Waste 
Land Disposal. Vol. 2, Data on 54 chemicals. US EPA-600/53-87/019, Washington DC. 
Ellington, J.J. et al. (1988) Measurement of Hydrolysis Rate Constants for Evaluation of Hazardous Waste Land Disposal. Volume 3. 
U.S. EPA 600/3-88/028, Washington DC. 
Elzerman, A.W., Coates, J.T. (1987) 10. Hydrophobic organic compounds on sediments: Equilibria and kinetics of sorption. In: Sources 
and Fates of Aquatic Pollutants. Hites, R.A., Eisenreich, S.J., Editors, pp. 263–317, Advances Chemistry Series 216, American 
Chemical Society, Washington D.C. 
Ernst, W. (1977) Determination of the bioconcentration potential of a marine organisms—A steady state approach. Chemosphere 6, 
731–740. 
Evans, M.S., Noguchi, G.E., Rice, C.P. (1991) The biomagnification of polychlorinated biphenyls, toxaphene, and DDT compounds 
in a Lake Michigan offshore food web. Arch. Environ. Contam. Toxicol. 20, 87–93. 
Eye, J.D. (1968) Aqueous transport of dieldrin residues in soils. J. Water Pollut. Control Fed. 40, R316-R332. 
Farquharson, M.E., Gage, J.C., Northover, J. (1958) The biological action of chlorophenols. Brit. J. Pharmacol. 13, 20. 
Faust, B.C., Hoigne, J. (1990) Photolysis of Fe (III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmos. 
Environ. 24A, 79–89. 
Faust, S.D., Gomaa, H.M. (1972) Chemical hydrolysis of some organic phosphorous and carbamate pesticides in aquatic environments. 
Environ. Lett. 3, 171–201. 
Feigenbrugel, V., Le Calve, S., Mirabel, P. (2004) Temperature dependence of Henry’s law constants of metolachlor and diazinon. 
Chemosphere 57, 319–327. 
Felsot, A., Dahm, P.A. (1979) Sorption of organophosphorous and carbamate insecticides by soil. J. Agric. Food Chem. 27, 557–563. 
Felsot, A., Wilson, J. (1980) Adsorption of carbofuran and movement on soil thin layers. Bull. Environ. Contam. Toxicol. 24, 778–782. 
Ferreira, G.A., Seiber, J.N. (1981) Volatilization and exudation losses of three N-methyl-carbamate insecticides applied systemically 
to rice. J. Agric. Food Chem. 29, 93–99. 
Fendinger, N.J., Glotfelty, D.E. (1988) A laboratory method for the experimental determination of air/water Henry’s law constants 
for several pesticides. Environ. Sci. Technol. 22, 1289–1293. 
Fendinger, N.J., Glotfelty, D.E. (1990) Henry’s law constants for selected pesticides, PAHs and PCBs. Environ. Toxicol. Chem. 9, 
731–735. 
Fendinger, N.J., Glotfelty, D.E., Freeman, H.P. (1989) Comparison of two experimental techniques for determining air/water Henry’s 
law constants. Environ. Sci. Technol. 23(12), 1528–1531. 
Finizio, A., Vighi, M., Sandroni, D. (1997) Determination of n-octanol/water partition coefficient (KOW) of pesticide, critical review 
and comparison of methods. Chemosphere 34, 131–161. 
Firestone, D. (1977) Chemistry and analysis of pentachlorophenol and its contaminants. Division of Chemistry and Physics, Bureau 
of Foods. FDA By-Lines No. 2, September, 1977. 
Fisher, D.J., Clark, J.R. (1990) Bioaccumulation of kepone by grass shrimp (Palaemonetes pugio): importance of dietary accumulation 
and food ration. Aqua. Toxicol. 17, 167–186. 
Fisher, D.J., Clark, J.E., Roberts, Jr., M.H., Connolly, J.P., Mueller, L.H. (1986) Bioaccumulation of kepone by spot (Leiostomus 
xanthurus): importance of dietary accumulation and ingestion rate. Aqua. Toxicol. 9, 161–178. 
Fischer, R.C., Kramer, W., Ballschmiter, K. (1991) Hexachlorocyclohexane isomers as markers in the water flow of Atlantic Ocean. 
Chemosphere 23, 889–900. 
Fisher, S.W., Lydy, M.J., Barger, J., Landrum, P.F. (1993) Quantitative structure-activity relationships for predicting the toxicity of 
pesticides in aquatic systems with sediment. Environ. Toxicol. Chem. 12, 1307–1318. 
Fisk, A.T., Bosenberg, B., Cymbalisty, C.D., Stern, G.A., Muir, D.C.G. (1999) Octanol/water partition coefficients of toxaphene 
congeners determined by the “slow-stirring” method. Chemophere 39, 2549–2562. 
Fisk, A.T., Norstrom, R.J., Cymbalisty, C.D., Muir, D.C.G. (1998) Dietary accumulation and depuration of hydrophobic organochlorines: 
bioaccumulation parameters and their relationship with the octanol/water partition coefficient. Environ. Toxicol. Chem. 
17, 951–961. 
Fogel, S., Lancione, R., Sewall, A., Boethling, R.S. (1982) Enhanced biodegradation of methoxychlor in soil under enhanced environmental 
conditions. Appl. Environ. Microbiol. 44, 113–120. 
© 2006 by Taylor & Francis Group, LLC

4000 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Fordham, C.L., Reagan, D.P. (1991) Pathways analysis method for estimating water and sediment criteria at hazardous waster sites. 
Environ. Toxicol. Chem. 10, 949–960. 
Foreman, W.T., Bidleman, T.F. (1987) An experimental system for investigating vapor-particle partitioning of trace organic pollutants. 
Environ. Sci. Technol. 21, 869–875. 
Frank, R. (1981) Pesticides and PCB in the Grand and Saugeen River Basins. J. Great Lakes Res. 7, 440–454. 
Fraser, A.J., Burkow, I.C., Wolkers, Mackay, D. (2002) Modeling biomagnification and metabolism of contaminants in harp seals of 
the Barents Sea. Environ. Toxicol. Chem. 21, 55–61. 
Freed, V.H. (1976) Solubility, hydrolysis, dissolution constants and other constants of benchmark pesticides. In: A Literature Survey 
of Benchmark Pesticides. George Washington University Medical Center, Washington, DC. 
Freed, V.H., Chiou, C.T., Haque, R. (1977) Chemodynamics: Transport and behavior of chemicals in the environment - A problem 
in environmental health. Environ. Health Perspect. 20, 55–70. 
Freed, V.H., Chiou, C.T., Schmedding, D.W. (1979) Degradation of selected organophosphorous pesticides in water and soil. J. Agric. 
Food Chem. 27, 706–708. 
Freed, V.H., Kaufman, D.D., Metcalf, R.L., Farmer, W.J., Crosby, D.G., Spencer, W. (1976) Chemodynamics: Transport and Behavior 
of Chemicals in the Environment - A Problem in Environmental Health. George Washington University Medical Center, 
Washington, D.C. 
Freed, V.H., Schmedding, D.W., Kohnert, R., Haque, R. (1979) Physical chemical properties of several organophosphates: Some 
implications in environmental and biological behavior. Pest. Biochem. Physiol. 10, 203–211. 
Freeman, H.P., Taylor, A.W., Edwards, W.M. (1975) Heptachlor and dieldren disappearance from a field soil measured by annual 
residue determinations. J. Agric. Food Chem. 23, 1101–1105. 
Freitag, D., Geyer, H., Kraus, A., Viswanathan, R., Kozias, D., Attar, A., Klein, W., Korte, F. (1982) Ecotoxicological profile analysis. 
VII. Screening chemicals for their environmental behavior by comparative evaluation. Ecotox. Environ. Saf. 6, 60–81. 
Freitag, D., Balhorn, L., Geyer, H., Korte, F. (1985) Environmental hazard profile of organic chemicals. An experimental method 
for the assessment of the behaviour of chemicals in the ecosphere by simple laboratory tests with C-14 labelled chemicals. 
Chemosphere 14, 1589–1616. 
Freitag, D., Lay, J.P., Korte, F. (1984) Environmental hazard profile—Test results as related to structures and translation into the 
environment. In: QSAR in Environmental Toxicology. Kaiser, K.L.E., Editor, pp. 111–136, D. Reidel Publishing Co., 
Dordrecht, The Netherlands. 
Fries, G.F., Marrow, G.S., Gordon, C.H. (1969) Comparative excretion and retention of DDT analogs by dairy cows. J. Dairy Sci. 52, 
1801–1805. 
Frobe, Z., Drevenkar, V., Stengl, B. (1989) Sorption behaviour of some organophosphorus pesticides in natural sediments. Toxicol. 
Environ. Chem. 19, 69–82. 
Fujita, T., Iwasa, J., Hansch, C. (1964) A new substituent constant ’pi’ derived from partition coefficients. J. Am. Chem. Soc. 86, 
5175–5180. 
Fujita, T., Kamoshita, K., Nishioka, T., Nakajima, M. (1974) Physicochemical parameters for structure-activity studies of substituted 
phenyl N-methyl-carbamates. Agric. Biol. Chem. 38, 1521–1528. 
Fuhremann, T.W., Lichtenstein, E.P. (1980) A comparative study of the persistence, movement, and metabolism of six carbon-14 
insecticides in soils and plants. J. Agric. Food Chem. 28, 446–452. 
Fung, K.K.H., Uren, N.C. (1977) Microbial transformation of S-methyl N-[(methyl-carbamoyl)oxy]thioacitimidate. J. Agric. Food 
Chem. 25, 966–969. 
Garst, J.E. (1984) Accurate, wide range, automated, high performance liquid chromatographic method for the estimation of 
octanol/water partition coefficients. II: Equilibration in partition coefficient measurements, additivity of substituent-constants 
and correlation of biological data. J. Pharm. Sci. 73(11), 1623–1629. 
Garst, J.E., Wilson, W.C. (1984) Accurate, wide-range, automated, high-performance liquid chromatographic method for the estimation 
of octanol/water partition coefficients. I: Effect of chromatographic conditions and procedure variables on accuracy and 
reproducibility of the method. J. Pharm. Sci. 73(11), 1616–1623. 
Garten, Jr., C.T., Trabalka, J.R. (1983) Evaluation of models for predicting terrestrial food chain behavior of xenobiotics. Environ. 
Sci. Technol. 17, 590–595. 
Gautier, C., Le Calve, S., Miabel, P. (2003) Henry’s law constants measurements of alachlor and dichlorvos between 283 and 298 
K. Atmos. Environ. 37, 2437–2453. 
Gawlik,. B.M., Feicht, E.A., Karcher, W., Kettup, A., Mujntau, H. (1998) Application of the European reference soil set (EUROSOILS) 
to a HPLC-screening method for the estimation of soil adsorption coefficients of organic compounds. Chemosphere 36, 
2903–2919. 
Gawlik, B.M., Bo, F., Kettrup, A., Muntau, H. (1999a) Characterisation of a second generation of European reference soils for 
sorption studies in the framework of chemical testing - Part I: chemical composition and pedological properties. Sci. Total 
Environ. 229, 99–107. 
Gawlik, B.M., Kettrup, A., Muntau, H. (1999b) Characterisation of a second generation of European reference soils for sorption 
studies in the framework of chemical testing - Part II: soil adsorption behaviour of organic chemicals. Sci. Total Environ. 
229, 109–120. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 4001 
Gawlik, B.M., Kettrup, A., Muntau, H. (2000) Estimation of soil adsorption coefficients of organic compounds by HPLC screening 
using the second generation of the European reference soil set. Chemosphere 41,7–1347. 
Gebefugi, I., Parlar, H., Korte, F. (1979) Occurrence of pentachlorophenol in enclosed environments. Ecotox. Environ. Saf. 3, 269–300. 
GEMS (1986) Graphical Exposure Modeling Systems. Fate of Atmosphere Pollutants (FAP). Office of Toxic Substances, U.S. EPA, 
Washington, D.C. 
Gerstl, Z. (1984) Adsorption, decomposition and movement of oxamyl in soil. Pestic. Sci. 15, 9–17. 
Gerstl., Z. (1990) Estimation of organic chemical sorption by soils. J. Contam. Hydrology 6, 357–375. 
Gerstl, Z., Helling, C.S. (1987) Evaluation of molecular connectivity as a predictive method for the adsorption of pesticides by soils. 
J. Environ. Sci. Health B22, 55–69. 
Gerstl, Z., Mingelgrin, U. (1984) Sorption of organic substances by soils and sediments. J. Environ. Sci. Health B19(3), 297–312. 
Getzin, L.W. (1981a) Degradation of chlorpyrifos in soil: Influence of autoclaving, soil moisture, and temperature. J. Econ. Entomol. 
74, 158–162. 
Getzin, L.W. (1981b) Dissipation of chlorpyrifos from dry soil surfaces. J. Econ. Entomol. 74(6), 707–713. 
Geyer, H., Kraus, A.G., Klein, W., Richter, E., Korte, F. (1980) Relationship between water solubility and bioaccumulation potential 
of organic chemicals in rats. Chemosphere 9, 277–291. 
Geyer, H., Politzki, G., Freitag, D. (1984) Prediction of ecotoxicological behaviour of chemicals: Relationship between n-octanol/water 
partition coefficient and bioaccumulation of organic chemicals by alga Chlorella. Chemosphere 13, 269–284. 
Geyer, H.J., Rimkus, G.G., Scheunert, I., Kaune, A., Schramm, K.-W., Kettrup, A., Zeeman, M., Muir, D.C.G., Hansen, L.G., Mackay, 
D. (2000) Bioaccumulation and occurrence of endocrine-disrupting chemicals (EDCs), persistent organic pollutants (POPs), 
and other organic compounds in fish and orther organisms including humans. In: The Handbook of Environmental Chemistry, 
Vol. 2, Part J Bioaccumulation. Beek, B., Ed., pp. 1–166, Springer-Verlag, Berlin Heidelberg. 
Geyer, H., Scheunert, I., Bruggemann, R., Langer, D., Korte, F., Kettrup, A., Mansour, M., Steinberg, C.E.W., Nyholm, N., Muir, 
D.C.G. (1997) Half-lives and bioconcentration of lindane (.-HCH) in different fish species and relationship with their lipid 
content. Chemosphere 35, 343–351. 
Geyer, H., Scheunert, I., Bruggemann, R., Steinberg, C., Korte, F., Kettrup, A. (1991) QSAR for organic chemical bioconcentration 
in daphnia, algae, and mussels. Sci. Total Environ. 109/110, 387–394. 
Geyer, H., Scheunert, I., Korte, F. (1987) Correlation between the bioconcentration potential of organic environmental chemicals in 
humans and their n-octanol/water partition coefficients. Chemosphere 16, 239–252. 
Geyer, H., Sheehan, P., Kotzias, D., Freitag, D., Korte, F. (1982) Prediction of ecotoxicological behaviour of chemicals: Relationship 
between physico-chemical properties and bioaccumulation of organic chemicals in the mussel Mytilus edulis. Chemosphere 
11, 1121–1134. 
Geyer, H., Viswanathan, R., Freitag, D., Korte, F. (1981) Relationship between water solubility of organic chemicals and their 
bioaccumulation by alga Chlorella. Chemosphere 10, 1307–1313. 
Giustini, A., Brunetti, B., Piacente, V. (1998) A sublimation study of lindane. J. Chem. Eng. Data 43, 447–450. 
Gish, C.D., Hughes, D.L. (1982) Residues of DDT, dieldrin and heptachlor in earthworms during two years following application. 
U.S. Fish Wildlife Serv. Spec. Sci. Rep.: Wildlife. 241. 
Given, C.J., Dierberg, F.E. (1985) Effect of pH on the rate of aldicarb hydrolysis. Bull. Environ. Cantam. Toxicol. 34, 627–633. 
Glassmeyer, S.L., de Vault, D., Hites, R. (2000) Rates at which toxaphene concentration decrease in lake trout form the Great Lakes. 
Environ. Sci. Technol. 34, 1851–1856. 
Glooschenko, V. et al. (1979) Bioconcentration of chlordane by the green alga Senedesmus quadricauda. Bull. Environ. Contam. 
Toxicol. 21, 515–520. 
Glotfelty, D.E. (1981) Atmospheric dispersion of pesticides from treated fields. Ph.D. Thesis, pp. 94–187, University of Maryland, 
College Park, Maryland. 
Glotfelty, D.E., Taylor, A.W., Turner, B.C., Zoller, W.H. (1984) Volatilization of surface-applied pesticides from fallow soils. J. Agric. 
Food Chem. 32, 638–643. 
Glotfelty, D E., Leech, M.M., Jersey, J., Taylor, A.W. (1989) Volatilization and wind erosion of soil surface applied atrazine, simazine, 
alachlor, and toxaphene. J. Agric. Food Chem. 37, 546–551. 
Glotfelty, D.E., Schomburg, C.J., McChesney, M.M., Sagebiel, J.C., Seiber, J.N. (1990) Studies of the distribution, drift, and 
volatilization of diazinon resulting from spray application to a dormant peach orchard. Chemosphere 21(10–11), 1303–1314. 
Gobas, F.A.P.C., Clark, K.E., Shiu, W.Y., Mackay, D. (1989) Bioconcentration of polybrominated benzenes and biphenyls and related 
superhydrophobic chemicals in fish: Role of bioavailability and elimination into the feces. Environ. Toxicol. Chem. 8, 
231–245. 
Goerlitz, D.F., Troutman, D.E., Godsy, E.M., Franks, B.J. (1985) Migration of wood-preserving chemicals in contaminated ground 
water in sand aquifer at Pensacola, Florida. Environ. Sci. Technol. 19, 955–961. 
Goll, O. (1954) Chlorophenol. In: Ullmans Encyklopadie der Technischen Cheme. Foerst, W., Ed., pp. 494–499, Urban and Schwarzenberg, 
Munich/Berlin. 
Gomaa, H.M., Suffert, I.H., Faust, S.D. (1969) Kinetics of hydrolysis of diazinon. Residue Rev. 29, 171. 
Gomaa, H.M., Faust, S.D. (1972) Chemical hydrolysis and oxidation of parathion and paraoxon in aquatic environments. In: Fate of 
Organic Pesticides in the Aquatic Environment. pp. 189–209. Advances Chem. Ser. III. Washington, D.C. 
© 2006 by Taylor & Francis Group, LLC

4002 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Goodman, M.A. (1997) Vapor pressure of agrochemicals by the Knudsen effusion method using a quartz crystal microbalance. J. Chem. 
Eng. Data 42, 1227–1231. 
Gorge, G., Nagel, R. (1990) Kinetics and metabolism of 14-C-lindane and 14-C-atrazine in early life stages of zebrafish (Brachdanio 
rerio). Chemosphere 21, 1125–1137. 
Grain, C.F. (1982) Chapter 14, Vapor pressure. In: Handbook on Chemical Property Estimation Methods, Environmental Behavior 
of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, McGraw-Hill, Inc., New York. 
Gramatica, P., Corradi, M., Consonni, V (2000) Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides 
by molecular descriptors. Chemosphere 41, 762–777. 
Graebing, P., Chib, J.S. (2004) Soil photolysis in a moisture- and temperature-controlled environment. 2. Insecticides. J. Agric. Food 
Chem. 52, 2606–2614. 
Grayson, B.T., Fosbracey, L.A. (1982) Determination of the vapor pressure of pesticides. Pest. Sci. 13, 269–278. 
Grayson, B.T., Langner, E., Wells, D. (1982) Comparison of two gas saturation methods for the determination of the vapor pressure 
of cypermethrin. Pest. Sci. 13, 552–556. 
Green, G.H., McKeown, B.A., Oloffs, P.C. (1984) Acephate in rainbow trout (Salmo gairdneri); Acute toxicity, uptake, elimination. 
J. Environ. Sci. Health B19, 131–155. 
Greenhalgh, R., Dhawan, K., Weinberger, P. (1980) J. Agric. Food Chem. 28, 102–105. 
Grover, R. (1975) Adsorption and desorption of urea herbicides on soils. Can. J. Soil. Sci. 55, 127–135. 
Guckel, W., Kastel, R., Lewerenz, J., Synnatschke, G. (1982) A method for determining the volatility of active ingredients used in 
plant protection. Part III. The temperature relationship between vapor pressure and evaporation rate. Pest. Sci. 13, 161–168. 
Guckel, W., Synnatsche, G., Rittig, R. (1973) A method for determining the volatility of active ingredients used in plant protection. 
Pest. Sci. 4, 137–147. 
Guckel, W., Rittig, R., Synnatsche, G. (1974) A method for determining the volatility of active ingredients used in plant protection. 
II. Application to formulated products. Pest. Sci. 5, 393–400. 
Guesten, H., Filby, W.G., Schoop, S. (1981) Prediction of hydroxyl radical reaction rates with organic compounds in the gas-phase. 
Atom. Environ. 15, 1763–1765. 
Guinee, J., Heijungs, R. (1993) A proposal for the classification of toxic substances within the framework of life cycle assessment 
of products. Chemosphere 26(1), 1925–1944. 
Guirguis, M.W., Shafik, M.T. (1975) Persistence of trichlorfon and dichlorvos in two different autoclaved and non-autoclaved soils. 
Bull. Entomol. Soc. Egypt Econ. Ser. 8, 29–32. 
Gummer, W.D. (1979) Pesticide monitoring in the prairies of western Canada. In: Water Quality Interpretive Report No. 4., Inland 
Waters Directorate, Regina, Saskatchewan, Canada. 
Gunther, F.A., Gunther, J.D. (1971) Residue of pesticides and other foreign chemicals in foods and feeds. Res. Rev. 36, 69–77. 
Gunther, F.A., Westlake, W.E., Jaglan, P.S. (1968) Reported solubilities of 738 pesticide chemicals in water. Res. Rev. 20, 1–148. 
Haag, W.R., Yao, C.C.D. (1992) Rate constants for the reaction of hydroxyl radicals with several drinking water contaminants. 
Environ. Sci. Technol. 26, 1005–1013. 
Hadaway, A.B., Barlow, F., Turner, C.R. (1970) The effect of particle size on the contact toxicity of insecticides to adult mosquitoes. 
Bull. Entomol. Res. 60, 17. 
Halfon, E., Galassi, S., Bruggermann, R., Provini, A. (1996) Selection of priority properties to assess environmental hazard of 
pesticides. Chemosphere 33(8), 1543–1562. 
Hall, R.J., Kolbe, E. (1980) Bioconcentration of organophosphorous pesticides to hazardous levels by amphibians. J. Toxicol. Environ. 
Health 6, 853–868. 
Hamaker, J.W. (1972) Decomposition: Quantitative aspects. In: Organic Chemicals in the Soil Environment. Vol. 1, Goring, C.A.I., 
Hamaker, J.W., Editors, pp. 253–341, Marcel Dekker, Inc., New York. 
Hamaker, J.W. (1975) The interpretation of soil leaching experiments. In: Environmental Dynamics of Pesticides. Haque, R., Freed, 
V.H., Editors, pp. 115–133, Plenum Press, New York. 
Hamaker, J.W., Thompson, J.M. (1972) Adsorption. In: Organic Chemistry in the Soil Environment. Vol. 1, Goring, C.A.I., Hamaker, 
J.W., Editors, pp. 51–145, Marcel Dekker, Inc., New York. 
Hamelink, J.L., Waybrant, R.C. (1976) DDE and lindane in a large-scale model lentic ecosystem. Trans. Am. Fish Soc. 105, 124. 
Hamilton, D.J. (1980) Gas chromatographic measurement of volatility of herbicide esters. J. Chromatogr. 195, 75–83. 
Hammers, W.E., Meurs, G.J., De Ligny, C.L. (1982) Correlations between liquid chromatographic capacity ratio data on lichrosorb 
RP-18 and partition coefficients in the octanol-water system. J. Chromatogr. 247, 1–13. 
Hansch, C., Leo, A. (1979) Substituent Constants for Correlation Analysis in Chemistry and Biology. John Wiley & Sons, New York. 
Hansch, C., Leo, A. (1985) Medchem. Project Issue No. 26, Pomona College, Claremont, California. 
Hansch, C., Leo, A. (1987) Log P Database, Pomona College Medicinal Chemistry Project. Claremont, CA. 
Hansch, C., Leo, A., Hoekman, D. (1995) Exploring QSAR, Hydrophobic, Electronic, and Steric Constants. ACS Professional 
Reference Book, Am. Chem. Soc., Washington, DC. 
Hansen, D.J., Wilson, A.J. (1970) Residues in fish, wildlife and estuaries. Pest. Monit. J. 4, 51. 
Hansen, J L., Spiegel, M.H. (1983) Hydrolysis studies of aldicarb, aldicarb sulfoxide and aldicarb sulfone. Environ. Toxicol. Chem. 2, 
147–153. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 4003 
Haque, R., Ebing, W. (1988) Uptake and accumulation of pentachlorophenol and sodium pentachlorophenate by earth worms from 
water and soil. Sci. Total Environ. 68, 113–125. 
Haque, R., Falco, J., Cohen, S., Riordan, C. (1980) 8. Role of transport and fate studies in the exposure, assessment and screening 
of toxic chemicals. In: Dynamics, Exposure and Hazard Assessment of Toxic Chemicals. Haque, R., Editor, pp. 47–67, Ann 
Arbor Science Publishers, Ann Arbor, Michigan. 
Harner, T., Mackay, D. (1995) Measurement of octanol-air partition coefficients for chlorobenzenes, PCBs, and DDT. Environ. Sci. 
Technol. 29, 1599–1606. 
Harnisch, M., Mockel, H.J., Schultze, G. (1983) Relationship between LOG POW shake-flask values and capacity factors derived 
from reversed-phase high-performance liquid chromatography for n-alkylbenzenes and some OECD reference substances. 
J. Chromatogr. 282, 315–332. 
Harris, J.C. (1982) Chapter 7, Rate of hydrolysis and Chapter 8, Rate of aqueous photolysis. In: Handbook on Chemical Property 
Estimation Methods, Environmental Behavior of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, 
McGraw-Hill, New York. 
Harris, S.J., Cecil, H.C., Bitman, J. (1974) Effect of several dietary levels of technical methoxychlor on reproduction in rats. J. Agric. 
Food Chem. 22(6), 969–973. 
Hartley, D., Kidd, H., Editors (1987) The Agrochemicals Handbook. 2nd Edition, The Royal Society of Chemistry, Nottingham, 
England. 
Hartley, D.M., Johnson, J.B. (1983) Use of freshwater clam Corbicula manilensis as a monitor for organochlorine pesticides. Bull. 
Environ. Contam. Toxicol. 31, 33–40. 
Hartley, G.S., Graham-Bryce, I.J. (1980) Physical Principles and Pesticide Behavior. Volume 2, Academic Press, New York. 
Harvey, J., Hun, J.C.Y. (1978) Decomposition of oxamyl in soil and water. J. Agric. Food Chem. 26, 536–451. 
Harvey, J., Reiser, R.W. (1973) Metabolism of methomyl in tobacco, corn and cabbage. J. Agric. Food Chem. 21, 775–783. 
Hattula, M.L., Wasenius, V.-M., Reunanen, H., Arstila, A.U. (1981) Acute toxicity of some chlorinated phenols, catechols and cresols 
in trout. Bull. Environ. Contam. Toxicol. 26, 295–298. 
Hautala, R.P. (1978) Surfactant Effects on Pesticide Photochemistry in Water and Soil. EPA-600/3–78–060, U.S. EPA. 
Hawker, D.W., Connell, D.W. (1986) Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotoxicol. Environ. 
Saf. 11, 184–197. 
Hawker, D.W., Connell, D.W. (1989) A simple water/octanol partition system for bioconcentration investigations. Environ. Sci. 
Technol. 23, 961–965. 
Hazardous Substances Data Bank (1989) National Library of Medicine, Toxicology Information Program. 
Heiber, O., Szelagiewicz, M. (1976) Research Report, Central Research Dept., Physical Chemistry Section, Ciba-Geigy Ltd.,.Basel. 
Reference in Y.H. Kim 1985. 
Heller, S.R., Scott, K., Bigwood, D.W. (1989) The need for data evaluation of physical and chemical properties of pesticides: The 
ARS pesticide properties database. J. Chem. Inf. Comput. Sci. 29, 159–162. 
Hellmann, H. (1987) Model tests on volatilization of organic trace substances in surface waters. Frensenius Z. Anal. Chem. 328, 
475–479. 
Hemond, H.F., Fechner, E.J. (1994) Chemical Fate and Transport in the Environment. Academic Press, New York. 
Herbicide Handbook (1978) Herbicide Handbook. 4th Ed., Weed Science Society of America, Champaign, Illinois. 
Herbicide Handbook (1983) Herbicide Handbook. 5th Ed., Weed Science Society of America, Champaign, Illinois. 
Hermanutz, R.O. (1978) Endrin and malathion toxicity to flagfish (Jordanella floridae). Arch. Environ. Contam. Toxicol. 7, 159–168. 
Hermens, J., Leeuwangh, P. (1982) Joint toxicity of mixture of 8 and 24 chemicals to the guppy (Poecilia reticulata). Ecotoxicol. 
Environ. Saf. 6, 302–310. 
Hiatt, C.W., Haskins, W.T., Olivier, L. (1960) The action of sunlight on sodium pentachlorophenate. Am. J. Trop. Med. Hyg. 9, 527–531. 
Hidaka, H., Nohara, K., Zhao, J., Serpone, N., Pelizzetti, E. (1992) Photo-oxidative degradation of the pesticide permethrin catalyzed 
by irradiated TiO2 semiconductor slurries in aqueous media. J. Photochem. Photobiol. A: Chem. 64, 247–254. 
Hill, D.W., McCarty, P.L. (1967) Anaerobic degradation of selected chlorinated hydrocarbon pesticides. J. Water Pollut. Control Fed. 
39, 1259–1277. 
Hill, J.C., Kolling, H.P., Paris, D.F., Wolfe, N.L., Zepp, R.G. (1976) Dynamic Behavior of Vinyl Chloride in Aquatic Ecosystems. 
U.S. EPA-600/3-76-001. 
Hinckley, D.A., Bidleman, T.F., Foreman, W.T. (1990) Determination of vapor pressures for nonpolar and semipolar organic 
compounds from gas chromatographic retention data. J. Chem. Eng. Data 35, 232–237. 
Hine, J., Mookerjee, P.K. (1975) The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural 
contributions. J. Org. Chem. 40, 292–298. 
Hinman, M.L., Klaine, S.J. (1992) Uptake and translocation of selected organic pesticides by the rooted aquatic plant Hydrilla 
verticillata royale. Environ. Sci. Technol. 26, 609–613. 
Hodson, J., Williams, N.A. (1988) The estimation of the adsorption coefficient (KOC) for soils by high performance liquid chromatography. 
Chemosphere 17, 67–77. 
Hoigne, J., Bader, H. (1983) Rate constants of reactions of ozone with organic and inorganic compounds in water-I. Non-dissociating 
organic compounds. Water Res. 17, 173–183. 
© 2006 by Taylor & Francis Group, LLC

4004 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Hoigne, J., Bader, H. (1983) Rate constants of reactions of ozone with organic and inorganic compounds in water-II. Dissociating 
organic compounds. Water Res. 17, 185–194. 
Hollifield, H.C. (1979) Rapid nephelometric estimate of water solubility of highly insoluble organic chemicals of environmental 
interests. Bull. Environ. Contam. Toxicol. 23, 579–586. 
Hollister, T.A., Walsh, G.E., Forester, J. (1975) Mirex and marine unicellular algae: Accumulation, population growth, and oxygen 
evolution. Bull. Environ. Contam. Toxicol. 10, 753. 
Holmstead, R.L., Casida, J.E., Luzo, L.O., Fullmer, D.G. (1978) Pyrethroid photo-decomposition: Permethrin. J. Agric. Food Chem. 
26, 590–595. 
Hornsby, A.G., Rao, P.S.C., Jones, R.L. (1990) Fate of aldicarb in the unsaturated zone beneath a citrus grove. Water Resour. Res. 
26, 2287–2202. 
Hornsby, A.G., Wauchope, R.D., Herner, A.E. (1996) Pesticide Properties in the Environment. Springer-Verlag, Inc., New York, New 
York. 
Horvath, A.L. (1982) Halogenated Hydrocarbons, Solubility-Miscibility with Water. Marcel Dekker, Inc., New York, N.Y. 
Horvath, A L., Editor (1991) Halogenated Hydrocarbons. Solubility-Miscibility with Water. Marcel Dekker, Inc., New York. 
Howard, P.H., Editor (1991) Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Pesticides. Vol. III. Lewis 
Publishers, Chelsea, Michigan. 
Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., Michalenko, E.M., Editors (1991) Handbook of Environmental Degradation 
Rates. Lewis Publishers, Chelsea, Michigan. 
Howe, G.E., Marking, L.L., Bills, T D., Rach, J.J., Mayer, Jr., F.L. (1994) Effects of water temperature and pH on toxicity of terbufos, 
trichlorfon, 4-nitrophenol and 2,4-dinitrophenol to the amphipod Gammarus pseudolimnaeus and rainbow trout (Oncorhynchus 
mykiss). Environ. Toxicol. Chem. 13, 51–66. 
Hu, J., Leng, X.-F. (1992) Determination of partition coefficients for some pesticides by using reversed-phase high performance 
liquid chromatography (HPLC). Sepu 10, 344–346. 
Huang, J.-Y., Leng, X.-F. (1993) Interaction of rat hepatocyte and cytochrome P450 with pyrethroids in vitro. Dongwu Xuebao 39(4), 
418–423. 
Huckins, J.N., Stalling, D.L., Petty, J.D., Buckler, D.R., Johnson, B.T. (1982) Fate of kepone and mirex in the aquatic environment. 
J. Agric. Food Chem. 30, 1020–1027. 
Hulzebos, E.M., Adema, D.M.M., van Breemen, D., Henzen, L., van Dis, W.A., Herbold, H.A., Hoekstra, J.A., Baerselman, R., van 
Gestel, C.A.M. (1993) Phototoxicity studies with Lactuca sativa in soil and nutrient solution. Environ. Toxicol. Chem. 12, 
1079–1094. 
Hussain, M., Fukuto, T.R., Reynolds, H.T. (1974) Physical and chemical basis for systemic movement of organo-phosphorus ester 
in the cotton plant. J. Agric. Food Chem. 22, 225–230. 
Hwang, H.-M., Hodson, R.E., Lee, R F. (1986) Degradation of phenol and chlorophenols by sunlight and microbes in estuarine water. 
Environ. Sci. Technol. 20, 1002–1007. 
Hwang, H.-M., Hodson, R.E., Lee, R.F. (1987) Photolysis of phenol and chlorophenols in estuarine water. In: Photochemistry of 
Environmental Aquatic Systems. American Chemical Society, Washington DC. 
Ide, A., Niki, Y., Sakamoto, F., Watanabe, I. (1972) Decomposition of pentachlorophenol in paddy soil. Agric. Biol. Chem. 36, 
1937–1944. 
Isnard, P., Lambert, S. (1988) Estimating bioconcentration factors from octanol-water partition coefficient and aqueous solubility. 
Chemosphere 17, 21–34. 
Isnard, P., Lambert, S. (1989) Aqueous solubility and octanol-water partition coefficient correlations. Chemosphere 18, 1837–1853. 
IUPAC (1985) Halogenated Benzenes, Toluenes and Phenols with Water, Solubility Data Series. Vol. 20, Horvath, A.L., Getzen, F.W., 
Editors, Pergamon Press, Oxford. 
Ivie, G.W., Bull, D.L., Veech, J.A. (1980) Fate of diflubenzuron in water. J. Agric. Food Chem. 28, 330–337. 
Ivie, G.W., Casida, J.E. (1971) Photosensitizers for the accelerated degradation of chlorinated cyclodienes and other insecticide 
chemicals exposed to sunlight on bean leaves. J. Agric. Food Chem. 19, 410–416. 
Ivie, G.W., Gibson, J.R., Bryant, H.E., Begin, J.J., Barnett, J.R., Dorough, H.W. (1974) Accumulation, distribution and excretion of 
mirex-14C in animals exposed for long periods to the insecticide in the diet. J. Agric. Food Chem. 22(4), 646–653. 
Iwata, H., Tanabe, S., Sakai, N., Tatsukawa, R. (1993) Distribution of persistent organochlorines in the oceanic air and surface 
seawater and the role of ocean on their global transport and fate. Environ. Sci. Technol. 27, 1080–1098. 
Iwata, Y., Westlake, W.E., Berkley, J.H., Carman, G.R., Gunther, F.A. (1977) Aldicarb residues in oranges, citrus by-products, orange 
leaves, and soil after an aldicarb soil-application in an orange grove. J. Agric. Food Chem. 25, 933–937. 
Jaber, H.M., Smith, J.H., Cwirla, A.N. (1982) Evaluation of gas saturation methods to measure vapor pressure. (EPA Contract No. 
68-01-5117), SRI International, Menlo Park, California. 
Jaglan, P.S., Gunther, F.A. (1970) Determination of partitioning values of parathion-methyl and related compounds. Analyst 95, 
763–765. 
Jantunen, L.M.M., Bidleman, T.F. (2000) Temperature dependent Henry’s law constant for technical toxaphene. Chemophere - Global 
Change Science 2, 225–231. 
Jarvinen, A.W., Tyo, R.M. (1978) Toxicity to fathead minnows of endrin in food and water. Arch. Environ. Contam. Toxicol. 7, 409–421. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 4005 
Jensen-Korte, U., Anderson, C., Spiteller, M. (1987) Photodegradation of pesticides in the presence of humic substances. Sci. Total 
Environ. 62, 335–340. 
Johnson, B.T., Saunders, C.R., Sanders, H.O. (1971) Biological magnification and degradation of DDT and aldrin by freshwater 
invertebrates. J. Fish Res. Board Can. 28, 705–709. 
Johnson, Jr., J.C., Bowman, M C. (1972) Responses from cows fed diets containing fenthion or fenitrothion. J. Diary Sci. 55, 777. 
Johnson-Logan, L.R., Broshears, R.E., Klaine, S.J. (1992) Partitioning behavior and the mobility of chlordane in ground water. 
Environ. Sci. Technol. 26, 2234–2239. 
Jones, P.A. (1981) Chlorophenols and their impurities in the Canadian environment. Environment Canada, Report SPE 3-EC-81–2F. 
p. 322. 
Jones, R.L., Back, R.C. (1984) Monitoring aldicarb in Florida soil and water. Environ. Toxicol. Chem. 3, 9–20. 
Jones, R.L., Norris, F.A. (1998) Factors affecting degradation of aldicarb and ethoprop. J. Nomatology 30, 45–55. 
Jury, W.A., Farmer, W.J., Spencer, W.F. (1984) Behavior assessment model for trace organics in soil: II. Chemical classification and 
parameter sensitivity. J. Environ. Qual. 13, 567–572. 
Jury, W.A., Focht, D.D., Farmer, W.J. (1987b) Evaluation of pesticide ground water pollution potential from standard indices of soilchemical 
adsorption and biodegradation. J. Environ. Qual. 16(4), 422–428. 
Jury, W.A., Ghodrati, M. (1989) Overview of organic chemical environmental fate and transport modeling approaches. In: Reactions 
and Movement of Organic Chemicals in Soils. SSSA Special Publication No. 22, pp. 271–304, Soil Sci. Soc. of America 
and Soc. of Agronomy, Madison, Wisconsin. 
Jury, W.A., Russo, D., Streile, G., El Abd, H. (1990) Evaluation of volatilization by organic chemicals residing below the soil surface. 
Water Resources Res. 26, 13–20. 
Jury, W.A., Spencer, W.F., Farmer, W.J. (1983) Use of models for assessing relative volatility, mobility, and persistence of pesticides 
and other trace organics in soil systems. In: Hazard Assessments of Chemicals: Recent Developments. Vol. 2, Saxena, J., 
Editor, Academic Press, New York. 
Jury, W.A., Spencer, W.F., Farmer, W.J. (1984) Behavior assessment model for trace organics in soil: III. Application of screening 
model. J. Environ. Qual. 13, 573–579. 
Jury, W.A., Winer, A.M., Spencer, W.F., Focht, D.D. (1987a) Transport and transformations of organic chemicals in the soil-air water 
ecosystem. Rev. Environ. Contam. Toxicol. 99, 120–164. 
Kaiser, K.L.E. (1983) A non-linear function for the calculation of partition coefficients of aromatic compounds with multiple chlorine 
substitution. Chemosphere 12, 1159–1165. 
Kaiser, K.L.E., Dixon, D.G., Hodson, P.V. (1984) QSAR studies on chlorophenols, chlorobenzenes, and para-substituted phenols. 
In: QSAR in Experimental Toxicology. Kaiser, K.L.E., Editor, pp. 189–206, D. Reidel Publishing Company, Dordrecht, the 
Netherlands. 
Kaiser, K.L.E., Valdmanis, I. (1982) Apparent octanol/water partition coefficients of pentachlorophenol as a function of pH. Can. 
J. Chem. 60, 2104–2106. 
Kanan, M.C., Kanan, S.M., Austin, R.N., Patterson, H.H. (2003) Photodecomposition of carbaryl in the presence of silver-doped 
zeolite Y and Suwannee River natural organic matter. Environ. Sic. Technol. 37, 2280–2285. 
Kanazawa, J. (1975) Uptake and excretion of organophosphorus and carbamate insecticides by fresh water, Motsugo (Pseudorasbora 
parva). Bull. Environ. Contam. Toxicol. 14, 346–352. 
Kanazawa, J. (1978) Bioconcentration ratio of diazinon by freshwater fish and snail. Bull. Environ. Contam. Toxicol. 20, 613–617. 
Kanazawa, J. (1980) Prediction of biological concentration potential of pesticides in aquatic organisms. Rev. Plant Protection Res. 
(Japan) 13, 27–36. 
Kanazawa, J. (1981) Measurement of the bioconcentration factors of pesticides by fresh-water fish and their correlation with 
physicochemical properties of acute toxicities. Pest. Sci. 12, 417–424. 
Kanazawa, J. (1983) A method of predicting the bioconcentration potential of pesticides by using fish. JARQ 17(3), 173–179. 
Kanazawa, J. (1987) Biodegradability of pesticides in water by microbes in activated sludge. Environ. Monit. Assess. 9, 57–70. 
Kanazawa, J. (1989) Relationship between the soil sorption constants for pesticides and their physicochemical properties. Environ. 
Toxicol. Chem. 8, 477–484. 
Kanazawa, J., Yushima, T., Kiritani, K. (1971) Pollution of the ecosystem by insecticides. II. Environmental pollution by organochlorine 
insecticides. Kagaku 41(7), 384–391. 
Kapoor, I.P., Metcalf, R.L., Hirwe, A.S., Coats, J.R., Khaisa, M.S. (1973) Structure activity correlations of biodegradability of DDT 
analogs. J. Agric. Food Chem. 21(2), 310–315. 
Kapoor, I.P., Metcalf, R.L., Nystrom, R.F., Sangha, G.K. (1970) Comparative metabolism of methoxychlor, methiochlor, and DDT 
in mouse, insects, and in a model ecosystem. J. Agric. Food Chem. 18, 1145–1152. 
Karcher, W., Devillers, J. (1990) SAR and QSAR in environmental chemistry and toxicology: Scientific tool or wishful thinking? 
In: Practical Applications of Quantitative Structure-Activity Relationships (QSAR) in Environmental Chemistry & Toxicology. 
Karcher, W., Devillers, J., Editors, ECSC, EEC, EAEC, Brussels and Luxemburg. 
Karickhoff, S.W. (1981) Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 
10, 833–846. 
Karickhoff, S.W. (1985) Pollutant sorption in environmental systems. In: Environmental Exposure from Chemicals. Neely, W.B., 
Blau, G.E., Editors, pp. 49–64, CRC Press, Boca Raton, Florida. 
© 2006 by Taylor & Francis Group, LLC

4006 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Karickhoff, S.W., Brown, D.S., Scott, T.A. (1979) Sorption of hydrophilic pollutants on natural water sediments. Water Res. 13, 
241–248. 
Katayama, A., Matsumura, F. (1991) Photochemically enhanced microbial degradation of environmental pollutants. Environ. Sci. 
Technol. 25(7), 1329–1333. 
Kaufman, D.D. (1976) Soil degradation and persistence of benchmark pesticides. In: A Literature Survey of Benchmark Pesticides. 
pp. 19–71. The George Washington University Medical Center, Dept. of Medical and Public Affairs, Science Communication 
Division, Washington D.C. 
Kavanaugh, M.C., Trussell, R.R. (1980) Design of aeration towers to strip volatile contaminants from drinking water. J. Am. Water 
Works Assoc. 72, 684–692. 
Kawamoto, K., Urano, K. (1989) Parameters for predicting fate of organochlorine pesticides in the environment. (I) Octanol-water 
and air-water partition coefficients. Chemosphere 18, 1987–1996. 
Kawamoto, K., Urano, K. (1989) Parameters for predicting fate of organochlorine pesticides in the environment. (II) Adsorption 
constant to soil. Chemosphere 19(8/9), 1223–1231. 
Kawamoto, K., Urano, K. (1990) Parameters for predicting fate of organochlorine pesticides in the environment. (III) Biodegradation 
rate constants. Chemosphere 21(10–11), 1141–1152. 
Kawano, M., Inoue, T., Hidaka, H., Tatsukawa, R. (1986) Chlordane residues in krill, fish and Weddell seal from the Antarctic. 
Toxicol. Environ. Chem. 11, 137. 
Kawano, M., Inoue, T., Wada, T., Hidaka, H., Tatsukawa, R. (1988) Bioconcentration and residue of chlordane compounds in marine 
animals: Invertebrates, fish, mammals, and seabirds. Environ. Sci. Technol. 22, 792–797. 
Kawano, M., Matsushita, S., Inoue, T., Tanaka, H., Tatsukawa, R. (1986) Biological accumulation of chlordane compounds in marine 
organisms from the northern North Pacific and Bering Sea. Mar. Pollut. Bull. 17, 512–516. 
Kearney, P.C., Nash, R.G., Isensee, A.R. (1969) Persistence of pesticides in soil. Chapter 3, pp. 54–67. In: Chemical Fallout: Current 
Research on Persistence Pesticides. Miller, M W., Berg, C.C., Editors, Charles C. Thomas, Springfield, Illinois. 
Keil, J.E., Priester, L.E. (1969) DDT uptake and metabolism by a marine diatom. Bull. Environ. Contam. Toxicol. 4, 169. 
Kelly, T.J., Mukund, R., Spicer, C.W., Pollack, A.J. (1994) Concentrations and transformations of hazardous air pollutants. Environ. 
Sci. Technol. 28, 378A–387A. 
Kenaga, E.E. (1972) Factors related to bioconcentration of pesticides. In: Environmental Toxicology of Pesticides. Matsumura, F., 
Boush, G.M., Misato, T., Editors, pp. 193–228, Academic Press, New York. 
Kenaga, E.E. (1980a) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol. 
Environ. Saf. 4, 24–38. 
Kenaga, E.E. (1980b) Correlation of bioconcentration factors of chemicals in aquatic and terrestrial organisms with their physical 
and chemical properties. Environ. Sci. Technol. 14, 553–556. 
Kenaga E.E., Goring, C.A.I. (1978) Relationship between water solubility, soil-sorption, octanol-water partitioning, and bioconcentration 
of chemicals in biota. In: Am. Soc. Test. Mat. 3rd. Aquatic Toxicology Sym., New Orleans, Louisiana. 63pp. 
Kenaga E.E., Goring, C.A.I. (1980) Relationship between water solubility, soil sorption, octanol-water partitioning, and concentration 
of chemicals in biota. In: Aquatic Toxicology. ASTM STP 707, Eaton, J.G., Parrish, P.R., Hendricks, A.C., Eds., pp. 78–115, 
Am. Soc. for Testing and Materials, Philadelphia, PA. 
Kerler, F., Schonherr, J. (1988) Accumulation of lipophilic chemicals across plant cuticles: Prediction from octanol/water partition 
coefficients. Arch. Environ. Contam. Toxicol. 17, 1–6. 
Ketelaar, J.A.A. (1950) Chemical studies of insecticides. II. The hydrolysis of O,O-diethyl- and O,O-dimethyl O-p-nitrophenylthiophosphates. 
Rev. Trav. Chim. 69, 649. 
Ketelaar, J.A.A., Gersmann, H.R. (1958) Chemical studies on insecticides. VI. The rate of hydrolysis of some phosphorus acid esters. 
Rev. Trav. Chim. 77, 973–981. 
Khan, S.U. (1980) Pesticides in the Soil Environment, Fundamental Aspects of Pollution Control and Environmental Series 5, Elsevier, 
Amsterdam, The Netherlands. 
Kilzer, L., Scheunert, I., Geyer, H., Klein, W., Korte, F. (1979) Laboratory screening of the volatilization rates of organic chemicals 
from water and soil. Chemosphere 10, 751–761. 
Kim, Y.H. (1985) Evaluation of a gas chromatographic method for estimating vapor pressures with organic pollutants. Ph.D. Thesis, 
University of California, Davis, California. 
Kim, Y.H., Woodrow, J.E., Seiber, J.N. (1984) Evaluation of a gas chromatographic method for calculating vapor pressures with 
organophosphorous pesticides. J. Chromatogr. 314, 37–53. 
King, P.H., McCarthy, P.L. (1968) A chromatographic model for predicting pesticide migration in soils. Soil Sci. Soc. Am. Proc. 106, 
248–261. 
Kishi, H., Hashimoto, Y. (1989) Evaluation of the procedures for the measurement of water solubility and n-octanol/water partition 
coefficient of chemicals. Chemosphere 18, 1749–1759. 
Kishi, H., Kogure, N., Hashimoto, Y. (1990) Contribution of soil constitutents in adsorption coefficient of aromatic compounds, 
halogenated alicyclic and aromatic compounds to soil. Chemosphere 21(7), 867–876. 
Kjeldsen, P., Kjolholt, J., Schultz, B., Christensen, T.H., Tjell, J.C. (1990) Sorption and degradation of chlorophenols, nitrophenols 
and organophosphorus pesticides in the subsoil under landfills-laboratory studies. J. Contam. Hydrology 6, 165–184. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 4007 
Klecka, G.M. (1985) Chapter 6, Biodegradation. In: Environmental Exposure from Chemicals. Neely, W.B., Blau, G.E., Editors, 
pp. 109–156, CRC Press, Boca Raton, Florida. 
Klein, W., Geyer, H., Freitag, D., Rohleder, H. (1984) Sensitivity of schemes for ecotoxicological hazard ranking of chemicals. 
Chemosphere 13, 203–211. 
Klopffer, W., Rippen, G., Frische, R. (1982) Physicochemical properties as useful tools for predicting the environmental fate of 
organic chemicals Ecotoxicol. Environ. Saf. 6, 294–301. 
Kollig, H.P., Editor (1993) Environmental Rate Constants for Organic Chemicals under Consideration for EPA’s Hazardous Waste 
Identification Projects. EPA/600/R-93/132. Environmental Research Laboratory, U.S. Environmental Protection Agency, 
Athens, Georgia. 
Kollig, H.P., Ellington, J.J., Hamrick, K.J., Jafverts, C.T., Weber, E.J., Wolfe, N.L. (1987) Hydrolysis Rate Constants, Partition 
Coefficients, and Water Solubilities for 129 Chemicals. A Summary of Fate Constants Provided for the Concentration-Based 
Listing Program. U.S. EPA, Environmental Research Lab., Office of Research and Development, Athens, Georgia. 
Konemann, W.H. (1981) Quantity structure-activity relationships in fish toxicity studies. Part 1: Realtionship for 50 industrial 
pollutants. Toxicology 19, 209–221. 
Konemann, W.H., Musch, A. (1981) Quantitative structure-activity relationships in fish toxicity studies. Part 2: The influence of pH 
on the QSAR of chlorophenols. Toxicology 19, 223–228. 
Konrad, J.G., Chesters, G. (1969) Degradation in soils of ciodrin, an organophosphate insecticide. J. Agric. Food Chem. 17, 226. 
Kordel, W., Kotthoff, G., Muller, J. (1995a) HPLC-screening method for the determination of adsorption coefficient on soil-Results 
of a ring-test. Sci. Total Environ. 162, 119–125. 
Kordel, W., Stuffe, J., Kotthoff, G. (1993) HPLC-screening method for the determination of the adsorption-coefficient on 
soil.—Comparison of different stationary phases. Chemosphere 27, 2341–2352. 
Kordel, W., Stutte, J., Kotthoff, G. (1995b) HPLC-screening method to determine the adsorption coefficient in soil-comparison of 
immobilized humic acid and clay mineral phases for cyanopropyl columns. Sci. Total Environ. 162, 119–125. 
Korte, F., Freitag, D. (1986) Kriterien zur auswahl umweltgefahrlicher alter stoffe. Mobilitat einschliesslich abbaubarkeit und 
akkumulation. Umweltforschungsplan des Bundesministeriums des Innern. Forschungsbericht 106 05 25. GSF im Auftrag 
des Umweltbundesamtes. 
Korte, F., Freitag, D., Geyer, H., Klein, W., Kraus, A.G., Lahaniatis, E. (1978) Ecotoxicologic profile analysis: A concept for establishing 
ecotoxicologic priority lists for chemicals. Chemosphere 1, 79–102. 
Kortum, G., Vogel, W., Andrussow, K. (1961) Dissociation Constants for Organic Acids in Aqueous Solutions. Butterworths, London. 
Kostovetskii, Y.I., Nasishten, S.Y., Tolstopyatova, G.V., Chegrinets, G.Y. (1976) Hygiene aspects of pesticide use in the catchment 
areas of water bodies. Vodn. Resur. 1, 67–72. 
Kucklick, J.R., Hinckley, D.A., Bidleman, T.F. (1991) Determination of Henry’s law constants for hexachloro-cyclohexane in distilled 
water and artificial seawater as a function of temperature. Marine Chem. 34, 197–209. 
Kuhne, R., Ebert, R.-U., Kleint, F., Schmidt, G., Schuurmann, G. (1995) Group contribution methods to estimate water solubility of 
organic chemicals. Chemosphere 30(11), 2061–2077. 
Kurihara, N., Uchida, M., Fujita, T., Nakajima, M. (1973) Studies on BHC isomers and related compounds. V. Some physicochemical 
properties of BHC isomers. Pestic. Biochem. Physiol. 2(4), 383–390. 
Lacorte, S., Barcelo, D. (1994) Rapid degradation of fenitrothion in estuarine waters. Environ. Sci. Technol. 28, 1159–1163. 
LaFleur, K.S. (1976) Carbaryl desorption and movement in soil columns. Soil Sci. 121, 212–216. 
Lagas, P. (1988) Sorptions of chlorophenols in soil. Chemosphere 17(2), 205–216. 
Lamoreaux, R.J., Newland, L.W. (1978) The fate of dichlorvos in soil. Chemosphere 10, 807–814. 
Landner, L., Lindstrom, K., Karlsson, M., Nordin, J., Sorensen, L. (1977) Bioaccumulation in fish of chlorinated phenols from Kraft 
pulp mill bleachery effluents. Bull. Environ. Contam. Toxicol. 18, 663–673. 
Landrum, R.F., Dupuis, W.S. (1990) Toxicity and toxicokinetics of pentachlorophenol and carbaryl to Pontoporeia hoyi and Mysis 
relicta. In: Aquatic Toxicology and Risk Assessment. 13th Volume, ASTM STP 1096, Landis, W.G., van der Schalie, W.H., 
Editors, American Society for Testing and Materials, Philadelphia. 
Landrum, R.F., Nihart, S R., Edie, B.J., Gardner, W.S. (1984) Reverse-phase separation method for determining pollutant binding to 
Aldrich humic acid and dissolved organic carbon of natural waters. Environ. Sci. Technol. 18, 187–192. 
Larsson, P., Bremle, G., Okla, L. (1993) Uptake of pentachlorophenol in fish of acidified and non-acidified lakes. Bull. Environ. 
Contam. Toxicol. 50, 653–658. 
Lartiges, S.B., Garrigues, P.P. (1995) Degradation kinetics of organophosphorous and organonitrogen pesticides in different waters 
under various environmental conditions. Environ. Sci. Technol. 29, 1246–1254. 
LeBlanc, G.A. (1984) Interspecies relationships in acute toxicity of chemicals to aquatic organisms. Environ. Toxicol. Chem. 3, 47–60. 
LeBlanc, G.A. (1995) Trophic-level differences in the bioconcentration of chemicals: implication in assessing environmental biomagnification. 
Environ. Sci. Technol. 29, 154–160. 
Lee, L.S., Rao, P.S.C., Brusseau, M. (1991) Nonequilibrium sorption and transport of neutral and ionized chlorophenols. Environ. 
Sci. Technol. 25(4), 722–729. 
Lee, L.S., Rao, P.S.C., Nkedl-Kizza, P., Delfino, J.J. (1990) Influence of solvent and sorbent characteristics on distribution of 
pentachlorophenol in octanol-water and soil-water systems. Environ. Sci. Technol. 24, 654–661. 
© 2006 by Taylor & Francis Group, LLC

4008 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Lee, P.W., Stearns, S.M., Hernandez, H., Powell, W.R., Naidu, M.V. (1989) Fate of dicrotophos in the soil environment. J. Agric. 
Food Chem. 37(4), 1169–1174. 
Lee, S., Gan, J., Kim, J.-S., Kabashima, J.N., Crowley, D.E. (2004) Microbial transformation of pyrethroid insecticides in aqueous 
and sediment phases. Environ. Toxicol. Chem. 23, 1–6. 
Leenheer, J.A., Atrichs, J.L. (1971) Soil Science Society of America Proceedings 35, 700–705. 
Lemley, A.T., Zhong, W.Z. (1983) Kinetics of aqueous base and acid hydrolysis of aldicarb, aldicarb sulfoxide and aldicarb sulfone. 
J. Environ. Sci. Health B18, 189–206. 
Lemley, A.T., Wagenet, R.J., Zhong, W.Z. (1988) Sorption of degradation of aldicarb and its oxidation products in a soil-water flow 
system as a function of pH and temperature. J. Environ. Qual. 17, 408–414. 
Leo, A., Hansch, C., Elkins, D. (1971) Partition coefficients and their uses. Chem. Rev. 71, 525–616. 
Leonard, R.A., Bailey, G.W., Swank, Jr., R.R. (1976) Transport, detoxification, fate and effects of pesticides in soil and water 
environments in land application of waste materials. Soil Conservation Society of America, Ankeny, Iowa. 48pp. 
Leshniowsky, W.O., Dugan, P.R., Pfister, R.M., Frea, J.I., Randers, C.I. (1970) Aldrin: removal from lake water by flocculent bacteria. 
Science 169, 993. 
Leuck, D.G., Bowman, M.C. (1970) Residues of phorate and five of its metabolites. Their persistence in forage corn and grass. 
J. Econ. Entomol. 63, 1838–1842. 
Leuenberger, C., Giger, W., Coney, R., Graydon, J.W., Molnar-Kubica, E. (1985) Persistence chemicals in pulp mill effluents, 
occurrence and behavior in an activated sludge treatment plant. Water Res. 19, 885–894. 
Leuenberger, C., Ligocki, M.P., Pankow, P.F. (1985) Trace organic compounds in rain. 4. Identities, concentrations, and scavenging 
mechanisms for phenols in urban air and rain. Environ. Sci. Technol. 19, 1053–1058. 
Lewis, D.L., Paris, D.F., Baughman, G.L. (1975) Transformation of malathion by fungus, Aspergillus oryzae, isolated from a freshwater 
pond. Bull. Environ. Contam. Toxicol. 13, 596–601. 
Lichtenstein, E.P. (1959) Absorption of some chlorinated hydrocarbon insecticides from soils into various crops. J. Agric. Food Chem. 
7, 430–433. 
Lichtenstein, E.P. (1960) Insecticidal residues in various crops grown in soils treated with an abnormal rate of aldrin and heptachlor. 
J. Agric. Food Chem. 8, 448–451. 
Lichtenstein, E.P., Fuhremann, T.W., Schultz, K.R. (1971) Persistence and vertical distribution of DDT, lindane and aldrin residues, 
ten and fifteen years after a single soil application. J. Agric. Food Chem. 19, 718–721. 
Lichtenstein, E.P., Schultz, K.R. (1961) Persistence of some chlorinated hydrocarbon insecticides influenced by soil types, rates of 
application and temperature. J. Econ. Entomol. 52, 124–131. 
Lichtenstein, E.P., Schultz, K.R. (1959) Effect of soil cultivation, soil surface, and water on the persistence of insecticidal residues 
in soils. J. Econ. Entomol. 54, 517. 
Lide, D.R., Editor (2003) Handbook of Chemistry and Physics. 84th Edition, CRC Press, Boca Raton, Florida. 
Lipke, H., Kearns, C.W. (1960) DDT-Dehydrochlorinase III. Solubilization of insecticides by lipoprotein. J. Econ. Entomol. 53, 31–35. 
Liu, D., Strachan, W.M.J., Thomson, K., Kwasniewska, K. (1981) Determination of the biodegradability of organic compounds. 
Environ. Sci. Technol. 15, 788–793. 
Liu, J., Qian, C. (1988) Estimation of n-octanol/water partition coefficients for organic compounds by using high-performance liquid 
chromatography. Huanjing Huaxue 7, 23–27. 
Liu, M.H., Kapila, S., Yanders, A.F., Clevenger, T.E., Elseewi, A.A. (1991) Role of entrainers in supercritical fluid extraction of 
chlorinated aromatics from soils. Chemosphere 23, 1085–1095. 
Loehr, R.C., Matthews, J.E. (1992) Loss of organic chemicals in soil: Pure compound treatability studies. J. Soil Contam. 1(4), 339–360. 
Lohninger, H. (1994) Estimation of soil partition coefficients of pesticides from their chemical structure. Chemosphere 29, 1611–1626. 
Lord, K.A., Briggs, G C., Nearle, M.C., Manlove, R. (1980) Uptake of pesticides from water and soil by earthworms. Pest. Sci. 11, 
401–408. 
Lord, K.A., Burt, P.E. (1964) Effect of temperature on water solubility of phorate and disulfoton. Chem. Ind. (London) July 11, 
1262–1263. 
Lu, P.Y., Metcalf, R.L. (1975) Environmental fate and biodegradability of benzene derivatives as studied in a model aquatic ecosystem. 
Environ. Health Perspect. 10, 269–284. 
Lu, X., Tao, S., Cao, J., Dawson, R.W. (1999) Prediction of fish bioconcentration factors of nonpolar organic pollutants based on 
molecular connectivity indices. Chemosphere 39, 987–999. 
Lydy, M.J., Bruner, K.A., Fry, D.M., Fisher, S.W. (1990) Effects of sediment and the route of exposure on the toxicity and accumulation 
of neutral lipophilic and moderately water soluble metabolizable compounds in the midge, Chironomus riparus. In: Aquatic 
Toxicology and Risk Assessment. 12th Volume, ASTM STP 1096, pp. 104–164, American Society for Testing and Materials, 
Philadelphia, Pennsylvania. 
Lydy, M.J., Oris, J.T., Baumann, P.C., Fisher, S.W. (1992) Effects of sediment organic carbon content on the elimination rates on 
neutral lipophilic compounds in the midge (Chironomus riparus). Environ. Toxicol. Chem. 11, 347–356. 
Lyman, W.J. (1982) Chapter 2, Solubility in water and Chapter 4, Adsorption coefficient for soils and sediments. In: Handbook on 
Chemical Property Estimation Methods, Environmental Behavior of Organic Compounds. Lyman, W., Reehl, W.F., 
Rosenblatt, D.H., Editors, McGraw-Hill, New York. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 4009 
Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors (1982) Handbook on Chemical Property Estimation Methods, Environmental 
Behavior of Organic Compounds. McGraw-Hill, New York. 
Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors (1990) Handbook on Chemical Property Estimation Methods, Environmental 
Behavior of Organic Compounds. 2nd printing, American Chemical Society, Washington DC. 
Ma, K.C., Shiu, W.Y., Mackay, D. (1993) Aqueous solubility of chlorophenols at 25°C. J. Chem. Eng. Data 38, 364–366. 
Mabey, W.R., Mill, T. (1978) Critical review of hydrolysis of organic compounds in water under environmental conditions. J. Phys. 
Chem. Ref. Data 7, 383–415. 
Mabey, W.R., Smith, J.H., Podoll, R.T., Johnson, H.L., Mill, T., Chou, T.W., Gates, J., Waight-Partridge, I., Jaber, H., Vanderberg, 
D. (1982) Aquatic Fate Process for Organic Priority Pollutants. EPA Report No. 440/4–81–014, U.S. EPA, Washington, DC. 
Mabury, S.A., Crosby, D.G. (1996) Pesticide reactivity and its relationship to field persistence. J. Agric. Food Chem. 44, 1920–1924. 
Macalady, D.L., Wolfe, N.L. (1983) New perspectives on the hydrolytic degradation of the organophosphorothioate insecticide 
chlorpyrifos. J. Agric. Food Chem. 31, 1139–1147. 
MacDougall, D. (1964) Dylox. In: Analytical Methods for Pesticides, Plant Growth Regulators, and Food Additives. Vol. 2, Zweig, 
G., Editor, Academic Press, New York. 
MacDougall, D. (1972) Toxicity, Biodegradation. Swets-Zeitlinger: Lisse, The Netherlands. 
MacDougall, D., Archer, T.E. (1964) Di-syston. In: Analytical Methods for Pesticides, Plant Growth Regulators, and Food Additives. 
Vol. II., Zweig, G., Ed., p. 188, Academic Press, New Youk. 
Macek, K.J., Petrocelli, S.R., Sleight, B.H. (1979) Consideration in assessing the potential for, and significance of, biomagnification of 
chemical residues in aquatic food chains. pp. 251–268. In: Aquatic Toxicology. ASTM STP 667, Marking, L.L., Kimerle, R.A., 
Editors, American Society for Testing and Materials, Philadelphia, Pennsylvania. 
Mackay, D. (1982) Correlation of bioconcentration factors. Environ. Sci. Technol. 16, 274–278. 
Mackay, D. (1985) Chapter 5, Air/water exchange coefficients. In: Environmental Exposure from Chemicals. Neely, W.B., Blau, G.E., 
Editors, pp. 91–108, CRC Press, Boca Raton, Florida. 
Mackay, D., Bobra, A., Shiu, W.Y., Yalkowsky, S.H. (1980) Relationships between aqueous water solubility and octanol-water partition 
coefficient. Chemosphere 9, 701–711. 
Mackay, D., Leinonen, P. (1975) Rate of evaporation of low-solubility contaminants from water bodies to atmosphere. Environ. Sci. 
Technol. 9, 1178–1180. 
Mackay, D., Paterson, S. (1991) Evaluating the multimedia fate of organic chemicals: A level III fugacity model. Environ. Sci. 
Technol. 25, 427–436. 
Mackay, D., Paterson, S., Chung, B., Neely, W.B. (1985) Evaluation of the environmental behavior of chemicals with a level III 
fugacity model. Chemosphere 14, 335–374. 
Mackay, D., Paterson, S., Schroeder, W.H. (1986) Model describing the rates of transfer processes of organic chemicals between 
atmosphere and water. Environ. Sci. Technol. 20, 810–816. 
Mackay, D., Shiu, W.Y. (1981) A critical review of Henry’s law constants for chemicals of environmental interest. J. Phys. Chem. 
Ref. Data 10, 1175–1199. 
Mackay, D., Stiver, W. (1991) Chapter 8, Predictability and environmental chemistry. In: Environmental Chemistry of Herbicides. 
Vol. II, Grover, R., Cessna, A.J., Editors, pp. 281–297, CRC Press, Boca Raton, Florida. 
Mackay, D., Wolkoff, A.W. (1973) Rate of evaporation of low-solubility contaminants from water bodies to atmosphere. Environ. 
Sci. Technol. 7, 611–614. 
Macy, R. (1948) Partition coefficients of fifty compounds between olive oil and water at 20°C. J. Ind. Hyg. Toxicol. 30, 140. 
Magee, P.S. (1991) Complex factors in hydrocarbon/water, soil/water, and fish/water partitioning. Sci. Total Environ. 109/110, 
155–178. 
Mailhot, H. (1987) Prediction of algae bioaccumulation and uptake rate of nine organic compounds by ten physicochemical properties. 
Environ. Sci. Technol. 21, 1009–1013. 
Maitlen, J.C., Powell, D.M. (1982) Persistence of aldicarb in soil relative to the carry-over of residues into crops. J. Agric. Food 
Chem. 30, 589–592. 
Majewski, M.S., Capel, P.D. (1995) Pesticides in the Atmosphere. Distribution, Trends, and Governing Factors. Vol. 1 of the series 
Pesticides in the Hydrologic System. Ann Arbor Press, Chelsea, MI. 
Makela, P., Oikari, O.J. (1990) Uptake and body distribution of chlorinated phenols in the freshwater mussel, Anodonta anatina 
L. Ecotoxicol. Environ. Saf. 20, 354–362. 
Malalayandi, M., Shah, S.M., Lee, P. (1982) Fate of .- and .-hexachlorocyclohexane isomers under simulated environmental 
conditions. J. Environ. Sci. Health A17(3), 283–297. 
Mansour, M., Feicht, E.A. (1994) Transformation of chemical contaminants by biotic and abiotic processes in water and soil. 
Chemosphere 28, 323–332. 
Mansour, M., Feicht, E.A., Behechti, A., Scheunert, I. (1997) Experimental approaches to studying the photostability of selected 
pesticides in water and soil. Chemosphere 35, 39–50. 
Maquire, R.J., Hale, E.J. (1980) Fenitrothion sprayed on a pond: Kinetics of its distribution and transformation in water and sediment. 
J. Agric. Food Chem. 28, 372–378. 
Margot, A., Stammbach, K., (1964) Diazinon. In: Analytical Methods for Pesticides, Plant Growth Regulators, and Food Additives. 
Vol. 11, Zelig, G., Ed., p. 110, Academic Press, New York. 
© 2006 by Taylor & Francis Group, LLC

4010 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Markwell, R.D., Connell, D.W., Gabric, A.J. (1989) Bioaccumulation of lipophilic compounds from sediments by oligochaetes. Water 
Res. 23(11), 1443–1450. 
Martens, R. (1972) Decomposition of endosulfan by soil microorganisms. Schrifter Ver Wasser-, Bodden-, Luftig, Berlin-Dahlem 37, 
167–173. 
Marti, C. (1976) Ciba-Geigy Research Report. Basel, West Germany. Data provided by W.F. Spencer and presented in Ph.D. thesis 
of Y.-H. Kim 1985. 
Martin, H. (1961) Guide to the Chemicals used in Crop Protection. 4th Edition, Canadian Dept. of Agriculture Publication 1093, 
Ottawa, Ontario. 
Martin, H. (1972) Pesticide Manual, 3rd Edition, British Crop Protection Council, Worcester, England. 
Martin, H., Worthing, C.R., Editors (1977) Pesticide Manual. 5th Edition, British Crop Protection Council. Thornton Heath, United 
Kingdom. 
Mason, J.W., Rowe, D.R. (1976) The accumulation and loss of dieldrin and endrin in the eastern oyster. Arch. Environ. Contam. 
Toxicol. 4, 349–360. 
Masterton, W.L., Lee, T.P. (1972) Effects of dissolved salts on water solubility of lindane. Environ. Sci. Technol. 6, 919–921. 
Matsumura, F., Benezet, H.J. (1973) Studies on the bioaccumulation and microbial degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin. 
Environ. Health Perspect. 253–258. 
Maule, A., Plyte, S., Quick, A.V. (1987) Dehalogenation of organochlorine insecticides by mixed anaerobic microbial populations. 
Pestic. Biochem. Physiol. 277, 229–236. 
Maund, S.J., Hamer, M.J., Lane, M.C.G., Farrelly, E., Rapley, J.H., Goggin, U.M., Gentle, W.E. (2002) Partitioning, bioavailability, 
and toxicity of the pyrethroid insecticide cypermethrin in sediments. Environ. Toxicol. Chem. 21, 9–15. 
Mayer, F.L., Mehrle, P.M., Dwyer, W.P. (1977) Toxaphene: Chronic Toxicity to Fathead Minnows and Channel Catfish. EPA- 
600/3–77–069, U.S. Environmental Protection Agency. 
McCall, P.J., Swann, R.L., Laskowski, D.A., Unger, S.M., Vrona, S.A., Dishburger, H.J. (1980) Estimation of chemical mobility in 
soil from liquid chromatographic retention times. Bull. Environ. Contam. Toxicol. 24, 190–195. 
McConnell, L.L., Cotham, W.E., Bildleman, T.F. (1993) Gas exchange of hexachloro-cyclohexane in the Great Lakes. Environ. Sci. 
Technol. 27, 1304–1311. 
McDowell, L.L., Willis, G., Murphree, C.E., Southwick, L.M., Smith, S. (1981) Toxaphene and sediments yields in runoff from a 
Mississippi delta watershed. J. Environ. Qual. 10, 120. 
McDuffie, B. (1981) Estimation of octanol/water partition coefficients for organic pollutants using reverse-phase HPLC. Chemosphere 
10, 73–83. 
McKellar, R.L., Dishburger, H.J., Rice, J.R., Craig, L F., Pennington, J.J. (1976) Residues of chlorpyrifos, its oxygen analogue, and 
3,5,6-trichloro-2-pyridinol in milk and cream from cows fed chlorpyrifos. J. Agric. Food Chem. 24, 283–286. 
McKim, J., Schnieder, P., Veith, G. (1985) Absorption dynamics of organic chemical transport across trout gills as related to octanolwater 
partition coefficients. Toxicol. Appl. Pharmacol. 77, 1–10. 
McLachlan, M., Mackay, D., Jones, P.H. (1990) A conceptual model of organic chemical volatilization at waterfalls. Environ. Sci. 
Technol. 24, 252–257. 
McLean, J.E., Sims, R.C., Doucette, W.J., Caupp, C.R., Grenney, W.J. (1988) Evaluation of mobility of pesticides in soil using U.S. 
EPA methodology. J. Environ. Eng. 114, 689–703. 
McLeese, D.W., Metcalf, C.D., Zitko, V. (1980) Lethality of permethrin, cypermethrin and fenvalerate to salmon, lobster and shrimp. 
Bull. Environ. Contam. Toxicol. 25, 950–955. 
McLeese, D.W., Sergent, D.B., Metcalf, C.D., Zitko, V., Burridge, L.E. (1979) Uptake and excretion of aminocarb, nonylphenol and 
pesticide diluent 585 by mussels (Mytilus edulis). Bull. Environ. Contam. Toxicol. 24, 575–581. 
McLeese, D.W., Zetko, V., Sergent, D.B. (1976) Uptake and excretion of fenitrothion by clams and mussel. Bull. Environ. Contam. 
Toxicol. 16, 508–515. 
Means, J.C., Woods, S.G., Hassett, J.J., Banwart, W.L. (1982) Sorption of amino- and carboxy-substituted polynuclear aromatic 
hydrocarbons by sediments and soils. Environ. Sci. Technol. 16, 93–98. 
Medchem (1988) Medchem Database, Release 3.54 of 1988. Daylight Chemical Information System Inc., California. 
Meijer, S.N., Halsall, C.J., Harner, T., Peters, A.J., Ockenden, W.A., Johnston, A.E., Jones, K.C. (2001) Organochlorine pesticide 
residues in archived UK soils. Environ. Sci. Technol. 35, 1989–1995. 
Meikle, R.W., Kurihara, N.H., DeVries, D.H. (1983) Chlorpyrifos: The photodecomposition rates in dilute aqueous solution and on 
a surface, and the volatilization rate from a surface. Arch. Environ. Contam. Toxicol. 12, 189. 
Melnikov, N.N. (1971) Chemistry of pesticides. Res. Rev. 36, 1–447. 
Menn, J.J. (1969) Stauffer Chemical Co., Mountain View, California. 
Menn, J.J., Patchett, G.G., Batchelder, G.H. (1964) Trithion. In: Analytical Methods, for Pesticides, Plant Growth Regulators, and 
Food Additives. Vol. II, Zweig, G., Ed., p. 546, Academic Press, New York. 
Menzie, C.A., Burmaster, D.E., Freshman, J.S., Callahan, C.A. (1992) Assessment of methods for estimating ecological risk in the 
terrestrial component: A case study at the Baird and McGuire Supefund site in Holbrook, Massachusetts. Environ. Toxicol. 
Chem. 11, 245–260. 
Menzie, C.M. (1972) Fate of pesticides in the environment. Ann. Rev. Entomol. 17, 199. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 4011 
The Merck Index (1983) An Encyclopedia of Chemicals, Drugs and Biologicals. 10th Edition, Widholz, M., Editor, Merck and Co., 
Rahway, New Jersey. 
The Merck Index (1989) An Encyclopedia of Chemicals, Drugs and Biologicals. 11th Edition, Budavari, S., Editor, Merck and Co., 
Rahway, New Jersey. 
Metcalf, C.D., McLeese, D.W., Zitko, V. (1980) Rate of volatilization of fenitrothion from fresh water. Chemosphere 9, 151–155. 
Metcalf, R.L. (1971) The chemistry and biology of pesticides. In: Pesticides in the Environment. White-Stevens, J., Ed., Part I, Vol. 1, 
p. 50, Marcel Dekker, New York. 
Metcalf, R.L. (1974) In: Comparative Studies of Food and Environmental Contaminants. Proceedings of the FAO/IAEA/WHO 
Symposium, Otaniemi, International Atomic Energy Agency, Vienna. pp. 3–22. 
Metcalf, R.L., Kapoor, I.P., Lu, P-Y., Schuth, C.K., Sherman, P. (1973) Model ecosystem studies of the environmental fate of six 
organochlorine pesticides. Environ. Health Perspect. 4, 35–44. 
Metcalf, R.L., Sanborn, J.R. (1975) Illinois Natural History Survey Bulletin 31, 381–436. 
Metcalf, R.L., Sanborn, J.R., Lu, P.-Y., Nye, D. (1975) Laboratory model ecosystem studies of the degradation and fate of radiolabeled 
tri-, tetra-, and pentachlorobiphenyl compared with DDE. Arch. Environ. Contam. Toxicol. 3, 151–165. 
Meylan, W., Howard, P.H. (1991) Bond contribution method for estimating Henry’s law constants. Environ. Toxicol. Chem. 10, 
1283–1293. 
Meylan, W., Howard, P.H., Boethling, R.S. (1992) Molecular topology/fragment contribution method for predicting soil sorption 
coefficients. Environ. Sci. Technol. 26, 1560–1567. 
Miles, J.R.W. (1976) Fates of insecticides applied to lands and crops. Pest. Monit. J. 10, 87–91. 
Miles, J.R.W., Delfino, J.J. (1985) Fate of aldicarb, aldicarb sulfoxide, and aldicarb sulfone in Floridan ground water. J. Agric. Food 
Chem. 33(3), 455–460. 
Miles, J.R.W., Harris, C.R. (1978) Insecticide residues in water, sediment, and fish of the drainage system of the Holland Marsh, 
Ontario, Canada. J. Econ. Entomol. 71, 125–131. 
Miles, J.R.W., Tu, C M., Harris, C R. (1979) Persistence of eight organophosphorous insecticides in sterile and non-sterile mineral 
and organic soils. Bull. Environ. Contam. Toxicol. 22, 312–318. 
Mill, T., Hendry, D.M., Mabey, W.E., Johnson, D.J. (1980) Laboratory protocols for evaluating fate of organic chemicals in air and 
water. EPA-600/3–80–069. U.S. Environmental Protection Agency, Washington DC. 
Mill, T., Mabey, W.E. (1985) Photochemical transformations. In: Environmental Exposure from Chemicals. Neely, W.B., Blau, G.E., 
Editors, pp. 175–213, CRC Press, Boca Raton, Florida. 
Miller, C.T., Weber, W.J., Jr. (1986) Sorptions of hydrophobic organic pollutants in saturated soil systems. J. Contam. Hydrol. 1, 243. 
Mills, W.B., Dean, J.D., Porcella, D.B., Gherini, S.A., Hudson, R.J.M., Frick, W.E., Rupp, G.L. (1982) Water quality assessment: 
A screening procedure for toxic and conventional pollutants. Part 1, U.S. EPA Report No. EPA-600/6–82–004a, Environmental 
Research Lab., U.S. Environmental Protection Agency, Athens, Georgia. 
Milne, G.W.A., Editor (1995) CRC Handbook of Pesticides. CRC Press, Boca Raton, Florida. 
Minero, C., Pelizzetti, E., Malato, S., Blanco, J. (1993) Large solar plant photocatalytic water decontamination: degradation of 
pentachlorophenol. Chemosphere 26, 2103–2119. 
Mingelgrin, U., Gerstl, Z. (1983) Reevaluation of partitioning as a mechanism of nonionic chemicals adsorption in soils. J. Environ. 
Qual. 12(1), 1–11. 
Mink, F.L., Risher, J.F., Stara, J.F. (1989) The environmental dynamics of the carbamate insecticide aldricarb in soil and water. 
Environ. Pollut. 61, 127–155. 
Miyake, K., Terada, H. (1982) Determination of partition coefficients of very hydrophobic compounds by high-performance liquid 
chromatography on glycerol-coated controlled-pore glass. J. Chromatogr. 240, 9–20. 
Moody, R.P., Carroll, J.M., Kresta, A.M.E. (1987) Automated high performance liquid chromatography and liquid scintillation 
counting determination of pesticide mixture octanol/water partition rates. Toxicol. Ind. Health 3, 479–490. 
Montgomery, J.H. (1993) Agrochemicals Desk Reference. Environmental Data. Lewis Publishers, Chelsea, Michigan. 
Moody, R.P., arroll, J.M., Kresta, A.M.E. (1987) Automated high performance liquid chromatography and liquid scintillation counting 
determination of pesticide mixture octanol/water partition rates. Toxicol. Ind. Health 3, 479–490. 
Moorefield, H.H. (1974) Data on Temik aldicarb pesticide environmental impact. (Cited in UA EPA 1975) Moos, L.P., Kiesch, E.J., 
Wukasch, R.F., Grady, Jr., C.P.L. (1983) Pentachlorophenol biodegradation-I. Aerobic. Water Res. 17, 1575–1584. 
Mora, A., Comejo J., Revilla, E., Hermosin, M.C. (1996) Persistence and degradation of carbofuran in Spanish soil suspensions. 
Chemosphere 32, 1585–1598. 
Morrill, L.G., Mahilum, B.C., Mohiuddin, S.H. (1982) Organic Compounds in Soils. Ann Arbor Science Publishers, Ann Arbor, 
Michigan. 
Mortimer, M.R., Connell, D.W. (1995) A model of the environmental fate of chloro-hydrocarbon contaminants associated with Sydney 
sewage discharge. Chemosphere 30, 2021–2038. 
Mudami, A.R., Hassett, J.P. (1988) Photochemical activity of mirex associated with dissolved organic matter. Chemosphere 17, 
1133–1146. 
Muir, D.C.G., Hobdem, B.R., Servos, M.R. (1994) Bioconcentration of pyrethroid insecticides and DDT by rainbow trout: Uptake, 
depuration, and effect of dissolved organic carbon. Aquatic Toxicol. 29, 223–240. 
© 2006 by Taylor & Francis Group, LLC

4012 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Muir, D.C.G., Rawn, G.P., Townsend, B.E., Lockhart, W.L. (1985) Bioconcentration of cypermethrein, deltamethrin, fenvalerate and 
permethrin by Chironomus tentans larvae in sediment and water. Environ. Toxicol. Chem. 4, 51–61. 
Muir, D.C.G., Teixeira, C, Wania, F. (2004) Empirical and modeling evidence of regional atmospheric transport of current-use 
pesticides. Environ. Toxicol. Chem. 23, 2421–2432. 
Muir, D.C.G., Townsend, B.E., Lockhart, W.L. (1983) Bioavailability of six organic chemicals to Chironomus tentans larvae in 
sediment and water. Environ. Toxicol. Chem. 2, 269–281. 
Muller, M.A., Buser, H.-R. (1995) Environmental behavior of acetamide pesticide stereoisomers. 2. Sereo- and enantioselective 
degradation in sewage sludge and soil. Environ. Sci. Technol. 29, 2031–2037. 
Muller, J.F., Hawker, D.W., Connell, D.W. (1994) Calculation of bioconcentration factors of persistent hydrophobic compounds in 
the air/vegetation system. Chemosphere 29, 623–640. 
Muller, M., Klein, W. (1992) Comparative evaluation of methods predicting water solubility for organic compounds. Chemosphere 
25, 769–782. 
Muller, M., Kordel, W. (1996) Comparison screening methods for the estimation of adsorption coefficients on soils. Chemosphere 
32, 2495–2504. 
Mundy, R.L., Bowman, M.C., Farmer, J.H., Haley, T.J. (1978) Quantitative structure-activity study of a series of substituted O,O-dimethyl 
O-(p-nitrophenyl) phosphorothionates and O-analogues. Arch. Toxicol. 41, 111–123. 
Murphy, T.J., Mullin, M.D., Meyer, J.A. (1987) Equilibration of polychlorinated biphenyls and toxaphene with air and water. Environ. 
Sci. Technol. 21, 155–162. 
Nakagawa, Y., Izumi, K., Oikawa, N., Kurozumi, A., Iwamura, H., Fujita, T. (1991) Quantitative structure-activity relationships of 
benzoylphenylurea larvicides. VII. Pestic. Biochem. Physiol. 40, 12–26. 
Nakamura, M., Suzuki, T., Amano, K., Yamada, S. (2001) Relation of sorption behavior of agricultural chemicals in solid-phase 
extraction with their n-octanol/water partition coefficients evaluated by high-performance liquid chromatography (HPLC). 
Anal. Chim. Acta 428, 219–226. 
Nash, R.G. (1974) In: Pesticides in Soil and Water. Guenzi, W.D., Ed., Soil Sci. Soc. of America, Madison, Wis. 
Nash, R.G. (1980) Dissipation rate of pesticides from soils. In: CREAMS: A field scale model for chemical, runoff, and erosion 
from agricultural management systems. Vol. 3, Knisel, W.G., Editor, pp. 560–594, USDA Conserv. Res. Rep. 26, U.S. 
Government Printing Office, Washington, DC. 
Nash, R.G. (1983a) Comparative volatilization and dissipation rates of several pesticides from soil. J. Agric. Food Chem. 31, 
210–217. 
Nash, R.G. (1983b) Determining environmental fate of pesticides with microagroecosystems. Res. Rev. 85, 199–215. 
Nash, R.G. (1988) Chapter 5. Dissipation from soil. In: Environmental Chemistry of Herbicides. Volume I, Grover, R., Editor, 
pp. 131–169, CRC Press, Inc., Boca Raton, Florida. 
Nash, R.G. (1989) Models for estimating pesticide dissipation from soil and vapor decline in air. Chemosphere 18, 2375–2381. 
Nash, R.G., Harris, W.G. (1977) Toxaphene and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) losses from cotton in an 
agroecosystem chamber. J. Agric. Food Chem. 25, 336. 
Nash, R.G., Woolson, E.A. (1967) Persistence of chlorinated hydrocarbon insecticides. Science 157, 924–927. 
Neary, D.G., Bush, P.B., Michael, J.L. (1993) Fate, dissipation and environmental effects of pesticides in southern forests: A review 
of a decade of research progress. Environ. Toxicol. Chem. 12, 411–428. 
Neely, W.B. (1978) Personal communication. Dow Chemical Company, Midland, Michigan. 
Neely, W.B. (1980) Chapter 20. A method for selecting the most appropriate environmental experiments on a new chemical. In: 
Dynamics, Exposure and Hazard Assessment of Toxic Chemicals. Haque, R., Ed., pp. 287–196, Ann Arbor Science Publishers, 
Ann Arbor, Michigan. 
Neely, W.B., Blau, G.E. (1977) The use of laboratory data to predict the distribution of chlorpyrifos in a fish pond. In: Pesticides in 
Aquatic Environments. Khan, M.A.Q., Editor, Plenum Press, New York. 
Neely, W.B., Blau, G.E. (1985) Chapter 1. Introduction to Environmental exposure from chemicals. In: Environmental Exposure from 
Chemicals. Neely, W.B., Blau, G.E., Editors, pp. 1–12, CRC Press, Boca Raton, Florida. 
Neely, W.B., Blau, G.E., Eds. (1985) Environmental Exposure from Chemicals. CRC Press, Boca Raton, Florida. 
Neely, W.B., Branson, D.R., Blau, G.E. (1974) Partition coefficient to measure bioconcentration potential of organic chemicals in 
fish. Environ. Sci. Technol. 8, 1113–1115. 
Nendza, M. (1991) Predictive QSAR models estimating ecotoxic hazard of phenylureas: Aquatic toxicity. Chemosphere 23, 
497–506. 
Nendza, M., Seydel, J.K. (1988) Quantitative structure-toxicity relationship for ecotoxicologically relevant biotest systems and 
chemicals. Chemosphere 17, 1585–1602. 
Neudorf, S., Khan, M.A.Q. (1975) Pick-up and metabolism of DDT, dieldrin and photodieldrin by fresh water algae (Ankistrodesmus) 
and a micro-crustacean (Daphnia pulex). Bull. Environ. Contam. Toxicol. 13, 443–450. 
Neumuller, O.A. (1974) Rompp’s Chemie-Lexikon. p. 2538, Frank’sche Verlagsbuchhandlung, Stuttgart. 
Ngabe, B., Bidleman, T.F., Falconer, R.L. (1993) Base hydrolysis of .- and .-hexachlorocyclohexanes. Environ. Sci. Technol. 27, 
1930–1933. 
NIEHS (1975) National Institute of Environmental Health Services Grant No. ES 00040–10 Annual Progress Report. 
Niimi, A.J. (1987) Biological half-life of chemicals in fishes. Rev. Environ. Contam. Toxicol. 99, 1–46. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 4013 
Niimi, A.J., Cho, C.Y. (1983) Laboratory and field analysis of pentachlorophenol (PCP) accumulation by salmonids. Water Res. 17, 
1791–1795. 
Niimi, A.J., Palazzo, V. (1985) Temperature effect on the elimination of pentachlorophenol, hexachlorobenzene and mirex by rainbow 
trout (Salmo gairdneri). Water Res. 19(2), 205–207. 
Nirmalakhandan, N.N., Speece, R.E. (1988) QSAR model for predicting Henry’s law constant. Environ. Sci. Technol. 22, 1349–1357. 
Nishimura, K., Fujita, T. (1983) Quantitative structure-activity relationships of DDT and its related compounds. Nippon Noyaku 
Gakkaishi 8, 69–81. 
Noegrohati, S., Hammers, W.E. (1992) Regression models for octanol-water partition coefficients, and for bioconcentration in fish. 
Toxicol. Environ. Chem. 34, 155–173. 
Norstrom, R.J., Clark, T.P., Jeffrey, D.A., Won, H.T., Gilman, A.P. (1986) Dynamics of organochlorine compounds in herring gulls 
(Larus argentatus): I. Distribution and clearance of [14C]DDE in free-living herring gulls (Larus argentatus). Environ. Toxicol. 
Chem. 5, 41–48. 
NRC (1974) Chlordane; Its effects on Canadian ecosystems and its chemistry. NRCC No. 14094, National Research Council, Ottawa, 
Canada. 
O’Brien, R.D. (1975) Nonenzymic effects of pesticides on membranes. In: Environmental Dynamics of Pesticides. Haque, R., Freed, V.H., 
Editors, pp. 331–342, Plenum Press, New York. 
OECD (1981) OECD Guidelines for Testing of Chemicals. Section 1: Physical-Chemical Properties. Organization for Economic 
Co-operation and Development. OECD, Paris. 
Oliver, B.G. (1987) Biouptake of chlorinated hydrocarbons from laboratory-spiked and field sediments by oligochaete worms. Environ. 
Sci. Technol. 21, 785–790. 
Oliver, B.G., Charlton, M.N. (1984) Chlorinated organic contaminants on settling particulates in the Niagara River vicinity of Lake 
Ontario. Environ. Sci. Technol. 18, 903–908. 
Oliver, B.G., Charlton, M.N., Durham, R.W. (1989) Distribution, redistribution, and geochronology of polychlorinated biphenyl 
congeners and other chlorinated hydrocarbons in Lake Ontario sediments. Environ. Sci. Technol. 23, 200–208. 
Oliver, B.G., Niimi, A.J. (1985) Bioconcentration factors of some halogenated organics for rainbow trout: Limitations in their use 
for prediction of environmental residues. Environ. Sci. Technol. 19, 842–849. 
Oliver, B.G., Niimi, A.J. (1988) Tropodynamic analysis of polychlorinated biphenyl congeners and other chlorinated hydrocarbons 
in the Lake Ontario ecosystems. Environ. Sci. Technol. 22, 388–397. 
Othman, M.A., Antonious, G.F., Khattab, M.M., Abdel-All, A., Khamis, A.E. (1987) Residues of dimethioate and methomyl on 
tomato and cabbage in relation to their effect on quality-related properties. Environ. Toxicol. Chem. 6, 947–952. 
Ou, L.-T., Rao, P.S.C. (1986) Degradation and metabolism of oxamyl and phenamiphos in soils. J. Environ. Sci. Health B21, 25–40. 
Ou, L.T., Sture, K., Edvardsson, V., Suresh, P., Rao, C. (1985) Aerobic and anaerobic degradation of aldicarb in soils. J. Agric. Food 
Chem. 33, 72–78. 
Oubina, A., Ferrer, I, Gascon, J., Barcelo, D. (1996) Disappearance of aerially applied fenitrothion in rice crop waters. Environ. Sci. 
Technol. 30, 3551–3557. 
Pait, A.W., De Souza, A.E., Farrow, D.R.G. (1992) Agricultural Pesticide Use in Coastal Areas: A National Summary. National 
Oceanic and Atmospheric Administration, Rockville, Maryland. 
Paraiba, L.C., Carrasco, J.M., Bru, R. (1999) Level IV Fugacity model by a continuous time control system. Chemosphere 38, 
1763–1775. 
Paris, D.F., Lewis, D.L. (1976) Accumulation of methoxychlor by microorganisms. Bull. Environ. Contam. Toxicol. 15, 24–32. 
Paris, D.F., Lewis, D.L., Barnett, J.T. (1977) Bioconcentration of toxaphene by microorganisms. Bull. Environ. Contam. Toxicol. 17, 
564–573. 
Paris, D.F., Lewis, D.L., Barnett, J.T., Baughman, G.L. (1975a) Microbial Degradation and Accumulation of Pesticides in Aquatic 
Systems. Report No. U.S.EPA-660/3–75–007, US EPA, Athens, Georgia. 
Paris, D.F., Lewis, D.L., Wolfe, N.L. (1975b) Rates of degradation of malathion by bacteria isolated from aquatic system. Environ. 
Sci. Technol. 9, 135–138. 
Paris, D.F., Steen, W.C., Baughman, G.L. (1978) Prediction of microbial transformation of pesticides in natural waters. (unpublished), 
presented before the American Chemical Society, Division of Pesticide Chemistry, Anaheim, Calif., Environmental Research 
Laboratory, U.S. EPA, Athens, Georgia. 
Paris, D.F., Steen, W.C., Baughman, G.L., Barnett, J.T. (1981) Second-order model to predict microbial degradation of organic 
compounds in natural waters. Appl. Environ. Microbiol. 41, 603–609. 
Park, K.S., Bruce, W.N. (1968) The determination of the water solubility of aldrin, dieldrin, heptachlor and heptachlor epoxide. 
J. Econ. Entomol. 61(3), 770–774. 
Park, S.S., Erstfeld, K.M. (1997) A numerical kinetic model for bioaccumulation of organic chemicals in sediment-water system. 
Chemosphere 34, 419–427. 
Parrish, P.R. (1974) Aroclor 1254, DDT and DDD, and dieldrin: Accumulation and loss by American oysters (Crassostrea virginica) 
exposed continuously for 56 weeks. Proc. Natl. Shellfish Assoc. 64, 7. 
Parrish, P.R., Dyar, E.E., Enos, J.M., Wilson, W.G. (1978) Chronic toxicity of chlordane, trifluralin, and pentachlorophenol to 
sheepshead minnows (Cyprinodon variegatus). EPA Ecol. Res. Ser. EPA-600/3–78–010. U.S. EPA, Gulf Breeze, Florida. 
© 2006 by Taylor & Francis Group, LLC

4014 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Parrish, P.R., Dyar, E.E., Lindberg, M.A., Shanika, C.M., Enos, J.M. (1977) Chronic toxicity of methoxychlor, malathion and 
carbofuran to sheepshead minnows (Cyprinodon variegatus). NTIS PB-272101. 
Parrish, P.R., Schimmel, S.C., Hansen, D.J., Patrick, J.M., Jr., Forester, J. (1976) Chlordane: Effects on several estuarine organisms. 
J. Toxicol. Environ. Health 1, 485. 
Paschke, A., Schuurmann, G. (1998) Octanol/water-partitioning of four HCH isomer at 5, 25, and 45°C. Fresenius Environ. Bull. 7, 25–263. 
Pasarela, N.R., Brown, R.G., Shaffer, C.B. (1962) Insecticide residues in meat and milk. Feeding of malathion to cattle; residue 
analyses of milk and tissue. J. Agric. Food Chem. 10, 7–9. 
Passivirta, J., Sinkonen, S., Mikkelson, P., Rantio, T., Wania, F. (1999) Estimation of vapor pressures, solubilities and Henry’s law 
constants of selected persistent organic pollutants as functions of temperature. Chemosphere 39, 811–832. 
Paterson, S., Mackay, D. (1985) The fugacity concept in environmental modelling. In: The Handbook of Environmental Chemistry. 
Vol. 2, Part C, Hutzinger, O., Ed., pp. 121–140, Springer-Verlag, Heidelberg, Germany. 
Paterson, S., Mackay, D., Bacci, E., Calamari, D. (1991) Correlation of the equilibrium and kinetics of leaf-air exchange of hydrophobic 
organic chemicals. Environ. Sci. Technol. 25, 866–871. 
Pavlou, S.P., Weston, D.P. (1983, 1984) Initial Evaluation of Alternatives for Development of Sediment Related Criteria for Toxic 
Contaminants in Marine Waters (Puget Sound), Phase I and II. EPA Contract No. 68–01–6388, US EPA. 
Perrin, D.D. (1989) pKa Prediction for Organic Acids and Bases. Chapman & Hall, New York. 
Platford, R.F. (1981) The environmental significance of surface films. II. Enhanced partitioning of lindane in thin films of octanol 
on the surface of water. Chemosphere 10(7), 719–722. 
Platford, R.F. (1982) Pesticide partitioning in artificial surface films. J. Great Lakes Res. 8, 307–309. 
Platford, R.F. (1983) The octanol-water partitioning of some hydrophobic and hydrophilic compounds. Chemosphere 12, 1107–1111. 
Platford, R F., Carey, J.H., Hale, E.J. (1982) The environmental significance of surface films: Part 1. Octanol-water partition coefficients 
for DDT and hexachlorobenzene. Environ. Pollution (series B), 125–128. 
Plato, C. (1972) Differential scanning calorimetry as a general method for determining the purity and heat of fusion of high purity 
organic chemicals. Application to 64 compounds. Anal. Chem. 44, 1531–1534. 
Plato, C., Glasgow, A.R., Jr. (1969) Differential scanning calorimetry as a general method for determining the purity and heat of 
fusion of high purity organic chemicals. Application to 95 compounds. Anal. Chem. 41, 330–336. 
Pontolillo, J., Eganhouse, R.P. (2001) The Search for Reliable Aqueous Solubility (SW) and Octanol-Water Partition Coefficient (KOW) 
Data for Hydrophobic Organic Compounds: DDD and DDE as a Case Study. U.S. Geological Survey, Water Resources 
Investigations Report 01-4201, Reston, VA. 
Porter, P.E. (1964a) Aldrin. In: Analytical Methods for Pesticides, Plant Growth Regulators and Food Additives. Vol. 2, Zweig, G., 
Editor, p. 1–, Academic Press, New York. 
Porter, P.E. (1964b) Dieldrin. In: Analytical Methods for Pesticides, Plant Growth Regulators and Food Additives. Vol. 2, Zweig, G., 
Editor, pp. 143–163, Academic Press, New York. 
Portier, R.J. (1985) In: ASTM STP 865. (Validat. Predict. Lab Methods Assess. Fate Eff. Contam. Aquat. Ecosyst.), pp. 14–30. 
Potter, J.C., Marxmiller, R.L., Barber, G.F., Young, R., Loefller, J.E., Burton, W.B., Dixon, L.D. (1974) Total 14C residues and dieldrin 
residues in milk and tissues of cows fed dieldrin-14C. J. Agric. Food Chem. 22, 889–899. 
Quaife, M.L., Winbush, J.S., Fitzhugh, O.G. (1967) Survey of quantitative relations between ingestion and storage of aldrin and 
dieldrin in animals and man. Fed. Cosmet. Toxicol. 5, 39–50. 
Quellette, R.P., King, J.A. (1977) Chemical Week. Pesticide Register. McGraw-Hill, New York. 
Racke, K.D. (1993) Environmental fate of chlorpyrifos. Rev. Environ. Contam. Toxicol. 131, 1–150. 
Racke, K.D., Steele, K.P., Yoder, R.M., Dick, W.A., Avidov, E. (1996) Factors affecting the hydrolytic degradation of chlorpyrifos 
in soil. J. Agric. Food Chem. 44, 1582–1592. 
Radelleff, R.D., Bushland, R.C., Claborn, H.V. (1952) Insects: The Yearbook of Agriculture. U.S. Dept. of Agriculture, Washington DC. 
Ramamoorthy, S. (1985) Competition of fate processes in the bioconcentration of lindane. Bull. Environ. Contam. Toxicol. 34, 349–358. 
Rao, P.S.C., Davidson, J.M. (1979) Adsorption and movement of selected pesticides at high concentrations in soils. Water Res. 13, 
375–380. 
Rao, P.S.C., Davidson, J.M. (1980) Estimation of pesticide retention and transformation parameters required in nonpoint source pollutant 
models. In: Environmetal Impact of Nonpoint Pollution. Overcash, M.R., Davidson, J.M., Editors, Ann Arbor Science 
Publishers, Ann Arbor, Michigan. 
Rao, P.S.C., Davidson, J.M. (1982) Retention and Transformation of Selected Pesticides and Phosphorus in Soil Water System: 
A Critical Review. U.S. EPA-600/S3-82-060. 
Rao, P.S.C. et al. (1984) Degradation and sorption of aldicarb and metolachlor in Dougherty Plains soils. Progress report to U.S. 
EPA of EPA Co-operative Agreement CR-810464. 
Reich, A.R., Perkins, J.L., Cutter, G. (1986) DDT contamination of a North Alabama aquatic ecosystem. Environ. Toxicol. Chem. 5, 725–736. 
Reinert, R.E. (1967) The accumulation of deldrin in an algal (Scenedesmus obliquus), daphnia (Daphnia magna), guppy (Lebistes 
reticulatus) food chain. Diss. Abstr. 28, 2210-B. 
Reinert, R.E. (1972) The accumulation of deldrin in an alga (Scenedesmus obliquus), daphnia (Daphnia magna), guppy (Lebistes 
reticulatus). J. Fish Res. Board Can. 29, 1413–1418. 
Reish, D.J., Kauwling, T.J., Mearns, A.J., Oshida, P.S., Rossi, S.S., Wilkes, F.G., Ray, M.J. (1978) Marine and estuarine pollution. 
J. Water Pollut. Control Fed. 50, 1424–1469. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 4015 
Renberg, L. (1981) Gas chromatographic determination of chlorophenols in environmental samples. National Swedish Environment 
Protection Board Report 1410, 135pp. 
Renberg, L., Sundstrom, G. (1979) Prediction of bioconcentration potential of organic compounds using partition coefficients derived 
from reversed phase thin layer chromatography. Chemosphere 7, 449–459. 
Renberg, L., Sundstrom, G., Rosen-Olofsson, S. (1985) The determination of partition coefficients of organic compounds in technical 
products and waste waters for the estimation of their bioaccumulation potential using reversed phase thin layer chromatography. 
Toxicol. Environ. Chem. 10, 333–349. 
Renner, G. (1990) Gas chromatographic studies of chlorinated phenols, chlorinated anisoles, and chlorinated phenylacetates. Toxicol. 
Environ. Chem. 27, 217–224. 
Rice, C.P., Chernyak, S.M., Hapeman, C.J., Bilboulian, S. (1997a) Air-water distribution of the endosulfan isomers. J. Environ. Qual. 
26, 1101–1106. 
Rice, C.P., Chernyak, S.M., McConnell, L.L. (1997b) Henry’s law constants for pesticides measured as a function of temperature 
and salinity. J. Agric. Food Chem. 45, 2291–2298. 
Richards, A.G., Cutkomp, L.K. (1946) Correlation between the possession of a chitinous cuticle and sensitivity to DDT. Biol. Bull. 
90, 97–108. 
Richards, R.P., Baker, D.B. (1993) Pesticide concentration patterns in agricultural drainage networks in the Lake Erie basin. Environ. 
Toxicol. Chem. 12, 13–26. 
Richardson, G., Qadri, S.U. (1986) Tissue distribution of 14C-labeled residues of aminocarb in brownhead (Ictalurus nebulosus Le 
Sueur) following acute exposure. Ecotoxicol. Environ. Saf. 12, 180–186. 
Richardson, L.T., Miller, D.M. (1960) Fungitoxicity of chlorinated hydrocarbon insecticides in relation to water solubility and vapor 
pressure. Can. J. Botany 38, 163–175. 
Roark, R.C. (1951) A digest of information on chlordane. U.S. Dept. of Agriculture, Bureau Entomol. and Plant Quarantine E-817. 
132 pp. 
Robeck, G.G., Dostal, K.K., Cohen, J.M., Dreissal, J.F. (1965) Effectiveness of water treatment processes in pesticide removal. J. Am. 
Water Works Assn. 57, 181–200. 
Roberts, J.R., De Frietas, A.S.W., Gidney, M.A.J. (1977) Influence of lipid pool size on bioaccumulation of the insecticide chlordane 
by northern redhorse suckers (Moxostoma macrolepidotum). J. Fish Res. Board Can. 34, 89. 
Robinson, J., Roberts, M., Baldwin, M., Walker, A.I.T. (1969) Pharmacokinetics of HEOD (dieldrin) in the rat. Fed. Cosmet. Toxicol. 
7, 317–332. 
Rordorf, B.F. (1989) Unpublished data, private communication. 
Rose, F L., McIntire, C.D. (1970) Accumulation of dieldrin by benthic algae in laboratory streams. Hydrobiologia 35, 481. 
Rothman, A.M. (1980) Low vapor pressure determination by the radiotracer transpiration method. J. Agric. Food Chem. 28, 1225–1228. 
Ruelle, P., Kesselring, U.W. (1997) Aqueous solubility prediction of environmentally important chemicals from the mobile order 
thermodynamics. Chemosphere 34(2), 275–298. 
Ruzicka, J.H., Thomson, J., Wheals, B.B. (1967) The gas chromatographic determination of organophosphorous pesticides. Part II. 
A comparative study of hydrolysis rates. J. Chromatogr. 31, 37–47. 
Ryan, J.A., Bell, R.M., Davidson, J.M., O’Connor, G.A. (1988) Plant uptake of non-ionic organic chemicals from soils. Chemosphere 
17, 2299–2322. 
Saarikoski, J., Viluksela, M. (1982) Relation between physicochemical properties of phenols and their toxicity and accumulation in 
fish. Ecotoxicol. Environ. Saf. 6, 501–512. 
Saarikoski, J., Lindstrom, R., Tyynela, M., Viluksela, M. (1986) Factors affecting the absorption of phenolics and carboxylic acids 
in the guppy (Poecilia reticulata). Ecotoxicol. Environ. Saf. 11, 158–173. 
Sabljic, A. (1984) Prediction of the nature and strength of soil sorption of organic pollutants by molecular topology. J. Agric. Food 
Chem. 32, 243–246. 
Sabljic, A. (1987a) On the prediction of soil sorption coefficients of organic pollutants from molecular structure: Application of 
molecular topology model. Environ. Sci. Technol. 21, 358–366. 
Sabljic, A. (1987b) Nonempirical modeling of environmental distribution and toxicity of major organic pollutants. In: QSAR in 
Environmental Toxicology-II. Kaiser, K.L.E., Editor, pp. 309–322, D. Reidel Publ. Co., Dordrecht, The Netherlands. 
Sabljic, A., Gusten, H., Verhaar, H., Hermens, J. (1995) QSAR modelling of soil sorption. Improvements and systematics of log KOC 
vs. log KOW correlations. Chemosphere 31, 4489–4514. 
Saha, J.G. (1969) Significance of organochlorine insecticide residues in fresh plants as possible contaminants and beef products. Res. 
Rev. 26, 89–126. 
Sahsuvar, L., Helm, P.A., Jantunen, L.M., Bidleman, T.F. (2003) Henry’s law constants for .-, .-, and .-hexachlorocyclohexanes 
(HCHs) as a function of temperature and revised estimates of gas exchange in Arctic regions. Atmos. Environ. 37, 983–992. 
Saito, S., Tanoue, A., Matsuo, M. (1992) Applicability of the i/o-characters to a quantitative description of bioconcentration of organic 
chemicals in fish. Chemosphere 24(1), 81–87. 
Saito, S., Koyasu, J., Yoshida, K., Shigeoka, T., Koike, S. (1993) Cytotoxicity of 109 chemicals to goldfish GFS cells and relationships 
with 1-octanol/water partition coefficients. Chemosphere 26, 1015–1028. 
Saleh, F.Y., Dickson, K.L., Rodgers, Jr. J.H. (1982) Fate of lindane in the aquatic environment: Rate constants of physical and 
chemical processes. Environ. Toxicol. Chem. 1, 289–297. 
© 2006 by Taylor & Francis Group, LLC

4016 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Samanidou, V., Fytianos, K., Pfister, G., Bahadir, M. (1988) Photochemical decomposition of waters of Northern Greece. Sci. Total 
Environ. 76, 85–92. 
Sanborn, J.R., Metcalf, W.N.B., Bruce, W.N., Lu, P.Y. (1976) The fate of chlordane and toxaphene in a terrestrial-aquatic model 
ecosystem. Environ. Entomol. 5(3), 533–538. 
Sancho, E., Ferrando, M.D., Andreu, E., Gamon, M. (1993) Bioconcentration and excretion of diazinon by eel. Bull. Environ. Contam. 
Toxicol. 50, 578–585. 
Sanders, P.F., Jones, K.C., Hamilton-Taylor, J. (1993) A simple method to assess the susceptibility of polynuclear aromatic hydrocarbons 
to photolytic decomposition. Atmos. Environ. 27A, 139–144. 
Sanders, P.F., Seiber, J.N. (1984) Organophosphorus pesticides volatilization. Model soil pits and evaporation ponds. In: Treatment 
and Disposal of Pesticide Wastes. Krueger, R.F., Seiber, J.N. Editors, Am. Chem. Soc. Sym. Series 259, 279–295. 
Sangster, J. (1993) LOGKOW Databank, Sangster Research Laboratory, Montreal, Quebec. 
Sattar, M.A. (1990) Fate of organophosphorus pesticides in soils. Chemosphere 20, 387–396. 
Schauberger, C.W., Wildman, R.B. (1977) Accumulation of aldrin and dieldrin by blue-green algae and related effects on photosynthetic 
pigments. Bull. Environ. Contam. Toxicol. 17, 534–541. 
Schimmel, S.C., Patrick, Jr., J.M., Forester, J. (1976) Heptachlor: Uptake, depuration, retention, and metabolism by spot (Leiostromus 
xanthurus). J. Toxicol. Environ. Health 2, 169. 
Schimmel, S.C., Patrick, Jr., J.M., Forester, J. (1977) Toxicity and bioconcentration of BHC and lindane in selected estuarine animals. 
Arch. Environ. Contam. Toxicol. 6, 355–363. 
Schimmel, S.C., Garnas, R.L., Patrick, Jr., J.M., Moore, J.C. (1983) Acute toxicity, bioconcentration, and persistence of AC 222, 
705, benthiocarb, chlorpyrifos, fenvalerate, methyl parathion, and permethrin in the estuarine environment. J. Agric. Food 
Chem. 31, 104–113. 
Schellenberg, K., Leuenberger, C., Schwarzenbach, R.P. (1984) Sorption of chlorinated phenols by natural sediments and aquifer 
materials. Environ. Sci. Technol. 18, 652–657. 
Schmidt-Bleek, F., Haberland, W., Klein, A.W., Caroli, S. (1982) Steps toward environmental hazard assessment of new chemicals 
(including a hazard ranking scheme, based upon directive 78/831/EEC). Chemosphere 11, 383–415. 
Schnoor, J.L. (1992) 1, Chemical fate and transport in the environment. In: Fate of Pesticides and Chemicals in the Environment. 
Schnoor, J.L., Editor, pp. 1–24, John Wiley & Sons, New York. 
Schnoor, J.L., Editor (1992) Fate of Pesticides and Chemicals in the Environment. John Wiley & Sons, New York. 
Schnoor, J.L., McAvoy, D.C. (1981) Pesticide transport and bioconcentration model. J. Environ. Eng. Div. (Am. Soc. Civ. Eng.) 107(EE6), 
1229–1246. 
Schnoor, J.L., Sato, C., McKechnie, D., Sahoo, D. (1987) Processes, Coefficients, and Models for Simulating Toxic Organics and 
Heavy Metals in Surface Waters. EPA 600/3–87–015. US EPA, Athens, Georgia. 
Schomburg, C.J., Glotfelty, D.E., Seiber, J.N. (1991) Pesticide occurrence and distribution in fog collected near Monterey, California. 
Environ. Sci. Technol. 25, 155–160. 
Schreitmuller, J., Ballschmiter, K. (1995) Air-water equilibrium of hexachlorocyclohexanes and chloromethoxy-benzenes in North 
and South Atlantic. Environ. Sci. Technol. 29, 207–215. 
Scow, K.M. (1982) Rate of biodegradation. In: Handbook of Chemical Property Estimation Methods. Lyman, W.J., Rechl, W.F., 
Rosenblatt, D.H., Editors, pp. 9–1 to 9–84, McGraw-Hill, New York. 
Seguchi, K., Asaka, S. (1981) Intake and excretion of diazinon in freshwater fishes. Bull. Environ. Contam. Toxicol. 27, 244–249. 
Seiber, J.N. (1987) Solubility, partition coefficient and bioconcentration factor. In: Fate of Pesticides in the Environment. Biggar, 
J.W., Seiber, J.N., Editors, publication 3320 of the Agricultural Experiment Station, Division of Agriculture and Nature 
Resources, University of California, Oakland, California. pp. 53–59. 
Seiber, J.N., Catahan, M P., Barril, C.R. (1978) Loss of carbofuran from rice paddy water: Chemical and physical factors. J. Environ. 
Sci. Health B13, 131–148. 
Seiber, J.N., Madden, S.C., McChesney, M.M., Winterlin, W.N. (1979) Toxaphene dissipation from treated cotton field environments: 
Component residual behaviour on leaves and in air, soil, and sediments determined by capillary gas chromatography. 
J. Agric. Food Chem. 27, 284. 
Seiber, J.N., McChesney, M.M. (1987) Measurement and computer model simulation of the volatilization flux of molinate and methyl 
parathion from a flooded rice field. Final Report to Department of Food and Agriculture, Sacramento, California. 
Seiber, J.N., McChesney, M.M., Woodrow, J.E. (1989) Airborne residues resulting from use of methyl parathion, molinate and 
thiobencarb on rice in the Sacramento Valley, California. Environ. Toxicol. Chem. 8, 577–588. 
Seiber, J.N., Woodrow, J.E., Sanders, P.F. (1981) Estimation of ambient vapor pressures of pesticides from gas chromatographic 
retention data. Abstract, 183rd Am. Chem. Soc. Meeting, New York. 
Sethunathan, N., MacRae, I.C. (1969) Persistence and biodegradation of diazinon in submerged soils. J. Agric. Food Chem. 17(2), 
221–225. 
Sharom, M.S., Miles, J.R.W., Harris, C.R., McEwen, F L. (1980) Persistence of 12 insecticides in water. Water Res. 14, 1089–1093. 
Sharom, M., Miles, J.R.W., Harris, C R., McEwen, F.L. (1980) Behaviour of 12 insecticides in soil and aqueous suspensions of soil 
and sediment. Water Res. 14, 1095–1100. 
Shen, L., Wania, F. (2005) Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides. 
J. Chem. Eng. Data vol. pp. 50, 740–768. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 4017 
Shigeoka, T., Yamagata, T., Minoda, T., Yamauchi, F. (1988) Acute toxicity and hatching inhibition of chlorophenol to Japanese 
medaka, Oryzias latipes, and structure-activity relationships. Jpn. J. Toxicol. Environ. Health 34, 343–349. 
Shoeib, M., Harner, T. (2002) Using measured octanol-air partition coefficients to explain environmental partitioning of organochlorine 
pesticides. Environ. Toxicol. Chem. 21, 984–990. 
Sicbaldi, F., Finizio, A. (1993) KOW estimation by combination of RP-HPLC and molecular indexes for a heterogeneous set of 
pesticide. In: Proceedings IX Symposium Pesticide Chemistry, Mobility and Degradation of Xenobiotics. 11–13, Oct 1993, 
Piacenza, Italy. 
Siebers, J., Gottschild, D., Nolting, H.-G. (1994) Pesticides in precipitation in Northern Germany. Chemosphere 28(8), 1559–1570. 
Siebers, J., Mattusch, P. (1996) Determination of airborne residues in greenhouses after application of pesticides. Chemosphere 33(8), 
1597–1607. 
Sillen, L.G., Martell, A.E. (1971) Stability Constants of Metal-Ion Complexes. Supplement No. 1, Spec. Publ. No. 25, The Chemical 
Society, London, England. 
Simpson, C.D., Wilcock, R.J., Smith, T.J., Wilkins, A.L., Langdon, A.G. (1995) Determination of octanol-water partition coefficients 
for the major components of technical chlordane. Bull. Environ. Contam. Toxicol. 55, 149–153. 
Skea, J.C., Simonin, H.J., Symula, J. (1981) Accumulation and retention of mirex by brook trout fed a contaminated diet. Bull. 
Environ. Contam. Toxicol. 27, 79–83. 
Slade, R.E. (1945) The .-isomer of hexachlorocyclohexane (Gammexane). An insecticide with outstanding properties. Chem. Ind. 
40, 314–319. 
Slater, R.M., Spedding, D.J. (1981) Transport of dieldrin between air and water. Arch. Environ. Contam. Toxicol. 10, 25–33. 
Smelt, J.H., Dekker, A., Leistra, M. (1979) Neth. J. Agric. Sci. 27, 191–198. 
Smelt, J.H., Dekker, A., Leistra, M., Houx, N.W.H. (1983) Conversion from carbamoyloximes in soil samples from above and below 
the soil water table. Pest. Sci. 14, 173–181. 
Smelt, J.H., Leistra, M., Houx, N.W.H., Dekker, A. (1978) Conversion rates of aldicarb and its oxidation products in soils. III. 
Aldicarb. Pest. Sci. 9, 293–300. 
Smith, A.D., Bharath, A., Mallard, C., Orr, D., McCarty, L.S., Ozbum, G.W. (1990) Bioconcentration kinetics of some chlorinated 
benzenes and chlorinated phenols in American flagfish, Jordanella floridae (Goode and Bean). Chemosphere 20, 379–386. 
Smith, J.H., Mabey, W.R., Bahonos, N., Holt, B.R., Lee, S.S., Chou, T.W., Venberger, D., Mill, T. (1978) Environmental pathways 
of selected chemicals in freshwater systems: Part II. Laboratory Studies. Interagency Energy-Environmental Research 
Program Report. EPA-600/7–78–074. Environmental Research Laboratory Office of Research and Development. U.S. EPA, 
Athens, Georgia. 
Smith, P.D., Brockway, D.L., Stancil, F.E., Jr. (1987) Effect of hardness, alkalinity and pH on toxicity of pentachlorophenol to 
Selenastrum capricornutum (printz). Environ. Toxicol. Chem. 6, 891–900. 
Soderstrom, M., Wachtmeister, C.A., Forlin, L. (1994) Analysis of chlorophenolics from bleach Kraft Mill effluents (BKME) in bile 
of perch (Perca fluviatilis) from the Baltic Sea and development of an analytical procedure also measuring chlorocatechols. 
Chemosphere 28, 1701–1719. 
Somasundaram, L., Coats, J.R., Racke, K.D. (1991) Mobility of pesticides and their hydrolysis metabolites in soil. Environ. Toxicol. 
Chem. 10, 185–194. 
Soon, L.G., Hock, O.S. (1987) Environmental problems of pesticide usage in Malaysian rice-fields. In: Management of Pests and 
Pesticides. Tait, J., Napompeth, B., Editors, pp. 10–21, Westview, London, United Kingdom. 
Sotomatsu, T., Nakagawa, Y., Fujita, T. (1987) Quantitative structure-activity studies of benzoylphenylurea larvicides. IV. Benzoyl 
ortho substituent effects and molecular conformation. Pestic. Biochem. Physiol. 27, 156–164. 
Spain, J.C., Pritchard, P., Bourquin, A.W. (1980) Effects of adaptation on biodegradation rates in sediment water cores from estuarine 
and freshwater environments. Appl. Environ. Microbiol. 40, 726–734. 
Spehar, R.L., Tanner, D.K., Nordling, B.R. (1983) Toxicity of the synthetic pyrethroids, permethrin and AC 222, 705 and their 
accumulation in early life stages of fathead minnows and snails. Aquatic Toxicol. 3, 171–182. 
Spencer, E.Y. (1976) Vapor pressure and vapor loss. In: A Literature Survey of Bench-mark Pesticides. Medical Center, Dept. of 
Medical and Public Affairs, Science Communication Division, The George Washington University, Washington, DC. 
Spencer, E.Y., Editor (1982) Guide to the Chemicals Used in Crop Protection. 7th Edition, Research Branch Agriculture Canada, 
Ontario, Canada. 
Spencer, J.R., Hermandez, B.Z., Schneider, F.A., Gonzales, M., Begum, S., Krieger, R.I. (1992) Seasonal mevinphos degradation on 
row crops in Monterey county, 1990. Chemosphere 24, 773–777. 
Spencer, W.F. (1975) Movement of DDT and its derivatives into the atmosphere. Res. Rev. 59, 91–117. 
Spencer, W.F., Cliath, M.M. (1968) Vapor density of dieldrin. Environ. Sci. Technol. 3, 670–674. 
Spencer, W F., Cliath, M.M. (1970) Vapor density and apparent vapor pressure of lindane (. BHC). J. Agric. Food Chem. 18(3), 529–530. 
Spencer, W.F., Cliath, M.M. (1972) Volatility of DDT and related compounds. J. Agric. Food Chem. 20, 645–649. 
Spencer, W.F., Shoup, T.D., Cliath, M.M., Farmer, W.J., Haque, R. (1979) Vapor pressure and relative volatility of ethyl and methyl 
parathion. J. Agric. Food Chem. 27, 273–278. 
Spiller, D. (1961) A digest of available information on insecticide malathion. Adv. Pest. Control Res. 4, 249. 
SRI International (1980) Interim Report on Task No. 11, Contract No. 68–01–3867, U.S. EPA Monitoring and Data Support Div., 
Office of Water Regulations and Standards, Washington, DC. 
© 2006 by Taylor & Francis Group, LLC

4018 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Statham, C.N., Melancon, Jr., M.J., Leck, J.L. (1976) Bioconcentration of xenobiotics in trout bile: A proposed monitoring aid for 
some water borne chemicals. Science 193, 680–681. 
Staudinger, J., Roberts, P.V. (1996) A critical review of Henry’s law constants for environmental application. Crit. Rev. Environ. Sci. 
Technol. 26, 205–297. 
Staudinger, J., Roberts, P.V. (2001) A critical compilation of Henry’s law constant temperature dependence relations for organic 
compounds in dilute aqueous solutions. Chemosphere 44, 561–576. 
Stehly, G.R., Hayton, W.L. (1990) Effect of pH on the accumulation kinetics of penta-chlorophenol in goldfish. Arch. Environ. Contam. 
Toxicol. 19, 464–470. 
Stephen, H., Stephen, T. (1963) Solubilities of Inorganic and Organic Compounds. Vols. I and II, MacMillan Co., New York. 
Stephenson, R.M., Malanowski, A. (1987) Handbook of the Thermodynamics of Organic Compounds. Elsevier, N.Y. 
Stephenson, R.R. (1982) Aquatic toxicity of cypermethrin. I. Acute toxicity to some freshwater fish and invertebrates in laboratory 
tests. Aquatic Toxicology 2, 175–185. 
Stewart, D.K.R., Chisholm, D. (1971) Long term persistence of BHC, DDT and chlordane in a sandy loam clay. Can. J. Soil Sci. 
61, 379–383. 
Sugiura, K., Aoki, M., Kaneko, S., Daisaku, I., Komatsu, Y., Shibuya, H., Suzuki, H., Goto, M. (1984) Fate of 2,4,6-trichlorophenol, 
pentachlorophenol, p-chlorobiphenyl, and hexachlorobenzene in an outdoor experimental pond: Comparison between observations 
and predictions based on laboratory data. Arch. Environ. Contam. Toxicol. 13, 745–758. 
Sugiura, K., Washino, T., Hattori, M., Sato, E., Goto, M. (1979) Accumulation of organo-chlorines in fishes-Difference of accumulation 
factors by fishes. Chemosphere 8(6), 359–364. 
Sukop, M., Cogger, C.G. (1992) Adsorption of carbofuran, metalaxyl, and simazine: KOC evaluation and relation to soil transport. J. 
Environ. Sci. Health B27(5), 565–590. 
Sun, H., Xu, J., Yang, S., Liu, G., Dai, S. (2004) Plant uptake of aldicarb from contaminated soil and it enhanced degradation in the 
rhizosphere. Chemosphere 54, 569–574. 
Suntio, L.R., Shiu, W.Y., Mackay, D., Seiber, J.N., Glotfelty, D. (1988) Critical review of Henry’s law constants. Rev. Environ. 
Contam. Toxicol. 103, 1–59. 
Sutherland, G.L., Giang, P.A., Archer, T.E. (1980) In: Analytical Methods for Pesticides and Plant Growth Regulators. Vol. 11, Zweig, 
G., Editor, pp. 487–505, Academic Press, New York. 
Svenson, S., Bjorndal, H. (1988) A convenient test method for photochemical transformation of pollutants in the aquatic environment. 
Chemosphere 17, 2397–2405. 
Swann, R.L., Laskowski, D.A., McCall, P.J., Vander, Kuy K., Dishburger, H.J. (1983) A rapid method for estimation of the 
environmental parameters octanol/water partition coefficient, soil sorption constant, water to air ratio, and water solubility. 
Res. Rev. 85, 17–28. 
Swoboda, A.R., Thomas, G.W. (1968) Movement of parathion in soil columns. J. Agric. Food Chem. 16, 923–927. 
Szeto, S.Y., MacCarthy, H.R., Oloffs, P.C., Shepherd, R.F. (1979) The fate of acephate and carbaryl in water. J. Environ. Sci. Health. 
B14, 635–654. 
Szeto, S.Y., Vernon, R.S., Brown, M.J. (1983) Degradation of disulfoton in soil and its translocation into asparagus. J. Agric. Food 
Chem. 31, 217–220. 
Tafuri, F., Businelli, M., Scarponi, L., Marucchini, C.J. (1977) Decline and movement of AG chlordane in soil and its residues in 
alfalfa. J. Agric. Food Chem. 25, 353–356. 
Takase, I., Oyama, H. (1985) Uptake and bioconcentration of disulfoton and its oxidation compounds in carp, Cyprinus carpio 
L. Nippon Noyaku Gakkaishi 10, 47–53. 
Takimoto, Y., Miyamoto, J. (1976) Studies on the accumulation and metabolism of sumithion in fish. J. Pest. Sci. 1, 261–271. 
Takimoto, Y., Ohshima, M., Miyamoto, J. (1987) Comparative metabolism of fenitrothion in aquatic organisms. I. Metabolism in the 
euryhaline fish, Oryzalias latipes and Mugil cephalus. Ecotox. Environ. Saf. 13, 104–117. 
Takimoto, Y., Ohshima, M., Yamada, H., Miyamoto, J. (1984) Fate of fenitrothion in several developmental stages of the killifish 
(Oryzalias latipes). Arch. Environ. Contam. Toxicol. 13, 579–587. 
Taylor, A.W., Glotfelty, D.E. (1988) Evaporation from soils and crops. In: Environmental Chemistry of Herbicides. Vol. I, Grover, 
R., Editor, pp. 89–130, CRC Press, Boca Raton, Florida. 
Taylor, A.W., Spencer, W.F. (1990) Volatilization and vapor transport processes. In: Pesticides in the Soil Environment: Processes, 
Impacts, and Modeling. Cheng, H.H., Editor, pp. 213–269, Soil Science Society of America, Madison, Wisconsin. 
Tejada, A.W. (1995) Pesticide residues in foods and the environment as a consequence of crop protection. Philipp. J. Agric. 78, 63–79. 
Tejada, A.W., Magallona, E.D. (1985) Fate of carbosulfan in a rice paddy environment. Philipp. Entomol. 6, 255–273. 
Tejada, A.W., Varca, L.M., Ocampo, P., Bajet, C.M., Magallona, E.D. (1993) Fate and residues of pesticides in rice production. Int. 
J. Pest. Manage. 39, 281–287. 
Terada, H., Kosuge, Y., Murayama, W., Nakaya, N., Nunogaki, Y., Nunogaki, K.-I. (1987) Correlation of hydrophobic parameters 
of organic compounds determined by centrifugal partition chromatography with partition coefficients between octanol and 
water. J. Chromatogr. 400, 343–351. 
Thibodeaux, L.J. (1979) Chemodynamics. John Wiley & Sons, New York. 
Thomann, R.V. (1989) Bioaccumulation model of organic chemical distribution in aquatic food chains. Environ. Sci. Technol. 23, 
699–707. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 4019 
Thomas, R.G. (1982) Chapter 15: Volatilization from water, and Chapter 16: Volatilization from soil. In: Handbook of Chemical 
Property Estimation Methods. Lyman, W.J., Rechl, W.F., Rosenblatt, D.H., Editors, McGraw-Hill, New York. 
Thor (1989) from Medchem Release 3.54, Daylight Chemical Information Systems, Claremont, California. 
Tomlin, C. (1994) The Pesticide Manual (A World Compendium). 10th Ed., Incorporating the Agrochemicals Handbook. The British 
Crop Protection Council, Surrey, UK and The Royal Society of Chemistry, Cambridge, U.K. 
Toyota, H., Kuwahara, M. (1967) The study on production of PCP chemical fertilizer and its effect as herbicide and fertilizer, the 
solubility in water of PCP in PCP chemical fertilizer. Nippon Dojohiryogaku Zasshi 38, 93–97. 
Trapp, St., Pussemier, L. (1991) Model calculations and measurements of uptake and translocation of carbamates by bean plants. 
Chemosphere 22, 327–339. 
Tratnyek, P.G., Hoigne, J. (1991) Oxidation of substituted phenols in the environment: A QSAR analysis of rate constants for reaction 
with singlet oxygen. Environ. Sci. Technol. 25, 626–631. 
Travis, C.C., Arms, A.D. (1988) Bioconcentration of organics in beef, milk, and vegetation. Environ. Sci. Technol. 22, 271–274. 
Trotter, D.M., Kent, R.A., Wong, M.P. (1991) Aquatic fate and effect of carbofuran. Critical Reviews in Environ. Control 21(2), 
137–176. 
Trujillo, D.A., Ray, L.E., Murray, H.E., Giam, C.S. (1982) Bioaccumulation of penta-chlorophenol by killifish (Fundulus similus). 
Chemosphere 11, 25–31. 
Tsuda, T., Aoki, S., Inoue, T., Kojima, M. (1995) Accumulation and excretion of diazinon, fenthion and fenitrothion by killifish: 
Comparison of individual and mixed pesticides. Water Res. 29, 455–458. 
Tsuda, T., Aoki, S., Kojima, M., Fujita, T. (1992) Pesticides in water and fish from rivers flowing into Lake Biwa (II). Chemosphere 
24, 1523–1531. 
Tsuda, T., Aoki, S., Kojima, M., Fujita, T. (1992) Accumulation and excretion of organo-phosphorus pesticides by willow shiner. 
Chemosphere 25(12), 1945–1951. 
Tsuda, T., Aoki, S., Kojima, M., Fujita, T. (1993) Accumulation and excretion of organo-phosphorus pesticides by carp Cyprinus 
carpio. Comp. Biochem. Physiol. 104C(2), 275–278. 
Tsuda, T., Aoki, S., Kojima, M., Harada, H. (1989) Bioconcentration and excretion of diazinon, IBP, malathion and fenitrothion by 
willow shiner. Toxicol. Environ. Chem. 24, 185–190. 
Tsuzuki, M., (2000) Thermodynamic estimation of vapor pressure fo organophosphorus pesticides. Environ. Toxiccol. Chem. 19, 
1717–2000. 
Tsuzuki, M. (2001) Vapor pressures of carboxylic acid esters including pyrethroids: measurement and estimation from molecular 
structure. Chemosphere 45, 729–736. 
Tucker, W.A., Lyman, W.J., Preston, A.L. (1983) Estimation of the dry deposition velocity and scavenging ratio for organic chemicals. 
In: Precipitation Scavenging, Dry Deposition, and Resuspension. Pruppacher, et al., Editors, pp. 1242–1256, Elsevier Science 
Publishing Co., New York. 
Ugland, K., Lundanes, E., Greibrok, T., Bjoseth, A. (1981) Determination of chlorinated phenols by high-performance liquid 
chromatography. J. Chromatogr. 213, 83–90. 
Ulmann, E. (1972) Lindane, Monograph of an Insecticide. Verlag K. Schillinger-Freiburg in Breisgau. p.16. 
USDA (1989) Final environmental impact statement, vegetation management in the Piedmont and Coastal Plain. Southern Region 
Management Bulletin R8-MB-23, USDA Forest Service, Atlanta, Georgia. 
USEPA (1984) Review of In-place Treatment for Contaminated Surface Soils. Vol. 1 and 2, U.S. EPA 540/2–84–003. U.S. EPA, 
Cincinnati, Ohio. 
Valsaraj, K.T., Thibodeaux, L.J., Lu, X.-Y. (1991) Studies in batch and continuous solvent sublation. III. Solubility of pentachlorophenol 
in alcohol-water mixtures and its effects on solvent sublation. Sep. Sci. Technol. 26(4), 529–538. 
Van Gestel, C.A.M., Ma, W.-C. (1988) Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability 
in soil. Ecotoxicol. Environ. Saf. 16, 289–297. 
Veith, G.D., Austin, N.M., Morris, R.T. (1979a) A rapid method for estimation log P for organic chemicals. Water Res. 13, 43–47. 
Veith, G.D., Defoe, D.L., Bergstedt, B.V. (1979b) Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish 
Res. Board Can. 26, 1040–1048. 
Veith, G.D., Kosian, P. (1983) Estimating bioconcentration potential from octanol/water partition coefficients. In: Physical Behavior 
of PCBs in the Great Lakes. Mackay, D., Paterson, S., Eosemreocj. S.J., Simmons, M.S., Editors, Chapter 15, pp. 269–282, 
Ann Arbor Science, Ann Arbor, Michigan. 
Veith, G.D., Macek, K.J., Petrocelli, S.R., Caroll, J. (1980) An evaluation of using partition coefficient and water solubilities to estimate 
bioconcentration factors for organic chemicals in fish. In: Aquatic Toxicology. ASTM STP 707, Eaton, J.G., Parrish, P.R., 
Hendricks, A.C., Editors, pp. 116–129, American Society for Testing and Materials, Philadelphia, Pennsylvania. 
Veith, G.D., Morris, R.T. (1978) A Rapid Method for Estimating Log P for Organic Chemists. U.S. Environmental Protection Agency, 
ERL, Duluth, Minnesota. 
Verschueren, K. (1977) Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold, New York. 
Verschueren, K. (1983) Handbook of Environmental Data on Organic Chemicals. 2nd Edition, Van Nostrand Reinhold, New York. 
Vigano, L., Galassi, S., Gatto, M. (1992) Factors affecting the bioconcentration of hexachlorocyclohexanes in early life stages of 
Oncorhynchus mykiss. Environ. Toxicol. Chem. 11, 535–540. 
© 2006 by Taylor & Francis Group, LLC

4020 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Voerman, S., Besemer, A.F.H. (1975) Persistence of dieldrin, lindane, and DDT in a light sandy soil and their uptake by grass. Bull. 
Environ. Contam. Toxicol. 13, 501–505. 
Voerman, S., Tammes, P.M.L. (1969) Adsorption and desorption of lindane and dieldrin by yeast. Bull. Environ. Contam. Toxicol. 
4, 271. 
von Rumker, R., Horay, F. (1972) Basic Information on Thirty-five Pesticide Chemicals. Pesticide Manual. Part II, U.S. Agency for 
International Development. 
Walsh, A.H., Ribelin, W.E. (1973) In: The Pathology of Fish. Ribelin, W.E., Migaki, G., Editors, University of Wisconsin Press, 
Madison, Wisconsin. 
Walker, A.I., Stevenson, D.E., Robinson, J., Thorpe, E., Roberts, M. (1969) Toxicol. Appl. Pharmacol. 15, 345–373. 
Walker, W.W., Cripe, C.R., Pritchard, P.H., Bourquin, A.W. (1988) Biological and abiotic degradation of xenobiotic compounds in 
in vitro esturine water and sediment/water system. Chemosphere 17, 2255–2270. 
Walker, W.W., Stojanovic, B.J. (1973) Microbial versus chemical degradation of malathion in soil. J. Environ. Qual. 2, 229–232. 
Wang, T.C., Hoffman, M.E. (1991) Degradation of organophosphorus pesticides in coastal water. J. Assoc. Off. Anal. Chem. 74(5), 
883–886. 
Wang, X., Harada, S., Watanabe, M., Koshikawa, H., Geyer, P.R. (1996) Modelling the bioconcentration of hydrophobic organic 
organisms. Chemosphere 32, 1783–1793. 
Wania, F., Mackay, D. (1993) Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. 
Ambio 22, 10–18. 
Wania, F., Mackay, D. (1993) Modelling the global distribution of toxaphene: A discussion of feasibility and desirability. Chemosphere 
27, 2079–2094. 
Wania, F., Mackay, D. (1996) Tracking the distribution of persistent organic pollutants. Environ. Sci. Technol. 30, 390A–396A. 
Wania, F., Shiu, W.Y., Mackay, D. (1994) Measurements of the vapor pressure of several low-volatility organochlorine chemicals at 
low temperatures with a gas saturation method. J. Chem. Eng. Data 39, 572–577. 
Wanner, O., Egli, T., Fleischmann, T., Lanz, K., Reichert, P., Schwazenbach, R.P. (1989) Behavior of the insecticides disulfolton and 
thiometon in the Rhine River: A chemodynamic study. Environ. Sci. Technol. 23, 1232–1242. 
Ward, T.E. (1985) Characterizing the aerobic and anaerobic microbial activities in surface and subsurface soils. Environ. Toxicol. 
Chem. 4, 727–737. 
Warner, H.P., Cohen, J.M., Ireland, J.C. (1980) Determination of Henry’s Law Constants of Selected Priority Pollutants. MERL, 
Cincinnati, Ohio. 
Warner, H.P., Cohen, J.M., Ireland, J.C. (1987) Determination of Henry’s Law Constants of Selected Priority Pollutants. EPA/600/ 
D-87/229; NTIS PB87–212684. U.S. Environmental Protection Agency, Cincinnati, Ohio. 
Warner, H.P., Cohen, J.M., Ireland, J.C. (1980) In-house report of U.S. EPA, Municipal Environmental Research Laboratory, Wastewater 
Research Division, Cincinnati, Ohio. 
Watanabe, I., Tatsukawa, R. (1989) Anthropogenic brominated aromatics in the Japanese environment. In: Proceedings: Workshop 
on Brominated Aromatic Flame Retardants. pp. 63–70. Skokloster, Sweden, 24–26 October, 1989. 
Wauchope, R.D. (1978) The pesticide content of surface water draining from agricultural fields- A review. J. Environ. Quality. 7(4), 
459–472. 
Wauchope, R.D. (1989) ARS/SCS Pesticide Properties Database. Version 1.9, preprint, August, 1989. 
Wauchope, R.D., Buttler, T.M., Hornsby, A.G., Augustijn-Beckers, P.W.M., Burt, J.P. (1992) The SCS/ARS/CES Pesticide Properties 
Database for Environmental Decision-Making. Rev. Environ. Contam. Toxicol. 123, 1–164. 
Way, M.J., Scopes, N.E A. (1968) Studies on the persistence and effects on soil fauna and some soil-applied systemic insecticides. 
Ann. Appl. Biol. 62, 199–214. 
Weast, R.C., Ed. (1972–73) Handbook of Chemistry and Physics. 53rd edition, CRC Press, Cleveland, Ohio. 
Weast, R.C., Ed. (1976–77) Handbook of Chemistry and Physics. 57th edition, CRC Press, Cleveland, Ohio. 
Weber, J.B., Shea, P.J., Strek, H.J. (1980) An evaluation of nonpoint sources of pesticide pollution in runoff. In: Environmental Impact 
of Nonpoint Source Pollution. Overcash, M., Davidson, J., Editors, Ann Arbor Science Publishers, Ann Arbor, Michigan. 
Weber, K. (1976) Degradation of parathion in seawater. Water Res. 10, 237–241. 
Webster, G.R.B., Friesen, K.J., Sarna, L.P., Muir, D.C.G. (1985) Environmental fate modelling of chlorodioxins: determination of 
physical constants. Chemosphere 14, 689–622. 
Wei, D., Zhang, A., Wu, C., Han, S., Wang, L. (2001) Progressive study and robustness test of QSAR model based on quantum 
chemical parameters for predicting BCF of selected polychlorinated organic compounds (PCOCs). Chemosphere 44, 
1421–1428. 
Weil, V.G., Dure, G., Quentin, K.L. (1974) Solubility in water of insecticide chlorinated hydrocarbons and polychlorinated biphenyls 
in view of water pollution. Z. Wasser Abwasser Forsch 7(6), 169–175. 
Weinberger, P., Greenhalgh, R. (1983) Review of ecotoxicity of matacil in freshwater environment: chemical and phytobiological 
impact studies. In: Aquatic Toxicology, Nriagu, J.O., Ed., pp. 437–438, Wiley-Interscience, New York. 
Weisgerber, I., Kohli, J., Kaul, R., Klein, W., Korte, F. (1974) Fate of aldrin-14C in maize, wheat, and soils under outdoor conditions. 
J. Agric. Food Chem. 22, 609–612. 
Wells, D., Grayson, B.T., Langner, E. (1986) Vapor pressure of permethrin. Pest. Sci. 17, 473–476. 
© 2006 by Taylor & Francis Group, LLC

Insecticides 4021 
Westall, J.C., Leuenberger, C., Swarzenbach, R.P. (1985) Influence of pH and ionic strength on the aqueous-nonaqueous distribution 
of chlorinated phenols. Environ. Sci. Technol. 19, 193–198. 
Westcott, J.W., Bidleman, T.F. (1981) Determination of polychlorinated biphenyl vapor pressures by capillary gas chromatography. 
J. Chromatogr. 210, 331–336. 
Westcott, J.W., Simon, C.G., Bidleman, T.F. (1981) Determination of polychlorinated biphenyl vapor pressures by a semimicro gas 
saturation method. Environ. Sci. Technol. 15, 1375–1378. 
Wheatley, G.A., Hardman, J.A. (1968) Organochlorine insecticide residues in earthworms from arable soils. J. Sci. Food Chem. Agric. 
19, 219–225. 
Whiting, F.M., Brown, W.H., Stull, J.W. (1973) Pesticide residues in milk and in tissues following long, low 2,2-bis(p-chlorophenyl)- 
1,1,1-trichloroethane intake. J. Dairy Sci. 56, 1324. 
Wilcock, R.J., Smith, T.J., Pridmore, R.D., Thrush, S.F., Cummings, V.J., Hewitt, J.E. (1993) Bioaccumulation and elimination of 
chlordane by selected intertidal benthic fauna. Environ. Toxicol. Chem. 12, 733–742. 
Williams, E.F. (1951) Properties of O,O-diethyl O-p-nitrophenyl thiophosphate and O,O-diethyl O-p-nitrophenyl phosphate. Ind Eng. 
Chem. 43, 950–954. 
Williams, P.P. (1977) Metabolism of synthetic organic pesticides by anaerobic microorganisms. Res. Rev. 66, 63. 
Willis, G.H., Hamilton, R.A. (1973) Agricultural chemicals in surface runoff, ground water, and soil: 1. Emdrin. J. Environ. Qual. 
2, 463. 
Willis, G.H., McDowell, L.L. (1982) Pesticides in agricultural runoff and their effects on downstream water quality. Environ. Toxicol. 
Chem. 1, 267–279. 
Willis, G.H., McDowell, L.L. (1987) Pesticide persistence on foliage. Rev. Environ. Contam. Toxicol. 100, 23–73. 
Willis, G.H., McDowell, L.L., Smith, S., Southwick, L.M., Lemon, E.R. (1980) Toxaphene volatilization from a mature cotton canopy. 
Agron. J. 72, 627. 
Willis, G.H., Parr, J.F., Smith, S. (1971) Volatilization of soil-applied DDT and DDD from flooded and nonflooded plots. Pest. Monit. 
J. 4, 204. 
Wilson, A.J. (1963) Chemical assays. In: Annual Report of the Bureau of Commercial Fisheries, U.S. Bureau of Commercial Fisheries 
Circ. #247. Biology Lab., Gulf Breeze, Florida. 
Wilson, K.A., Cook, R.M. (1972) Metabolism of xenobiotics in remnants. IV. Storage and excretion of HEOD in Holstein cows. J. Agric. 
Food Chem. 20, 391–394. 
Windholz, M., Editor (1983) The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals. 11th Edition, Merck and Co., 
Rahway, New Jersey. 
Winer, A.M., Atkinson, R. (1990) Chapter 9, Atmospheric reaction pathways and lifetimes for organophosphorous compounds. In: 
Long Range Transport of Pesticides. Kurtz, D.A., Ed., Lewis Publ., Ann Arbor, MI. 
Winget, P., Cramer, C.J., Truhlar, D.G. (2000) Prediction of soil sorption coefficients using a universal solvation model. Environ. Sci. 
Technol. 34, 4733–4740. 
Wolfdietrich, E., Editor (1965) Handbuch der Insektizidkunde. Veb Verlag Volk und Gesundheit, Berlin. 
Wolfe, N.L. (1980) Organophosphate and organophosphorothionate esters: Application of linear free energy relationships to estimate 
hydrolysis rate constants for use in environmental fate assessment. Chemosphere 9, 571–579. 
Wolfe, N.L., Kitchens, B.E., Macalady, D.L., Grundl, T.J. (1986) Physical and chemical factors that influence the anaerobic degradation 
of methyl parathion in sediment systems. Environ. Toxicol. Chem. 5, 1019–1026. 
Wolfe, N.L., Zepp, R.G., Gordon, T.A., Baughman, G.L., Cline, D.M. (1977) Kinetics of chemical degradation of malathion in water. 
Environ. Sci. Technol. 11, 88–93. 
Wolfe, N.L., Zepp, R.G., Paris, D.F. (1978) Carbaryl, propham, and chloropropham: A comparison of the rates of hydrolysis and 
photolysis with the rate of biolysis. Water Res. 12, 565. 
Wolfe, N.L., Zepp, R.G., Paris, D.F. (1978) Use of structure-reactivity relationships to estimate hydrolytic persistence of carbamate 
pesticides. Water Res. 12, 561–563. 
Wolfe, N.L., Zepp, R.G., Paris, D.F., Baughman, G.L., Hollis, R.C. (1977) Methoxychlor and DDT degradation in water: Rates and 
products. Environ. Sci. Technol. 11, 1077–1081. 
Wolfe, N.L., Zepp, R.G., Baughman, G.L., Fincher, R.C., Gordon, T.A. (1976) Chemical and Photochemical Transformation of 
Selected Pesticides in Aquatic Environments. EPA-600/3–76–067. US EPA, Athens, GA. 
Wollerton, C., Husband, R. (1988) Water Solubility, Vapour Pressure, octanol-Water Partition Coefficient and Henry’s Law Constant; 
Zeneca Report Series RJ06998 pp. 321; Blacknell: Berkshire, UK. 
Wong, A.S., Crosby, D.B. (1978) Photolysis of pentachlorophenol in water. In: Pentachlorophenol: Chemistry, Pharmacology, and 
Environmental Toxicology. Rao, K.R., Editor, pp. 19–25, Plenum Press, New York. 
Wong, A.S., Crosby, D.B. (1981) Photodecomposition of pentachlorophenol in water. J. Agric. Food Chem. 29, 125–130. 
Woolford, M.H., Jr. (1975) American Cyanamid Co. Letter to W.F. Spencer, Sept. 3, 1975. 
Worthing, C.R., Editor (1979) The Pesticide Manual (A World Compendium). 6th edition. The British Crop Protection Council, 
Suffolk, England. 
Worthing, C.R., Walker, S.B., Editors (1983) The Pesticide Manual (A World Compendium). 7th edition, The British Crop Protection 
Council, Croydon, England. 
© 2006 by Taylor & Francis Group, LLC

4022 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Worthing, C.R., Walker, S.B., Editors (1987) The Pesticide Manual (A World Compendium). 8th edition, The British Crop Protection 
Council, Croydon, England. 
Worthing, C.R., Hance, R. Editors (1991) The Pesticide Manual (A World Compendium). 9th edition, The British Crop Protection 
Council, Surrey, England. 
Wszolek, P.C., Lein, D.H., Lisk, D.J. (1980) Excretion of fenvalerate insecticide in the milk of dairy cows. Bull. Environ. Contam. 
Toxicol. 24, 296. 
Xiao, Hang, Li, N., Wania, F. (2004) Compilation, evaluation, and selection of physical-chemical property data for .-, .-, and 
.-hexachlorocyclohexane. J. Chem. Eng. Data 49, 173–185. 
Xie, T.M. (1983) Determination of trace amounts of chlorophenols and chloroguaiacols in sediment. Chemosphere 12, 1183–1191. 
Xie, T.M., Abrahamsson, K., Fogelqvist, E., Josefsson, B. (1986) Distribution of chlorophenols in a marine environment. Environ. 
Sci. Technol. 20, 457–463. 
Xie, T.M., Dyrssen, D. (1984) Simultaneous determination of partition coefficients and acidity constants of chlorinated phenols and 
guaiacols by gas chromatography. Anal. Chem. Acta 160, 21–30. 
Xu, F., Liang, X.-M., Su, F., Zhang, Z., Lin, B.-C., Wu, W.-Z., Yediler, A., Kettrup, A. (1999) A column method for determination 
of soil organic partition coefficients of eight pesticides. Chemosphere 39, 787–794. 
Yalkowsky, S.H., Banerjee, S. (1992) Aqueous Solubility. Methods of Estimation for Organic Compounds. Marcel Dekker, New York. 
Yao, C.C.D., Haag, W.R. (1991) Rate constants for direct reactions of ozone with several drinking water contaminants. Water Res. 
25, 761–773. 
Yaron, B., Heuer, B., Birk, Y. (1974) Kinetics of azinphosmethyl losses in the soil environment. J. Agric. Food Chem. 22(3), 439–441. 
Yin, C., Hassett, J.P. (1986) Gas partition approach for laboratory and field studies of mirex fugacity in water. Environ. Sci. Technol. 
20, 1213–1217. 
Yoshida, K., Shigeoka, T., Yamauchi, F. (1983) Non-steady state equilibrium model for the preliminary prediction of the fate of 
chemicals in the environment. Ecotoxicol. Environ. Saf. 7, 179–190. 
Yoshida, K., Shigeoka, T., Yamauchi, F. (1983) Relationship between mole fraction and n-octanol/water partition coefficient. 
Ecotoxicol. Environ. Saf. 7, 558–565. 
Yoshioka, Y., Mizuno, T., Ose, Y., Sato, T. (1986) The estimation for toxicity of chemicals on fish by physico-chemical properties. 
Chemosphere 15, 195–203. 
Zamy, C., Mazellier, P., Legube, B. (2004) Phototransformation of selected organophosphorus pesticides in dilute aqueous solutions. 
Water Res. 38, 2305–2314. 
Zaroogian, G.E., Hertshe, J.F., Johnson, M. (1985) Estimation of bioconcentration in marine species using structure-activity models. 
Environ. Toxicol. Chem. 4, 3–12. 
Zepp, R.G., Baughman, G.L. (1978) Prediction of photochemical transformation of pollutants in the aquatic environment. In: Aquatic 
Pollutants: Transformation and Biological Effects. Hutzinger, O., Van Lelyveld, I.H., Zoeteman, B.C.J., Editors, pp. 237–164, 
Pergamon Press, Oxford, England. 
Zepp, R.G., Baughman, G.L., Schlotzhauer, P.F. (1981) Comparison of photochemical behavior of various humic substances in water: 
I. Sunlight induced reactions of aquatic pollutants photosensitized by humic substances. Chemosphere 10, 109–117. 
Zepp, R.G., Schlotzhauer, P F. (1983) Influence of algae on photolysis rates of chemicals in water. Environ. Sci. Technol. 17, 462–468. 
Zepp, R.G., Wolfe, N.L., Gordon, J.A., Fincher, R.C. (1976) Light-induced transformation of methoxychlor in aquatic systems. 
J. Agric. Food Chem. 24, 727–733. 
Zimmerli, B., Marek, B. (1974) Modellversuche zur kontamination von lebensmitteln mit pestiziden via gasphase. Mitt Gebiete 
Lebensm Hyg. 65, 55–64. 
Zitko, V., McLeese, D.W. (1980) Canadian Technical Report, Fish Aquatic Science No. 985, Dec. 1980. 
Zoeteman, B.C.J., de Greef, E., Brinkmann, F.J.J. (1981) Persistency of organic contaminants in ground water. Lessons learned from 
soil pollution incidents in the Netherlands. Sci. Total Environ. 21, 187–202. 
Zoeteman, B.C.J., Harmsen, K., Linders, J.B.H.J., Morra, C.F.H., Slooff, W. (1980) Persistent organic pollutants in river water and 
ground water of the Netherlands. Chemosphere 9, 231–249. 
© 2006 by Taylor & Francis Group, LLC

19 Fungicides 
CONTENTS 
19.1 List of Chemicals and Data Compilations (in alphabetical order) 4027 
19.1.1 Anilazine . . 4027 
19.1.2 Benalaxyl . . 4029 
19.1.3 Benomyl . . . 4031 
19.1.4 Bitertanol . . 4033 
19.1.5 Bupirimate . 4035 
19.1.6 Captan . . . . 4037 
19.1.7 Carbendazim . . . . . . . . . . . . . . . . 4040 
19.1.8 Carboxin . . . 4042 
19.1.9 Chloroneb . . 4044 
19.1.10 Chloropicrin 4046 
19.1.11 Chlorothalonil . . . . . . . . . . . . . . . 4049 
19.1.12 Dazomet . . . 4051 
19.1.13 Dichlone . . . 4052 
19.1.14 Dicofol . . . . 4054 
19.1.15 Dithianon . . 4056 
19.1.16 Edifenphos . 4058 
19.1.17 Etridiazole . 4060 
19.1.18 Fenarimol . . 4062 
19.1.19 Fenfuram . . 4064 
19.1.20 Folpet . . . . . 4065 
19.1.21 Formaldehyde . . . . . . . . . . . . . . . 4067 
19.1.22 Hexachlorobenzene . . . . . . . . . . . 4069 
19.1.23 Imazalil . . . 4075 
19.1.24 Mancozeb . . 4077 
19.1.25 Maneb . . . . 4078 
19.1.26 Metalaxyl . . 4080 
19.1.27 Nitrapyrin . . 4082 
19.1.28 Oxycarboxin 4084 
19.1.29 Penconazole 4086 
19.1.30 Procymidone . . . . . . . . . . . . . . . . 4088 
19.1.31 Propargite . . 4090 
19.1.32 Propiconazole . . . . . . . . . . . . . . . . 4091 
19.1.33 Quintozene . 4093 
19.1.34 Thiophanate-methyl . . . . . . . . . . . 4095 
19.1.35 Thiram . . . . 4097 
19.1.36 Tolclofos-methyl . . . . . . . . . . . . . 4099 
19.1.37 Tolylfluanid 4101 
19.1.38 Triadimefon 4103 
19.1.39 Triflumizole 4105 
19.1.40 Triforine . . . 4107 
© 2006 by Taylor & Francis Group, LLC

4024 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.41 Vinclozolin . 4108 
19.1.42 Warfarin . . . 4110 
19.1.43 Zineb . . . . . 4112 
19.1.44 Ziram . . . . . 4114 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4025 
19.1 List of Chemicals and Data Compilations (by Functional Group) 
Alanine Derivatives: 
Benalaxyl . . . . . . . . . . 4029 
Metalaxyl . . . . . . . . . . 4080 
Amides: 
Carboxin . . . . . . . . . . 4042 
Fenfuram . . . . . . . . . . 4064 
Thiram . . . . . . . . . . . . 4097 
Tolylfluanid . . . . . . . . 4101 
Carbamates: 
Benomyl . . . . . . . . . . 4031 
Carbendazim . . . . . . . 4040 
Mancozeb . . . . . . . . . 4077 
Maneb . . . . . . . . . . . . 4078 
Thiophanate-methyl . 4095 
Zineb . . . . . . . . . . . . . 4112 
Ziram . . . . . . . . . . . . . 4114 
Chlorobenzenes: 
Chloroneb . . . . . . . . . 4044 
Hexachlorobenzene . . 4069 
Quintozene . . . . . . . . 4093 
Imidazoles: 
Imazalil . . . . . . . . . . . 4075 
Triflumizole . . . . . . . . 4105 
Phosphorothioates: 
Edifenphos . . . . . . . . . 4058 
Tolclofos-methyl . . . . 4099 
Quinones: 
Dichlone . . . . . . . . . . 4052 
Dithianon . . . . . . . . . 4056 
Procymidone . . . . . . . 4088 
Thioimides: 
Captan . . . . . . . . . . . . 4037 
Folpet . . . . . . . . . . . . . 4065 
Triazoles: 
Bitertanol . . . . . . . . . . 4033 
Penconazole . . . . . . . . 4086 
Propiconazole . . . . . . 4091 
Triadimefon . . . . . . . . 4103 
Miscellaneous: 
Anilazine . . . . . . . . . . 4027 
Bupirimate . . . . . . . . . 4035 
Chloropicrin . . . . . . . 4046 
Chlorothalonil . . . . . . 4049 
Dazomet . . . . . . . . . . 4051 
Dicofol . . . . . . . . . . 4054 
Etridiazole . . . . . . . . . 4060 
Fenarimol . . . . . . . . . 4062 
Formaldehyde . . . . . . 4067 
Nitrapyrin . . . . . . . . . 4082 
Oxycarboxin . . . . . . . 4084 
Propargite . . . . . . . . . 4090 
© 2006 by Taylor & Francis Group, LLC

4026 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Triforine . . . . . . . . . . 4107 
Vinclozolin . . . . . . . . 4108 
Warfarin . . . . . . . . . . 4110 
19.2 Summary Tables . . . . 4116 
19.3 References . . . . . . . . 4122 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4027 
19.1 LIST OF CHEMICALS AND DATA COMPILATIONS 
19.1.1 ANILAZINE 
Common Name: Anilazine 
Synonym: Botrysan, Direz, Dyrene, Kemate, Triasyn, triazine, Zinochlor 
Chemical Name: 2-chloro-N-(4,6-dichloro-1,3,5-triazin-2-yl)aniline; 2,4-dichloro-6-(o-chloro-anilino)-s-triazine; 
4,6-dichloro-N-(2-chlorophenyl)-1,3,5-triazin-2-amine 
Uses: as fungicide to control early and late blights of potatoes and tomatoes; anthracnose in cucurbits; leaf spot diseases 
in many crops; glume blotch of wheat; also used on vegetables, ornaments, berry fruits, melons, coffee and tobacco, 
etc. 
CAS Registry No: 101-05-3 
Molecular Formula: C9H5Cl3N4 
Molecular Weight: 275.522 
Melting Point (°C): 
160 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 1.80 (Hartley & Kidd 1987; Tomlin 1994) 
Molar Volume (cm3/mol): 
252.8 (calculated-Le Bas method at normal boiling point) 
153.1 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0474 (mp at 160°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
8.00 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
8.00 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
8.00 (selected, Lohninger 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
negligible (20°C, Hartley & Kidd 1987) 
8.20 . 10–7 (20°C, Worthing & Hance 1991; Tomlin 1994) 
8.26 . 10–7 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
2.82 . 10–5 (20°C, calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.39 (calculated, Chiou 1981) 
3.79 (calculated-CLOGP program, Biagi et al. 1991) 
3.01 (20°C, Worthing & Hance 1991; Tomlin 1994) 
3.88 (RP-HPLC-RT correlation, Saito et al. 1993) 
1.91 (at pH 7, Milne 1995) 
3.00 (selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
2.28 (calculated-S as per Kenaga 1980, this work) 
N 
N 
N 
Cl 
Cl N
H 
Cl 
© 2006 by Taylor & Francis Group, LLC

4028 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Sorption Partition Coefficient, log KOC: 
3.00 (20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
3.00 (estimated-chemical structure, Lohninger 1994) 
3.14 (calculated-S as per Kenaga 1980, this work) 
3.00, 2.53, 3.30 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: stable in neutral and slightly acidic media, t. = 730 h at pH 4, t. = 790 h at pH 7, t. = 22 h at pH 9, 
22°C (Tomlin 1994). 
Half-Lives in the Environment: 
Air: 
Surface water: 
Groundwater: 
Sediment: 
Soil: t. ~ 12 h in damp soil (Hartley & Kidd 1987; Tomlin 1994); 
field t. = 1 d (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4029 
19.1.2 BENALAXYL 
Common Name: Benalaxyl 
Synonym: Galben, M 9834, Tairel 
Chemical Name: methyl N-phenylacetyl-N-2,6-xylyl-DL-alaninate; methyl N-(2,6-dimethylphenyl)-N-(phenylacetyl)- 
DL-alaninate 
CAS Registry No: 71626-11-4 
Uses: as fungicide to control late blights of potatoes and tomatoes; downy mildews of hops, vines, lettuce, onions, 
soybeans and other crops; many diseases in flowers and ornamentals; and often used in combination with other 
fungicides, etc. 
Molecular Formula: C20H23NO3 
Molecular Weight: 325.402 
Melting Point (°C): 
79 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.27 (25°C, Hartley & Kidd 1987; Milne 1995) 
Molar Volume (cm3/mol): 
390.8 (calculated-Le Bas method at normal boiling point) 
256.2 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.295 (mp at 79°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
37.0 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
37.0 (20–25°C, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
6.7 . 10–4 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
1.33 . 10–3 (20–25°C, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
0.0117 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
3.40 (Worthing & Hance 1991; Milne 1995) 
3.40 (Tomlin 1994) 
3.40 (selected, Hansch et al. 1995) 
3.24 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
1.91 (calculated-S as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
3.44–3.86 (soil, Tomlin 1994) 
3.00 (soil, estimated, Augustin-Beckers et al. 1994; Hornsby et al. 1996) 
N 
O 
O
O 
© 2006 by Taylor & Francis Group, LLC

4030 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: t. = 86 d at pH 9, 25°C, but stable in aqueous solutions at pH 4–9 (Tomlin 1994). 
Half-Lives in the Environment: 
Air: 
Surface water: 
Groundwater: 
Sediment: 
Soil: t. = 20–71 d in soil (Tomlin 1994); 
field t. = 30 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4031 
19.1.3 BENOMYL 
Common Name: Benomyl 
Synonym: Arilate, BBC, Benex, Benlate, Benosan, Fibenzo, Fundazol 
Chemical Name: methyl N-(1-butylcarbamoyl-2-benzimidazole)carbamate; methyl 1-(butyl-carbamoyl)benzimidazol- 
2-ylcarbamate; methyl 1-[(butylamino)carbonyl]-1H-benz-imidazol-2-ylcarbamate 
Uses: as fungicide to control a wide range of diseases of fruit, nuts, vegetables, mushrooms, field crops, ornamentals, 
turf and trees; also provides secondary acaricidal control, principally as an ovicide, etc. 
CAS Registry No: 17804-35-2 
Molecular Formula: C14H18N4O3 
Molecular Weight: 290.318 
Melting Point (°C): 
140 (dec., Tomlin 1994) 
dec (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
320.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0744 (mp at 140°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
3.8 (Austin et al. 1976; quoted, Kenaga 1980; Howard 1991) 
18.2, 4.0, 3.6, 2.8, 3.0, 1.9, 1.8, 8.8, 4.5 (pH 1, 3, 5,7, 8, 9, 10, 11, 12, room temperature, shake flask-HPLC/UV, 
Singh & Chiba 1985) 
2.8 (shake flask-HPLC/UV at pH 7, Singh & Chiba 1985; quoted, Howard 1991) 
2.0 (Hartley & Kidd 1987; Milne 1995) 
4.0 (pH 3–10, Worthing & Hance 1991) 
2.0 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.0 (stable only at pH 7, Montgomery 1993) 
4.0 (selected, Lohninger 1994) 
4.0 (pH 3–10, very soluble at pH 1, decomposes at pH 13, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 1.00 . 10–5 (20°C, Hartley & Kidd 1987) 
< 1.33 . 10–8 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
< 4.90 . 10–6 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
< 1.93 . 10–6 (calculated-P/C) 
Octanol/Water Partition Coefficient, log KOW: 
2.12 (20°C, shake flask-UV, Austin & Briggs 1976) 
2.42 (Rao & Davidson 1982; Hansch & Leo 1985; 1987) 
3.11 (Garten & Trabalka 1983; Travis & Arms 1988) 
2.12 (Hansch & Leo 1985) 
N
N 
NH 
O 
O 
NH 
O 
© 2006 by Taylor & Francis Group, LLC

4032 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.42 (Sangster 1993) 
1.40–3.11 (Montgomery 1993) 
2.12 (recommended, Hansch et al. 1995) 
1.33 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
2.46 (estimated-S, Kenaga 1980; quoted, Howard 1991) 
–0.47 (vegetation, Popov & Sboeva 1974; Jalali & Anderson 1976) 
Sorption Partition Coefficient, log KOC: 
3.32 (estimated-S, Kenaga 1980; quoted, Howard 1991) 
3.28 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
3.28 (soil, calculated, Montgomery 1993) 
3.28 (selected, Lohninger 1994) 
3.28 (soil, Tomlin 1994) 
2.71 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.73, 1.92 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, Gramatica 
et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: photooxidation t. = 1.6 h in air, based on estimated rate constant for the vapor-phase reaction with 
hydroxyl radicals in air (Atkinson 1987; quoted, Howard 1991). 
Hydrolysis: very significant in water with t. < 1 wk (Howard 1991). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: estimated t. ~ 1.6 h, based on the vapor-phase reaction with hydroxyl radicals in air (Atkinson 1987; quoted, 
Howard 1991). 
Surface water: t. = 2 h (Tomlin 1994). 
Groundwater: 
Sediment: 
Soil: degradation occurred within 15 d in unsterilized soil (Hine et al. 1969); 
t. = 6–12 months (Hartley & Kidd 1987); 
field t. = 67 d (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 19 h in soil (Tomlin 1994). 
Biota: t. = 3–7 d on foliage (quoted, Montgomery 1993). 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4033 
19.1.4 BITERTANOL 
Common Name: Bitertanol 
Synonym: Baycor, Baymat, Biloxazol, Sibutol 
Chemical Name: 1-(biphenyl-4-yloxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol; .-([1,1.-biphenyl]-4-yloxy)- 
.-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol 
Uses: as fungicide to control scab on apples and pears; rusts and powdery mildews on ornamentals; black spot on roses; 
and leaf spot and other diseases of vegetables, cucurbits, cereals, deciduous fruit, bananas, groundnuts, soy beans, etc. 
CAS Registry No: 70585-38-5 (diastereoisomer A), 55179-31-2 (diastereoisomer B) 
Molecular Formula: C20H23N3O2 
Molecular Weight: 337.415 
Melting Point (°C): 
139.8 (diastereoisomer A, Hartley & Kidd 1987) 
146.3 (diastereoisomer B, Hartley & Kidd 1987) 
118.0 (eutectic mixture of the two diastereoisomers, Hartley & Kidd 1987; Worthing & Hance 1991) 
136.7 (diastereoisomer A, Worthing & Hance 1991; Tomlin 1994) 
145.2 (diastereoisomer B, Worthing & Hance 1991; Tomlin 1994) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
399.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.122 (eutectic mixture, mp at 118° C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
5.0 (20°C, eutectic mixture; Hartley & Kidd 1987; Worthing & Hance 1991) 
2.9 (20°C, diastereoisomer A, Worthing & Hance 1991; Tomlin 1994) 
1.6 (20°C, diastereoisomer B, Worthing & Hance 1991; Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
1.0 . 10–6 (20°C, Hartley & Kidd 1987) 
0.0038 (100°C, diastereoisomer A, Worthing & Hance 1991) 
0.0032 (100°C, diastereoisomer B, Worthing & Hance 1991) 
2.2 . 10–10 (20°C, diastereoisomer A, Tomlin 1994) 
2.5 . 10–10 (20°C, diastereoisomer B, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
8.45 . 10–5 (20°C, eutectic mixture, calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.10 (20°C, diastereoisomer A, Worthing & Hance 1991; Tomlin 1994) 
4.40 (20°C, diastereoisomer B, Worthing & Hance 1991; Tomlin 1994) 
4.16 (Schreiber & Schonherr 1992) 
4.16 (selected, Hansch et al. 1995) 
O 
N 
OH 
N 
N 
© 2006 by Taylor & Francis Group, LLC

4034 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioconcentration Factor, log BCF: 
2.40 (20°C, eutectic mixture, calculated-S as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
2.25 (20°C, eutectic mixture, calculated-S as per Kenaga 1980, this work) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: stable in neutral, acidic and alkaline media, hydrolytic t. > 1 yr at 25°C and pH 4, 7 and 9 (Tomlin 
1994). 
Biodegradation: degradation in soil is rapid (Tomlin 1994). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: environmental t. = 1 month to 1 yr (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4035 
19.1.5 BUPIRIMATE 
Common Name: Bupirimate 
Synonym: Nimrod, PP 588 
Chemical Name: 5-butyl-2-ethylamino-6-methylpyrimidin-4-yl dimethylsulfamate; 5-butyl-2-(ethylamino)-6-methyl- 
4-pyrimidinyl dimethylsulfamate 
Uses: as fungicide to control powdery mildews of apples and pears, stone fruit, strawberries, gooseberries, vines, roses 
and other ornamentals, cucurbits, hops, beet, and other crops, etc. 
CAS Registry No: 41483-43-6 
Molecular Formula: C13H24N4O3S 
Molecular Weight: 316.419 
Melting Point (°C): 
50–51 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
368.9 (calculated-Le Bas method at normal boiling point, this work) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C): 
22.0 (Martin & Worthing 1977) 
22.0 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
23.0 (at pH 5.2, Worthing & Hance 1991) 
Vapor Pressure (Pa at 25°C or as indicated): 
6.7 . 10–5 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991) 
1.0 . 10–4 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
9.64 . 10–3 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.70 (shake flask, pH 7, Stevens et al. 1988) 
3.70 (Worthing & Hance 1991) 
3.90 (Tomlin 1994) 
2.70 (selected, Sangster 1993; Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
2.02 (calculated-S, Kenaga 1980) 
2.56 (calculated-KOW as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
2.90 (calculated-S, Kenaga 1980) 
N 
N 
NH 
O 
S 
N 
O O 
© 2006 by Taylor & Francis Group, LLC

4036 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: rapidly decomposed by ultraviolet irradiation in aqueous solutions (Tomlin 1994). 
Oxidation: 
Hydrolysis: stable in dilute alkalis, but readily hydrolyzed by dilute acids (Tomlin 1994). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: t. = 35–90 d for nonsterile flooded or non-flooded soil, pH 5.1 to pH 7.3 (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4037 
19.1.6 CAPTAN 
Common Name: Captan 
Synonym: Aacaptan, Amercide, Captab, Captaf, Captane, Captex, Flit 406, Glyodex 37-22, Malipur, Merpan, Orthocide, 
Pillarcap, Vondcaptan 
Chemical Name: N-(trichloromethylthio)cyclohex-4-ene-1,2-dicarboximide; 1,2,3,6-tetrahydro-N-(trichloromethylthio)
phthalimide; 3a,4,7,7a-tetrahydro-[(trichloromethyl)thio]-1H-isoindole-1,3(2H)-dione 
CAS Registry No: 133-06-2 
Uses: as fungicide to control a wide range of fungal diseases; also used as seed treatment on maize, ornamentals, 
vegetables, oilseed rape, and other crops. 
Molecular Formula: C9H8Cl3NO2S 
Molecular Weight: 300.590 
Melting Point (°C): 
178 (Hartley & Kidd 1987; Howard 1991; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
172.5 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.74 (Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
250.5 (calculated-Le Bas method at normal boiling point) 
172.8 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
44.35 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0357 (mp at 172.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
8.70 (colorimetric, Burchfield 1959) 
< 0.5 (Martin & Worthing 1977) 
0.50 (Briggs 1981) 
3.30 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
0.50 (20°C, selected, Suntio et al. 1988; quoted, Howard 1991; Majewski & Capel 1995) 
5.10 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.44 (calculated, Patil 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 0.0013 (Khan 1980) 
< 0.0013 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
0.0010 (20°C, selected, Suntio et al. 1988; quoted, Howard 1991; Majewski & Capel 1995) 
1.1 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.60 (20°C, calculated-P/C, Suntio et al. 1988) 
N 
O
O 
S 
Cl 
Cl Cl 
© 2006 by Taylor & Francis Group, LLC

4038 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
2.35 (Leo et al. 1971) 
1.52 (Rao & Davidson 1980) 
2.54 (shake flask-UV, Lord et al. 1980; Briggs 1981) 
2.35 (Hansch & Leo 1985) 
2.79 (Worthing & Hance 1991; Milne 1995) 
2.35 (RP-HPLC-RT correlation, Saito et al. 1993) 
2.60 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
2.35 (recommended, Sangster 1993) 
2.35 (recommended, Hansch et al. 1995) 
2.60 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
> 2.96 (estimated-S, Kenaga 1980a; quoted, Howard 1991) 
2.67 (earthworms, Lord et al. 1980) 
1.30 (activated sludge, Freitag et al. 1984, 1985) 
1.30 (algae, Freitag et al. 1984,85) 
1.00 (golden ide, Freitag et al. 1985) 
1.56 (regression-log KOW, Hansch & Leo 1985) 
Sorption Partition Coefficient, log KOC: 
2.30 (soil, converted from KOM multiplied by 1.724, Briggs 1981) 
2.29 (Lyman et al. 1982; quoted, Howard 1991) 
1.52 (estimated, Jury et al. 1987) 
1.52 (screening model calculations, Jury et al. 1987b) 
2.30 (soil, quoted exptl., Meylan et al. 1992) 
2.94 (soil, calculated-MCI . and fragments contribution, Meylan et al. 1992) 
2.30 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.30 (selected, Lohninger 1994) 
2.30 (soil, quoted or calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: photolysis t. = 37 min in isopropanol, t. = 420 min in cyclohexene and t. = 380 min in cyclohexane 
by UV-irradiation (. > 280 nm): (Schwack & Flo.er-Muller 1990). 
Oxidation: photooxidation t. = 3.2–32 h in air, based on estimated rate constant for the vapor-phase reaction 
with hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991) 
Hydrolysis: pseudo-first-order hydrolysis t. = 0.1 d (Burchfield 1959; quoted, Freed 1976); 
t. = 1.8 h, based on first-order rate constant k = 6.5 . 10–3 s–1 at pH 7.1 and 28°C (Wolfe et al. 1976; quoted, 
Howard et al. 1991); 
t. = 10.3 h, based on first-order rate constant k = 1.87 . 10–5·s–1 at pH 5.2 and 28°C (Wolfe et al. 1976; 
quoted, Howard et al. 1991); 
t. = 10.5 minutes, based on first-order rate constant k = 1.10 . 10–3·s–1 at pH 8.3 and 28°C (Wolfe et al. 
1976; quoted, Howard et al. 1991); 
t. = 170 min in a river water sample at pH 7 and 28°C (Wolfe et al. 1976; quoted, Howard 1991); 
over rate constant k = 6.5 . 10–5 s–1 with t. = 3 h at 25°C and pH 7 (Mabey & Mill 1978) 
t. = 7 h in Lake Superior water at pH 7.6 and 12°C, t. = 1 h at pH 7.6 and 25°C, t. = 40 h at pH 6.7 and 
12°C, and t. = 8 h at pH 6.7 and 23°C (Wolfe et al. 1976; quoted, Howard 1991). 
Biodegradation: unacclimated aqueous aerobic degradation t. = 48–1440 h, based on unacclimated and acclimated 
soil grab sample data (Agnihotri 1970; Foschi et al. 1970; quoted, Howard et al. 1991); unacclimated 
aqueous anaerobic degradation t. = 192–5760 h, based on unacclimated aqueous aerobic half-life (Howard 
et al. 1991); 
rate constant k = 0.231 d–1 with a biodegradation t. = 3 d in soil (Rao & Davidson 1980). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4039 
Half-Lives in the Environment: 
Air: t. = 2.6 h and 1.4 h for the vapor-phase reaction with photochemically produced hydroxyl radicals and 
ozone (Atkinson 1985; quoted, Howard 1991); 
photooxidation t. = 3.2–32 h in air, based on estimated rate constant for the vapor-phase reaction with 
hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: hydrolysis t. = 170 min in a river water sample at pH 7 and 28°C (Wolfe et al. 1976; quoted, 
Howard 1991); 
t. = 7 h in Lake Superior water at pH 7.6 and 12°C, t. = 1 h at pH 7.6 and 25°C, t. = 40 h at pH 6.7 and 
12°C, and t. = 8 h at pH 6.7 and 23°C (Wolfe et al. 1976; quoted, Howard 1991). 
Groundwater: t. = 10.5 min at pH 8.3 to t. = 10.3 h at pH 5.2, based on first-order hydrolysis rate constants in 
surface waters (Wolfe et al. 1976; quoted, Howard et al. 1991). 
Sediment: 
Soil: t. = 48–1440 h, based on unacclimated and acclimated soil grab sample data (Agnihotri 1970; Foschi et al. 
1970; quoted, Howard et al. 1991); 
rate constant k = 0.231 d–1 with a biodegradation t. = 3 d (Rao & Davidson 1980); 
t. = 2.5 d in soil (Halfon et al. 1996); 
field t. = 2.5 d (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 1 d at pH 7.2 (Tomlin 1994). 
Biota: biochemical t. = 3 d from screening model calculations (Jury et al. 1987b). 
© 2006 by Taylor & Francis Group, LLC

4040 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.7 CARBENDAZIM 
Common Name: Carbendazim 
Synonym: Bavistin, BCM, BMK, Carbendazime, Carbendazol, Carbendazym, G 665, Kemdazin, Mecarzole 
Chemical Name: carbamic acid, methyl 1H-benzimidazol-2-yl, methyl ester; methyl benzimidazole-2-ylcarbamate; 
methyl 1H-benzimidazol-2-ylcarbamate 
Uses: as fungicide for control of a wide range of fungal diseases in cereals, fruit, vines, hops, ornamentals, vegetables, 
rice coffee, cotton, mushrooms, and other crops; also used by trunk injection to give some control of Dutch elm 
disease. 
CAS Registry No: 10605-21-7 
Molecular Formula: C9H9N3O2 
Molecular Weight: 191.186 
Melting Point (°C): 
302–307 (with dec., Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
300 (dec, Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.45 (Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
194.8 (calculated-Le Bas method at normal boiling point) 
131.9 (calculated-density) 
Dissociation Constant pKa: 
4.48 (Austin & Briggs 1976) 
4.24 (Sangster 1993) 
4.20 (Tomlin 1994) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.002 (mp at 300°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
8.0 (24°C at pH 7, Hartley & Kidd 1987; Worthing & Hance 1991; Milne 1995) 
29, 8.0, 7.0 (24°C, at pH 4, 7, 8, Tomlin 1994) 
8.0 (20–25°C at pH 7, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
6.50 . 10–8 (20°C, Hartley & Kidd 1987) 
< 9.0 . 10–5 (20°C, Worthing & Hance 1991) 
9.0 . 10–5, 1.5 . 10–4, 0.0013 (20, 25, 50°C, quoted, Tomlin 1994) 
< 1.0 . 10–7 (20°C, quoted, Tomlin 1994) 
6.50 . 10–8 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
1.55 . 10–6 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.52 (shake flask, Austin & Briggs 1976) 
1.40 (shake flask-UV, Lord et al. 1980) 
1.34 (shake flask at pH 5, Barak et al. 1983) 
NH 
N 
NH 
O 
O 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4041 
1.56 (Worthing & Hance 1991; Milne 1995) 
1.43 (recommended, Sangster 1993) 
1.38, 1.505, 1.49 (pH 5, 7, 9, Tomlin 1994) 
1.56, 1.77 (pH 6, 7, Tomlin 1994) 
1.52 (recommended, Hansch et al. 1995) 
1.80 (Pomona-database, Muller & Kordel 1996) 
1.35 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
2.28 (calculated-S, Kenaga 1980) 
1.57 (earthworms, Lord et al. 1980; quoted, Connell & Markwell 1990) 
Sorption Partition Coefficient, log KOC: 
3.14 (soil, calculated-S, Kenaga 1980) 
2.35 (soil, HPLC-screening method, mean value of different stationary and mobile phases, Kordel et al. 
1993, 1995) 
2.30–2.40 (soil, Tomlin 1994) 
2.35 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.69 (soil, 20–25°C at pH 7, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
2.35; 2.25 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
4.00, 2.09, 2.41, 2.28, 2.83 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1998) 
2.318, 2.346, 2.091, 2.198 (second generation Eurosoils ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: t. > 35 d (pH 5 and 7 at 22°C, Worthing & Hance 1991); 
slowly decomposed in alkaline solution, t. > 350 d at pH 5, 7, 124 d at pH 9 (Tomlin 1994). 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 2 and 25 months in water under aerobic and anaerobic conditions, respectively (Tomlin 1994). 
Groundwater: 
Sediment: 
Soil: t. = 8–32 d under outdoor conditions, decomposes with t. = 6–12 months on bare soil, t. = 3 to 6 months 
on turf (Tomlin 1994); 
field t. = 120 d (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

4042 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.8 CARBOXIN 
Common Name: Carboxin 
Synonym: Carbathiin, D 735, Kemikar, Kisvax, Vitavax 
Chemical Name: 5,6-dihydro-2-methyl-1,4-oxathi-ine-3-carboxanilide; 2,3-dihydro-6-methyl-5-phenylcarbamoyl- 
1,4-oxathi-ine 
CAS Registry No: 5234-68-4 
Uses: as fungicide in seed treatment for control of seed diseases of barley, wheat, oats, rice, groundnuts, soybeans, cotton, 
vegetables, maize, and other crops, etc. 
Molecular Formula: C12H13NO2S 
Molecular Weight: 235.302 
Melting Point (°C): 
91.5–92.5 (Spencer 1982; Harley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
98.0–100 (dimorphic, Spencer 1982; Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
94 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.30 (Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
246.6 (calculated-Le Bas method at normal boiling point) 
173.0 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
22.175 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.210 (mp at 94°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
170 (Martin & Worthing 1977) 
170 (Spencer 1982; Hartley & Kidd 1987; Montgomery 1993; Milne 1995) 
199 (Worthing & Hance 1991; Tomlin 1994) 
215 (calculated-group contribution fragmentation method, Kuhne et al. 1995) 
195 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
195 (selected, Lohninger 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 1.0 . 10–3 (20°C, Hartley & Kidd 1987) 
2.5 . 10–5 (Worthing & Hance 1991; Tomlin 1994) 
1.3 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.5 . 10–5 (20°C, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
3.45 . 10–5 (calculated-P/C, Montgomery 1993) 
1.57 . 10–5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.17 (Worthing & Hance 1991; Montgomery 1993; Milne 1995) 
2.18 (Tomlin 1994) 
2.14 (selected, Hansch et al. 1995) 
2.60 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
S
O 
HN 
O 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4043 
Bioconcentration Factor, log BCF: 
1.53 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.41 (soil, calculated-S, Kenaga 1980) 
2.41 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.41 (calculated, Montgomery 1993) 
2.41 (estimated-chemical structure, Lohninger 1994) 
2.57 (soil, Tomlin 1994) 
Environmental Fate Rate Constants, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. < 3 h when exposed to light in aqueous solutions at pH 7 (Tomlin 1994). 
Oxidation: 
Hydrolysis: hydrolysis t. < 3 d when exposed to light (Montgomery 1993). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: t. ~ 24 h (Worthing & Hance 1991; quoted, Montgomery 1993; Tomlin 1994); 
field t. = 3 d (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

4044 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.9 CHLORONEB 
Common Name: Chloroneb 
Synonym: Demosan; Tersan SP 
Chemical Name: 1,4-dichloro-2,5-dimethoxybenzene 
CAS Registry No: 2675-77-6 
Uses: as fungicide applied to soil or used as seed treatment for control of seedling diseases of beans, cotton, soybeans, 
and beet; also used for control of snow mold (Typhula spp.) and Pythium blight on turf grass. 
Molecular Formula: C8H8Cl2O2 
Molecular Weight: 207.055 
Melting Point (°C): 
134 (Lide 2003) 
Boiling Point (°C): 
268 (Spencer 1982; Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
1.66 (Spencer 1982) 
Molar Volume (cm3/mol): 
200.4 (calculated-Le Bas method at normal boiling point) 
124.8 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
71.91 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
30.54 (DSC method, Plato & Glasgow 1969) 
29.1 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
72.0 (Rordorf 1989) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0852 (mp at 134°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
8 (Martin & Worthing 1977; Spencer 1982) 
8 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
8 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.40 (Spencer 1982) 
0.40 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
0.017, 0.43, 6.90, 77.0, 630 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 16.452 – 5436/(T/K); measured range 32.5–135°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 12.303 – 3757.8/(T/K); measured range 136–151°C (liquid, gas saturation-GC, Rordorf 1989) 
0.40 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
Cl 
O 
Cl 
O 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4045 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
3.06 (soil, Hamaker & Thompson 1972) 
3.10 (soil, quoted exptl., Meylan et al. 1992) 
2.36 (calculated-MCI . and fragments contribution, Meylan et al. 1992) 
3.22 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
3.22 (selected, Lohninger 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Soil: t. ~ 24 h (Worthing & Hance 1991); 
field t. = 130 d (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

4046 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.10 CHLOROPICRIN 
Common Name: Chloropicrin 
Synonym: Acquinite, Nemax, Nitrochloroform, Picfume 
Chemical Name: Trichloronitromethane 
CAS Registry No: 76-06-2 
Uses: fungicide/herbicide/insecticide/nematicide/rodenticide; used as a soil disinfectant for control of nematodes, soil 
insects, soil fungi, and weed seeds; also used for fumigation of stored grain to control insects and rodents, for glasshouse 
and mushroom-house fumigation, etc. 
Molecular Formula: CCl3NO2 
Molecular Weight: 164.376 
Melting Point (°C): 
–64.0 (Spencer 1982; Hartley & Kidd 1987; Tomlin 1994; Lide 2003) 
Boiling Point (°C): 
112.4 (Spencer 1982; Hartley & Kidd 1987; Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.65659, 1.64756 (20°C, 25°C, Dreisbach 1961) 
1.656 (20°C, Spencer 1982; Tomlin 1994) 
1.6558, 1.6483 (20°C, 25°C, Montgomery 1993) 
Molar Volume (cm3/mol): 
113.9 (calculated-Le Bas method at normal boiling point) 
99.3 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
39.40, 33.12 (25°C, bp, Dreisbach 1961) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
11.68 (Dreisbach 1961) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
2270 (Martin & Worthing 1977; Kenaga 1980; Montgomery 1993; Lohninger 1994) 
2270 (0°C, Spencer 1982; quoted, Howard 1991; Tomlin 1994) 
2270, 1620 (0, 25°C, Hartley & Kidd 1987) 
2300 (Davies & Lee 1987) 
1621 (Howard 1991) 
2270 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1620 (Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated and the reported temperature dependence equations. Additional data at 
other temperatures designated * are compiled at the end of this section.): 
3174* (gas saturation, measured range 0–35°C, Baxter et al. 1920) 
log (P/mmHg) = 8.2424 – 2045.1/(273 + t/°C); temp range 0–35°C (gas saturation, Baxter et al. 1920) 
2666* (20°C, summary of literature data, temp range –25.5 to 111.9°C, Stull 1947) 
3324 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 7.03335 – 1369.70/(218.0 + t/°C), temp range 28–176°C, (Antoine eq. for liquid state, Dreisbach 
1961) 
760, 3173 (0, 25°C, Spencer 1982) 
3200 (Hartley & Kidd 1987) 
3173 (Howard 1991) 
2253, 3173, 4400 (20, 25, 30°C, Montgomery 1993) 
Cl 
Cl NO2 
Cl 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4047 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
208.0 (Kawamoto & Urano 1989) 
Octanol/Water Partition Coefficient, log KOW: 
1.03 (HPLC-RT correlation, Kawamoto & Urano 1989) 
2.09 (shake flask, Hansch & Leo 1987) 
2.07 (Howard 1991) 
1.03, 2.09 (Montgomery 1993) 
2.09 (selected, Sangster 1993; Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
0.90 (calculated, Kenaga 1980; quoted, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
1.79 (calculated, Kenaga 1980) 
1.91 (soil, correlated-Freundlich Isotherm, Kawamoto & Urano 1989) 
1.79 (soil, Wauchope et al. 1992; Hornsby et al. 1996) 
1.79 (selected, Lohninger 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 4.3 h for evaporation from a body of water 1 m deep with a current of 1 m/s and a wind of 
3 m/s (Howard 1991). 
Photolysis: t. = 20 d in simulated atmosphere, t. = 3 d in aqueous solution with sunlight irradiation (Montgomery 
1993). 
Oxidation: 
Hydrolysis: 
stable in neutral aqueous solution and with a minimum t. = 11 yr (Howard 1991). 
Biodegradation: rate constant k(aerobic) = 1.5 d–1 with t. = 0.46 d at 20°C by aerobic activated sludge and 
k(anaerobic) = 1.5 d–1 with t. = 0.46 d at 20°C by anaerobic microorganisms cultivated an artificial sewage 
(Kawamoto & Urano 1990) 
k(anaerobic) = 12 d–1 and t. = 0.058 d (corrigendum, Kawamoto & Urano 1991) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 20 d by photodegradation (Howard 1991). 
Surface water: biodegradation t. = 0.46 d at 20°C by aerobic activated sludge or anaerobic microorganisms 
(Kawamoto & Urano 1990) 
volatilization t. = 4.3 h from a model river and photodegradation t. = 3 d in the surface layer of water (Howard 
1991). 
Groundwater: 
Sediment: 
Soil: field t. ~ 1 d (estimated, Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

4048 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 19.1.10.1 
Reported vapor pressures of chloropicrin at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Baxter et al. 1920 Stull 1947 Spencer 1982 Montgomery 1993 
gas saturation summary of literature data handbook handbook 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–20 200 –25.5 133.3 0 760 20 2253 
–19 226.6 –3.30 666.6 25 3173 25 3173 
–18 253.3 7.80 1333 30 4400 
0 760.3 20.0 2666 Dreisbach eq.2 
10 1383 33.8 5333 A 7.03335 
15 1843 42.3 7999 B 1369.7 
20 2441 53.8 13332 C 218 
25 3174 71.8 26664 temp range 28–176°C 
30 4146 91.8 53329 
35 5352 111.9 101325 
eq. 2 P/mmHg mp/°C –64 
A 8.2424 
B 2045.1 
C 273 
FIGURE 19.1.10.1 Logarithm of vapor pressure versus reciprocal temperature for chloropicrin. 
Chloropicrin: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 0.004 0.0042 
1/(T/K) 
P( gol 
S 
) aP/ 
Baxter et al. 1920 
Spencer 1982 
Montegomery 1993 
Stull 1947 
b.p. = 112 °C 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4049 
19.1.11 CHLOROTHALONIL 
Common Name: Chlorothalonil 
Synonym: Bravo, chlorthalonil, Daconil, DAC 2787, Exotherm, Forturf, Nopcocide N 96, TPN 
Chemical Name: tetrachloroisophthalonitrile; 2,4,5,6-tetrachloro-1,3-benzenedicarbonitrile; 2,4,5,6-tetrachloro- 
1,3-dicyanobenzene 
CAS Registry No: 1897-45-6 
Uses: fungicide, fumigant, soil insecticide 
Molecular Formula: C8Cl4N2 
Molecular Weight: 265.911 
Melting Point (°C): 
250 (Lide 2003) 
Boiling Point (°C): 
350 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 1.80 (Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
233.0 (calculated-Le Bas method at normal boiling point) 
147.7 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0062 (mp at 250°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.60 (Martin & Worthing 1977; Kenaga 1980; Spencer 1982; Hartley & Kidd 1987; Worthing 1987, 
1991) 
0.30 (Davies & Lee 1987) 
0.50 (calculated-group contribution fragmentation method, Kuhne et al. 1995) 
0.60 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.90 (Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 1.30 (40°C, Hartley & Kidd 1987; Worthing & Hance 1991) 
232 (Worthing & Walker 1987; quoted, Majewski & Capel 1995) 
0.133 (20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
1.3 . 10–3 (40°C, Montgomery 1993) 
8.1 . 10–3 (selected, Brouwer et al. 1994) 
7.6 . 10–5 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
576 (calculated-P/C as per Worthing 1987, Majewski & Capel 1995) 
0.0194 (20°C, Kawamoto & Urano 1989) 
0.0151 (20°C, calculated-bond contribution method, Meylan & Howard 1991) 
0.02 (Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
0.14 (screening model calculations, Jury et al. 1987b) 
Cl Cl 
Cl 
Cl 
N 
N 
© 2006 by Taylor & Francis Group, LLC

4050 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.64 (HPLC-RT correlation, Kawamoto & Urano 1989) 
2.64 (recommended, Sangster 1993) 
2.89 (RP-HPLC-RT correlation, Saito et al. 1993) 
2.90 (recommended, Hansch et al. 1995) 
3.80 (RP-HPLC-RT correlation, Nakamura et al. 2001) 
Bioconcentration Factor, log BCF: 
1.92 (calculated-S, Kenaga 1980) 
1.66 (calculated-KOW as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
3.76 (soil, calculated, Kenaga 1980) 
3.14 (soil, screening model calculations, Jury et al. 1987b) 
3.14 (soil, Gustafson et al. 1989) 
3.26 (soil, correlated-Freundlich Isotherm, Kawamoto & Urano 1989) 
3.14 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.76, 3.14 (soil, Montgomery 1993) 
3.00 (sand, quoted, Montgomery 1993) 
3.14 (estimated-chemical structure, Lohninger 1994) 
3.20, 4.15 (sand, silt, Tomlin 1994) 
3.26 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: 
Biodegradation: biochemical t. = 70 d (Jury et al. 1987b); 
first-order rate constants in biotic and abiotic shake-flask tests k = –0.0161 and –0.0155 d–1 in nonsterile 
sediment/estuarine water and k = –0.00574 d–1 in sterile sediment/estuarine water and k = –0.00355 and 
–0.00329 d–1 in nonsterile estuarine water and k = –0.00283 d–1 in sterile estuarine water both at Davis 
Bayou (Walker et al. 1988); 
rate constant k(aerobic) = 1.7 d–1 with t. = 0.41 d at 20°C by aerobic activated sludge and k(anaerobic) = 
1.7 d–1 with t. = 0.41 d at 20°C by anaerobic microorganisms cultivated an artificial sewage (Kawamoto & 
Urano 1990) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: biodegradation t. = 0.41 d at 20°C by aerobic activated sludge or anaerobic microorganisms 
cultivated by an artificial sewage (Kawamoto & Urano 1990) 
Groundwater: 
Sediment: 
Soil: t. = 70 d from screening model calculations (Jury et al. 1987b); 
t. ~ 1.5–3 months (Hartley & Kidd 1987; Worthing & Hance 1991); 
soil t. = 68 d (Gustafson 1989); 
field t. = 30 d (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 4.1 d and 1.5–3 months (Montgomery 1993); 
t. = 5–35 d in aerobic and anaerobic soil studies and from a few hours to a few days in aerobic and anaerobic 
aquatic soil studies (Tomlin 1994). 
Biota: biochemical t. = 70 d from screening model calculations (Jury et al. 1987b). 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4051 
19.1.12 DAZOMET 
Common Name: Dazomet 
Synonym: tiazon, Mylone, Crag Fungicide 974, Salvo, Basamid, Fongosan 
Chemical Name: 3,5-dimethyl-1,3,5-thiadiazinane-2-thione 
Uses: soil fumigant, nematicide, fungicide, herbicide, insecticide 
CAS Registry No: 533-74-4 
Molecular Formula: C5H10N2S2 
Molecular Weight: 162.276 
Melting Point (°C): 
106 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3): 1.37 (Montgomery 1993; Tomlin 1994) 
Acid Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.160 (mp at 106°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1200 (Spencer 1982) 
3000 (20°C, Worthing & Walker 1983, 1987; Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
2000 (Herbicide Handbook 1989, quoted, Augustijn-Beckers et al. 1994) 
3000 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
3.7 . 10–4 (20°C, Hartley & Kidd 1987; Worthing & Walker 1983, 1987; Montgomery 1993; Tomlin 1994) 
4.0 . 10–4, 3.73 . 10–4 (20°C, quoted, Augustijn-Beckers et al. 1994) 
4.0 . 10–4 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
2.03 (20°C, calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
0.15 (Montgomery 1993) 
1.40 (at pH 7, Tomlin 1994) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
0.48 (calculated, Montgomery 1993) 
–0.046 at pH 9, 0.778 (quoted values, Augustijn-Beckers et al. 1994) 
1.0 (estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Half-Lives in the Environment: 
Soil: field t. = 7 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
N 
S 
N 
S 
© 2006 by Taylor & Francis Group, LLC

4052 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.13 DICHLONE 
Common Name: Dichlone 
Synonym: Algistat, Compound 604, Ent 3776, Phygon, Quintar, Sanquinon 
Chemical Name: 2,3-dichloro-1,4-naphthoquinone; 2,3-dichloro-1,4-naphthalenedione 
CAS Registry No: 117-80-6 
Uses: fungicide/algicide; as fungicide for control of blossom blights, scab on apples and pears and brown spot on stone 
fruit, etc.; also used to control blue-green algae in ponds, lakes, and swimming pools. 
Molecular Formula: C10H4Cl2O2 
Molecular Weight: 227.044 
Melting Point (°C): 
195 (Lide 2003) 
Boiling Point (°C): 
275 (at 2 mmHg, Hartley & Kidd 1987; Howard 1991; Montgomery 1993) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
196.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
78.30 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
27.0 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
58 (Rordorf 1989) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0215 (mp at 195°C) 
Water Solubility (g/m3 or mg/L at 25°C as indicated): 
0.10 (Kenaga 1980) 
8.00 (20°C, Hodnett et al. 1983) 
0.10 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
1.00 (Montgomery 1993) 
0.10 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence): 
3.30 . 10–4, 8.80 . 10–3, 0.15, 1.70, 14.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 14.965 – 5500.9/(T/K); measured range 40.4–191°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.396 – 4803.6/(T/K); measured range 40.4–191°C (liquid, gas saturation-GC, Rordorf 1989) 
1.47 . 10–4 (calculated from S and Henry’s law constant, Howard 1991) 
10930 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
6.51 . 10–5 (Hine & Mookerjee 1975) 
Octanol/Water Partition Coefficient, log KOW: 
3.16 (estimated, Hodnett et al. 1983) 
5.62 (calculated, Montgomery 1993) 
O
O 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4053 
Bioconcentration Factor, log BCF: 
3.35 (estimated-S, Kenaga 1980; quoted, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
4.19 (estimated-S, Kenaga 1980; quoted, Howard 1991) 
4.00 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
4.19 (calculated, Montgomery 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: estimated photooxidation t. = 3.87 d in air, based on the vapor-phase reaction with hydroxyl radicals 
in air (Atkinson 1987; quoted, Howard 1991). 
Hydrolysis: t. = 5 d at pH 7 (Howard 1991). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: estimated t. = 3.87 d, based on the vapor-phase reaction with hydroxyl radicals in air (Atkinson 1987; quoted, 
Howard 1991). 
Surface water: 
Groundwater: 
Sediment: 
Soil: t. = 1 d in moist and slightly under three months in dry silt loam soil at pH 6.2–6.4 and 29°C, respectively 
(Burchfield 1959; quoted, Howard 1991); 
field t. = 10 d (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

4054 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.14 DICOFOL 
Common Name: Dicofol 
Synonym: kelthane, kelthan 
Chemical Name: 2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethenol, 4-chloro-.-(4-chlorophenyl)-.-(trichloromethyl)-benzenemethanol 
Uses: acaricide 
CAS Registry No: 115-32-2 
Molecular Formula: C14H9Cl5O 
Molecular Weight: 370.485 
Melting Point (°C): 
77.5 (Lide 2003) 
Boiling Point (°C): 
180 (0.1 mmHg, Hartley & Kidd 1987) 
193 (360 mmHg, tech., Tomlin 1994) 
Density (g/cm3): 1.45 (Worthing & Walker 1987; Tomlin 1994) 
Acid Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
Enthalpy of Vaporization, .HV (kJ/mol): 
104.0 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
19.8 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
57 (Rordorf 1989) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.305 (mp at 77.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1.32 (generator column-GC/ECD, Weil et al. 1974) 
1.20 (24°C, 99% purity, Verschueren 1983) 
0.80 (20°C, in distilled water, Verschueren 1983) 
0.80 (selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.80 (Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
2.40 . 10–5, 1.20 . 10–3, 0.032, 0.56, 68.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 17.084 – 6470.1/(T/K); measured range 85.5–145°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 14.104 – 5354.8/(T/K); measured range 85.5–145°C (liquid, gas saturation-GC, Rordorf 1989) 
5.33 . 10–5 (selected, Wauchope et al. 1992; Hornsby et al. 1996) 
5.30 . 10–5 (tech., Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
5.66 . 10–5 (calculated-bond contribution method, Howard 1991) 
Octanol/Water Partition Coefficient, log KOW: 
3.54 (Rao & Davidson 1980) 
3.54 (Nigg et al. 1986) 
4.28 (Tomlin 1994) 
3.54 (Hansch & Leo 1987; quoted, Sangster 1993) 
OH
Cl Cl 
Cl 
Cl Cl 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4055 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
4.18–4.27 (fathead minnow, Howard 1991) 
3.98–4.16 (in presence of suspended clay, Howard 1991) 
2.75, 3.54 (calculated-S, calculated-KOW, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
3.60, 3,30 (estimated-S, calculated-KOW, Howard 1991) 
3.46–3.91 (range of reported data, Wauchope et al. 1992) 
3.70 (soil, recommended, Wauchope et al. 1992; Hornsby et al. 1996) 
3.92, 3.91, 3.79, 3.77 (sand, sandy loam, silty loam, clay loam, Tomlin 1994) 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Volatilization: 
Photolysis: direct photolysis t. = 2.92 d in the atmosphere for reaction with OH radicals; t. = 6 d for exposure 
of thin film of dicofol to sunlight at 300 nm (Howard 1991). 
Photooxidation: 
Hydrolysis: t. = 60 min at pH 8.2 and 3 min at pH 10.2 with an initial concn of 0.4 mg/L (Verschueren 1983); 
stable to acids, but unstable in alkaline media, t. = 85 d at pH 5, 64–99 h at pH 7, 26 min at pH 9 (Tomlin 1994). 
Biodegradation: degradation in anaerobic sewage to 4,4.-dichlorobenzophenone (DBP); 88–94% conversion to 
DBP for filtered river water, 47–56% for unfiltered river water of pH 7.5 in a 24-h expt. (Verschueren 1983); 
t. = 61 d and 16 d under aerobic and anaerobic conditions in silt loam (Tomlin 1994). 
Biotransformation: 
Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 
Half-Lives in the Environment: 
Air: vapor phase t. ~ 2.92 s life in the atmosphere for reaction with OH radicals (estimated, Howard 1991) 
Surface water: hydrolysis t. = 60 min at pH 8.2 and 3 min at pH 10.2 with an initial concn of 0.4 mg/L; 
degradation in anaerobic sewage to 4,4.-dichlorobenzophenone (DBP); 88–94% conversion to DBP for 
filtered river water, 47–56% for unfiltered river water of pH 7.5 in a 24-h expt. (Verschueren 1983) 
aqueous photodegradation t. = 1–4 d at pH 5 in sensitized conditions and t. = 15–93 d in unsensitized 
conditions; stable to acids, but unstable in alkaline media, t. = 85 d at pH 5, 64–99 h at pH 7, 26 min 
at pH 9 (Tomlin 1994). 
Ground water: 
Sediment: 
Soil: field t. = 45 d (Wauchope et al. 1992; Hornsby et al. 1996); 
soil photodegradation t. = 30 d in silt loam, soil metabolism t. = 61 d under aerobic conditions and t. = 
16 d under anaerobic conditions in silt loam; field dissipation t. = 60–100 d (Tomlin 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

4056 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.15 DITHIANON 
Common Name: Dithianon 
Synonym: Delan, Delan-Col 
Chemical Name: 2,3-dicyano-1,4-dithia-anthraquinone; 5,10-dihydro-5,10-dioxonaphtho[2,3-b]-p-dithin-2,3-dicarbonitrile 
CAS Registry No: 3347-22-6 
Uses: as fungicide for control of many foliar diseases. 
Molecular Formula: C14H4N2O2S2 
Molecular Weight: 296.324 
Melting Point (°C): 
220 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.580 (Tomlin 1994) 
Molar Volume (cm3/mol): 
264.0 (calculated-Le Bas method at normal boiling point) 
187.6 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0122 (mp at 220°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.50 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
Vapor Pressure (Pa at 25°C): 
6.6 . 10–5 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0391 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.84 (Worthing & Hance 1991) 
3.20 (Tomlin 1994) 
2.84 (selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
2.96 (calculated-S per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
3.81 (soil, calculated-S per Kenaga 1980, this work) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 19 h when exposed to artificial sunlight in 0.1 mg/L aqueous solution (Tomlin 1994). 
Oxidation: 
Hydrolysis: t. = 12.2 h at pH 7 (Tomlin 1994). 
S
S 
O
O 
N
N 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4057 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: hydrolysis t. = 12.2 h at pH 7 and photolytic t. = 19 h when exposed to artificial sunlight in 
0.1 mg/L aqueous solutions (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

4058 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.16 EDIFENPHOS 
Common Name: Edifenphos 
Synonym: EDDP, Hinosan, edifenfos 
Chemical Name: O-ethyl S,S-diphenyl phosphorodithioate 
CAS Registry No: 17109-49-8 
Uses: as fungicide for control of blast and blight diseases in rice, etc. 
Molecular Formula: C14H15O2PS2 
Molecular Weight: 310.371 
Melting Point (°C): 
–25 (Tomlin 1994) 
Boiling Point (°C): 
154 (at 0.01 mmHg, Hartley & Kidd 1987; Worthing & Hance 1991) 
Density (g/cm3 at 20°C): 
1.230 (Hartley & Kidd 1987; Worthing & Hance 1991) 
1.251 (Tomlin 1994) 
Molar Volume (cm3/mol): 
250.5 (calculated from density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
56.0 (20°C, Hartley & Kidd 1987; Tomlin 1994) 
insoluble (Worthing & Hance 1991) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.013 (20°C, Hartley & Kidd 1987) 
0.013 (20°C, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.0721 (20°C, calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
3.48 (RP-HPLC-RT correlation, Saito et al. 1993) 
4.20 (RP-HPLC-RT correlation, Nakamura et al. 2001) 
Bioconcentration Factor, log BCF: 
1.81 (calculated-S as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
2.68 (calculated-S as per Kenaga 1980, this work) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: hydrolyzed by strong acids and alkalis, at 25°C, t. = 19 d at pH 7 and t. = 2 d at pH 9 (Tomlin 1994). 
Half-Lives in the Environment: 
Air: 
Surface water: hydrolysis t. = 19 d at pH 7 and t. = 2 d at pH 9 (Tomlin 1994). 
S 
P 
O 
O 
S 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4059 
Groundwater: 
Sediment: 
Soil: half-life in soil in the range of few days to a few weeks (Tomlin 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

4060 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.17 ETRIDIAZOLE 
Common Name: Etridiazole 
Synonym: Aaterra, Banrot, Dwell, Echlomezol, ETCMTD, Ethazole, ETMT, Koban, MF-344, OM 2425, Pansoil, Terracoat, 
Terrazole, Truban 
Chemical Name: 5-ethoxy-3-(trichloromethyl)-1,2,4-thiadiazole; ethyl 3-trichloromethyl-1,2,4-thiadiazolyl ether 
Uses: as fungicide for control of Phytophthora and Pythium spp. in cotton, ornamentals, vegetables, groundnuts, cucurbits, 
tomatoes, and other crops; also used as a nitrification inhibitor in maize, cotton and wheat. 
CAS Registry No: 2593-15-9 
Molecular Formula: C5H5Cl3N2OS 
Molecular Weight: 247.530 
Melting Point (°C): 
19.9 (Tomlin 1994; Milne 1995; Lide 2003) 
Boiling Point (°C): 
95.0 (at 1 mmHg, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
1.503 (25°C, Hartley & Kidd 1987; Tomlin 1994) 
Molar Volume (cm3/mol): 
219.0 (calculated-Le Bas method at normal boiling point) 
164.7 (calculated-density) 
Dissociation Constant pKa: 
2.77 (Tomlin 1994) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
50.0 (Hartley Kidd 1987; Worthing & Hance 1991; Milne 1995; selected, Lohninger 1994) 
50.0 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.013 (20°C, Hartley & Kidd 1987) 
0.013 (rm. temp., Worthing & Hance 1991) 
0.013 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0644 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.48–2.60 (Worthing & Hance 1991; Milne 1995) 
3.36 (Tomlin 1994) 
2.55 (selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.83 (calculated-S as per Kenaga 1980, this work) 
1.22 (calculated-KOW as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
0.725 (sandy soil, Worthing & Hance 1991) 
0.149 (silt loam, Worthing & Hance 1991) 
N
S 
N 
Cl 
Cl 
Cl 
O 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4061 
3.00 (soil, 20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
3.00 (selected, Lohninger 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: t. = 103 d at pH 6 (Worthing & Hance 1991); 
t. = 12 d at pH 6, 45°C, t. = 103 d at pH 6, 25°C (Tomlin 1994). 
Biodegradation: soil t. = 9.5 d under aerobic conditions and t. = 3 d under anaerobic conditions (Tomlin 1994). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: t. = 9.5 d under aerobic, t. = 3 d under anaerobic conditions, field dissipation t. = 1 wk in sandy clay 
loam (Tomlin 1994); 
field t. = 103 d (20–25°C, selected, Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

4062 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.18 FENARIMOL 
Common Name: Fenarimol 
Synonym: Bloc, EL-222, Rimidin, Rubigan 
Chemical Name: ( ± )-2,4.-dichloro-.-(pyrimidin-5-yl)benzhydryl alcohol; .-(2-chlorophenyl)-.-(4-chlorophenyl)- 
5-pyrimidinemethanol 
CAS Registry No: 60168-88-9 
Uses: as fungicide for control of powdery mildews in pome fruit, strawberries, vines, cucurbits, roses, and beet; also for 
control of scab on pome fruit, brown patch and snow mold of turf. 
Molecular Formula: C17H12Cl2N2O 
Molecular Weight: 331.195 
Melting Point (°C): 
118 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
338.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
2.58 (Sangster 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.122 (mp at 118°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
13.7 (Martin & Worthing 1977) 
13.7 (at pH 7, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
14.0 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
14.0 (selected, Lohninger 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 1.3 . 10–5 (Hartley & Kidd 1987) 
1.30 . 10–5 (Worthing & Hance 1991) 
2.93 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
6.5 . 10–5 (vapor pressure balance, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
6.93 . 10–4 (20–25°C, calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
0.67 (shake flask, at pH 5.3, Martin & Edgington 1981) 
–1.59 (shake flask-UV at pH 5, Barak et al. 1983) 
3.70 (Stevens et al. 1988) 
3.60 (shake flask-HPLC, Bateman et al. 1990) 
3.69 (pH 7, Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
3.60 (selected, Hansch et al. 1995) 
3.61 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
OH 
N N 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4063 
Bioconcentration Factor, log BCF: 
2.16 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.01 (calculated-S, Kenaga 1980) 
2.78 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.176–1.08 (soil, Tomlin 1994) 
2.78 (estimated-chemical structure, Lohninger 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: decomposed readily by sunlight (Tomlin 1994). 
Oxidation: 
Hydrolysis: t. = 28 d at 52°C and pH 3, 6 and 9 (Tomlin 1994). 
Biodegradation: t. > 365 d under aerobic conditions in soil, and microbial degradation is accelerated by light 
(Tomlin 1994). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: t. > 365 d under aerobic conditions in soil (28% sand, 14.7% clay, 57.3% silt and pH 6 (Tomlin 1994) 
field t. = 360 d (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

4064 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.19 FENFURAM 
Common Name: Fenfuram 
Synonym: Panoram 
Chemical Name: 2-methylfuran-3-carboxanilide; 2-methyl-3-furanilide; 2-methyl-N-phenyl-3-furancarboxamide 
CAS Registry No: 24691-80-3 
Uses: as fungicide for control of bunts and smuts (Tilletie and Ustilago spp.) in cereals, when applied as a seed treatment. 
Molecular Formula: C12H11NO2 
Molecular Weight: 201.221 
Melting Point (°C): 
109–110 (Worthing & Hance 1991) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.36 (Worthing & Hance 1991) 
Molar Volume (cm3/mol): 
217.1 (calculated-Le Bas method at normal boiling point) 
148.0 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
100 (Martin & Worthing 1977; Kenaga 1980) 
100 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
100 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
2.0 . 10–5 (20°C, Hartley & Kidd 1987) 
2.0 . 10–5 (extrapolated to 20°C, Worthing & Hance 1991; Tomlin 1994) 
2.0 . 10–5 (20–25°C, selected, Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
Bioconcentration Factor, log BCF: 
1.66 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.54 (calculated-S, Kenaga 1980) 
2.48 (20–25°C, estimated, Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: stable in neutral media, but hydrolyzed by strong acids and alkalis (Tomlin 1994). 
Half-Lives in the Environment: 
Soil: t. ~ 42 d (Hartley & Kidd 1987; Tomlin 1994); 
field t. = 42 d (20–25°C, selected, Hornsby et al. 1996). 
O 
NH 
O 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4065 
19.1.20 FOLPET 
Common Name: Folpet 
Synonym: ENT-26539, Faltan, Folpan, Folpel, Ftalan, Fungitrol, Orthophaltan, Phaltan, Spolacid, Thiophal, Vinicoll 
Chemical Name: N-(trichloromethylthio)phthalimide; 2-[(trichloromethylthio]-1H-isoindole-1,3(2H)-dione 
CAS Registry No: 133-07-3 
Uses: fungicide for control of downy/powdery mildews, leaf spot diseases, etc. 
Molecular Formula: C9H4Cl3NO2S 
Molecular Weight: 296.558 
Melting Point (°C): 
177 (Worthing & Hance 1991; Tomlin 1994; Milne 1995; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
246.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
8.50 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0323 (mp at 177°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1.0 (Martin & Worthing 1977) 
1.0 (rm. temp., Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 0.0013 (20°C, Hartley & Kidd 1987) 
0.0013 (20°C, Worthing & Hance 1991; Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
3.63 (shake flask-UV, Briggs 1981) 
2.85 (selected, Yoshioka et al. 1986) 
2.85 (shake flask, log P database, Hansch & Leo 1987) 
2.85 (recommended, Sangster 1993) 
3.11 (Tomlin 1994) 
2.85 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.91 (calculated-S, Kenaga 1980) 
3.32 (earthworms, Lord et al. 1980) 
Sorption Partition Coefficient, log KOC: 
1.78 (calculated-S, Kenaga 1980) 
3.03 (reported as log KOM, Briggs 1981) 
3.27, 2.16 (soil, quoted exptl., calculated-fragment contribution method, Meylan et al. 1992) 
3.27 (soil, calculated-MCI 1., Sabljic et al. 1995) 
N 
O
O 
S 
Cl 
Cl Cl 
© 2006 by Taylor & Francis Group, LLC

4066 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 101 min in isopropanol, t. = 144 min in cyclohexene and t. = 1620 min in cyclohexane by 
UV-irradiation (. > 280 nm): (Schwack & Flo.er-Muller 1990). 
Oxidation: 
Hydrolysis: hydrolyze at pH 7 with rates similar to captan, i.e., first-order rate constant k = 6.5 . 10–5 s–1 with 
t. = 2.96 h in a phosphate buffer solution at pH 7.07 and 28°C (Wolfe et al. 1976). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 4.3 d (Tomlin 1994). 
Groundwater: 
Sediment: 
Soil: t. = 4.3 d (Tomlin 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4067 
19.1.21 FORMALDEHYDE 
Common Name: Formaldehyde 
Synonym: formalin, methanal, oxomethane 
Chemical Name: formaldehyde 
Uses: fungicide/bactericide; used as soil sterilant in mushroom houses and other areas; also used as a silage preservative. 
CAS Registry No: 50-00-0 
Molecular Formula: HCHO 
Molecular Weight: 30.026 
Melting Point (°C): 
–92 (Weast 1982–83; Dean 1985: Lide 2003) 
Boiling Point (°C): 
–19.1 (Lide 2003) 
Density (g/cm3): 
0.815 (Weast 1982–83) 
0.815 (–20°C, Verschueren 1983; Dean 1985) 
Acid Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
29.6 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
1,220,000 (Dean 1985) 
very soluble, up to 55% (Howard 1989) 
Vapor Pressure (Pa at 25°C or as indicated): 
1333 (–88°C, Verschueren 1983) 
451030 (> 1 atmospheric pressure, Howard 1989) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0331 (Dong et al. 1986) 
0.0169 (Gaffney et al. 1987) 
0.0298 (gas stripping-HPLC, Zhou & Mopper 1990) 
Octanol/Water Partition Coefficient, log KOW: 
–0.75 (calculated-f const. per Rekker 1977, Deneer et al. 1988) 
0.00 (calculated, Verschueren 1983) 
0.35 (Howard 1989) 
0.35 (recommended, Sangster 1989, 1993) 
Bioconcentration Factor, log BCF: 
no bioconcentration in fish and shrimp observed (Howard 1989) 
Sorption Partition Coefficient, log KOC: 
0.365 (estimated-S as per Kenaga 1980, this work) 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Volatilization: 
Photolysis: sunlight photolysis t. = 1.25–6.0 h, based on measured gas-phase photolysis by simulated sunlight 
(Calvert et al. 1972; Su et al. 1979; quoted, Howard et al. 1991). 
O 
H H 
© 2006 by Taylor & Francis Group, LLC

4068 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Oxidation: rate constant k = 3.2 . 10–16 cm3 molecule–1 s–1 for the vapor-phase reaction with NO3 radicals in the 
atmosphere at (298 ± 1) K (Atkinson & Lloyd 1984; quoted, Carlier et al. 1986); 
rate constant k = 4.50 . 10–14 cm3 molecule–1 s–1 for the vapor-phase reaction with HO2 radicals in the 
atmosphere at 298 K (Baulch et al. 1984; quoted, Carlier et al. 1986); 
rate constant k = 111.1 . 10–11 cm3 molecule–1 s–1 for the vapor-phase reaction with OH radicals in the 
atmosphere at 298 K (Baulch et al. 1984; quoted, Carlier et al. 1986); 
atmospheric photooxidation t. = 7.13–71.3 h, based on measured rate constant for the vapor-phase reaction 
with OH radicals in air (Atkinson 1985; quoted, Howard et al. 1991); 
aqueous photooxidation t. = 4,813–190,000 h, based on measured rate constant for the reaction with OH 
radicals in water (Dorfman & Adams 1973; quoted, Howard et al. 1991). 
Hydrolysis: no hydrolyzable group (Howard et al. 1991). 
Biodegradation: aqueous aerobic t. = 24–168 h, based on unacclimated aqueous aerobic biodegradation screening 
test data (Gellman & Heukelekian 1950; Heukelekian & Rand 1955; quoted, Howard et al. 1991); aqueous 
anaerobic t. = 96–672 h, based on unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
Biotransformation: 
Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environmental Compartments: 
Air: photooxidation t. = 7.13–71.3 h, based on measured rate constant for the vapor-phase reaction with hydroxyl 
radicals in air (Atkinson 1985; quoted, Howard et al. 1991); 
t. = 1.26–6.0 h, based on photolysis half-life in air (Howard et al. 1991). 
Surface water: t. = 24–168 h, based on unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
Ground water: t. = 48–336 h, based on unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Sediment: 
Soil: t. = 24–168 h, based on unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4069 
19.1.22 HEXACHLOROBENZENE 
(See also Chapter 6. Chlorobenzenes and other Halogenated Mononuclear Aromatics) 
Common Name: Hexachlorobenzene 
Synonym: HCB, perchlorobenzene, anticarie, Bunt-cure, Bunt-no-more, Julin’s carbon chloride 
Chemical Name: hexachlorobenzene 
Uses: as fungicide for seed treatment to control common bunt and dwarf bunt of wheat. 
CAS Registry No: 118-74-1 
Molecular Formula: C6Cl6 
Molecular Weight: 284.782 
Melting Point (°C): 
230.0 (Weast 1982–83) 
228.83 (Lide 2003) 
Boiling Point (°C): 
322 (sublime, Weast 1982–83) 
325 (Lide 2003) 
Density (g/cm3): 
1.5691 (23.6°C, Weast 1982–83; Horvath 1982) 
Molar Volume (cm3/mol): 
181.5 (23.6°C, calculated-density, Weast 1972–73; Horvath 1982) 
221.4 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
28.744 (Tsonopoulos & Prausnitz 1971) 
22.40 (Miller et al. 1984) 
Entropy of Fusion, .Sfus (J/mol K): 
57.32 (Tsonopoulos & Prausnitz 1971) 
44.77 (Miller et al. 1984) 
Fugacity Ratio (assuming .Sfusion = 56 J/mol K), F: 0.010 (mp at 228.83°C) 
0.0090 (25°C, Miller et al. 1985) 
0.0075, 0.0094 (20°C, 25°C, Suntio et al. 1988) 
Water Solubility (g/m3 or mg/L at 25°C): 
0.005 (generator column-GC/ECD, Weil et al. 1974) 
0.006 (shake flask-LSC/14C, Lu & Metcalf 1975) 
0.110 (shake flask-nephelometry, Hollifield 1979) 
0.005 (shake flask-UV, Yalkowsky et al. 1979) 
0.0034 (calculated-KOW, Yalkowsky et al. 1979; Yalkowsky & Valvani 1980) 
0.0035 (selected, Neely 1980) 
0.036 (selected, Briggs 1981) 
0.0039 (shake flask-GC, Konemann 1981) 
0.0054 (generator column-GC/ECD, Hashimoto et al. 1982) 
0.0012–0.014 (shake flask-GC/ECD, Hashimoto et al. 1982) 
0.005 (recommended, Horvath 1982) 
0.0051 (Deutsche Forschungsgemeinschaft 1983; Fischer et al. 1991) 
0.0066 (selected, Yoshida et al. 1983b) 
0.047 (generator column-GC/ECD, Miller et al. 1984; 1985) 
0.0162 (calculated-UNIFAC activity coeff., Banerjee 1985) 
0.005 (recommended, IUPAC 1985) 
Cl 
Cl 
Cl 
Cl 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

4070 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.0146 (calculated-KOW and HPLC-RT, Chin et al. 1986) 
0.006–0.2 (calculated-KOW, Anliker & Moser 1987) 
0.00537 (calculated-UNIFAC activity coeff., Banerjee et al. 1990) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.00028 (Sears & Hopke 1949) 
0.0015 (Callahan et al. 1979) 
0.0026 (selected, OECD 1979) 
0.00145 (20°C, Kiltzer et al. 1979) 
0.0023 (gas saturation-GC, Farmer et al. 1980) 
0.0013 (selected, Neely 1980; Suntio et al. 1988; Nash 1989) 
0.000453; 0.000167 (Klein et al. 1981) 
0.00046 (evaporation rate, Dobbs & Cull 1982) 
0.00121 (extrapolated, Antoine eq., Guckel et al. 1982) 
0.0006 (20°C, evaporation rate & gravimetric, Guckel et al. 1982) 
0.0024 (20°C, Deutsche Forschungsgemeinschaft 1983; Fischer et al. 1991) 
0.00147 (selected, Yoshida et al. 1983b) 
0.303; 0.159; 0.121 (supercooled liquid PL, selected; GC-RT, Bidleman 1984) 
0.0031 (selected, Mackay et al. 1985) 
0.00147, 0.187 (20°C, selected, solid, supercooled liquid, Bidleman & Foreman 1987) 
0.245 (selected, Suntio et al. 1988; quoted, Ballschmiter & Wittlinger 1991) 
0.303, 0.127 (supercooled liquid, selected, Hinckley et al. 1990) 
0.0023 (selected from Mackay et al. 1992, Mortimer & Connell 1995) 
0.034; 0.141(liquid PL, GC-RT correlation; quoted lit., Donovan 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
68.2 (20°C, Callahan et al. 1979) 
5.07 (calculated-P/C, Mackay & Shiu 1981) 
131.3 (batch stripping, Atlas et al. 1982) 
68.9 (20°C, calculated, Mabey et al. 1982) 
12.16 (calculated-P/C, Calamari et al. 1983) 
62.0 (calculated-P/C, Yoshida et al. 1983b) 
139 (calculated-P/C, Bobra et al. 1985) 
48.6 (20°C, batch stripping, Oliver 1985) 
133, 115.9 (observed, calculated-QSAR, Nirmalakhandan & Speece 1988) 
7.12 (20°C, calculated-P/C, Suntio et al. 1988) 
11.0 (calculated, Nash 1989) 
139.0 (calculated-P/C, Fischer et al. 1991) 
Octanol/Water Partition Coefficient, log KOW: 
6.18 (Neely et al. 1974; selected, McKim et al. 1985) 
4.13 (radioisotope tracer-14C, Lu & Metcalf 1975) 
6.51 (calculated-f const., Rekker 1977; quoted, Harnish et al. 1983) 
6.18 (selected, Callahan et al. 1979; Neuhauser et al. 1985) 
4.13 (Hansch & Leo 1979) 
5.0, 6.27 (shake flask-GC, HPLC-k. correlation, Konemann et al. 1979; selected, Figueroa & Simmons 1991) 
6.44 (calculated-f constant, Konemann et al. 1979; Konemann 1981; selected, Opperhuizen 1986) 
5.23 (HPLC-RT correlation, Veith et al. 1979a; selected, Mackay 1982; Freitag et al. 1985) 
6.18 (HPLC-RT, Veith et al. 1979b; quoted, Veith & Kosian 1982; Ryan et al. 1988; Saito et al. 1992) 
6.53 (calculated-f const., Yalkowsky et al. 1979,1983; Yalkowsky & Valvani 1980; Valvani & Yalkowsky 
1980; selected, Miller et al. 1984) 
5.23 (selected, Kenaga & Goring 1980; selected, Yoshida et al. 1983b) 
5.44 (selected, Briggs 1981) 
6.22 (HPLC-RT correlation, McDuffie 1981) 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4071 
5.50 (shake flask-GC, Chiou et al. 1982; Chiou 1985; selected, Oliver & Niimi 1983; Oliver & Charlton 
1984; Bobra et al. 1985; Hawker & Connell 1985; Oliver 1987a,b & c; Geyer et al. 1987; Suntio 
et al. 1988; Connell & Hawker 1988; Thomann 1989; Hawker 1990; Ballschmiter & Wittlinger 
1991; Fischer et al. 1991) 
5.66 (HPLC-RT correlation, Hammers et al. 1982) 
5.40 (shake flask-GC, Watarai et al. 1982; quoted, Suntio et al. 1988) 
6.13–6.27, 5.66 (range, mean, shake flask method, Eadsforth & Moser 1983) 
6.27–6.48, 6.38 (range, mean, HPLC method, Eadsforth & Moser 1983) 
5.0, 5.19 (selected, calculated, Kaiser 1983; Kaiser et al. 1984) 
5.89 (selected, Calamari et al. 1983) 
6.42 (calculated-f const., Veith et al. 1983) 
5.23, 4.61 (selected, calculated-molar refraction, Yoshida et al. 1983) 
5.47 (generator column-GC/ECD, Miller et al. 1984, 1985; Kerler & Schonherr 1988; Mackay & Paterson 
1991) 
5.75; 5.70–5.79 (quoted lit.; HPLC-RV correlation, Garst & Wilson 1984; Garst 1984) 
5.20, 5.23, 5.44, 5.50, 5.55 (reported lit. values, Geyer et al. 1984) 
5.47 (Sarna et al. 1984) 
5.47, 6.86, 6.42 (selected, HPLC/MS, calculated-. const., Burkhard et al. 1985) 
5.61 (selected, Mackay et al. 1985) 
5.75 (selected OECD value, Brooke et al. 1986) 
5.6, 5.9 (HPLC-RV correlation, Brooke et al. 1986) 
6.51, 6.18 (selected, calculated-KOW & HPLC-RT, Chin et al. 1986) 
6.92 (HPLC-k. correlation, De Kock & Lord 1987) 
5.64 (HPLC-k. correlation, Mailhot 1987) 
5.45 (selected, Gobas et al. 1987, 1989; Travis & Arms 1988) 
5.66 (correlated, Isnard & Lambert 1988, 1989) 
5.47; 6.42, 6.55, 6.22, 5.34, 4.86, 4.75 (selected exptl.; calculated-. const., f const., HPLC-RT correlation, MW, 
MCI ., TSA, Doucette & Andren 1988) 
5.47; 5.37 (selected; calculated-VI and solvatochromic parameters, Kamlet et al. 1988) 
5.50 (shake flask-GC, Pereira et al. 1988) 
5.31, 6.58 (selected, calculated-UNIFAC activity coeff., Banerjee & Howard 1988) 
6.68 (calculated-f const., De Bruijn et al. 1989) 
5.73 (shake flask/slow stirring-GC, De Bruijn et al. 1989; De Bruijn & Hermens 1990; quoted, Bintein & 
Devillers 1994; Sijm et al. 1995) 
5.44 (recommended, Sangster 1993) 
5.73 (recommended, Hansch et al. 1995) 
6.42 (quoted Pomona-database, Muller & Kordel 1996) 
Bioconcentration Factor, log BCF: 
3.89 (rainbow trout, calculated-k1/k2, Neely et al. 1974) 
3.09 (fish, Korte et al. 1978) 
4.27, 3.73, 4.34 (fathead minnow, rainbow trout, green sunfish, Veith et al. 1979) 
5.46 (guppy, lipid basis, Konemann & van Leeuwen 1980; selected, Chiou 1985) 
4.27 (fish, Giam et al. 1980) 
1.20 (rats, adipose tissue, Geyer et al. 1980) 
3.93, 2.46 (fish, flowing water, static water, Kenaga & Goring 1980; Kenaga 1980a) 
3.61, 2.45 (calculated from water solubility, KOC, Kenaga 1980a) 
4.39, 4.20 (algae, calculated, Geyer et al. 1981) 
3.91 (fish, correlated, Mackay 1982) 
4.27, 3.89 (fathead minnow, rainbow trout, selected, Bysshe 1982) 
4.60 (guppy, calculated-MCI ., Koch 1983) 
4.08–4.30 (rainbow trout, Oliver & Niimi 1983) 
5.16–5.37 (rainbow trout, lipid basis, Oliver & Niimi 1983; selected, Chiou 1985) 
4.31 (calculated-KOW, Calamari et al. 1983) 
3.93 (calculated-KOW, Yoshida et al. 1983b) 
© 2006 by Taylor & Francis Group, LLC

4072 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
4.39, 3.36, 4.54 (algae, fish, activated sludge, Klein et al. 1984) 
4.39, 3.83 (algae: exptl., calculated, Geyer et al. 1984; quoted, Wang et al. 1996) 
4.27 (fathead minnow, 25°C, calculated, Davies & Dobbs 1984; Anliker & Moser 1987) 
4.34, 3.74 (green sunfish, rainbow trout, 15°C, calculated, Davies & Dobbs 1984) 
4.39, 3.36, 4.54 (algae, fish, sludge, Klein et al. 1984) 
4.54 (activated sludge, Freitag et al. 1984; Halfon & Reggiani 1986) 
4.39, 3.41, 4.54 (algae, fish, activated sludge, Freitag et al. 1985) 
3.05 (fish, selected, Hawker & Connell 1986) 
2.62–2.97 (human fat, lipid basis, Geyer et al. 1987) 
2.44–2.79 (human fat, wet weight, Geyer et al. 1987) 
4.41 (algae, Mailhot 1987) 
4.34 (fathead minnow, Carlson & Kosian 1987) 
4.38, 4.30 (worms, fish, Oliver 1987a) 
3.48 (fish-normalized, Tadokoro & Tomita 1987) 
4.19 (guppy, calculated, Gobas et al. 1987) 
5.46 (guppy-lipid phase, calculated-KOW, Gobas et al. 1987, 1989) 
6.42, 6.71, 5.96, 5.98 (field data-lipid base: Atlantic croakers, blue crabs, spotted sea trout, blue catfish, 
Pereira et al. 1988) 
–1.35 (beef, reported as biotransfer factor log Bb, Travis & Arms 1988) 
–2.07 (milk, reported as biotransfer factor log Bm, Travis & Arms 1988) 
–0.32 (vegetable, reported as biotransfer factor log Bv, Travis & Arms 1988) 
5.30 (guppy-lipid phase, calculated-KOW, Gobas et al. 1989) 
3.90, 4.19 (fish, selected, Connell & Hawker 1988; Hawker 1990) 
5.30 (guppy, correlated, Gobas et al. 1989) 
3.53 (picea omorika, Reischl et al. 1989) 
3.57 (fish, calculated, Figueroa & Simmons 1991) 
4.37, 4.16 (rainbow trout, guppy, Saito et al. 1992) 
4.27, 4.37 (fathead minnows, Saito et al. 1992) 
4.25 (Chlorella pyrenoidosa, Sijm et al. 1995) 
4.39, 3.18 (Chlorella fusca, Myriophyllum spicatum, Wang et al. 1996) 
Sorption Partition Coefficient, log KOC: 
3.59 (Kenaga & Goring 1980; Kenaga 1980a; selected, Lyman 1982; Yoshida 1983b; Nash 1989) 
4.45 (Kenaga 1980a) 
4.44, 4.21, 3.59 (estimated-S, KOW, BCF, Lyman 1982) 
6.08 (calculated, Mabey et al. 1982) 
3.59 (selected, Bysshe 1982; Lyman et al. 1982) 
2.56 (shake flask-GC/ECD, Speyer soil, Freundlich isotherm, Rippen et al. 1982) 
2.70 (shake flask-GC/ECD, Alfisol, Freundlich isotherm, Rippen et al. 1982) 
4.58 (calculated-KOW, Calamari et al. 1983) 
5.90 (field data, Oliver & Charlton 1984) 
4.90 (bottom sediment, Karickhoff & Morris 1985a) 
5.10 (calculated-KOW, Oliver & Charlton 1984) 
5.2–6.7, 6.1 (suspended sediment, average, Oliver 1987c) 
5.80 (algae > 50 µm, Oliver 1987c) 
6.0–6.5, 6.3; 5.1 (Niagara River plume, range, mean; calculated-KOW, Oliver 1987b) 
4.77 (HPLC-k., Hodson & Williams 1988) 
4.70; 3.53 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
Sorption Partition Coefficient, log KOM: 
4.25 (shake flask-GC, soil-organic matter, Briggs 1981) 
5.50 (Niagara River-organic matter, Oliver & Charlton 1984) 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4073 
Sorption Partition Coefficient, log KP: 
3.04–4.51 (sediment suspensions, Karickhoff & Morris 1985b; selected, Brusseau & Rao 1989) 
5.11 (simulation of Oliver 1985, Brusseau & Rao 1989) 
Half-Lives in the Environment: 
Air: degradation rate constant of 0.0144 h–1 (Mackay et al. 1985; quoted, Mackay & Paterson 1991); 3753–37530 
h, based on estimated photooxidation half-life (Atkinson 1987); 17000 h (selected from Mackay et al. 1992, 
Mortimer & Connell 1995). 
Surface Water: 23256–50136 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Beck & Hansen 1974); 1.4–50 d estimated, 0.3–3 d for river water and 30–300 d for lakes, estimated from 
persistence (Zoeteman et al. 1980); 55000 h (selected from Mackay et al. 1992, Mortimer & Connell 1995). 
Ground Water: 46512–100272 h, based on unacclimated aqueous aerobic biodegradation half-life (Beck & 
Hansen 1974); 30–300 d, estimated from persistence (Zoeteman et al. 1980). 
Soil: 23256–50136 h, based on unacclimated aerobic soil grab sample data (Beck & Hansen, 1974); > 50 d 
(Ryan et al. 1988). 
Sediment: 55000 h (selected from Mackay et al. 1992, Mortimer & Connell 1995). 
Biota: half-life in rainbow trout, > 224 d (Niimi & Cho 1980); in subadult rainbow trout-calculated to be 210 d 
at 4°C, 80 d at 12°C and 70 d at 18°C (Niimi & Palazzo 1985); in worms at 8°C, 27 d (Oliver 1987a); 
picea omorika, 30 d (Reischl et al. 1989); 163 h, clearance from fish (Neely 1980). 
Environmental Fate Rate Constants, k, or Half Lives, t.: 
Volatilization/Evaporation: 3.45 . 10–10 mol/m2·h (Guckel et al. 1982). 
Photolysis: 
Oxidation: rate constant in air, 1.44 . 10–2 h–1 (Brown et al. 1975; selected, Mackay et al. 1985); photooxidation 
half-life in air: 3753–37530 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl 
radicals in air (Atkinson 1987). 
Hydrolysis: not expected to be important, based on kh = 0, observed after 13 d at pH 3, 7, 11 and 85°C (Ellington 
et al. 1987). 
Biodegradation: aqueous aerobic biodegradation half-life: 23256–50136 h, based on unacclimated aerobic soil 
grab sample data (Beck & Hansen 1974); anaerobic aqueous biodegradation half-life: 93024–200544 h, based 
on estimated unacclimated aqueous aerobic biodegradation half-life (Beck & Hansen 1974) and degradation 
rate constant in soil, 1.9 . 10–5 h–1 (Beck & Hansen 1974; selected, Mackay et al. 1985; Mackay & Paterson 
1991); not significant in an aerobic environment, and no significant degradation rate (Tabak et al. 1981; Mills 
et al. 1982). 
Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants: 
k1: 18.76 h–1 (trout muscle, Neely et al. 1974) 
k2: 0.00238 h–1 (trout muscle, Neely et al. 1974) 
k1: 10000 d–1 (guppy, Konemann & van Leeuwen 1980) 
k1: 22.5 h–1 (guppy, selected, Hawker & Connell 1985) 
k1: 18.8 h–1 (trout, selected, Hawker & Connell 1985) 
k1: 540.0 d–1 (fish, selected, Opperhuizen 1986) 
k2: 0.00510, 0.00818, 0.00640, 0.0047 d–1 (rainbow trout, calculated-fish mean body weight, Barber et al. 
1988) 
1/k2: 420 h (trout, selected, Hawker & Connell 1985) 
log k1: 2.73 d–1 (fish, selected, Connell & Hawker 1988) 
log k1: 2.65 d–1 (fish, selected, Connell & Hawker 1988) 
log 1/k2: 1.24 d–1(fish, selected, Connell & Hawker 1988) 
log k2: –1.24 d–1 (fish, calculated-KOW, Thomann 1989) 
k1: 0.049 h–1 (uptake of mayfly-sediment model II, Gobas et al. 1989b) 
k2: 0.023 h–1 (depuration of mayfly-sediment model II, Gobas et al. 1989b) 
k1 10489 h–1 (Chlorella fusca, Wang et al. 1996) 
k2: 0.424 h–1 (Chlorella fusca, Wang et al. 1996) 
© 2006 by Taylor & Francis Group, LLC

4074 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
k1: 6.558 h–1 (Myriophyllum spicatum, Wang et al. 1996) 
k2: 0.00429 h–1 (Myriophyllum spicatum, Wang et al. 1996) 
Sediment Exchange Rate Constant: 
0.026–1.2 d–1 (natural sediment, Karickhoff & Morris 1985). 
Sediment Burial Rate Constant: 
4.6 . 10–6 h–1 (Di Toro et al. 1981; selected, Mackay et al. 1985) 
Stratospheric Diffusion Rate Constant: 
1.7 . 10–6 h–1 (Mackay et al. 1985) 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4075 
19.1.23 IMAZALIL 
Common Name: Imazalil 
Synonym: Bromazil, Deccozil, Enilconazole, Fecundal, Freshgard, Fungaflor, Fungazil, R 23979 
Chemical Name: 1-(.-allyloxy-2,4-dichlorophenylethyl)imidazole; 1-[2-(2,4-dichlorophenyl)-2-(2-propenyloxy)ethyl]- 
1H-imidazole 
CAS Registry No: 35554-44-0 
Uses: as fungicide for control of a wide range of fungal diseases on fruit, vegetables, and ornamentals; also used as a 
seed dressing, for control of diseases of cereal and cotton, etc. 
Molecular Formula: C14H14Cl2N2O 
Molecular Weight: 297.129 
Melting Point (°C): 
50.0 (Hartley & Kidd 1987; Milne 1995; Lide 2003) 
Boiling Point (°C): 
> 340 (Worthing & Hance 1991; Tomlin 1994) 
dec (Lide 2003) 
Density (g/cm3 at 20°C): 
1.243 (23°C, Hartley & Kidd 1987; Worthing & Hance 1991; Milne 1995) 
1.348 (26°C, Tomlin 1994) 
Molar Volume (cm3/mol): 
318.8 (calculated-Le Bas method at normal boiling point) 
239.1 (calculated-density) 
Dissociation Constant pKa: 
6.53 (Worthing & Hance 1991) 
7.47 (pKb Tomlin 1994) 
Enthalpy of Vaporization, .HV (kJ/mol): 
96.53 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
29.1 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
90 (Rordorf 1989) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.568 (mp at 50°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1400 (20°C, Hartley & Kidd 1987; Milne 1995) 
180 (pH 7.6, Worthing & Hance 1991; Tomlin 1994) 
1400 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations.): 
9.30 . 10–6 (20°C, Hartley & Kidd 1987) 
1.60 . 10–4, 8.0 . 10–3, 0.230, 4.20, 53.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 18.21 – 6562.5/(T/K); measured range 53.–129°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.52 – 5042.4/(T/K); measured range 53.6–129°C (liquid, gas saturation-GC, Rordorf 1989) 
1.60 . 10–4 (20°C, Worthing & Hance 1991) 
1.58 . 10–4 (20°C, Tomlin 1994) 
9.30 . 10–6 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Cl 
Cl 
O 
N
N 
© 2006 by Taylor & Francis Group, LLC

4076 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.97 . 10–6 (20–25°C, calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
3.82 (Worthing & Hance 1991; Milne 1995) 
3.82 (pH 9.2, Tomlin 1994) 
3.82 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
4.57 (calculated-S as per Kenaga 1980, this work) 
2.70 (calculated-KOW as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
2.26 (clay loam, Worthing & Hance 1991; Tomlin 1994) 
2.32 (sandy loam, Worthing & Hance 1991; Tomlin 1994) 
1.83 (sandy soil, Worthing & Hance 1991; Tomlin 1994) 
3.60 (soil, 20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
3.73 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.73; 3.52 (soil, quoted obs.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: stable to light under normal storage conditions (Tomlin 1994). 
Oxidation: 
Hydrolysis: very stable to hydrolysis in dilute acids and alkalis at room temperature (Tomlin 1994). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: t. = 30–170 d (Tomlin 1994); 
field t. = 150 d (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4077 
19.1.24 MANCOZEB 
Common Name: Mancozeb 
Synonym: dithane ultra, Dithane M45, Dithane SPC, Fore, Manzate, Manseb, Maezin, Nemispor, Penncozeb, Vondozeb, 
Zimanat, zine manganese ethylenebis[dithiocarbamate] 
Chemical Name: manganese ethylenebis(dithiocarbamate) (polymeric) complex with zinc salt 
CAS Registry No: 8018-01-7 
Uses: fungicide 
Molecular Formula: (C4H6MnN2S4)x(Zn)y 
Molecular Weight: 
Melting Point (°C): 
192–194 (dec., Hartley & Kidd 1987; Montgomery 1993; Milne 1995) 
192–204 (dec., Tomlin 1994) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
insoluble (Spencer 1982; Hartley & Kidd 1987; Milne 1995) 
6–20 (Montgomery 1993) 
6–20 (Tomlin 1994) 
6.0 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C): 
negligible (Hartley & Kidd 1987; Tomlin 1994) 
0 (selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
3.12–3.70 (Montgomery 1993) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
2.93–3.21 (soil, calculated, Montgomery 1993) 
> 3.30 (soil, Wauchope et al. 1992; Hornsby et al. 1996) 
> 3.30 (soil, Tomlin 1994) 
Environmental Fate Rate Constants, or Half-Lives: 
Hydrolysis: unstable in acidic media (Hartley & Kidd 1987); t. = 20 d at pH 5, t. = 17 h at pH 7, t. = 34 h at 
pH 9 (Montgomery 1993; Tomlin 1994). 
Half-Lives in the Environment: 
Soil: field t. = 70 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. ~. 6–15 d (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

4078 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.25 MANEB 
Common Name: Maneb 
Synonym: MEB, Dithane, Bravo 
Chemical Name: manganese ethylenebis(dithiocarbamate) 
CAS Registry No: 12427-38-2 
Uses: fungicide 
Molecular Formula: (C4H6MnN2S4)x 
Molecular Weight: (265.302)x 
Melting Point (°C): 
200 (dec, Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.92 (Spencer 1982; Worthing & Walker 1983; Tomlin 1994) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
slightly soluble (Spencer 1982) 
insoluble (Worthing & Walker 1983; Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
slight, 200, 6 (quoted, Wauchope et al. 1992) 
6.0 (20–25°C, estimated and selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
negligible (20°C, Worthing 1983; Hartley & Kidd 1987; Tomlin 1994) 
0 (selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.40 (activated sludge, Freitag et al. 1983) 
2.40, 2.26, < 1.0 (activated sludge, algae, Golden ide, Freitag et al. 1985) 
Sorption Partition Coefficient, log KOC: 
> 3.30 (soil, estimated, Wauchope et al. 1994; Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: rapidly hydrolyzed in acidic media (Hartley & Kidd 198); 
t. < 24 h at pH 5.7 or 9 (Tomlin 1994). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
S N
H 
HN
S 
Mn 
S 
S n 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4079 
Half-Lives in the Environment: 
Air: t. = 7–14 d, green house experiment in microagroecosystem chamber (Nash & Beall 1980). 
Surface water: rapidly hydrolyzed in acidic media (Hartley & Kidd 1987). 
Groundwater: 
Sediment: 
Soil: t. = 36 d in soil (sandy loam with pH 6.7), 
green house experiment in microagroecosystem chamber (Nash & Beall 1980); 
t. ~ 25 d in loamy sand in dark, aerobic conditions (Tomlin 1994); 
field t. ~ 70 d (estimated, Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: t. = 6.4 d for beans, t. = 7.4 d for tomatoes (Nash & Beall 1980); 
t. = 14 d on tomato leaves, green house experiment in microagroecosystem chamber (Nash & Beall 1980); 
t. = 10 d for tomato fruit, t. = 4.5 d for tomato leaves in the field, t. = 3 d for tomatoes and soybean leaves 
in microagroecosystem (Nash 1983). 
© 2006 by Taylor & Francis Group, LLC

4080 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.26 METALAXYL 
Common Name: Metalaxyl 
Synonym: Apron, CGA 48988, Ridomil, Subdue 
Chemical Name: methyl N-(2-methoxyacetyl)-N-(2,6-xylyl)-DL-alaninate; methyl-N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-
DL-alaninate 
CAS Registry No: 57837-19-1 
Uses: fungicide to control of foliar and soil-borne diseases caused by Peronosporates on a wide range of crops; also 
used to treat seeds, etc. 
Molecular Formula: C15H21NO4 
Molecular Weight: 279.333 
Melting Point (°C): 
71 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.21 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993) 
Molar Volume (cm3/mol): 
328.2 (calculated-Le Bas method at normal boiling point) 
230.9 (calculated-density) 
Dissociation Constant pKa: << 0 (Tomlin 1994) 
Enthalpy of Vaporization, .HV (kJ/mol): 
89.73 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
27.4 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
79 (Rordorf 1989) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.354 (mp at 71°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
7100 (quoted, Burkhard & Guth 1981) 
7000 (shake flask-HPLC, Ellgehausen et al. 1981) 
7100 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993) 
7000 (quoted-Yalkowsky & Dannenfelser 1994, Pinsuwan et al. 1995) 
8400 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
8400 (selected, Lohninger 1994) 
8400 (22°C, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
2.93 . 10–4 (20°C, volatilization rate, Burkhard & Guth 1981) 
2.93 . 10–4 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991) 
7.50 . 10–4, 2.90 . 10–2, 0.67, 10.0, 110 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 17.423 – 4687.6/(T/K); measured range 32.7–69.7°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.243 – 4687.6/(T/K); measured range 72.3–130°C (liquid, gas saturation-GC, Rordorf 1989) 
7.5 . 10–4 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.93 . 10–4 (20°C, Montgomery 1993) 
7.5 . 10–4 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.155 (20°C, evaporation rate, Burkhard & Guth 1981) 
2.48 . 10–5 (calculated-P/C, this work) 
N 
O 
O
O 
O 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4081 
Octanol/Water Partition Coefficient, log KOW: 
1.65 (shake flask, Ellgehausen et al. 1980, 1981) 
1.53 (shake flask, log P Database, Hansch & Leo 1987) 
1.60 (shake flask at pH 7, Stevens et al. 1988) 
1.70 (shake flask at pH 7, Baker et al. 1992) 
1.59 (recommended value, Sangster 1993) 
1.75 (Tomlin 1994) 
1.693 (calculated-f const., Pinsuwan et al. 1995) 
1.65 (recommended, Hansch et al. 1995) 
1.40 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
0.03 (Daphnia magna, wet wt. basis, Ellgehausen et al. 1980) 
Sorption Partition Coefficient, log KOC: 
1.59 (av. of 3 soils, Sharom & Edgington 1982) 
2.26 (av. of 7 soils, Carris 1983) 
3.22 (av. of 12 soils, calculated-linearized Freundlich Isotherm, Sukop & Cogger 1992) 
1.70 (soil, 20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
1.53–1.84 (soil, Montgomery 1993) 
1.70 (estimated-chemical structure, Lohninger 1994) 
1.57 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.57; 2.05 (soil, quoted obs.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: k(calc) = 0.71 ng cm–2 h–1 and k(measured) = 0.35 ng cm–2 h–1 from moist soils at 20°C (Burkhard & 
Guth 1981). 
Photolysis: irradiated by UV at 290 nm in the presence of hydrogen peroxide and titanium dioxide, respectively, 
in aqueous solution resulted in 29% and 84% transformation in 2.5 h (Moza et al. 1994). 
Oxidation: 
Hydrolysis: stable in neutral and acidic media at room temp., calculated t. > 200 d at 20°C and pH 1, t. = 115 d 
at pH 9 and t. = 12 d at pH 10 (Worthing & Hance 1991; Montgomery 1993; Tomlin 1994). 
Biodegradation: overall degradation rate constant k = 0.0081 h–1 with t. = 85.5 h in sewage sludge and k = 
0.0217 d–1 with t. = 31.9 d in garden soil (Muller & Buser 1995); 
rate constant k = 0.060 d–1 for R-metalaxyl (fungicidally active) in soil expt incubated with rac-metalaxyl, 
k = 0.080 d–1 in soil expt incubated with R-metalaxyl; rate constant k = 0.015 d–1 for S-metalaxyl 
(fungicidally inactive) in soil expt incubated with rac-metalaxyl, k = 0.010/0.12 d–1 for in soil expt incubated 
with S-metalaxyl (Buser et al. 2002); 
degradation rate constants for formulated racemic metalaxyl were found to be 0.039 d–1 with t. = 18 d for 
German soil, k = 0.018 d–1 with t. = 38 d for Cameroonian soil; for unformulated racemic metalaxyl rate 
constants were: k = 0.039 d–1 with t. = 18 d for German soil, k = 0.019 d–1 with t. = 17 d form Cameroonian 
soil; and for formulated R-metalaxyl rate constants were: k = 0.041 d–1 with t. = 17 d for German soil, 
k = 0.018 d–1 with t. = 38 d from Cameroonian soil. For soil incubated with metalaxyl enantiomers, 
R-metalaxyl degraded faster (k = 0.064 d–1) than S-metalaxyl (k = 0.033 d–1) in German soil when spiked 
with formulated racemic metalaxyl, while S-metalaxyl degraded faster (k = 0.026 d–1) than R-metalaxyl 
(k = 0.014 d–1) in Cameroonian soil when spiked with formulated racemic retalaxyl (Monkiedje et al. 2003). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: degradation t. = 39.5 d in garden soil (Muller & Buser 1995); 
field t. = 70 d (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996); 
residual activity in soil is about 70–90 d (Tomlin 1994); 
degradation t. = 17–38 d of the racemic mixture and enantiomers of metalaxyl in controlled incubation 
experiments in typical soils from Germany and Cameroon. (Monkiedje et al. 2003). 
© 2006 by Taylor & Francis Group, LLC

4082 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.27 NITRAPYRIN 
Common Name: Nitrapyrin 
Synonym: N-Serve 
Chemical Name: 2-chloro-6-(trichloromethyl)pyridine 
CAS Registry No: 1929-82-4 
Uses: bactericide 
Molecular Formula: C6H3Cl4N 
Molecular Weight: 230.907 
Melting Point (°C): 
63 (Lide 2003) 
Boiling Point (°C): 
136–137.5/11 mmHg (Tomlin 1994) 
Density (g/cm3 at 25°C): 
1.744 (Montgomery 1993) 
1.579 (Tomlin 1994) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.424 (mp at 63°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
40 (quoted, Briggs 1981) 
40 (22°C, Spencer 1982; Worthing & Walker 1983, 1987; Montgomery 1993; Tomlin 1994) 
92; 54 (generator column-RI; HPLC-RT correlation, Swann et al. 1983) 
40 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.37 (23°C, Spencer 1982; Worthing & Walker 1983, 1987) 
0.373 (20°C, Montgomery 1993) 
0.373 (20–25°C, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
216 (calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
3.02 (shake flask-UV, Briggs 1981) 
3.02–3.41 (Montgomery 1993) 
3.325 (Tomlin 1994) 
3.41 (recommended, Hansch et al. 1995) 
3.41 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.87, 1.36 (calcd-solubility, KOW, Kenaga 1980b) 
Sorption Partition Coefficient, log KOC: 
1.93–2.42; 2.19 (quoted: 10 soils range; mean, Briggs 1981) 
2.0 (Cottenham soil, shake flask-GC, 20°C, Briggs 1981) 
N Cl 
Cl 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4083 
2.76 (calculated, Kenaga 1980b) 
2.66 (average of 3 soils, HPLC-RT correlation, McCall et al. 1980) 
2.64, 2.68, 2.66; 2.66 (Commeree soil, Tracy soil, Catlin soil; mean, HPLC-RT, Swann et al. 1981; 
quoted, McCall et al. 1981) 
2.24–2.76 (quoted literature range, Wauchope et al. 1992) 
2.76 (soil, Wauchope et al. 1992; Hornsby et al. 1996) 
2.62–2.68 (soil, Montgomery 1993) 
2.40–3.96 (soil, Tomlin 1994) 
2.62 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: water photolysis t. = 2 h (Tomlin 1994). 
Oxidation: 
Hydrolysis: hydrolysis t. = 2 d at pH 7 (Tomlin 1994). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: hydrolysis t. = 2 d at pH 7, water photolysis t. = 2 h (Tomlin 1994). 
Groundwater: 
Sediment: 
Soil: field t. = 10 d (Wauchope et al. 1992; Hornsby et al. 1992); 
aerobic soil metabolism t. = 6.42 d, anaerobic metabolism t. ~ 2.5 h (Tomlin 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

4084 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.28 OXYCARBOXIN 
Common Name: Oxycarboxin 
Synonym: DCMOD, Oxycarboxine 
Chemical Name: 5,6-dihydro-2-methyl-1,4-oxathi-ine-3-carboxanilide 4,4-dioxide; 5,6-dihydro-2-methyl-N-phenyl- 
1,4-oxathin-3-carboxamide 4,4-dioxide 
CAS Registry No: 5259-88-1 
Uses: as fungicide for control of rust diseases on ornamentals, cereals, and nursery trees, etc. 
Molecular Formula: C12H13NO4S 
Molecular Weight: 267.301 
Melting Point (°C): 
129 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 1.14 (Tomlin 1994) 
Molar Volume (cm3/mol): 
261.4 (calculated-Le Bas method at normal boiling point) 
234.5 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.054 (mp at 129°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1000 (Martin & Worthing 1977; quoted, Kenaga 1980) 
1000 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
1000 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1000 (selected, Lohninger 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0010 (20°C, Hartley & Kidd 1987) 
< 133 (20°C, Worthing & Hance 1991) 
5.60 . 10–6 (Tomlin 1994) 
1.33 . 10–3 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
3.56 . 10–4 (20–25°C, calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
0.74 (shake flask-UV, Mathre 1971) 
0.74 (recommended, Sangster 1993) 
0.772 (Tomlin 1994) 
0.740 (selected, Hansch et al. 1995) 
1.13 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
1.11 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
1.99 (calculated-S, Kenaga 1980) 
S
O 
O O 
HN 
O 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4085 
1.98 (soil, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
1.98 (selected, Lohninger 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: t. = 44 d at pH 6, 25°C (Tomlin 1994). 
Half-Lives in the Environment: 
Soil: t. = 2.5–8 wk in sandy loam by aerobic soil metabolism (Tomlin 1994); 
field t. = 20 d (Wauchope et al. 1992; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

4086 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.29 PENCONAZOLE 
Common Name: Penconazole 
Synonym: Award, CGA 71818, Topas, Topaz, Topaze 
Chemical Name: 1-(2,4-dichloro-.-propylphenylethyl)-1H-1,2,4-triazole;1-[2-(2,4-dichlorophenyl)pentyl]-1H-1,2,4- 
triazole 
CAS Registry No: 66246-88-6 
Uses: as fungicide for control of pathogenic Ascomycetes, Basidiomycetes and Deuteromycetes (especially powdery 
mildews) on vines, cucurbits, pome fruit, ornamentals and vegetables. 
Molecular Formula: C13H15Cl2N3 
Molecular Weight: 284.184 
Melting Point (°C): 
60.0 (Hartley & Kidd 1987; Worthing & Hance 1991) 
62.1 (Rordorf 1989) 
57.6–60.3 (Tomlin 1994) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 1.30 (Tomlin 1994) 
Molar Volume (cm3/mol): 
312.3 (calculated-Le Bas method at normal boiling point) 
218.6 (calculated-density) 
Dissociation Constant pKa: 
1.51 (Tomlin 1994) 
Enthalpy of Vaporization, .HV (kJ/mol): 
91.45 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
27.1 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
81 (Rordorf 1989) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.454 (mp at 60°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
70 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991) 
73 (20°C, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00021 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
3.70 . 10–4, 1.30 . 10–2, 0.28, 4.0, 41.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 16.671 – 5995.1/(T/K); measured range 36.6–58.3°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.088 – 4777.0/(T/K); measured range 60.9–129°C (liquid, gas saturation-GC, Rordorf 1989) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.00082 (20°C, calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
3.40 (shake flask-HPLC, Bateman et al. 1990) 
3.20 (shake flask-HPLC, Chamberlain et al. 1991) 
N
N 
N 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4087 
3.72 (pH 5.7, Tomlin 1994) 
3.40, 3.20 (Sangster 1993) 
3.40, 3.50 (Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.75 (20°C, calculated-S as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
2.62 (20°C, calculated-S as per Kenaga 1980, this work) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: stable to hydrolysis pH 1–13, and to temperature up to 350°C (Tomlin 1994). 
Half-Lives in the Environment: 
Soil: half-life is several months (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

4088 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.30 PROCYMIDONE 
Common Name: Procymidone 
Synonym: S-7131, Sialex, Sumiboto, Sumilex, Sumisclex 
Chemical Name: N-(3,5-dichlorophenyl)-1,2-dimethylcyclopropane-1,2-dicarboximide; 3-(3,5-dichlorophenyl)- 
1,5-dimethyl-3-azabicyclo[3,1,0]hexane-2,4-dione 
CAS Registry No: 32809-16-8 
Uses: as fungicide for control of Botrytis, Sclerotinia, Monilia, and Helminthosporium spp. on fruit, vines, vegetables, 
cereals and ornamentals, etc. 
Molecular Formula: C13H11Cl2NO2 
Molecular Weight: 284.138 
Melting Point (°C): 
166 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.452 (25°C, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
225.9 (calculated-Le Bas method at normal boiling point) 
195.7 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0414 (mp at 166°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
4.50 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
4.50 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.018 (Hartley & Kidd 1987) 
0.011 (20°C, Worthing & Hance 1991) 
0.018, 0.0105 (20, 25°C, Tomlin 1994) 
0.0187 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.181 (20–25°C, calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
3.14 (26°C, Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
3.0 (selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
2.42 (calculated-S as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
3.18 (soil, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
3.28 (soil, calculated-S as per Kenaga 1980, this work) 
Cl 
Cl 
N
O
O 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4089 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Photolysis: when irradiation with UV light, . . 290 nm, for procymidone solution (2 ppm): 9% and 11% photodegraded 
in 1 h, in the presence of 1 ppm humic acid and 1 ppm fulvic acid, respectively; rapid degradation 
with t. = 3 min in the presence of TiO2 (20 ppm), but degraded slowly as 9% transformation in 2 h with 
Fe2O3 (100 ppm). (Hustert & Moza 1997) 
Half-Lives in the Environment: 
Air: 
Surface water: photodegradation of procymidone solution (2 ppm), t. = 3 min in the presence of TiO2 (20 ppm) 
when irradiated with UV light (Hustert & Moza 1997) 
Groundwater: 
Sediment: 
Soil: persists for ca. 4–12 weeks (Hartley & Kidd 1987; Tomlin 1994); 
field t. = 7 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

4090 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.31 PROPARGITE 
Common Name: Propargite 
Synonym: Comite, Omite 
Chemical Name: 2-[4-(1,1-dimethylethyl)phenoxy]cyclohexyl 2-propynyl sulfite 
CAS Registry No: 2312-35-8 
Uses: acaricide 
Molecular Formula: C16H26O4S 
Molecular Weight: 360.472 
Melting Point (°C): 
dark brown liquid (Hartley & Kidd 1987) 
Boiling Point (°C): 
Density (g/cm3 at 25°C): 
1.085–1.115 (Hartley & Kidd 1987; Worthing & Walker 1983, 1987) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
practically insoluble in water (Worthing & Walker 1983, 1987) 
0.5 (20°C, Hartley & Kidd 1987) 
0.50 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.5 (20–25°C, Majewski & Capel 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
400 (20°C, Worthing & Walker 1983, 1987; Hartley & Kidd 1987) 
0.4 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.4 (20–25°C, quoted, Majewski & Capel 1995) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated) 
280 (20–25°C, Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW: 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
3.60 (soil, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Soil: field t. = 40 and 56 d, the recommended t. = 56 d (Wauchope et al. 1992; Hornsby et al. 1996). 
O 
S 
O 
O O 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4091 
19.1.32 PROPICONAZOLE 
Common Name: Propiconazole 
Synonym: Alamo, Banner, CGA 64250, Desmel, Orbit, Practis, Radar, Spire, Tilt 
Chemical Name: ( ± )-1-[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxalan-2-ylmethyl]-1H-1,2,4-triazole; 1-[2-(2,4-dichlorophenyl)-
4-propyl-1,3-dioxalan-2-ylmethyl]-1H-1,2,4-triazole 
CAS Registry No: 60207-90-1 
Uses: as fungicide for control of mildews, rusts on cereals, ornamentals, fruits and other crops; and also used for other 
diseases of turf and grass seed crops, etc. 
Molecular Formula: C15H17Cl2N3O2 
Molecular Weight: 342.221 
Melting Point (°C): liquid 
Boiling Point (°C): 
180 (at 0.1 mmHg, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
1.27 (Hartley & Kidd 1987; Worthing & Hance 1991; Milne 1995) 
1.29 (20°C, Tomlin 1994) 
Molar Volume (cm3/mol): 
358.6 (calculated-Le Bas method at normal boiling point) 
267.3 (calculated-density) 
Dissociation Constant pKa: 
1.09 (Tomlin 1994) 
Enthalpy of Vaporization, .HV (kJ/mol): 
106.8 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
110 (20°C, Hartley & Kidd; Worthing & Hance 1991; Milne 1995) 
100 (20°C, Tomlin 1994) 
110 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
110 (selected, Lohninger 1994) 
110 (20°C, quoted, Siebers et al. 1994) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00013 (20°C, Hartley & Kidd 1987) 
5.60 . 10–5, 1.60 . 10–3, 0.027, 0.32, 28.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 14.468 – 5581.2/(T/K); measured range 32.5–124°C (liquid, gas saturation-GC, Rordorf 1989) 
0.000133 (20°C, Worthing & Hance 1991) 
5.6 . 10–5 (20–25°C, Wauchope et al. 1992; Hornsby et al. 1996) 
5.6 . 10–5 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
4.0 . 10–4 (20°C, calculated-P/C, Siebers et al. 1994) 
0.00017 (20–25°C, calculated-P/C, this work) 
N
N 
N 
O O 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

4092 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
3.50 (Bateman et al. 1990; quoted, Sangster 1993) 
3.72 (Siebers et al. 1994) 
3.72 (pH 6.6, Tomlin 1994) 
3.50 (selected, Hansch et al. 1995) 
3.50 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
3.33 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
2.81 (soil, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.52 (soil, calculated-S as per Kenaga 1980, this work) 
2.81 (selected, Lohninger 1994) 
3.39 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.39; 3.62 (soil, quoted obs.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: no significant hydrolysis (Tomlin 1994). 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 25–85 d in aerobic aquatic systems at 25°C (Tomlin 1994). 
Groundwater: 
Sediment: 
Soil: field t. = 110 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 40–70 d in aerobic soils at 25°C (Tomlin 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4093 
19.1.33 QUINTOZENE 
Common Name: Quintozene 
Synonym: Avicol, Batrilex, Brassicol, Chinozan, earthcide, Fartox, Folosan, Fomac 2, Fungiclor, Kobutol, KOBU, 
KP 2, Marisan forte, Olpisan, PCNB, Pentagen, Phomasan, PKhNB, Quinosan, Quinocene, saniclor 30, Terraclor, 
Terrafun 
Chemical Name: pentachloronitrobenzene 
CAS Registry No: 82-68-8 
Uses: as fungicide for seed and soil treatment, for control of Botrytis, Rhizoctonia, and Sclerotinia spp. on brassicas, 
vegetables, ornamentals and other crops, and Telletia caries of wheat. 
Molecular Formula: C6Cl5NO2 
Molecular Weight: 295.335 
Melting Point (°C): 
144 (Lide 2003) 
Boiling Point (°C): 
328 (dec, Lide 2003) 
Density (g/cm3 at 20°C): 
1.718 (25°C, Spencer 1982; Hartley & Kidd 1987; Worthing & Hance 1991; Milne 1995) 
1.907 (21°C, Tomlin 1994) 
Molar Volume (cm3/mol): 
207.3 (calculated-Le Bas method at normal boiling point) 
154.9 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
77.3 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 

18 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
43 (Rordorf 1989) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0680 (mp at 144°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
practically insoluble (Spencer 1982; Worthing & Hance 1991; Milne 1995) 
0.55 (20–25°C, shake flask-GC, Kanazawa 1981) 
0.44 (20°C, Hartley & Kidd 1987; Pait et al. 1992; Milne 1995) 
0.40 (Davies & Lee 1987) 
0.44 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.10 (selected, Lohninger 1994) 
0.10 (20°C, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.0151 (Spencer 1982) 
6.60 . 10–3 (20°C, Hartley & Kidd 1987) 
8.40 . 10–3, 0.16, 1.90, 17.0, 110 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 14.34 – 4893.9/(T/K); measured range 49.9–140°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 12.234 – 4037.9/(T/K); measured range 150–196°C (liquid, gas saturation-GC, Rordorf 1989) 
1.80 (Worthing & Hance 1991) 
0.0147 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.0127 (Tomlin 1994)
Cl 
Cl 
Cl 
Cl 
Cl 
NO2 
© 2006 by Taylor & Francis Group, LLC

4094 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.3718 (known LWAPC of Kawamoto & Urano 1989, Meylan & Howard 1991) 
0.4812 (calculated-bond contribution method LWAPC, Meylan & Howard 1991) 
Octanol/Water Partition Coefficient, log KOW: 
4.22 (20°C, shake flask-GC, Kanazawa 1981) 
5.21 (HPLC-RT correlation, McDuffie 1981) 
5.00 (HPLC-RT correlation, Ohori & Ihashi 1987) 
5.18 (HPLC-RT correlation, Kawamoto & Urano 1989) 
4.77; 5.40 (shake flask-GC; calculated-fragment const., Niimi et al. 1989) 
5.02 (RP-HPLC-RT correlation, Saito et al. 1993) 
4.64 (recommended, Sangster 1993) 
5.0–6.0 (Tomlin 1994) 
4.22 (selected, Hansch et al. 1995) 
4.89 (Pomona-database, Muller & Kordel 1996) 
5.01 (RP-HPLC-RT correlation, Nakamura et al. 2001) 
5.30 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
2.38 (topmouth gudgeon, Kanazawa 1981) 
3.49, 3.65, 3.06 (algae, activated sludge, fish, Freitag et al. 1985) 
2.23 (rainbow trout, Niimi et al. 1989) 
2.91 (quoted, Pait et al. 1992) 
Sorption Partition Coefficient, log KOC: 
4.30 (correlated-Freundlich Isotherm, Kawamoto & Urano 1989) 
4.30, 3.38 (soil, quoted exptl., calculated-MCI . and fragments contribution, Meylan et al. 1992) 
3.70 (soil, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
4.34 (soil, HPLC-screening method, mean value of different stationary and mobile phases, Kordel et al. 
1993, 1995) 
3.78, 3.47 (for adsorption: silt loam, sand, Tomlin 1994) 
3.98, 3.52 (for desorption: silt loam, sand, Tomlin 1994) 
4.30 (estimated-chemical structure, Lohninger 1994) 
4.34; 3.38 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Biodegradation: rate constant k(aerobic) = 0.16 d–1 with t. = 4.3 d at 20°C by aerobic activated sludge and 
k(anaerobic) = 0.16 d–1 with t. = 4.3 d at 20°C by anaerobic microorganisms cultivated an artificial sewage 
(Kawamoto & Urano 1990) 
rate constant k = 6.5 d–1 with t. = 0.11 d (Corrigendum, Kawamoto & Urano 1991). 
Half-Lives in the Environment: 
Air: 
Surface water: biodegradation t. = 4.3 d at 20°C by aerobic activated sludge or anaerobic microorganisms cultivated 
by an artificial sewage (Kawamoto & Urano 1990) 
Groundwater: 
Sediment: 
Soil: t. ~ 4–10 months (Hartley & Kidd 1987; Tomlin 1994), 
t. = 4 d (Pait et al. 1992); 
field t. = 21 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4095 
19.1.34 THIOPHANATE-METHYL 
Common Name: Thiophanate-methyl 
Synonym: Cerobin, Enovit, Fumidor, Fungitox, Fungo, Fungus Fighter, Labilite, Mildothane, Neotosin, NF-44, Pelt 44, 
Seal 7 Heal, Sigma, Sipcaplant, Sipcasan, Topsin M, Trevin 
Chemical Name: dimethyl 4,4.-(o-phenylene)bis(3-thioallophanate; dimethyl [1,2-phenylene-bis(monocarbonothioyl)]- 
biscarbamate 
Uses: fungicide/wound protectant 
CAS Registry No: 23564-05-8 
Molecular Formula: C12H14N4O4S2 
Molecular Weight: 342.394 
Melting Point (C): 
172 (dec., Worthing & Hance 1991; Tomlin 1994; Milne 1995; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
344.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
7.28 (Worthing & Hance 1991; Tomlin 1994) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0361 (mp at 172°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
3.50 (20°C, Hartley & Kidd 1987) 
26.6 (Worthing & Hance 1991) 
3.50 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
3.50 (selected, Lohninger 1994) 
26.6 (20°C, Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 1.0 . 10–5 (20°C, Hartley & Kidd 1987) 
< 1.33 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
9.50 . 10–6 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0013 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.40 (Worthing & Hance 1991; Milne 1995) 
1.50 (Tomlin 1994) 
1.40 (selected, Hansch et al. 1995) 
1.86 (RP-HPLC-RT correlation, pH 3.5, Hu et al. 1997) 
NH 
NH
HN
O 
NH 
O 
S
S 
O
O 
© 2006 by Taylor & Francis Group, LLC

4096 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
0.079 (Worthing & Hance 1991) 
3.26 (20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
3.26 (selected, Lohninger 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: stable neutral, aqueous solution, t. = 24.5 h at pH 9, 22°C (Tomlin 1994). 
Half-Lives in the Environment: 
Soil: field t. = 10 d (Wauchope et al. 1992; Hornsby et al. 1996); 
persistence ca. 3–4 weeks (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4097 
19.1.35 THIRAM 
Common Name: Thiram 
Synonym: Aapirol, Aatiram, Accel TMT, Accelerator T, Aceto TETD, Arasan, Atiram, Cyuram, Delsan, Ekagom TB, 
ENT-987, Falitiram, Fermide, Fernacol, Fernasan, Fernide, Thiuram, TMTD 
Chemical Name: tetramethylthiuram disulphide; bis(dimethylthiocarbomoyl) disulfide 
CAS Registry No: 137-26-8 
Uses: fungicide and also as seed disinfectant. 
Molecular Formula: C6H12N2S4 
Molecular Weight: 240.432 
Melting Point (°C): 
155.6 (Lide 2003) 
Boiling Point (°C): 
129 (20 mmHg, Howard 1991) 
310–315 (15 mmHg, Montgomery 1993) 
Density (g/cm3 at 20°C): 
1.29 (Spencer 1982; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
256.6 (calculated-Le Bas method at normal boiling point) 
186.4 (calculated-density,) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0523 (mp at 155.6°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
17.4 (22°C, Spencer 1973, 1982) 
30 (Martin & Worthing 1977; Worthing & Walker 1987, Worthing & Hance 1991) 
30 (Hartley & Kidd 1987; Montgomery 1993; Milne 1995) 
30 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
18 (room temp., Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
negligible (Hartley & Kidd 1987; Worthing & Hance 1991) 
0.00133 (Halfon et al. 1996) 
< 0.00133 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.307 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
< 0.008 (calculated-P/C, Lyman et al. 1982) 
0.0107 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.73 (Tomlin 1994) 
Bioconcentration Factor, log BCF: 
1.96 (calculated-S, Kenaga 1980) 
1.96 (calculated-S, Lyman et al. 1982; quoted, Howard 1991) 
N S 
S 
S N 
S 
© 2006 by Taylor & Francis Group, LLC

4098 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Sorption Partition Coefficient, log KOC: 
2.83 (calculated-S, Kenaga 1980) 
2.83 (calculated-S, Lyman et al. 1982; quoted, Howard 1991) 
2.83 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.82–3.39 (soil, Montgomery 1993) 
2.83 (estimated-chemical structure, Lohninger 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: assuming an ambient hydroxyl radical concn. of 8.0 . 105 mol/cm3, the photooxidation reaction 
t. ~ 26.6 d at 25°C (estimated, GEMS 1986; quoted, Howard 1991). 
Hydrolysis: t. = 5.3 d was estimated based on exptl. rate k = 5.0 . 10–3 h–1 (Ellington et al. 1988; quoted, Howard 
1991; Montgomery 1993); 
t. = 128 d at pH 4, t. = 18 d at pH 7 and t. = 9 h at pH 9 (Tomlin 1994). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: assuming an ambient hydroxyl radical concn. of 8.0 . 105 mol/cm3, the photooxidation reaction t. ~ 26.6 d 
at 25°C (estimated, GEMS 1986; quoted, Howard 1991). 
Surface water: calculated hydrolysis t. = 5.3 d at pH 7 (Ellington et al. 1988); 
hydrolysis t. = 128 d, t. = 18 d and t. = 9 h at pH 4,7 and 9 (Tomlin 1994). 
Groundwater: 
Sediment: 
Soil: t. = 15 d in soil (Halfon et al. 1996); 
field t. = 15 d (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996); 
degradation t. = 0.5 d in sandy soil at pH 6.7 (Tomlin 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4099 
19.1.36 TOLCLOFOS-METHYL 
Common Name: Tolclofos-methyl 
Synonym: Risolex, Rizolex, S-3349 
Chemical Name: O-2,6-dichloro-p-tolyl O,O-dimethyl phosphorothioate; O-(2,6-dichloro-4-methylphenyl) O,O-dimethyl 
phosphorothioate 
CAS Registry No: 57018-04-9 
Uses: as fungicide for control of soil-borne diseases caused by Rhizoctonia, Sclerotium and Typhula spp.; also used as 
a seed, bulb or tuber treatment, soil drench, foliar spray, or by soil incorporation. 
Molecular Formula: C9H11Cl2O3PS 
Molecular Weight: 301.127 
Melting Point (°C): 
78–80 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.3–0.4 (23°C, Hartley & Kidd 1987) 
0.3–0.4 (23°C, Worthing & Hance 1991) 
1.10 (Tomlin 1994) 
0.30 (20–25°C, selected, Augustiijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.057 (20°C, Hartley & Kidd 1987) 
0.057 (20°C, Worthing & Hance 1991; Tomlin 1995) 
0.0573 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
5.25 . 10–3; 6.61 . 10–3, 0.0234 (gradient GC method; estimation using modified Watson method: Sugden’s 
parachor, McGowan’s parachor, Tsuzuki 2000) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
57.5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.56 (Worthing & Hance 1991; Tomlin 1994) 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
3.30 (soil, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Cl Cl 
O 
P
S 
O
O 
© 2006 by Taylor & Francis Group, LLC

4100 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Photolysis: photodegradable with 8 h of sunlight: t. = 44 d in water, t. = 15–28 d in lake and river water, and 
t. < 2 d on soil surface (Hartley & Kidd 1987; Tomlin 1994). 
Half-Lives in the Environment: 
Air: 
Surface water: photodegradable with 8 hours of sunlight in water with t. = 44 d, t. = 15–28 d in lake and river 
water, and t. < 2 d on soil surface (Hartley & Kidd 1987); 
Photodegration t. = 44 d in water, t. = 15–28 d in lake (Tomlin 1994). 
Groundwater: 
Sediment: 
Soil: t. < 2 d from soil surface by photodegradation (Tomlin 1994); 
field t. = 30 d (20–25°C, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4101 
19.1.37 TOLYLFLUANID 
Common Name: Tolylfluanid 
Synonym: Tolylfluanide 
Chemical Name: N-dichlorofluoromethylthio-N.N.-dimethyl-N-p-tolylsulphamide; 1,1-dichloro-N-[(dimethylamino)- 
sulfonyl]-1-fluoro-N-(4-methylphenyl)methane-sulfenamide 
Uses: fungicide/acaricide; to control scab on apples and pears; Botrytis on strawberries, raspberries, blackberries, currants, 
grapes, ornamentals, etc. 
CAS Registry No: 731-27-1 
Molecular Formula: C10H13Cl2FN2O2S2 
Molecular Weight: 347.257 
Melting Point (°C): 
95–97 (Hartley & Kidd 1987; Worthing & Hance 1991; Milne 1995) 
96 (Tomlin 1994) 
Boiling Point (°C): dec. on distillation (Tomlin 1994) 
Density (g/cm3 at 20°C): 1.52 (Tomlin 1994) 
Molar Volume (cm3/mol): 
326.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.201 (mp at 96°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
4000 (Martin & Worthing 1977; quoted, Kenaga 1980) 
4000 (room temp., Hartley & Kidd 1987; Worthing & Hance 1991) 
0.90 (room temp., Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 0.001 (20°C, Hartley & Kidd 1987) 
1.3 . 10–5 (45°C, Worthing & Hance 1991) 
1.6 . 10–5 (20°C, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
3.95 (20°C, Worthing & Hance 1991) 
3.90 (Tomlin 1994) 
3.95 (selected, Hansch et al. 1995) 
4.36 (RP-HPLC-RT correlation, Nakamura et al. 2001) 
Bioconcentration Factor, log BCF: 
0.778 (calculated, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
1.66 (soil, calculated-S, Kenaga 1980) 
N 
S S Cl 
F 
Cl 
N
O O 
© 2006 by Taylor & Francis Group, LLC

4102 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: t. = 12 d at 22°C and pH 4, t. = 29 h at pH 7 and t. < 10 min at pH 9 (Worthing & Hance 1991; 
Tomlin 1994). 
Half-Lives in the Environment: 
Soil: half-life of a few days (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4103 
19.1.38 TRIADIMEFON 
Common Name: Triadimefon 
Synonym: Amiral, Bayleton, MEB 6447, Triadimefone 
Chemical Name: 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)butanone; 1-(4-chlorophenoxy)-3,3-dimethyl- 
1-(1H-1,2,4-triazol-1-yl)-2-butanone 
CAS Registry No: 43121-43-3 
Uses: as fungicide for control of powdery mildews, rusts in cereals and Rhynchosporium in cereals and control of bunt, 
smuts, Typhula spp., seedling blight, leaf stripe, net blotch, and other cereal diseases when used for seed treatment, 
etc. 
Molecular Formula: C14H16ClN3O2 
Molecular Weight: 293.749 
Melting Point (°C): 
82 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.22 (Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
321 (calculated-Le Bas method at normal boiling point) 
240.8 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.276 (mp at 82°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
260 (Martin & Worthing 1977) 
260 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991; Milne 1995) 
71.5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
71.5 (selected, Lohninger 1994) 
64 (20°C, Tomlin 1994) 
69; 72 (calculated-group contribution fragmentation method; quoted exptl., Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 1.0 . 10–4 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991) 
2.00 . 10–6 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.00 . 10–5, 6.0 . 10–5 (20, 25°C, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
1.80 (shake flask-UV at pH 5, Barak et al. 1983) 
3.26 (shake flask, Hansch & Leo 1987) 
2.77 (shake flask-LC, Patil et al. 1988) 
3.18 (Worthing & Hance 1991; Milne 1995) 
2.90 (shake flask at pH 7, Baker et al. 1992) 
3.26 (recommended, Sangster 1993) 
2.77 (recommended, Hansch et al. 1995) 
N
N 
N
O 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

4104 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
3.03 (Pomona-database, Muller & Kordel 1996) 
3.12 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
1.43 (calculated, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.41 (soil, calculated-S, Kenaga 1980) 
2.48 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.57 (HPLC-screening method, Kordel et al. 1993) 
2.48 (estimated-chemical structure, Lohninger 1994) 
2.48 (soil, Tomlin 1994) 
2.71 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.57; 3.72 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
3.19, 2.277, 2.536, 2.39, 2.96 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1998, 1999) 
2.826, 2.56, 2.512, 2.381, 3.046 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV Gawlik et al. 1999) 
2.826, 2.560, 2.512, 2.381, 3.046 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
2.71; 2.43 (soil, quoted obs.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: t. > 1 yr at 22°C and pH 3, 6, and 9 (Worthing & Hance 1991; Tomlin 1994). 
Half-Lives in the Environment: 
Soil: field t. = 26 d (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4105 
19.1.39 TRIFLUMIZOLE 
Common Name: Triflumizole 
Synonym: NF-114, Triflumizol, Trifmine 
Chemical Name: (E)-4-chloro-.,.,.,-trifluoro-N-(1-imidazol-1-yl-2-propoxyethylidene)-o-tolui-dine; 1-[1-[[4-chloro- 
2-(trifluoromethyl)phenyl]imino]-2-propoxyethyl]-1H-imidazole 
CAS Registry No: 68694-11-1 
Uses: as fungicide for control of powdery mildews in fruit, vines, and vegetables; scab and rust in apples and pears; 
also used as seed treatment for barley, etc. 
Molecular Formula: C15H15ClF3N3O 
Molecular Weight: 345.574 
Melting Point (°C): 
63.5 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
359.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
3.70 (Augustijn-Beckers et al. 1994; Tomlin 1994; Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.419 (mp at 63.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
12500 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
12500 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
1.40 . 10–6 (Worthing & Hance 1991) 
1.47 . 10–6 (20–25°C, selected, Augustijn-Beckers et al. 1992; Hornsby et al. 1996) 
1.86 . 10–4 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
4.07 . 10–8 (20–25°C, calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.40 (Worthing & Hance 1991; Milne 1995; Tomlin 1994) 
1.40 (selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
3.03–3.22 (Tomlin 1994) 
1.60 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
N
N
N F 
F
F 
Cl 
O 
© 2006 by Taylor & Francis Group, LLC

4106 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Photolysis: aqueous solutions degraded by sunlight with t. = 29 h (Worthing & Hance 1991; Tomlin 1994). 
Half-Lives in the Environment: 
Soil: t. = 14 d on clay (Worthing & Hance 1991); 
field t. = 14 d (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4107 
19.1.40 TRIFORINE 
Common Name: Triforine 
Synonym: Biformychloazin, Cela W524, Compound W, Denarin, FMC, Funginex, Saprol, W 524 
Chemical Name: 1.1.-piperazine-1,4-diyldi-[N-(2,2,2-trichloroethyl)formamide]; 1,4-bis(2,2,2-trichloro-1-formamidoethyl) 
piperazine; N,N.-[1,4-piperazinediylbis(2,2,2-trichloro-ethylidene)]bisformamide 
Uses: systemic fungicide to control powdery mildews on cereals, fruit, vines, hops, cucurbits, vegetables, and ornamentals, 
etc.; also used to suppress spider mite activity. 
CAS Registry No: 26644-46-2 
Molecular Formula: C10H14Cl6N4O2 
Molecular Weight: 434.962 
Melting Point (°C): 
155 (dec., Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 1.554 (Tomlin 1994) 
Molar Volume (cm3/mol): 
389.2 (calculated-Le Bas method at normal boiling point) 
279.9 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.053 (mp at 155°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
30 (rm. temp., Hartley & Kidd 1987; Worthing & Hance 1991) 
6.0 (rm. temp., Worthing & Hance 1991; Milne 1995) 
30 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
30 (selected, Lohninger 1994) 
9.0 (20°C, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
2.6 . 10–5 (Hartley & Kidd 1987) 
2.7 . 10–5 (Worthing & Hance 1991; Tomlin 1994) 
2.7 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
2.20 (Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
2.73 (20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
2.30 (estimated-chemical structure, Lohninger 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: t. = 3.5 d at pH 5, 25°C in aqueous solutions (Tomlin 1994). 
Half-Lives in the Environment: 
Soil: t. ~ 3 wk in soil (Hartley & Kidd 1987; Tomlin 1994); 
field t. = 21 d (20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996). 
N N 
NH
Cl 
Cl
Cl 
O 
HN 
O 
Cl 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

4108 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.41 VINCLOZOLIN 
Common Name: Vinclozolin 
Synonym: BAS 352F, Ronilan, Vorlan 
Chemical Name: (RS)-3-(3,5-dichlorophenyl)-5-vinyl-1,3-oxazolidine-2,4-dione; 3-(3,5-dichlorophenyl)-5-ethenyl- 
5-methyl-2,4-oxazolidinedione 
CAS Registry No: 50471-44-8 
Uses: fungicide to control Botrytis/Sclerotinie spp. in vines, oilseed rape, vegetables, fruit, and ornamentals, etc. 
Molecular Formula: C12H9Cl2NO3 
Molecular Weight: 286.110 
Melting Point (°C): 
108 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995: Lide 2003) 
Boiling Point (°C): 
131 (at 0.05 mmHg, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
1.51 (Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
266.3 (calculated-Le Bas method at normal boiling point, this work) 
189.5 (calculated-density, this work) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.153 (mp at 108°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1000 (Martin & Worthing 1977) 
1000 (20°C, Hartley & Kidd 1987) 
3.40 (20°C, Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
1000 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 0.010 (20°C, Hartley & Kidd 1987) 
1.6 . 10–5 (20°C, Worthing & Hance 1991; Tomlin 1994) 
1.6 . 10–5 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
1.3 . 10–4 (20°C, Siebers et al. 1994) 
Henry’s Law Constant (Pa·3/mol at 25°C or as indicated): 
0.011 (20°C, quoted, Siebers et al. 1994) 
Octanol/Water Partition Coefficient, log KOW: 
3.00 (Stevens et al. 1988) 
3.00 (pH 7, Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
2.47 (shake flask-HPLC at pH 6, Nielsen et al. 1992) 
3.00, 2.47 (Sangster 1993) 
3.10 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.26 (calculated, Kenaga 1980) 
N 
O 
O 
O 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4109 
Sorption Partition Coefficient, log KOC: 
1.99 (soil, calculated-S, Kenaga 1980) 
2.0–2.87 (soil, Tomlin 1994) 
2.0 (soil, 20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: when irradiation with UV light, . . 290 nm, for vinclozolin aqueous solution (1 ppm): 10% and 
11% photodegraded in 1 h, in the presence of 1 ppm humic acid and 1 ppm fulvic acid, respectively; 
irradiation of vinclozolin (2 ppm) in water with t. = 7 min and 92 min in the presence of TiO2 (20 ppm), 
and Fe2O3 (100 ppm), respectively. (Hustert & Moza 1997) 
Oxidation: 
Hydrolysis: stable in neutral and weakly acidic media, in 0.1 N NaOH, 50% hydrolysis occurs in 3.8 h (Hartley & 
Kidd 1987; Tomlin 1994). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: photodegradation of vinclozolin aqueous solution (2 ppm), t. = 7 min and 92 min in the presence 
of TiO2 (20 ppm), and Fe2O3 (100 ppm), respectively, when irradiated with UV light (Hustert & Moza 1997) 
Groundwater: 
Sediment: 
Soil: field t. = 20 d (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

4110 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.42 WARFARIN 
Common Name: Warfarin 
Synonym: Coumafen, Zoocoumarin 
Chemical Name: 3-(.-acetonylbenzyl)-4-hydroxycoumarin 
CAS Registry No: 81-81-2 
Use: rodenticide 
Molecular Formula: C19H16O4 
Molecular Weight: 308.328 
Melting Point (°C): 
161 (Lide 2003) 
Boiling Point (°C): dec. (Montgomery 1993) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0463 (mp at 161°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
40 (shake flask, Coon et al. 1954) 
17 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987) 
17 (20°C, Montgomery 1993; Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
1.55 . 10–4 (21.5°C, Hartley & Kidd 1987) 
9.0 (21.5°C, Worthing & Walker 1987; Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
2.86 . 10–4 (calculated-P/C, Howard 1991) 
Octanol/Water Partition Coefficient, log KOW: 
2.52 (at pH 3, Howard 1991) 
3.20 (calculated, Montgomery 1993) 
3.12 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.68 (calculated, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
2.75 (estimated, Howard 1991) 
2.96 (calculated, Montgomery 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
O
OH O 
O 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4111 
Oxidation: Photooxidation t. = 0.254–1.87 h was estimated based on rate constants for reaction with hydroxyl 
radicals and ozone in air (Howard et al. 1991). 
Hydrolysis: very slow with a t. = 16 yr at pH 7; the chemical hydrolysis rate constants, k = 1.4 . 10–4 M–1 h–1 for 
acid, neutral-k = 4.9 . 10–6 M–1 h–1 and k = 0.026 M–1 h–1 for base (Ellington et al. 1988; quoted, Howard 1991). 
Biodegradation: aqueous aerobic t. = 168–672 h, anaerobic t. = 672–2688 h were estimated based on aqueous 
aerobic biodegradation (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: estimated t. = 11.6 min due to reaction with photochemically produced hydroxyl radicals and ozone in the 
vapor phase (Howard 1991); 
t. = 0.254–1.87 h based on estimated photooxidation in air (Howard et al. 1991). 
Surface water: t. = 168–672 h based on estimated unacclimated aqueous aerobic biodegradation (Howard et al. 
1991); 
slow hydrolysis t. = 15 yr at pH 7 (Howard 1991). 
Groundwater: t. = 336–1344 h based on estimated aqueous aerobic biodegradation (Howard et al. 1991). 
Sediment: 
Soil: t. = 168–672 h based on estimated unacclimated aqueous aerobic biodegradation (Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

4112 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.43 ZINEB 
Common Name: Zineb 
Synonym: Dithane Z-78, Parzate Zineb, Lonaol, Aspor 
Chemical Name: zinc ethylene-1,2-bisdithiocarbamate 
CAS Registry No: 12122-67-7 
Uses: fungicide 
Molecular Formula: (C4H6N2S4Zn)x 
Molecular Weight: (275.773)x 
Melting Point (°C): 
decomposes without melting (Worthing & Walker 1983) 
157 (dec., Tomlin 1994; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0507 (mp at 157°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1 (Melnikov 1971) 
10 (Spencer 1982) 
.10 (Worthing & Walker 1983, 1987; quoted, Howard 1991) 
10 (room temp., Tomlin 1994) 
10 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
negligible at rm. temp. (Worthing & Walker 1983) 
1.07 . 10–5 (20°C, quoted, Howard 1991) 
< 1 . 10–5 (20°C, Hartley & Kidd 1987; Tomlin 1994) 
1.0 . 10–5 (10–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
. 1.30 (Tomlin 1994) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.11, 2.23, < 1.0, (activated sludge, algae, Golden ide, Freitag et al. 1985) 
2.28 (calculated-S, Kenaga 1980b; quoted, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
3.08 (soil, calculated-S, Kenaga 1980b; quoted, Howard 1991) 
3.0 (soil, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Photolysis: unstable to light, moisture and heat on prolonged storage (Tomlin 1994). 
S N
H 
HN
S 
Zn 
S 
S n 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4113 
Half-Lives in the Environment: 
Air: t. = 11–14 d in greenhouse experiment, microagroecosystem chambers (Nash & Beall 1980); 
t. = 11–14 d by gravitational settling and degradation (Howard 1991). 
Surface water: 
Groundwater: 
Sediment: 
Soil: t. = 23 d in 1-cm surface soil (sandy loam with pH 6.7), greenhouse experiment in microagroecosystem 
chambers (Nash & Beall 1980); 
t. = 16–23 d upper layer of soil (Howard 1991); 
field t. ~ 30 d (estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: t. = 14 d on tomato leaves, green house experiment, microagroecosystem chambers (Nash & Beall 1980); 
t. = 7 d for tomato fruit in the field, t. = 3.4 d for soybean leaves and t. = 9 d for tomatoes (Nash 1983); 
t. = 14 d for tomato leaves, t. = 7 d for tomatoes, t. = 11 d for lettuce and t. = 35 d for grapes (Howard 1991). 
© 2006 by Taylor & Francis Group, LLC

4114 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.1.44 ZIRAM 
Common Name: Ziram 
Synonym: Aaprotect, Fuklasin, Zerlate, zirmane 
Chemical Name: zinc bis(dimethyldithiocarbamate) 
CAS Registry No: 137-30-4 
Uses: fungicide, bird and rodent repellent 
Molecular Formula: C6H12N2S4Zn 
Molecular Weight: 305.841 
Melting Point (°C): 
250 (Howard 1991; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
2.00 (Spencer 1982) 
1.66 (25°C, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0062 (mp at 250°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
65 (Melnikov 1971) 
65 (Martin & Worthing 1977; Worthing & Walker 1983, 1987) 
4.0 (20°C, Spencer 1982) 
65 (Hartley & Kidd 1987) 
0.03 (20°C, Tomlin 1994) 
65 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
65 (Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
negligible (Worthing & Walker 1983, 1987; quoted, Howard 1991) 
1.33 . 10–5 (20–25°C, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
< 1 . 10–6 (extrapolated, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
1.086 (Tomlin 1994) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.77 (calculated-S, Kenaga 1980b; quoted, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
2.64 (soil, calculated-solubility, Kenaga 1980b; quoted, Howard 1991) 
2.60 (soil, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: decomposed in acidic media (Tomlin 1994). 
S 
Zn 
S 
S
S 
N N 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4115 
Half-Lives in the Environment: 
Air: 
Surface water: decomposed in acidic media, and by UV irradiation (Tomlin 1994). 
Groundwater: 
Sediment: 
Soil: field t. ~ 30 d (estimated, Augustijn-Beckers et al. 1992; Hornsby et al. 1996). 
Biota: for orally administered to rate was mostly eliminated within 1–2 d (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

4116 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.2 SUMMARY TABLES 
TABLE 19.2.1 
Common names, chemical names and physical properties of fungicides 
Name Synonym Chemical name 
Molecular 
formula 
Molecular 
weight, MW 
g/mol 
m.p. 
°C 
Fugacity 
ratio, F at 
25°C* pKa 
Anilazine [101-05-3] Botrysan, Direz, 
Dyren 
2-chloro-N-(4,6-dichloro-1,3,5-triazin- 
2-yl)aniline 
C9H5Cl3N4 275.522 160 0.0474 
Benalaxyl [71626-11-4] Galben methyl N-phenylacetyl-N-2,6-xylyl- 
DL-alaninate 
C20H23NO3 325.402 79 0.295 
Benodanil [15310-01-8] Calirux 2-iodo-N-phenylbenzamide C13H10INO 323.129 137 0.0796 
Benomyl [17804-35-2] Benlate methyl 1-(butylcarbamoyl)benz-imidazol- 
2-ylcarbamate 
C14H18N4O3 290.318 140 0.0744 
Bitertanol [70585-36-3] Baycor, Baymat, 
Biloxa, Siibutol 
1-(biphenyl-4-yloxy)-3,3-dimethyl-1-1H- 
1,2,4-triazol-1-yl)butan-2-ol 
C20H23N3O2 337.415 118 eutectic 0.122 
diastereoisomer A 
[70585–38–5] 
337.415 136.7 0.0802 
diastereoisomer B 
[55179–31–2] 
337.415 145.2 0.0662 
Buprirmate [41483-43-6] Nimrod, Nimrod T 5-butyl-2-ethylamino-6-methyl-pyrimidinyl 
dimethylsulfamate 
C13H24N4O3S 316.419 50–51 0.562 
Captan [133-06-2] Aacaptan, Amercide, 
Captab, orthocide 
N-trichloromethylthio-4-cyclohexene-1,2-dic 
arboximide 
C9H8Cl3NO2S 300.590 172.5 0.0357 
Carbendazim [10605-21-7] Bavistin, BCM, 
Carbendazol 
carbamic acid, methyl-1H-benzimidazol-2-yl C9H9N3O2 191.186 300 dec 0.0020 4.48 
4.2 
Carboxin [5234-68-4] Vitavax, carbathiin 5,6-dihydro-2-methy-1,4-oxathi-ine-3-carbo 
xanilide 
C12H13NO2S 235.302 94 0.210 
Chloroneb [2675-77-6] Tersan SP 1,4-dichloro-2,5-dimethoxybenzene C8H8Cl2O2 207.055 134 0.0852 
Chloropicrin [76-06-2] Nitrochloroform trichloronitromethane CCl3NO2 164.376 –64 1 
Chlorothalonil [1897-45-6] Bravo, Daconil 2,4,6-tetrachloro-1,3-benzene-dicarbonitrile C8Cl4N2 265.911 250 0.0062 
Dazomet (Fum.) [533-74-4] Salvo, Mylone, 
Basamid 
3,5-dimethyl-1,3,5-thiadiazinane-2-thione C5H10N2S2 162.276 106 0.16 
Dichlofluanid [1085-98-9] Euaren, Elvaron N-dichlorofluoromethylthio-N,N'-dimethyl- 
N-phenylsuphamide 
C9H11Cl2FN2O2S2 333.229 105.3 0.163 
Dichlone [117–80–6] Phygon 2,3-dichloro-1,4-naphthoquinone C10H4Cl2O2 227.044 195 0.0215 
Dicofol [115–32–2] Kelthan 2,2,2-trichloro-1,1-bis(4-chlorophenyl) 
ethenol 
C14H9Cl5O 370.485 77.5 0.305 
Dithianon [3347-22-6] Delan 5,10-dihydro-5,10-dioxonaphtho[2,3-b-]- 
1,4-dithi-in-2,3-dicarbonitrile 
C13H4N2O2S2 296.324 220 0.0122 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4117 
Edifenphos [17109-49-8] EDDP, Hinosan O-ethyl S,S-diphenyl-phosphoradithioate C14H15O2PS2 310.371 –25 1 
Ethirimol [23947-60-6] 5-butyl-2-ethylamino-6-methyl-pyrimidim- 
4-ol 
C11H19N3O 209.288 160 0.0474 
Etridiazole [2593-15-9] ethazol, ethazole, 
Terazole 
ethyl 3-trichloromethyl-1,2,4-thiadiazolyl 
ether 
C5H5Cl3N2OS 247.530 19.9 1 2.27 
Fenarimol [60168-88-9] Bloc, Rimidin, 
Rubigan 
(±)-2,4-dichloro-.-(pyrimidin-5-yl) 
benzhydryl alcohol 
C17H12Cl2N2O 331.195 118 0.122 
Fenfuram [24691-80-3] fenfurame 2-methyl-3-fruanilide C12H11NO2 201.221 109–110 0.148 
Fenpropimorph 
[67564-91-4] 
Corbel, Mistral (±)-cis-4-[3-(4-tert-butylphenyl)- 
2-methylpropyl]-2,6-dimethylmorpholine 
C20H33NO 303.482 oil 1 6.98 
Folpet [133-07-3] Foltan, Folpan, 
Folpel, Spolacid 
N-(trichloromethylthio)phthalimide C9H4Cl3NO2S 296.558 177 0.0323 
Formaldehyde [50–00–0] Formalin, methanal formaldehyde HCHO 30.026 –92 1 
Furalaxyl [57646-30-7] Fongarid methyl-N-(2-furoyl)-N-(2,6-xylyl)- 
DL-alaninate 
C17H19NO4 301.337 70 0.362 
Hexachlorobenzene 
[118–74-1] 
HCB hexachlorobenzene C6Cl6 284.782 228.83 0.010 
Imazalil [35554-44-0] Bromazil, Deccozil (±)-1-(.-allyloxy-2,4-dichlorophenylethyl)
imidazole 
C14H14Cl2N2O 297.179 50 0.568 
Iprobenfos [26087-47-8] Kitazin S-benzy O,O-di-isopropyl phosphoro-thioate C13H21O3PS 288.342 oil 1 
Mancozeb [8018–01–7] Dithane ultra, Dithane 
M45 
192–194 dec 
Maneb [12427–38–2] MEB, Dithane, Bravo manganese ethylenebis(dithiocarbamate) (C4H6MnN2S4)x (265.302)x dec 200 
Metalaxyl [57837-19-1] Ridomil, Apron Fubol methyl N-(2-methoxyacetyl)-2,6-xylyl)- 
DL-alaninate 
C15H21NO4 279.333 71 0.354 << 0 
Metiram [9006-42-4] Carbatene, Polyram zinc ammoniate ethylenebisdithio-carbamatepoly(
ethylenethiurmdisulfide) 
Nitrapyrin [1929–82–4] N-Serve 2-chloro-6-(trichloromethyl)pyridine C6H3Cl4N 230.907 63 0.424 
Oxycarboxin [5259-88-1] Plantvax 5,6-dihydro-2-methyl-1,4-oxathi-ine- 
3- carboxanilide 4,4-dioxide 
C12H13NO4S 267.301 129 0.0954 
Penconazole [66246-88-6] Topas, Topaz, Topaze 1-(2,4-dichloro-.-propylphenyl-ethyl)- 
1H-1,2,4-trizaole 
C13H15Cl2N3 284.184 60 0.454 1.51 
Procymidone [32809-16-8] Sumisclex, Sumilex N-(3,5-dichlorophenyl)-1,2-dimethyl-cyclopr 
opane-1,2-dicarboximide 
C13H11Cl2NO2 284.138 166 0.0414 
Propargite [2312–35–8] Comite, Omite 2-[4-(1,1-dimethylethyl)phenoxy] cyclohexyl 
2-propynyl sulfite 
C16H26O4S 360.472 liquid 1 
Propiconazole [60207-90-1] (±)-1-[2,4-(dichlorophenyl)-4-propyl- 
1,3-dioxolan-2-methyl]- 
C15H17Cl2N3O2 342.221 liquid 1 1.09 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

4118 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 19.2.1 (Continued) 
Name Synonym Chemical name 
Molecular 
formula 
Molecular 
weight, MW 
g/mol 
m.p. 
°C 
Fugacity 
ratio, F at 
25°C* pKa 
Quintozene [82-68-8] Tritisan, Botrilex, 
Terrachlor 
pentachloronitrobenzene C6Cl5NO2 295.335 144 0.0680 
Tecnazene [117-18-0] Folosan, Fusarex 1,2,4,5-tetrachloro-3-nitrobenzene C6HCl4NO2 260.890 99.5 0.186 
Thiabendazole [148-79-8] Mertect, Storite 2-(thiazol-4-yl)benzimidazole C10H7N3S 201.248 304–305 0.00181 
Thiophanate-methyl 
[23564-05-8] 
Topsin M, Mildothane dimethyl 
4,4'-(o-phenylene)bis(3-thioallphanate) 
C12H14N4O4S2 342.394 172 dec 0.0361 7.28 
Thiram [137-26-8] Arasan, Tersan, 
Fernasan 
tetramethylthiuram disulphide C6H12N2S4 240.432 155.6 0.0523 
Tolclofos-methyl 
[57018-04-9] 
Rizolex O-2,6-dichloro-p-tolyl O,O-dimethyl 
phosphorothioate 
C9H11Cl2O3PS 301.127 78-80 0.295 
Tolylfluanid [731-27-1] Euparen M N-dichlorofluoromethylthio-N,N'-dimethyl- 
N-p-tolysulphamide 
C10H13Cl2FN2O2S2 347.257 96 0.201 
Triadimefon [43121-43-3] Amiral, Bayeton 1-(-chlorophenoxy)-3,3-dimethyl-1-1H-1,2,4 
-triazol-1-yl)butanone 
C14H16ClN3O2 293.749 82 0.276 
Triadimenol [55219-65-3] Baytan 1-(4-chlorophenoxy)-3,3-dimethyl- 
1-(1H-1,2,4-triazol-1-yl)butan-2-ol 
C14H18ClN3O2 295.764 121–127 
Tricyclazole [41814-78-2] Beam, Bim, Blascide 5-methyl-1,2,4-triazolo[3,4-b]-benzothiazole C9H7N3S 189.237 187 0.0257 
Triflumizole [99387–89–0] Trifmine (E)-4-chloro-.,.,.-trifluoro-N-(1-imidazol- 
1-yl-propoxyethylidene)-o-toluidine 
C15H15ClF3N3O 345.747 63.5 0.419 3.70 
Triforine [26644-46-2] 1,4-bis(2,2,2-trichloro-1-formamido-ethyl) 
piperazine 
C10H14Cl6N4O2 434.962 155 dec 0.0530 
Vinclozolin [50471-44-8] Ronilan (RS)-3-(3,5-dichlorophenyl)-5-methyl- 
5-vinyl-1,3-oxazolidine-2,4-dione 
C12H9Cl2NO3 286.110 108 0.153 
Warfarin (R.) [81-81-2] Coumarin Dethmor 4-hydroxy-3-(3-oxo-1-phenylbutyl)- 
2H-1-benzopyran-2-one 
C19H16O4 308.328 161 0.0463 
Zineb [12122-67-7] Zinebe zine ethylenebis(dithiocarbamate) C4H6N2S4Zn 275.773 157 dec 0.0507 
Ziram [137-30-4] Zirame zinc bis(dimethyldithiocarbamate) C6H12N2S4Zn 305.841 250 0.0062 
Note: Fum.—fumigant, I—insecticide, R.—rodenticide 
* Assuming .Sfus = 56 J/mol K 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4119 
TABLE 19.2.2 
Summary of selected physical-chemical properties of fungicides at 25°C 
Compound 
Selected properties 
Henry’s law constant 
H/(Pa·m3/mol) 
calcd P/C 
log KOC 
reported 
Vapor pressure Solubility 
PS/Pa PL/Pa S/(g/m3) CS/(mol/m3) CL/(mol/m3) log KOW 
Anilazine 8.20 . 10–7 1.77 . 10–5 8 0.0290 0.628 3.80 2.82. 10–5 3.0 
Benalaxyl 0.00133 4.65 . 10–3 37 0.1137 0.398 3.40 0.012 3.44–3.86 
Benodanil 1.00 . 10–8 1.28 . 10–7 2 0.0062 0.0793 1.62 . 10–6 2.85 
Benomyl 1.33 . 10–8* 1.82.10–7 2.0* 0.0069 0.0945 2.30 1.93 . 10–6 3.28 
Bitertanol 1.00 . 10–6 8.31 . 10–6 5 0.0118 0.0984 8.45 . 10–5 
diastereoisomer A 2.20 . 10–9 2.80 . 10–8 2.9 0.0069 0.0874 4.10 3.20 . 10–7 
diastereoisomer B 2.50 . 10–9 3.86 . 10–8 1.6 0.0038 0.0585 4.40 6.60 . 10–7 
Buprirmate 0.00067 1.21 . 10–3 22 0.0695 0.126 3.90 9.64 . 10–3 2.9 
Captan 1.10. 10–5 4.23 . 10–4 5.1 0.0170 0.653 2.30 6.48 . 10–4 2.29 
Carbendazim 6.50 . 10–8 3.82 . 10–5 8 0.0418 24.60 1.52 1.55 . 10–6 2.35 
Carboxin 1.30 . 10–5 5.98 . 10–5 195 0.829 3.811 2.17 1.57 . 10–5 2.41 
Chloroneb 0.40 4.788 8 0.0386 0.462 173.8 3.06 
Chloropicrin (I,Fum.) 2400 2400 2270 13.81 13.81 2.07 197.3 1.79 
Chlorothalonil 0.133* 22.86 0.6 0.0023 0.388 2.64 58.94 3.2 
Dazomet (Fum.) 4.0 . 10–4 2.47 . 10–3 3000 18.48 114.3 0.15 2.16 . 10–5 0.48 
Dichlofluanid 2.10 . 10–5 1.32 . 10–4 1.3 0.0039 0.0245 3.70 5.38. 10–3 
Dithianon 6.60 . 10–5 6.28 . 10–4 0.5 0.0017 0.1605 3.20 0.0391 
Edifenphos 0.013 0.013 56 0.180 0.180 3.48 0.072 
Ethirimol 2.67 . 10–4 5.78 . 10–3 200 0.956 20.68 2.3 2.79. 10–4 
Etridiazole 0.013 0.013 50 0.202 0.202 3.37 0.0644 
Fenarimol 2.93 . 10–5 2.44 . 10–4 14 0.0423 0.351 3.69 6.93 . 10–4 2.78 
Fenfuram 2.0 . 10–5 1.39 . 10–4 100 0.497 3.444 4.02 . 10–5 2.48 
Fenpropimorph 0.0023 2.30 . 10–3 4.3 0.0142 0.014 0.162 2.94–3.65 
Folpet 0.0013 0.0414 1 0.0034 0.107 3.63 0.386 3.27 
Formaldehyde > 1 atm miscible 0.35 
Furalaxyl 230 0.763 2.127 2.61 
Imazalil 9.30 . 10–6 1.75 . 10–5 1400 4.71 8.853 3.82 1.97 . 10–6 3.60 
Metalaxyl 7.47 . 10–4 2.18 . 10–3 8400 30.08 87.71 1.75 2.48 . 10–5 1.7 
Metiram < 0.00001 0.1 0.30 5.7 
Oxycarboxin 0.00133 0.0139 1000 3.741 39.06 0.74 3.56 . 10–4 1.98 
Penconazole 0.00021 4.66 . 10–4 73 0.257 0.570 3.72 8.18 . 10–4 2.62 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

4120 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 19.2.2 (Continued) 
Compound 
Selected properties 
Henry’s law constant 
H/(Pa·m3/mol) 
calcd P/C 
log KOC 
reported 
Vapor pressure Solubility 
PS/Pa PL/Pa S/(g/m3) CS/(mol/m3) CL/(mol/m3) log KOW 
Procymidone 0.0187 0.4534 4.5 0.0158 0.384 3.14 1.181 3.18 
Propiconazole 5.60 . 10–5 5.60 . 10–5 110 0.321 0.321 3.72 1.74 . 10–4 2.82 
Quintozene 0.0066 0.104 0.44 0.0015 0.023 4.64 4.430 4.3, 3.38 
Tecnazene 0.44 0.0017 0.0091 
Thiabendazole 5.33 . 10–7 3.13 . 10–4 50 0.249 146.1 2.69 2.14 . 10–6 3.4 
Thiophanate-methyl 1.30 . 10–5 3.70 . 10–4 3.5 0.0102 0.291 1.50 1.27 . 10–3 3.26 
Thiram 0.00133 0.0209 30 0.125 1.963 1.73 0.0107 2.83 
Tolclofos-methyl 0.0573 0.196 0.3 0.001 0.0034 4.56 57.51 3.3 
Tolylfluanid 1.6 . 10–5 8.06 . 10–5 0.9 0.0026 0.0131 3.90 6.17 . 10–3 1.66 
Triadimefon 2.0 . 10–6 7.37 . 10–6 71.5 0.243 0.897 3.26 8.22 . 10–6 
Triadimenol 4.13 . 10–8 4.03 . 10–7 47 0.159 1.549 3.08 2.60 . 10–7 3.00 
diastereoisomer A < 0.001 62 0.210 2.761 3.08 
diastereoisomer B 4.10 . 10–8 4.85 . 10–7 32 0.108 1.280 3.28 
Tricyclazole 2.67 . 10–5 1.09 . 10–3 1600 8.46 346.2 1.40 3.16 . 10–6 3.00 
Triflumizole 1.47 . 10–6 3.53 . 10–6 12500 36.16 86.90 4.07 . 10–8 
Triforine 2.67 . 10–5 5.16 . 10–4 30 0.069 1.332 2.20 3.87 . 10–4 2.3 
Vinclozolin 1.33 . 10–5 8.81 . 10–5 1000 3.495 23.14 3.00 3.81 . 10–6 2.6 
Warfarin (R.) 1.55 . 10–4 3.43 . 10–3 17 0.0551 1.221 3.20 2.81 . 10–3 2.96 
Zineb 1.33 . 10–5 10 0.0363 1.30 3.67 . 10–4 3.00 
Ziram 1.0 . 10–6 1.53 . 10–4 65 0.213 32.61 1.086 4.70 . 10–6 2.60 
Note: * The reported values for this quantity vary considerably, whereas this selected value represents the best judgment of the authors. The reader is cautioned that it may be subject to a large error. 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4121 
TABLE 19.2.3 
Suggested half-life classes of fungicides in various environmental compartments at 25°C 
Compound Air class Water class Soil class Sediment class 
Benomyl 1 4 6 7 
Captan 2 2 5 5 
Chloropicrin 4 3 3 4 
Chlorothalonil 4 4 5 6 
Thiram 4 4 5 6 
Class Mean half-life (hours) Range (hours) 
1 5 < 10 
2 17 (~ 1 day) 10–30 
3 55 (~ 2 days) 30–100 
4 170 (~ 1 week) 100–300 
5 550 (~ 3 weeks) 300–1,000 
6 1700 (~ 2 months) 1,000–3,000 
7 5500 (~ 8 months) 3,000–10,000 
8 17000 (~ 2 years) 10,000–30,000 
9 55000 (~ 6 years) > 30,000 
© 2006 by Taylor & Francis Group, LLC

4122 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
19.3 REFERENCES 
Agnihotri, V P. (1970) Persistent of captan and its effects on microflora, respiration, and nitrification of a forest nursery soil. Can. 
J. Microbiol. 17, 377–383. 
Anliker, R., Moser, P. (1987) The limits of bioaccumulation of organic pigments in fish: their relation to the partition coefficient and 
the solubility in water and octanol. Ecotoxicol. Environ. Saf. 13, 43–52. 
Atlas, E., Foster, R., Giam, C.S. (1982) Air-sea exchange of high molecular weight organic pollutants: laboratory studies. Environ. 
Sci. Technol. 16, 283–286. 
Atkinson, R. (1985) Kinetics and mechanisms of the gas-phase reactions of OH radicals with organic compounds under atmospheric 
conditions. Chem. Rev. 85, 69–201. 
Atkinson, R. (1987) Structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with 
organic compounds. Int. J. Chem. Kinetics 19, 799–828. 
Atkinson, R., Carter, W.P.L. (1984) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under 
atmospheric conditions. Chem. Rev. 84, 437–470. 
Atkinson, R., Lloyd, A.C. (1984) Evaluation of kinetic and mechanistic data for modeling of photochemical smog. J. Phys. Chem. 
Ref. Data 13, 315–444. 
Augustijn-Beckers, P.W.M., Hornsby, A.G., Wauchope, R.D. (1994) The SCS/ARS/CES pesticide-properties database for environmental 
decision making. II. Additional compounds. Rev. Environ. Contam. Toxicol. 137, 1–82. 
Austin, D.J., Briggs, G.G. (1976) A new extraction method for benomyl residues in soil and its application in movement and persistence 
studies. Pestic. Sci. 7, 201–210. 
Austin, D.J., Lord, K.A., Williams, I.H. (1976) Pestic. Sci. 7, 211. 
Baker, E.A., Hayes, A.L., Butler, R.C. (1992) Physicochemical properties of agrochemicals: Their effects on foliar penetration. Pest. 
Sci. 34(2), 167–182. 
Ballschmiter, K., Wittlinger, R. (1991) Interhemisphere exchange of hexachlorohexanes, hexachlorobenzene, polychlorobiphenyl and 
1,1,1-trichloro-2,2-bis(p-chloro-phenyl)-ethane in the lower atmosphere. Environ. Sci. Technol. 25, 1103–1111. 
Banerjee, S. (1985) Calculation of water solubility of organic compounds with UNIFAC-derived parameters. Environ. Sci. Technol. 
19, 369–370. 
Banerjee, S., Howard, P. H. (1988) Improved estimation of solubility and partitioning through correction of UNIFAC-derived activity 
coefficients. Environ. Sci. Technol. 22, 839–841. 
Banerjee, S., Howard, P.H., Lande, S.S. (1990) General structure vapor pressure relationship for organics. Chemosphere 21, 1173–1180. 
Barak, E., Dinoor, A., Jacoby, B. (1983) Adsorption of systemic fungicides and a herbicide by some components of plant tissues, 
in relation to some physicochemical properties of the pesticides. Pest. Sci. 14(3), 213–219. 
Barber, M.C., Suarez, L.A., Lassiter, R.R. (1988) Modeling bioconcentration of nonpolar organic pollutants by fish. Environ. Toxicol. 
Chem. 7, 545–558. 
Bateman, G.L., Nicholls, P.H., Chamberlain, K. (1990) The effectiveness of eleven sterol biosynthesis-inhibiting fungicides against 
the take-all fungus (Gaeumannomyces gramminis, var. tritici) in relation to their physical properties. Pest. Sci. 29, 109–122. 
Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Troe, J., Watson, R.T. (1984) Evaluated kinetic and photochemical data for 
atmospheric chemistry (Supplement II). J. Phys. Chem. Ref. Data 13, 1255–1380. 
Baxter, G.P., Bezzenberger, F.K., Wilson, C.H. (1920) The vapor pressures of certain substances: Chloropicrin, cyanogen bromide, 
methyl-dichloro-arsine, phenyl-dichloro-arsine, diphenyl-chloro-arsine and arsenic trichloride. J. Am. Chem. Soc. 42, 
1386–1393. 
Beck, J., Hansen, K.E. (1974) The degradation of quintozene, pentachlorobenzene, hexachloro-benzene and pentachloroaniline in 
soil. Pest. Sci. 5, 41–48. 
Biagi, G.L., Guerra, M.C., Barbaro, A.M., Recanatini, M., Borea, P.A. (1991) Lipophilicity indices of triazine herbicides. Sci. Total 
Environ. 109/110, 33–40. 
Bidleman, T.F. (1984) Estimation of vapor pressures for nonpolar organic compounds by capillary gas chromatography. Anal. Chem. 
56, 2490–2496. 
Bidleman, T.F., Foreman, W.T. (1987) Vapor-particle partitioning of semivolatile organic compounds. In: Sources and Fate of Aquatic 
Pollutants. Hite, R.A., Eisenreich, S.J., Editors, pp. 127–56, Advances in Chemistry Series 216, American Chemical Society, 
Washington, DC. 
Bintein, S., Devillers, J. (1994) QSAR for organic chemical sorption in soils and sediments. Chemosphere 28(6), 1171–1188. 
Bobra, A.M., Shiu, W.Y., Mackay, D. (1985) Quantitative structure-activity relationships for the acute toxicity of chlorobenzenes to 
Daphnia magna. Environ. Toxicol. Chem. 4, 297–305. 
Briggs, G.G. (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water 
solubilities, bioconcentration factors, and the Parachor. J. Agric. Food Chem. 29, 1050–1059. 
Brooke, D.N., Dobbs, A.J., Williams, N. (1986) Octanol/water partition coefficients (P): Measurement, estimation, and interpretation, 
particularly for chemicals with P > 105. Ecotoxicol. Environ. Saf. 11, 251–260. 
Brouwer, D.H., Ravensberg, J.C., De Kort, W.L A.M., Van Hemmen, J.J. (1994) A personal sampler for inhalable mixed-phase aerosols: 
Modification to an existing sampler and validation test with three pesticides. Chemosphere 28(6), 1135–1146. 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4123 
Brown, S., Chan, F., Jones, J., Liu, D., MaCalab, K., Mill, T., Supios, K., Schendel, D. (1975) Research program on hazard priority 
ranking of manufactured chemicals: Phase II. Final report, Stanford Research Institute, Menlo Park, California. 
Brusseau, M.L., Rao, P.S.C. (1989) The influence of sorbate-organic matter interactions on sorption nonequilibrium. Chemosphere 
18, 1691–1706. 
Burchfield, H.P. (1959) Comparative stabilities of dyrene, 1-fluoro-2,4-dinitrobenzene, dichlone and captan in a silt loam soil. Contrib. 
D. Boyce Thompson Inst. 20, 205–215. 
Burkhard, L.P., Kuehl, D.W., Veith, G.D. (1985) Evaluation of reversed phase LC/MS for estimation of n-octanol/water partition 
coefficients of organic chemicals. Chemosphere 14, 1551–1560. 
Burkhard, N., Guth, J.A. (1981) Rate of volatilisation of pesticides from soil surfaces; Comparison of calculated results with those 
determined in a laboratory model system. Pest. Sci. 12(1), 37–44. 
Buser, H.-R., Muller, M.D., Poiger, T., Balmer, M.E. (2002) Environmental behavior of the chiral acetamide pesticide metalaxyl: 
enantioselective degradation and chiral stability in soil. Environ. Sci. Technol. 36, 221–226. 
Bysshe, S.E. (1982) Chapter 5, Bioconcentration factor in aquatic organisms. In: Handbook on Chemical Property Estimation Methods, 
Environmental Behavior of Organic Compounds. Lyman, W. J., Reehl, W. F., Rosenblatt, D. H., Editors, McGraw-Hill, Inc., 
New York. 
Calamari, D., Galassi, S., Sette, F., Vighi, M. (1983) Toxicity of selected chlorobenzenes to aquatic organisms. Chemosphere 12, 
253–262. 
Callahan, M.A., Slimak, M.W., Gabel, N.W., May, I.P., Fowler, C.F., Freed, J.R., Jennings, P., Durfee, R.L., Whitmore, F.C., Maestri, B., 
Mabey, W.R., Holt, B.R., Gould, C. (1979) Water-Related Environmental Fate of 129 Priority Pollutants. Vol. 1, EPA Report 
No. 440/4–79–029a, Versar, Inc., Springfield, Virginia. 
Calvert, J.G., Demeyan, K.L., Kerr, J.A., McQuigg, R.D. (1972) Photolysis of formaldehyde as a hydrogen atom source in the lower 
atmosphere. Science 175, 751–752. 
Carlier, P., Hannachi, H., Mouvier, G. (1986) The chemistry of carbonyl compounds in the atmosphere-A review. Atmos. Environ. 
20(11), 2079–2099. 
Carlson, A.R., Kosian, P.A. (1987) Toxicity of chlorinated benzenes to fathead minnows (Pimephales promelas). Arch. Environ. Contam. 
Toxicol. 16, 129–135. 
Carris, L.M. (1983) Movement of the systemic fungicide metalaxyl in soils and its translocation in plants. M.S. Thesis, Washington 
State University, Pullman, Washington. 
Chamberlain, K., Bateman, G.L., Nicholls, P.H. (1991) Volatile analogoues of penconazole and their activity against the take-all fungus 
(Gaeumannomyces gramminis, var. tritici). Pest. Sci. 31(2), 185–196. 
Chin, Y.P., Weber, Jr., W.J., Voice, T.C. (1986) Determination of partition coefficients and aqueous solubilities by reverse phase 
chromatography-II. Water Res. 20, 1443–1450. 
Chiou, C.T. (1981) Partition coefficient and water solubility in environmental chemistry. In: Hazard Assessment of Chemicals. Current 
Development. Vol. 1, Saxena, J., Fisher, S, Editors, pp. 117–153, Academic Press, Inc., New York. 
Chiou, C.T. (1985) Partition coefficients of organic compounds in lipid-water systems and correlations with fish concentration factors. 
Environ. Sci. Technol. 19, 57–62. 
Chiou, C.T., Schmedding, D.W., Manes, M. (1982) Partitioning of organic compounds in octanol-water system. Environ. Sci. Technol. 
16, 4–10. 
Connell, D.W., Hawker, D.W. (1988) Use of polynomial expressions to describe the bio-concentration of hydrophobic chemicals by 
fish. Ecotoxicol. Environ. Saf. 16, 242–257. 
Connell, D.W., Markwell, R D. (1990) Bioaccumulation in the soil to earthworm system. Chemosphere 20, 91–100. 
Coon, F.B., Richter, E.F., Hein, L.W., Krieger, C.H. (1954) Problems encountered in physicochemical determination of warfarin. 
J. Agric. Food Chem. 2, 739–741. 
Davies, J.E., Lee, J.A. (1987) Changing profiles in human health effects of pesticides. Pest. Sci. Biotechnol. Proc. 6th Int’l Congr. 
Pesticide Chem. 533–538. 
Dean, J., Editor (1985) Lange’s Handbook of Chemistry. 13th Edition, McGraw-Hill, New York. 
De Bruijn, J., Busser, F., Seinen, W., Hermens, J. (1989) Determination of octanol/water partition coefficients for hydrophobic organic 
chemicals with the “slow-stirring” method. Environ. Toxicol. Chem. 8, 499–512. 
De Bruijn, J., Hermens, J. (1990) Relationships between octanol/water partition coefficients and total molecular surface area and 
total molecular volume of hydrophobic organic chemicals. Quant. Struct.-Act. Relat. 9, 11–21. 
De Kock, A.C., Lord, D.A. (1987) A simple procedure for determining octanol-water partition coefficients using reversed phase high 
performance liquid chromatography (RPHPLC). Chemosphere 16(1), 133–142. 
Deneer, J.W., Seinen, W., Hermens, J.L.M. (1988) The acute toxicity of aldehydes to the guppy. Aqua. Toxicol. 12, 185–192. 
Deutsche Forschungsgemeinschaft (1983) Hexachlorcyclohexan als Schadstoff in Lebensmitteln. Verlag Chemie, Weinheim, Germany. 
pp.11–17. 
DiToro, D.M., O’Conner, D.J., Thomann, R.V., St. John, J.P. (1981) Analysis of fate of chemicals in receiving waters. Phase I, 
Hydroqual, Inc., Prepared for the Chemical Manufacturing Association, Washington, DC., May, 1981. 
Dobbs, A.J., Cull, M.R. (1982) Volatilization of chemicals-relative loss rates and the estimation of vapor pressures. Environ. Pollut. 
B3, 289–298. 
© 2006 by Taylor & Francis Group, LLC

4124 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Dong, S., Dasgupta, P. K. (1986) Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous 
formaldehyde. Environ. Sci. Technol. 6(20), 637–640. 
Donovan, S.F. (1996) New method for estimating vapor pressure by the use of gas chromatography. J. Chromatogr. A, 749, 123–129. 
Donovan, S.F., Pescatore, M.C. (2002) Method for measuring the logarithm of the octanol-water partition coefficient by using short 
octadecyl-poly-(vinyl alcohol) high-performance liquid chromatography columns. J. Chromatog. A, 952, 47–61. 
Dorfman, L M., Adams, G.E. (1973) Reactivity of the Hydroxyl Radicals in Aqueous Solution. NSRD-NDB-46. NTIS COM- 
73–50623. National Bureau of Standards, Washington, DC., 51 pp. 
Doucette, W.J., Andren, A.W. (1988) Estimation of octanol/water partition coefficients: Evaluation of six methods for highly 
hydrophobic aromatic hydrocarbons. Chemosphere 17, 345–359. 
Dreisbach, R.R. (1961) Physical Properties of Chemical Compounds—III. Advances in Chemistry Series, American Chemical Society 
Applied Publications. American Chemical Society. 
Eadsforth, C.V., Moser, P. (1983) Assessment of reverse phase chromatographic methods for determining partition coefficients. 
Chemosphere 12, 1459–1475. 
Ellgehausen, H., D’Hondt, C., Fuerer, R. (1981) Reversed-phase chromatography as a general method for determining octanol/water 
partition coefficients. Pest. Sci. 12, 219–227. 
Ellgehausen, H., Guth, J.A., Esser, H.O. (1980) Factors determining bioaccumulation potential of pesticides in the individual 
compartments of aquatic food chains. Ecotoxicol. Environ. Saf. 4, 134–157. 
Ellington, J.J., Stancil, F.E., Payne, W.D. (1987) Measurement of Hydrolysis Rate Constants for Evaluation of Hazardous Waste Land 
Disposal. Vol. 1, Data on 32 chemicals. EPA-600/3–86/043, U.S. EPA, Washington, DC. 
Ellington, J.J., Stancil, F.E., Payne, W.D. (1987) Measurement of Hydrolysis Rate Constants for Evaluation of Hazardous Waste Land 
Disposal. Vol. 2, Data on 54 chemicals. EPA-600/53–87/019, U.S. EPA, Washington, DC. 
Ellington, J.J., Stancil, F.E., Payne, W.D. (1988) Measurement of Hydrolysis Rate Constants for Evaluation of Hazardous Waste Land 
Disposal. Vol. 3, EPA 600/3–88/028, U.S. EPA, Washington, DC. 
Farmer, W.J., Yang, M.S., Spencer, W.F. (1980) Hexachlorobenzene: Its vapor pressure and vapor phase diffusion in soil. Soil Sci. 
Soc. Am. J. 44, 676–680. 
Figueroa, I. del C., Simmons, M.S. (1991) Structure-activity relationships of chlorobenzenes using DNA measurement as a toxicity 
parameter in algae. Environ. Toxicol. Chem. 10, 323–329. 
Finizio, A., Vighi, M., Sandroni, D. (1997) Determination of N-octanolwater partition coefficient (Kow) of pesticide critical review 
and comparison of methods. Chemosphere 34, 131–161. 
Fischer, R.C., Kramer, W., Ballschmiter, K. (1991) Hexachlorocyclohexane isomers as markers in the water flow of the Atlantic 
Ocean. Chemosphere 23, 889–900. 
Foschi, S., Cesari, A., Ponti, I., Bentivogli, P.G., Bencivelli, A. (1970) Degradation and vertical movement of pesticides in the soil. 
Notiz. Mal. Piante. 82–83, 37–49. 
Freed, V.H. (1976) Solubility, hydrolysis, dissolution constants and other constants of benchmark pesticides. In: Literature Survey of 
Benchmark Pesticides. George Washington University Medical Center, Washington, DC. 
Freitag, D., Balhorn, L., Geyer, H., Korte, F. (1985) Environmental hazard profile of organic chemicals. An experimental method 
for the assessment of the behaviour of chemicals in the ecosphere by simple laboratory tests with C-14 labelled chemicals. 
Chemosphere 14, 1589–1616. 
Freitag, D., Lay, J.P., Korte, F. (1984) Environmental hazard profile - Test results as related to structure and translation into the 
environment. In: QSAR in Environmental Toxicology. Kaiser, K. L. E., Ed., D. Reidel Publishing Co., Dordrecht, The Netherlands. 
Gaffney, J.S., Streit, G.E., Spall, W.D., Hall, J.H. (1987) Beyond acid rain. Do soluble oxidants and organic toxins interact with SO2 
and NO2 to increase ecosystem effects? Environ. Sci. Technol. 21(6), 519–524. 
Garst, J.E. (1984) Accurate wide-range, automated, high-performance liquid chromatographic method for the estimation of 
octanol/water partition coefficients. II. Equilibrium in partition coefficient measurements, additivity of subsequent constants, 
and correlation of biological data. J. Pharm. Sci. 73, 1623–1629. 
Garst, J.E., Wilson, W.C. (1984) Accurate wide-range, automated, high-performance liquid chromatographic method for the estimation 
of octanol/water partition coefficients. I. Effects of chromatographic conditions and procedure variables on accuracy and 
reproducibility of the method. J. Pharm. Sci. 73, 1616–1622. 
Garten, C.T., Jr., Trabalka, J.R. (1983) Evaluation of models for predicting terrestrial food chain behavior of xenobiotics. Environ. 
Sci. Technol. 17, 590–595. 
Gawlik, B.M., Feicht, E.A., Karcher, W., Kettrup, A., Muntau, H. (1998) Application of the European soil set (Eurosoils) to a HPLCscreening 
method for the estimation of soil adsorption coefficients of organic compounds. Chemosphere 36, 2903–2919. 
Gawlik, B.M., Kettrup, A., Muntau, H. (1999) Characterisation of a second generation of European reference soils for sorption studies 
in the framework of chemical testing - Part II: soil adsorption behaviour of organic chemicals. Sci. Total Environ. 229, 109–120. 
Gawlik, B.M., Kettrup, A., Muntau, H. (2000) Estimation of soil adsorption coefficients of organic compounds by HPLC screening 
using the second generation of the European reference soil set. Chemosphere 41, 1337–1347. 
Gellman, I., Heukelekian, H. (1950) Biological oxidation of formaldehyde. Sew. Indus. Waste 22, 13–21. 
GEMS (1986) Graphical Exposure Modeling Systems. Fate of Atmosphere Pollutants (FAP). Office of Toxic Substances, U.S. EPA, 
Washington, DC. 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4125 
Geyer, H., Kraus, A.G., Klein, W., Richter, E., Korte, F. (1980) Relationship between water solubility and bioaccumulation potential 
of organic chemicals in rats. Chemosphere 9, 277–291. 
Geyer, H., Politzki, G.R., Freitag, D. (1984) Prediction of ecotoxicological behaviour of chemicals: relationships between n-octanol/ 
water partition coefficient and bioaccumulation of organic chemicals by alga Chlorella. Chemosphere 13, 269–284. 
Geyer, H., Scheunert, I., Korte, F. (1987) Correlation between the bioconcentration potential of organic environmental chemicals in 
humans and their n-octanol/water partition coefficients. Chemosphere 16(1), 239–252. 
Geyer, H., Visvanathan, R., Freitag, D., Korte, F. (1981) Relationship between water solubility of organic chemicals and their 
bioaccumulation by the alga Chlorella. Chemosphere 10, 1307–1313. 
Giam, C.S., Atlas, E., Chan, H.S., Neff, G.S. (1980) Phthalate esters, PCB and DDT residues in the Gulf of Mexico atmosphere. 
Atmos. Environ. 14, 65–69. 
Gobas, F.A.P.C., Bedard, D.C., Ciborowski, J.J.H. (1989b) Bioconcentration of chlorinated hydrocarbons by the mayfly (Hexgenia 
limbata) in Lake St. Clair. J. Great Lakes Res. 15(4), 581–588. 
Gobas, F.A.P.C., Clark, K., Shiu, W.Y., Mackay, D. (1989a) Bioconcentration of polybrominated benzenes and biphenyls and related 
superhydrophobic chemicals in fish: Role of bioavailability and elimination into feces. Environ. Toxicol Chem. 8, 231–245. 
Gobas, F.A.P.C., Shiu, W.Y., Mackay, D. (1987) Factors determining partitioning of hydrophobic organic chemicals in aquatic organisms. 
In: QSAR in Environmental Toxicology II., Kaiser, K.L.E., Ed., pp. 107–124, D. Reidel Publishing Company, Dordrecht, The 
Netherlands. 
Gramatica, P., Corradi, M., Consonni, V. (2000) Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides 
by molecular descriptors. Chemosphere 41, 763–777. 
Grayson, B.T., Fosbracey, L.A. (1982) Determination of the vapour pressure of pesticides. Pest. Sci. 13(3), 269–278. 
Guckel, W., Kistel, R., Lewerenz, J., Synnatschke, G. (1982) A method for determining the volatility of active ingredients used in 
plant protection. Part III: the temperature relationship between vapor pressure and evaporation rate. Pest. Sci. 13, 161–168. 
Gustafson, D.I. (1989) Groundwater ubiquity score: A simple method for assessing pesticide leachability. Environ. Toxicol. Chem. 
8, 339–357. 
Halfon, E., Galassi, S., Bruggemann, R., Provini, A. (1996) Selection of priority properties to assess environmental hazard of pesticides. 
Chemosphere 33(8), 1543–1562. 
Halfon, E., Reggiani, M.G. (1986) On ranking chemicals for environmental hazard. Environ. Sci. Technol. 20, 1173–1179. 
Hamaker, J.W., Thompson, J.M. (1972) Adsorption. In: Organic Chemistry in Soil Environment. Goring, C. A. I., Hamaker, J.W., Eds., 
pp. 49–143, Vol. 1, Marcel Dekker, New York. 
Hammers, W.E., Meurs, G.J., De Ligny, C.L. (1982) Correlations between liquid chromatographic capacity ratio data on lichrosorb 
RP-18 and partition coefficients in the octanol-water system. J. Chromatogr. 247, 1–13. 
Hansch, C., Leo, A. (1979) Substituent Constants for Correlation Analysis in Chemistry and Biology. John Wiley & Sons, Inc., New York. 
Hansch, C., Leo, A. (1985) Medchem. Project Issue No. 26, Pomona College, Claremont, California. 
Hansch, C., Leo, A. (1987) Medchem. Project Issue No. 28, Pomona College, Claremont, California. 
Hansch, C., Leo, A., Hoekman, D. (1995) Exploring QSAR. Hydrophobic, Electronic, and Steric Constants. ACS Professional Reference 
Book, Am. Chem. Soc., Washington, DC. 
Harnish, M., Mockel, H. J., Schulze, G. (1983) Relationship between log POW shake-flask values and capacity factors derived from 
reversed-phase HPLC for n-alkylbenzenes and some OECD reference substances. J. Chromatogr. 282, 315–332. 
Hartley, D., Kidd, H., Eds. (1987) The Agrochemicals Handbook. 2nd Edition, The Royal Society of Chemistry, London, England. 
Hartley, G.S., Graham-Bryce, I.J. (1980) Physical Principles and Pesticide Behavior. Volume 2, Academic Press, New York. 
Hashimoto, Y., Tokura, K., Ozaki, K., Strachan, W. M. J. (1982) A comparison of water solubility by the flask and micro-column 
methods. Chemosphere 11, 991–1001. 
Hawker, D.W. (1990) Description of fish bioconcentration factors in terms of solvatochromic parameters. Chemosphere 20, 467–477. 
Hawker, D.W., Connell, D.W. (1985) Relationships between partition coefficient and uptake rate constant, clearance rate constant, 
and time to equilibration for bioaccumulation. Chemosphere 14, 1205–1219. 
Hawker, D.W., Connell, D.W. (1986) Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotoxicol. Environ. Saf. 
11, 184–197. 
Heukelekian, H., Rand, M.C. (1955) Biochemical oxygen demand for pure organic compounds. J. Water Pollut. Control Assoc. 29, 
1040–1053. 
Hinckley, D.A., Bidleman, T.F., Foreman, W.T. (1990) Determination of vapor pressures for nonpolar and semipolar organic compounds 
from gas chromatographic retention data. J. Chem. Eng. Data 35, 232–237. 
Hine, J., Mookerjee, P.K. (1975) The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions. 
J. Org. Chem. 40, 292–298. 
Hine, R.B., Johnson, D.L., Wenger, C.J. (1969) Persistence of two benzimidazole fungicides in soil and their fungistatic activity against 
Phymatotrichum omnivorum. Phytopathology 59, 798–801. 
Hodnett, E. M., Wongwiechintana, C., Dunn, III, W. J., Marrs, P. (1983) Substituted 1,4-naphthoquinones vs. the ascitic Sarcoma 180 
of mice. J. Med. Chem. 26, 570–574. 
Hodson, J., Williams, N. A. (1988) The estimation of the adsorption coefficient (KOC) for soils by high performance liquid chromatography. 
Chemosphere 17, 67–77. 
© 2006 by Taylor & Francis Group, LLC

4126 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Hollifield, H.C. (1979) Rapid nephelometric estimate of water solubility of highly insoluble organic chemicals of environmental 
interests. Bull. Environ. Contam. Toxicol. 23, 579–586. 
Hornsby, A.G., Wauchope, R.D., Herner, A.E. (1996) Pesticide Properties in The Environment. Springer-Verlag, Inc., New York. 
Horvath, A.L., Editor (1982) Halogenated Hydrocarbons, Solubility-Miscibility with Water. Marcel Dekker, Inc., New York. 
Howard, P.H., Editor (1989) Handbook of Fate Exposure Data for Organic Chemicals. Vol. I. Large Production and Priority Pollutants. 
Lewis Publishers, Inc., Chelsea, Michigan. 
Howard, P.H., Editor (1991) Handbook of Fate Exposure Data for Organic Chemicals. Vol. III. Pesticides. Lewis Publishers, Inc., 
Chelsea, Michigan. 
Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., Michalenko, E.M., Eds. (1991) Handbook of Environmental Degradation 
Rates. Lewis Publishers, Inc., Chelsea, Michigan. 
Hu. J.-Y., Aizawa, T., Magara, Y. (1997) Evaluation of adsorbability of pesticides in water on powdered activated carbon using 
octanol-water partition coefficient. Wat. Sci. Tech. 35, 219–226. 
Hustert, K., Moza, P.N. (1997) Photochemical degradation of dicarboximide fungicides in the presence of soil constituents. Chemosphere 
35, 33–37. 
Isnard, P., Lambert, S. (1988) Estimating bioconcentration factors from octanol-water partition coefficient and aqueous solubility. 
Chemosphere 17, 21–34. 
Isnard, P., Lambert, S. (1989) Aqueous solubility and octanol-water partition coefficient correlations. Chemosphere 18, 1837–1853. 
IUPAC Solubility Data series (1985) Volume 20: Halogenated Benzenes, Toluenes and Phenols with Water. Horvath, A. L, Getzen, 
F.W., Eds., Pergamon Press, Oxford, England. 
Jalali, L., Anderson, J.P.E. (1976) Uptake of benomyl by the cultivated mushroom, Agricus bisporus. J. Agric. Food Chem. 24, 431–432. 
Jury, W.A., Focht, D.D., Farmer, W.J. (1987b) Evaluation of pesticide groundwater pollution potential from standard indices of soilchemical 
adsorption and biodegradation. J. Environ. Qual. 16(4), 422–428. 
Jury, W.A., Winer, A.M., Spencer, W.F., Focht, D.D. (1987a) Transport and transformations of organic chemicals in the soil-air water 
ecosystem. Rev. Environ. Contam. Toxicol. 99, 120–164. 
Kaiser, K.L.E., Valdmanis, I. (1982) Apparent octanol/water partition coefficients of pentachlorophenol as a function of pH. Can J. 
Chem., 60, 2104–2106. 
Kaiser, K.L.E. (1983) COMPUTOX databank, National Water Research Institute Burlington, Ontario, Canada. 
Kaiser, K.L.E., Dixon, D.G., Hodson, P.V. (1984) QSAR studies on chlorophenols, chlorobenzenes and para-substituted phenols. In: 
QSAR in Environmental Toxicology. Kaiser, K. L. E., Ed., pp. 189–206, D. Reidel Publishing Co., Dordrecht, The Netherlands. 
Kamlet, M.J., Doherty, R.M., Carr, P.W., Mackay, D., Abraham, M.H., Taft, R.W. (1988) Linear solvation energy relationship. 44. 
Parameter estimation rules that allow accurate prediction of octanol/water partition coefficients and other solubility and 
toxicity properties of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 22, 503–509. 
Kanazawa, J. (1981) Measurement of the bioconcentration factors of pesticides by fresh-water fish and their correlation with 
physicochemical properties of acute toxicities. Pest. Sci. 12, 417–424. 
Karickhoff, S.W., Morris, K.R. (1985a) Impact of tubificid oligochaetes on pollutant transport in bottom sediments. Environ. Sci. 
Technol. 19(1), 51–56. 
Karickhoff, S. W., Morris, K. R. (1985b) Sorption dynamics of hydrophobic pollutants in sediment suspensions. Environ. Toxicol. 
Chem. 4, 469–479. 
Kawamoto, K., Urano, K. (1989) Parameters for predicting fate of organochlorine pesticides in the environment. (I) Octanol-water 
and air-water partition coefficients. Chemosphere 18, 1987–1996. 
Kawamoto, K., Urano, K. (1989) Parameters for predicting fate of organochlorine pesticides in the environment. (II) Adsorption 
constant to soil. Chemosphere 18, 1987–1996. 
Kawamoto, K., Urano, K. (1990) Parameters for predicting fate of organochlorine pesticides in the environment. (III) Biodegradation 
rate constants. Chemosphere 21, 1141–1152. 
Kawanoto, K., Urano, K. (1991) Corrigendum. Chemosphere 23, 813. 
Kelly, T.J., Mukund, R., Spicer, C.W., Pollack, A.J. (1994) Concentrations and trans-formations of hazardous air pollutants. Environ. 
Sci. Technol. 28, 378A-387A. 
Kenaga, E.E. (1980a) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol. 
Environ. Saf. 4, 26–38. 
Kenaga, E.E. (1980b) Correlation of bioconcentration factors of chemicals in aquatic and terrestrial organisms with their physical and 
chemical properties. Environ. Sci. Technol. 14, 553–556. 
Kenaga E.E., Goring, C.A. (1980) Relationship between water solubility, soil sorption, octanol-water partitioning, and bioconcentration 
of chemicals in biota. In: Aquatic Toxicology. ASTM STP 707, Eaton, J.G., Parrish, P.R., Hendricks, A.C., Eds., pp. 78–115, 
American Society for Testing and Materials, Philadelphia, Pennsylvania. 
Kerler, F., Schonherr, J. (1988) Accumulation of lipophilic chemicals in plant cuticles: Prediction from octanol/water partition coefficients. 
Arch. Environ. Contam. Toxicol. 17, 1–6. 
Khan, U. K. (1980) Pesticides in the Soil Environment, Fundamental Aspects of Pollution Control and Environmental Series 5. Elsevier, 
Amsterdam, The Netherlands. 
Kilzer, L., Scheunert, I., Geyer, H., Klein, W., Korte, F. (1979) Laboratory screening of the volatilization rates of organic chemicals 
from water and soil. Chemosphere 10, 751–761. 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4127 
Klein, A.W., Harnish, M., Porenski, H.J., Schmidt-Bleek, F. (1981) OECD chemicals testing program physico-chemical tests. 
Chemosphere 10, 153–207. 
Klein, W., Geyer, H., Freitag, D., Rohleder, H. (1984) Sensitivity of schemes of ecotoxicological hazard ranking of chemicals. 
Chemosphere 13, 203–211. 
Koch, R. (1983) Molecular connectivity index for assessing ecotoxicological behaviour of organic compounds. Toxicol. Environ. Chem. 
6, 87–96. 
Konemann, H. (1981) Quantitative structure-activity relationships in fish toxicity studies. Part 1: Relationship for 50 industrial pollutants. 
Toxicology 19, 209–221. 
Konemann, H., van Leeuwen, K. (1980) Toxicokinetics in fish: Accumulation and elimination of six chlorobenzenes by guppies. 
Chemosphere 9, 3–19. 
Konemann, H., Zelle, R., Busser, F. (1979) Determination of log Poct values of chloro-substituted benzenes, toluenes and anilines by 
high-performance liquid chromatography on ODS-silica. J. Chromatogr. 178, 559–565. 
Kordel, W., Stutte, J., Kotthoff, G. (1993) HPLC-screening method for the determination of the adsorption coefficient on soil- 
Comparison of different stationary phases. Chemosphere 27(12), 2341–2352. 
Kordel, W., Stutte, J., Kotthoff, G. (1995) HPLC-screening method to determine the adsorption coefficient in soil-Comparison of 
immobilized humic acid and clay mineral phases for cyanopropyl columns. Sci. Total Environ. 162, 119–125. 
Korte, F., Freitag, D., Geyer, H., Klein, W., Kraus, A. G., Lahaniatus, E. (1978) Ecotoxicologic profile analysis-A concept for 
establishing ecotoxicologic priority lists for chemicals. Chemosphere No.1, 79–102. 
Kuhne, R., Ebert, R.-U., Kleint, F., Schmidt, G., Schuurmann, G. (1995) Group contribution methods to estimate water solubility of 
organic chemicals. Chemosphere 30, 2061–2077. 
Leo, A., Hansch, C., Elkins, D. (1971) Partition coefficients and their uses. Chem. Rev. 71, 525–616. 
Lide, D.R., Editor (2003) Handbook of Chemistry and Physics. 84th Edition, CRC Press, LLC. Boca Raton, Florida 
Lohninger, H. (1994) Estimation of soil partition coefficients of pesticides from their chemical structure. Chemosphere 29(8), 1611–1626. 
Lord, K.A., Briggs, G.C., Nearle, M.C., Manlove, R. (1980) Uptake of pesticides from water and soil by earthworms. Pest. Sci. 11, 
401–408. 
Lu, P.Y., Metcalf, R.L. (1975) Environmental fate and biodegradability of benzene derivatives as studied in a model aquatic ecosystem. 
Environ. Health Perspect. 10, 269–284. 
Lyman, W.J. (1982) Chapter 2, Solubility in water and Chapter 4, Adsorption coefficient for soils and sediments. In: Handbook 
on Chemical Property Estimation Methods, Environmental Behavior of Organic Compounds. Lyman, W. J., Reehl, W. F., 
Rosenblatt, D. H., Eds., McGraw-Hill, New York. 
Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Eds. (1982) Handbook on Chemical Property Estimation Methods, Environmental 
Behavior of Organic Compounds. McGraw-Hill, Inc., New York. 
Mabey, W., Mill, T. (1978) Critical review of hydrolysis of organic compounds in water under environmental conditions. J. Phys. 
Chem. Ref. Data 7, 383–415. 
Mabey, W.R., Smith, J.H., Podoll, R.T., Johnson, H.L., Mill, T., Chou, T.W., Gates, J., Waight-Partridge, I., Jaber, H., Vanderberg, D. 
(1982) Aquatic Fate Process for Organic Priority Pollutants. EPA Report No. 440/4–81–014, U.S. EPA, Washington, DC. 
Mackay, D. (1982) Correlation of bioconcentration factors. Environ. Sci. Technol. 16, 274–278. 
Mackay, D. (1985) Chapter 5, Air/water exchange coefficients. In: Environmental Exposure from Chemicals. Neely, W.B., Blau, G.E., 
Eds., pp. 91–108, CRC Press, Inc., Boca Raton, Florida. 
Mackay, D., Paterson, S. (1991) Evaluating the multimedia fate of organic chemicals. A level III fugacity model. Environ. Sci. Technol. 
25, 427–436. 
Mackay, D., Paterson, S., Chung, B., Neely, W. B. (1985) Evaluation of the environmental behaviour of chemicals with level III 
fugacity model. Chemosphere 13, 335–374. 
Mackay, D., Shiu, W.Y. (1981) A critical review of Henry’s law constants for chemicals of environmental interest. J. Phys. Chem. 
Ref. Data 10, 1175–1199. 
Mackay, D., Shiu, W.Y., Ma, K C. (1992) Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic 
Chemicals, Vol. I. Monoaromatic-Hydrocarbons, Chlorobenzenes, and PCBs. Lewis Publishers, Inc., Chelsea, Michigan. 
Mailhot, H. (1987) Prediction of algae bioaccumulation and uptake rate of nine organic compounds by ten physico-chemical properties. 
Environ. Sci. Technol. 21, 1009–1013. 
Majewski, M S., Capel, P.D. (1995) Pesticides in the Atmosphere. Distribution, Trends, and Governing Factors. Vol. 1 in the series 
Pesticides in the Hydrologic System. Gilliom, R. J., Series Editor., Ann Arbor Press, Inc., Chelsea, Michigan. 
Martin, H., Worthing, C.R., Eds. (1977) Pesticide Manual. 5th Edition, British Crop Protection Council, Thornton, United Kingdom. 
Martin, R.A., Edgington, L.V. (1981) Comparative systemic translocation of several xenobiotics and sucrose. Pest. Biochem. Physiol. 
16(2), 87–96. 
Mathre, D.E. (1971) Mode of action of oxathiin systemic fungicides. Structure-activity relations. J. Agric. Food Chem. 19(5), 872–874. 
McCall, P.J., Swann, R.L., Laskowski, D.A., Unger, S.M., Vrona, S.A., Dishburger, H.J. (1980) Estimation of chemical mobility in 
soil from liquid chromatographic retention times. Bull. Environ. Contam. Toxicol. 24, 190–195. 
McDuffie, B. (1981) Estimation of octanol/water partition coefficients for organic pollutants using reverse-phase HPLC. Chemosphere 
10(1), 73–83. 
© 2006 by Taylor & Francis Group, LLC

4128 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
McKim, J., Schnieder, P., Veith, G. (1985) Absorption dynamics of organic chemical transport across trout gills as related to octanolwater 
partition coefficients. Toxicol. Appl. Pharmacol. 77, 1–10. 
Melnikov, N.N. (1971) Chemistry of pesticides. Res. Rev. 36, 1–447. 
Meylan, W., Howard, P.H. (1991) Bond contribution method for estimating Henry’s law constants. Environ. Toxicol. Chem. 10, 
1283–1293. 
Meylan, W., Howard, P.H., Boethling, R.S. (1992) Molecular topology/fragment contribution method for predicting soil sorption 
coefficients. Environ. Sci. Technol. 26, 1560–1567. 
Miller, M.M., Ghodbane, S., Wasik, S.P., Tewari, Y.B., Martire, D.E. (1984) Aqueous solubilities, octanol/water partition coefficients 
and entropies of melting of chlorinated benzenes and biphenyls. J. Chem. Eng. Data 29, 184–190. 
Miller, M.M., Wasik, S.P., Huang, G.L., Shiu, W.Y., Mackay, D. (1985) Relationship between octanol-water partition coefficient and 
aqueous solubility. Environ. Sci. Technol. 19, 522–529. 
Mills, W.B., Dean, J.D., Porcella, D.B., Gherini, S.A., Huson, R.J.M., Frick, W.E., Rupp, G.L. (1982) Water Quality Assessment: 
A Screening Procedure for Toxic and Conventional Pollutants. Part 1. U.S. EPA Report EPA-600/6-82-004a. 
Milne, G.W.A., Editor (1995) CRC Handbook of Pesticides. CRC Press, Inc., Boca Raton, Florida. 
Monkiedje, A., Spiteller, M., Bester, K. (2003) Degradation of racemic and enantiopure metalaxyl in tropical and temperate soils. 
Environ. Sci. Technol. 37, 707–712. 
Montgomery, J.H., Editor (1993) Agrochemicals Desk Reference. Environmental Data. Lewis Publishers, Inc., Chelsea, Michigan. 
Mortimer, M.R., Connell, D.W. (1995) A model of the environmental fate of chloro-hydrocarbon contaminants associated with Sydney 
sewage discharge. Chemosphere 30, 2021–2038. 
Moza, P.N., Sukul, P., Hustert, K., Kettrup, A. (1994) Photooxidation of metalaxyl in aqueous solution in the presence of hydrogen 
peroxide and titanium dioxide. Chemosphere 28, 341–347. 
Muller, M., Kordel, W. (1996) Comparison of screening methods for the estimation of adsorption coefficients on soil. Chemosphere 
32, 2493–2504. 
Muller, M.D., Buser, H.-R. (1995) Environmental behavior of acetamide pesticide stereoisomers. 2. Stereo- and enantioselective 
degradation in sewage sludge and soil. Environ. Sci. Technol. 29, 2031–2037. 
Nakamura, M., Suzuki, T., Amano, K., Yamada, S. (2001) Relation of sorption behavior of agricultural chemicals in solid-phase 
extraction with their n-octanol/water partition coefficients evaluated by high-performance liquid chromatography (HPLC). 
Anal. Chim. Acta 428, 219–226. 
Nash, R.G. (1983) Determining environmental fate of pesticides with microagroecosystems. Res. Rev. 85, 199–215. 
Nash, R.G. (1989) Models for estimating pesticide dissipation from soil and vapor decline in air. Chemosphere 18(11/12), 2375–2381. 
Nash, R.G., Beall, M.L. (1980) Distribution of silvex, 2,4-D, and TCDD applied to turf in chambers and field plots. J. Agric. Food 
Chem. 28, 614. 
Neely, W.B. (1980) A method for selecting the most appropriate environmental experiments on a new chemical. In: Dynamic, Exposure 
and Hazard Assessment of Toxic Chemicals. Haque, R., Ed., pp. 287–298, Ann Arbor Science Publishers, Ann Arbor, Michigan. 
Neely, W.B., Branson, D.R., Blau, G.E. (1974) Partition coefficient to measure bio-concentration potential of organic chemicals in 
fish. Environ. Sci. Technol. 8, 1113–1115. 
Neuhauser, E.F., Loehr, R.C., Malecki, M.R., Milligan, D.l., Durin, P.R. (1985) The toxicity of selected organic chemicals to earthworm 
Eisenia fetida. J. Environ. Qual. 14(3), 383–388. 
Nielsen, L.S., Bundgaard, H., Falch, E. (1992) Prodrugs of thiabendazole with increased water-solubility. Acta Pharm. Nord. 4(1), 43–49. 
Nigg, H.N., Stamper, J.H., Queen, R.M. (1986) Dicofol exposure to Florida citrus applicators: Effect of protective clothing. Arch. 
Environ. Contam. Toxicol. 15, 121–134. 
Niimi, A.J., Lee, H.B., Kisson, G.P. (1989) Octanol/water partition coefficients and bioconcentration factors of chloronitrobenzenes 
in rainbow trout (Salmo gairdneri). Environ. Toxicol. Chem. 8, 817–823. 
Niimi, A.J., Palazzo, V. (1985) Temperature effect on the elimination of pentachlorophenol, hexachlorobenzene and mirex by rainbow 
trout (Salmo gairdneri). Water Res. 19, 205–207. 
Nirmalakhandan, N.N., Speece, R.E. (1988) QSAR model for predicting Henry’s law constant. Environ. Sci. Technol. 22, 
1349–1357. 
OECD (1979) OECD Environmental Committee Chemicals Group, OECD Chemical Testing Programme Expert Group, Physical 
Chemical Final Report Vol. 1, Part 1 and Part 2, Summary of the OECD Laboratory Intercomparison Testing Programme 
Part 1-On the Physico-Chemical Properties. p. 33, Dec., 1979, Berlin, Germany. 
Ohori, Y., Ihashi, Y. (1987) Foliar absorption of pesticides using an isolated cucumber membrane. Res. Dev. Rev.-Mitsubishi Chem. 
1(2), 22–26. 
Oliver, B.G. (1985) Desorption of chlorinated hydrocarbons from spiked and anthropogenically contaminated sediments. Chemosphere 
14, 1087–1106. 
Oliver, B.G. (1987a) Biouptake of chlorinated hydrocarbons from laboratory-spiked and field sediments by oligochaete worms. Environ. 
Sci. Technol. 21, 785–790. 
Oliver, B.G. (1987b) Fate of some chlorobenzenes from the Niagara River in Lake Ontario. In: Sources and Fates of Aquatic Pollutants. 
Hite, R.A., Eisenreich, S.J., Eds., pp. 471–489, Advances in Chemistry Series 216, American Chemical Society, Washington, DC. 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4129 
Oliver, B.G. (1987c) Partitioning relationships for chlorinated organics between water and particulates in the St. Clair, Detroit and 
Niagara Rivers. In: QSAR in Environmental Toxicology II. Kaiser, K.L.E., Ed., pp. 251–260, D. Reidel Publishing Co., Dordrecht, 
The Netherlands. 
Oliver, B.G., Charlton, M.N. (1984) Chlorinated organic contaminants on settling particulates in the Niagara River vicinity of Lake 
Ontario. Environ. Sci. Technol. 18, 903–908. 
Oliver, B.G., Niimi, A.J. (1983) Bioconcentration of chlorobenzenes from water by rainbow trout: correlations with partition 
coefficients and environmental residues. Environ. Sci. Technol. 17, 287–291. 
Oliver, B.G., Niimi, A.J. (1985) Bioconcentration factors of some halogenated organics for rainbow trout: Limitations in their use 
for prediction of environmental residues. Environ. Sci. Technol. 19, 842–849. 
Opperhuizen, A. (1986) Bioconcentration of hydrophobic chemicals in fish. In: Aquatic Toxicology and Environmental Fate. 9th Vol. 
ASTM STP 921, Poston, T.M., Purdy, R., Eds., pp. 304–315, American Society for Testing and Materials, Philadelphia, 
Pennsylvania. 
Pait, A.S., De Souza, A.E., Farrow, D.R.D. (1992) Agriculture Pesticide Use in Coastal Areas: A National Summary. National Oceanic 
and Atmospheric Administration (NOAA) Rockville, Maryland. 
Pankow, J.F., Isabelle, L.M., Asher, W.E. (1984) Trace organic compounds in rain. 1. Sample design and analysis by adsorption/thermal 
desorption (ATD). Environ. Sci. Technol. 18, 310–318. 
Patil, G.S. (1994) Prediction of aqueous solubility and octanol-water coefficient for pesticides based on their molecular structure. 
J. Hazard. Materials 36, 35–43. 
Patil, G.S., Nicholls, P.H., Chamberlain, K., Briggs, G.G., Bromilow, R.H. (1988) Degradation rates in soil of 1-benzyltriazoles and 
two triazole fungicides. Pest. Sci. 22(4), 333–342. 
Pereira, W.E., Rostad, C.E., Chiou, C.T., Brinton, T.I., Barber, I.,L.B., Demcheck, D.K., Demas, C.R. (1988) Contamination of 
estuarine water, biota and sediment by halogenated organic compounds: A field study. Environ. Sci. Technol. 22, 772–778. 
Pinsuwan, S., Li, A., Yalkowsky, S.H. (1995) Correlation of octanol/water solubility and partition coefficients. J. Chem. Eng. Data 
40, 623–626. 
Plato, C. (1972) Differential scanning calorimetry as a general method for determining the purity and heat of fusion of high-purity 
organic chemicals. Application to 64 compounds. Anal. Chem. 44(8), 1531–1534. 
Plato, C., Glasgow, A.R., Jr. (1969) Differential scanning calorimetry as a general method for determining the purity and heat of 
fusion of high purity organic chemicals. Application to 95 compounds. Anal. Chem. 41, 330–336. 
Popov, V.I., Sboeva, J.N. (1974) Determination of benomyl in cotton leaves. J. Environ. Qual. Saf. 3. 
Rao, P.S.C., Davidson, J.M. (1980) Estimation of pesticide retention and transformation parameters required in nonpoint source 
pollutant models. In: Environmental Impact of Nonpoint Pollution. Overcash, M.R., Davidson, J.M., Eds., Ann Arbor Science 
Publishers Inc., Ann Arbor, Michigan. 
Rao, P.S.C., Davidson, J.M. (1982) Retention and Transformation of Selected Pesticides and Phosphorus in Soil Water System: 
A Critical Review. U.S. EPA-600/3–82–060. 
Reischl, A., Reissinger, M., Thoma, H., Hutzinger, O. (1989) Uptake and accumulation of PCDD/F in terrestrial plants: Basic considerations. 
Chemosphere 19, 467–474. 
Rekker, R.F. (1977) The Hydrophobic Fragmental Constants. Its Derivation and Application, A Means of Characterizing Membrane 
Systems. Elsevier Science Publishing Co., Oxford, England. 
Rippen, G., Ilgenstein, M., Klopffer, W., Poreniski, H.J. (1982) Screening of the adsorption behavior of new chemicals: natural soils 
and model adsorbents. Ecotoxicol. Environ. Saf. 6, 236–245. 
Rordorf, B.F. (1989) Unpublished data, private communication. 
Ryan, J.A., Bell, R.M., Davidson, J.M., O’Connor, G.A. (1988) Plant uptake of non-ionic organic chemicals from soils. Chemosphere 
17, 2299–2323. 
Sabljic, A., Gusten, H., Verhaar, H., Hermens, J. (1995) QSAR modelling of soil sorption. Improvements and systematics of log KOC 
vs. log KOW correlations. Chemosphere 31, 4489–4514. 
Saito, S., Tanoue, A., Matsuo, M. (1992) Applicability of the i/o-characters to a quantitative description of bioconcentration of organic 
chemicals in fish. Chemosphere 24, 81–87. 
Saito, S., Koyasu, J., Yoshida, K., Shigeoka, T., Koike, S. (1993) Cytotoxicity of 109 chemicals to goldfish GFS cells and relationships 
with 1-octanol/water partition coefficients. Chemosphere 26(5), 1015–1028. 
Sangster, J. (1989) Octanol-water partition coefficients of simple organic compounds. J. Phy. Chem. Ref. Data 18, 1111–1230. 
Sangster, J. (1993) LOGKOW Databank, Sangster Research Labs., Montreal, Canada. 
Sarna, I.P., Hodge, P.E., Webster, G.R.B. (1984) Octanol-water partition coefficients of chlorinated dioxins and dibenzofurans by 
reversed-phase HPLC using several C18 columns. Chemosphere 13, 975–983. 
Schreiber, L., Schonherr, J. (1992) Uptake of organic chemicals in conifer needles: Surface adsorption and permeability of cuticles. 
Environ. Sci. Technol. 26, 153–159. 
Schwack, W., Flo.er-Muller, H. (1990) Fungicides and photochemistry. Photodehalogenation of captan. Chemosphere 21(7), 905–912. 
Sears, G.W., Hopke, E.R. (1949) Vapor pressures of naphthalene, anthracene, and hexachlorobenzene in a low pressure region. J. Am. 
Chem. Soc. 71, 1632–1634. 
Sharom, M.S., Edgington, L.V. (1982) The adsorption, mobility, and persistence of metalaxyl in soil and aqueous systems. Can. 
J. Plant Pathol. 4, 334–340. 
© 2006 by Taylor & Francis Group, LLC

4130 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Sicbaldi, F., Finizio, A. (1993) KOW estimation by combination of RP-HPLC and molecular indexes for a heterogeneous set of pesticide. 
In: Proceedings IX Symposium Pesticide Chemistry, Mobility and Degradation of Xenobiotics. 11–13, Oct. 1993, Picenza, Italy. 
Siebers, J., Gottschild, D., Nolting, H.-G. (1994) Pesticides in precipitation in Northern Germany. Chemosphere 28(8), 1559–1570. 
Sijm, D.T.H.M., Middlekoop, J., Vrisekoop, K. (1995) Algal density dependent bio-concentration factors of hydrophobic chemicals. 
Chemosphere 31(9), 4001–4012. 
Singh, R.P., Chiba, M. (1985) Solubility of benomyl in water at different pHs and its conversion to methyl 2-benzimidazolecarbamate, 
3-butyl-2,4-dioxo[1,2-.]-s-triazino-benzimidazole, and 1-(2-benzimidazolyl)-3-n-butylurea. J. Agric. Food Chem. 33(1), 
63–67. 
Spencer, E.Y., Editor (1973) Guide to the Chemicals Used in Crop Protection. 6th Edition, Research Branch Agriculture Canada, 
Ontario, Canada. 
Spencer, E.Y., Editor (1982) Guide to the Chemicals Used in Crop Protection. 7th Edition, Research Branch Agriculture Canada, 
Ontario, Canada. 
Stevens, P.J.G., Baker, E.A., Anderson, N.H. (1988) Factors affecting the foliar absorption and redistribution of pesticides. 
2. Physicochemical properties of the active ingredient and the role of surfactant. Pest. Sci. 24(1), 31–53. 
Stull, D.R. (1947) Vapor pressure of pure substances. Organic compounds. Ind. Eng. Chem. 39, 517–560. 
Su, F., Calvert, J.G., Shaw, J.H. (1979) Mechanism of the photooxidation of gaseous formaldehyde. J. Phys. Chem. 83, 3185–3191. 
Sukop, M., Cogger, C.G. (1992) Adsorption of carbofuran, metalaxyl, and simazine: KOC evaluation and relation to soil transport. 
J. Environ. Sci. Health B27, 565–590. 
Suntio, L.R., Shiu, W.Y., Mackay, D., Seiber, J.N., Glotfelty, D. (1988) Critical review of Henry’s law constants. Rev. Environ. 
Contam. Toxicol. 103, 1–59. 
Swann, R.L., Laskowski, D.A., McCall, P.J., Vander, Kuy K., Dishburger, H. J. (1983) A rapid method for estimation of the environmental 
parameters octanol/water partition coefficient, soil sorption constant, water to air ratio, and water solubility. Res. Rev. 85, 17–28. 
Swann, R.L., McCall, P.J., Laskowski, D.A., Dishburger, H.J. (1981) Estimation of soil sorption constants of organic chemicals by 
high-performance liquid chromatography. In: Aquatic Toxicology and Hazard Assessment. Forth Conference ASTM STP 737. 
Branson, B.R., Dickson, K.L., Eds. Pp. 43–48, American Society for Testing and Materials, Philadelphia, PA. 
Tabak, H.H., Quave, S.A., Mahni, C.I., Barth, E.F. (1981) Biodegradability studies with organic priority pollutant compound. J. Water 
Pollut. Control Fed. 53, 1503–1518. 
Tadokoro, H., Tomita, Y. (1987) The relationship between bioaccumulation and lipid content of fish. In: QSAR in Environmental 
Toxicology II. Kaiser, K.L.E., Editor, pp. 363–373, D. Reidel Publishing Co., Dordrecht, The Netherlands. 
Thomann, R. V. (1989) Bioconcentration model of organic chemical distribution in aquatic food chains. Environ. Sci. Technol. 23, 
699–707. 
Tomlin, C. (1994) The Pesticide Manual (A World Compendium). 10th Ed., Incorporating the Agrochemicals Handbook. The British 
Crop Protection Council, Surrey, UK and The Royal Society of Chemistry, Cambridge, UK. 
Travis, C.C., Arms, A.D. (1988) Bioconcentration of organics in beef, milk, and vegetation. Environ. Sci. Technol. 22, 271–273. 
Tsonopoulos, C., Prausnitz, J.M. (1971) Activity coefficients of aromatic solutes in dilute aqueous solutions. Ind. Eng. Chem. Fundam. 
10, 593–600. 
Tsuzuki, M. (2000) Thermodynamic estimation of vapor pressure for organophosphorus pesticides. Environ. Toxicol. Chem. 19, 
1717–1736. 
Valvani, S.C., Yalkowsky, S H. (1980) Solubility and partitioning in drug design. In: Physical Chemical Properties of Drug. Medical 
Research Series, Vol. 10, Yalkowsky, S H., Sinkinla, A.A., Valvani, S., Eds., pp. 201–229, Marcel Dekker, Inc., New York, 
New York. 
Veith, G.D., Austin, N.M., Morris, R T. (1979a) A rapid method for estimation log P for organic chemicals. Water Res. 13, 43–47. 
Veith, G.D., Defoe, D.L., Bergstedt, B.V. (1979b) Measuring and estimating the bio-concentration factor of chemicals in fish. J. Fish 
Res. Board Can. 26, 1040–1048. 
Veith, G.D., Kosian, P. (1983) Estimating bioconcentration potential from octanol/water partition coefficients. In: Physical Behaviour 
of PCBs in the Great Lakes. D. Mackay, S. Patterson, S.J. Eisenreich, M.S. Simmons Eds., pp. 269–282, Ann Arbor Science 
Publishers, Ann Arbor, Michigan. 
Verschueren, K. (1977) Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold, New York. 
Verschueren, K. (1983) Handbook of Environmental Data on Organic Chemicals. 2nd Edition, Van Nostrand Reinhold, New York. 
Walker, W.W., Cripe, C R., Pritchard, P.H., Bourquin, A.W. (1988) Biological and abiotic degradation of xenobiotic compounds in 
vitro estuarine water and sediment/water systems. Chemosphere 17(12), 2255–2270. 
Wang, X., Harada, S., Wantanabe, M., Koshikawa, H., Geyer, H.J. (1996) Modelling the bioconcentration of hydrophobic organic 
chemicals in aquatic organisms. Chemosphere 32(9), 1783–1793. 
Watarai, H., Tanaka, M., Suzuki, N. (1982) Determination of water partition coefficients of halobenzenes in heptane/water and 1-octanol/ 
water systems and comparison with the scaled particle calculation. Anal. Chem. 54, 702–705. 
Wauchope, R.D., Buttler, T.M., Hornsby, A. G., Augustijn-Beckers, P.W.M., Burt, J.P. (1992) The SCS/ARS/SCS Pesticide Properties 
Database for Environmental Decision Making. Rev. Environ. Contam. Toxicol. 123, 1–164. 
Weast, R.C., Ed. (1972–73) Handbook of Chemistry and Physics. 53rd edition, CRC Press, Inc., Cleveland, Ohio. 
Weast, R.C., Ed. (1982–83) Handbook of Chemistry and Physics. 62th edition, CRC Press, Inc., Boca Raton, Florida. 
© 2006 by Taylor & Francis Group, LLC

Fungicides 4131 
Weil, V.G., Dure, G., Quentin, K.E. (1974) Solubility in water of insecticide chlorinated hydrocarbons and polychlorinated biphenyls 
in view of water pollution. Z. Wasser Abwasser Forsch 7(6), 169–175. 
Wolfe, N.L., Zepp, R.G., Baughman, G.L., Fincher, R.C., Gordon, T.A. (1976) Chemical and Photochemical Transformation of 
Selected Pesticides in Aquatic Environments. U.S. EPA-600/3–76–067, U.S. EPA, Athens, Georgia. 
Worthing, C.R., Walker, S., Eds. (1983) The Pesticide Manual (A World Compendium). 7th edition, The British Crop Protection Council, 
Croydon, England. 
Worthing, C.R., Walker, S., Eds. (1987) The Pesticide Manual (A World Compendium). 8th edition, The British Crop Protection Council, 
Croydon, England. 
Worthing, C.R., Hance, R.J., Eds. (1991) The Pesticide Manual (A World Compendium). 9th edition, The British Crop Protection 
Council, Croydon, England. 
Yalkowsky, S.H., Dannenfelser, R.M. (1994) AQUASOL DATABASE. 5th edition, University of Arizona, Tucson, Arizona. 
Yalkowsky, S.H., Orr, R.J., Valvani, S.C. (1979) Solubility and partitioning. 3. The solubilities of halobenzenes in water. Ind. Eng. 
Chem. Fundam. 18, 351–353. 
Yalkowsky, S.H., Valvani, S.C. (1979) Solubility and partitioning. 2. Relationships between aqueous solubilities, partition coefficients, 
and molecular surface areas of rigid aromatic hydrocarbons. J. Chem. Eng. Data 24, 127–129. 
Yalkowsky, S.H., Valvani, S.C. (1980) Solubility and partitioning. 1. Solubility of nonelectrolytes in water. J. Pharm. Sci. 69, 912–922. 
Yalkowsky, S. H., Valvani, S.C., Mackay, D. (1983) Estimation of the aqueous solubility of some aromatic compounds. Res. Rev. 
85, 43–55. 
Yoshioka, Y., Mizuno, T., Ose, Y., Sato, T. (1986) Estimation of toxicity on fish by physico-chemical properties. Chemosphere 15(2), 
195–203. 
Yoshida, K., Shigeoka, T., Yamauchi, F. (1983) Non-steady state equilibrium model for the preliminary prediction of the fate of 
chemicals in the environment. Ecotoxicol. Environ. Saf. 7, 179–190. 
Zhou, X., Mopper, K. (1990) Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air 
and freshwater; implications for air-sea exchange. Environ. Sci. Technol. 24, 1864–1869. 
Zoeteman, B.C.J., Harmsen, K.M., Linders, J.B.H.J. (1980) Persistent organic pollutants in river water and groundwater of the 
Netherlands. Chemosphere 9, 231–249. 
© 2006 by Taylor & Francis Group, LLC

4133 
Appendix 1 
1.1 LIST OF SYMBOLS AND ABBREVIATIONS 
Ai area of phase i, m2 
ALPM automated log-P measurement 
AS absorption spectrophotometry 
BCF bioconcentration factor 
bp boiling point, °C 
C molar concentration, mol/L or mmol/m3 
CS saturated aqueous concentration, mol/L or mmol/m3 
CL liquid or supercooled liquid concentration, mol/L or mmol/m3 
CS solid molar concentration, mol/L or mmol/m3 
CA concentration in air phase, mol/L or mmol/m3 
CW concentration in water phase, mol/L or mmol/m3 
14C radioactive labelled carbon-14 compound 
CC countercurrent chromatography 
COD chemical oxygen demand 
CPC centrifugal partition chromatography 
D D values, mol/Pa·h 
DA D values for advection, mol/Pa·h 
DAi D values for advective loss in phase i, mol/Pa·h 
DR D value for reaction, mol/Pa·h 
DRi D value for reaction loss in phase i, mol/Pa·h 
Dij intermedia D values, mol/Pa·h 
DVW intermedia D value for air-water diffusion (absorption), mol/Pa·h 
DRW intermedia D value for air-water dissolution, mol/Pa·h 
DQW D value for total particle transport (dry and wet), mol/Pa·h 
DRS D value for rain dissolution (air-soil), mol/Pa·h 
DQS D value for wet and dry deposition (air-soil), mol/Pa·h 
DVS D value for total soil-air transport, mol/Pa·h 
DS D value for air-soil boundary layer diffusion, mol/Pa·h 
DSW D value for water transport in soil, mol/Pa·h 
DSA D value for air transport in soil, mol/Pa·h 
DTi total transport D value in bulk phase i, mol/Pa·h 
DOC dissolved organic carbon 
DOM dissolved organic matter 
DSC differential scanning calorimetry 
DTA differential thermal analyzer 
E emission rate, mol/h or kg/h 
EPICS equilibrium partitioning in closed system 
F fugacity ratio 
f fugacity, Pa 
fi fugacity in pure phase i, Pa 
f-const. fragmental constants 
© 2006 by Taylor & Francis Group, LLC

4134 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
fluo. fluorescence method 
G advective inflow, m3/h 
GB advective inflow to bottom sediment m3/h 
.Gv Gibbs’s free energy of vaporization kJ/mol or kcal/mol 
GC gas chromatography 
GC/FID GC analysis with flame ionization detector 
GC/ECD GC analysis with electron capture detector 
GC-RT GC retention time 
gen. col. generator-column 
H, HLC Henry’s law constant, Pa·m3/mol, or atm m3/mol 
.Hfus enthalpy of fusion, kJ/mol 
.Hsubl enthalpy of sublimation, kJ/mol 
.HV enthalpy of vaporization, kJ/mol or kcal/mol 
HPLC high pressure liquid chromatography 
HPLC/MS HPLC analysis with mass spectrometer detector 
HPLC/UV HPLC analysis with UV detector 
HPLC/fluo. HPLC analysis with fluorescence detector 
HPLC-k. HPLC-capacity factor correlation 
HPLC-RI HPLC-retention index correlation 
HPLC-RT HPLC-retention time correlation 
HPLC-RV HPLC-retention volume correlation 
IP ionization potential 
IR infrared absorption 
J intermediate quantities for fugacity calculation 
K Kjeldahl method 
k reaction rate constant 
ki first-order rate constant in phase i, h–1 
kA air/water mass transfer coefficient, air-side, m/h 
kW air/water mass transfer coefficient, water-side, m/h 
KAR/W aerosol/water partition coefficient 
KAW dimensionless air/water partition coefficient 
kH Henry’s law constant with units of vapor pressure 
KB bioconcentration factor 
Kh association coefficient 
KOC organic-carbon sorption partition coefficient 
KOM organic-matter sorption partition coefficient 
KOA octanol/air partition coefficient 
KOW octanol/water partition coefficient 
KSD/W sediment-water partition coefficient 
KSSD/W suspended sediment/water partition coefficient 
KSW soil/water partition coefficient 
Kp or Kd sorption coefficient 
k1 uptake/accumulation rate constant, d–1 (day–1) 
k2 elimination/clearance/depuration rate constant, d–1 
kb biodegradation rate constant, d–1 
kh hydrolysis rate constant, d–1 
kp photolysis rate constant, d–1 
kOH photooxidation rate constant for hydroxyl radical 
kNO3 photooxidation rate constant for NO3 radical 
kO3 photooxidation rate constant for ozone 
L lipid content of fish 
LSC liquid scintillation counting 
LSS liquid scintillation spectrometry 
mi amount of chemical in phase i, mol or kg 
M total amount of chemical, mol or kg 
© 2006 by Taylor & Francis Group, LLC

Appendix 1 4135 
MCI molecular connectivity indices 
MO molecular orbital calculation 
mp. melting point, °C 
MR molar refraction 
MS mass spectrometry 
MW molecular weight, g/mol 
nC number of carbon atoms 
nCl number of chlorine atoms 
P vapor pressure, Pa (Pascal) 
PL liquid or supercooled liquid vapor pressure, Pa 
PS solid vapor pressure, Pa 
Q scavenging ratio 
QSAR quantitative structure-activity relationship 
QSPR quantitative structure-property relationship 
RC Radiochemical method 
RP-HPLC reversed phase high pressure liquid chromatography 
RP-TLC reversed phase thin layer chromatography 
S water solubility, mg/L or g/m3 
.Sfus entropy of fusion, J/mol·K or cal/mol·K (e.u.) 
Soctanol solubility in octanol 
SD standard deviation 
SPARC a computational expert system that predicts chemical reactivity 
t/°C temperature in degree centigrade 
t residence time, h (hour) 
to overall residence time, h 
tA advection persistence time, h 
tB sediment burial residence time, h 
tR reaction persistence time, h 
t1/2 half-life, s, h, min, d, month or yr 
Tij intermedia transport rate, mol/h or kg/h 
T system temperature, K 
TB boiling point, K 
TM melting point, K 
TLC thin-layer chromatography 
TMV total molecular volume per molecule, A3 (Angstrom3) 
TN titration method 
TSA total surface area per molecule, A2 
U1 air side, air-water MTC (same as kA), m/h 
U2 water side, air-water MTC (same as kW), m/h 
U3 rain rate (same as UR), m/h 
U4 aerosol deposition rate, m/h 
U5 soil-air phase diffusion MTC, m/h 
U6 soil-water phase diffusion MTC, m/h 
U7 soil-air boundary layer MTC, m/h 
U8 sediment-water MTC, m/h 
U9 sediment deposition rate, m/h 
U10 sediment resuspension rate, m/h 
U11 soil-water run-off rate, m/h 
U12 soil-solids run-off rate, m/h 
UR rain rate, m/h 
UQ dry deposition velocity, m/h 
UB sediment burial rate, m/h 
UV UV spectrometry 
UNIFAC UNIQUAC functional group activity coefficients 
Vi volume of pure phase i, m3 
© 2006 by Taylor & Francis Group, LLC

4136 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
VS volume of bottom sediment, m3 
VBi volume of bulk phase i, m3 
VI intrinsic molar volume, cm3/mol 
VM molar volume, cm3/mol 
vi volume fraction of phase i 
vQ volume fraction of aerosol 
VOC volatile organic chemicals 
W molecular mass, g/mol 
Zi fugacity capacity of phase i, mol/m3 Pa 
ZBi fugacity capacity of bulk phase i, mol/m3 Pa 
1.2 GREEK CHARACTERS 
.-const. substituent constants for KOW estimation 
. solute activity coefficient 
.o solute activity coefficient in octanol phase 
.W solute activity coefficient in water phase 
.i density of pure phase i, kg/m3 
.Bi density of bulk phase i, kg/m3 
. molecular connectivity indices 
.OC or fOC organic carbon fraction 
.i organic carbon fraction in phase i 
© 2006 by Taylor & Francis Group, LLC

4137 
Appendix 2 
2.1 ALPHABETICAL INDEX 
Acenaphthene ........ 691 
Acenaphthylene ..... 688 
Acephate ..............3715 
Acetaldehyde (Ethanal) ........ 2589 
Acetamide............ 3328 
Acetic acid ........... 2692 
Acetone................ 2619 
Acetonitrile .......... 3197 
Acetophenone ...... 2664 
Acridine ............... 3380 
Acrolein (2-Propenal)........... 2605 
Acrylamide .......... 3330 
Acrylic acid (2-Propenoic acid)............. 2718 
Acrylonitrile (2-Propenenitrile)............. 3210 
Alachlor ............... 3461 
Aldicarb ............... 3717 
Aldrin.. 3721 
Allyl alcohol ........ 2557 
Ametryn............... 3466 
Aminocarb ........... 3728 
Amitrole............... 3469 
Anilazine..............4027 
Aniline 3243 
Anisole (Methoxybenzene) .. 2329 
Anthracene............. 725 
Aroclor 1016........ 2015 
Aroclor 1221........ 2017 
Aroclor 1232........ 2019 
Aroclor 1242........ 2021 
Aroclor 1248........ 2024 
Aroclor 1254........ 2026 
Aroclor 1260........ 2030 
Atrazine ............... 3471 
Azinphos-methyl . 3729 
Barban. 3480 
Benalaxyl............. 4029 
Bendiocarb........... 3732 
Benefin 3482 
Benomyl ..............4031 
Benzaldehyde ...... 2613 
Benzamide ........... 3331 
© 2006 by Taylor & Francis Group, LLC

4138 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Benz[a]anthracene. 788 
Benzene 407 
Benzenethiol ........ 3412 
Benzidine............. 3283 
Benzo[cg]carbazole .............. 3378 
Benzo[b]fluoranthene ............. 796 
Benzo[j]fluoranthene.............. 799 
Benzo[k]fluoranthene ............. 800 
Benzo[a]fluorene... 767 
Benzo[b]fluorene... 769 
Benzoic acid ........ 2728 
Benzonitrile ......... 3214 
Benzo[ghi]perylene ................ 823 
Benzophenone ..... 2670 
Benzo[a]pyrene ..... 804 
Benzo[e]pyrene...... 811 
Benzo[f]quinoline 3372 
Benzo[b]thiophene ............... 3419 
Benzyl alcohol ..... 2565 
Benzyl benzoate... 3077 
Benzyl ethyl ether 2351 
N,N.-Bianiline...... 3287 
Bibenzyl 682 
Bifenox ................ 3484 
Biphenyl ...... 669, 1484 
Bis(2-chloroethoxy)methane 2327 
Bis(2-chloroethyl)ether......... 2319 
Bis(2-chloroisopropyl)ether . 2322 
Bis(chloromethyl)ether......... 2317 
Bis(2-ethylhexyl) phthalate (DEHP) ...... 3118 
Bitertanol ............. 4033 
Bromacil ..............3486 
Bromobenzene..... 1410 
4-Bromobiphenyl... 884 
1-Bromobutane (n-Butyl bromide)........ 1156 
2-Bromochlorobenzene ........ 1447 
3-Bromochlorobenzene ........ 1448 
4-Bromochlorobenzene ........ 1450 
Bromochloromethane ........... 1186 
Bromocyclohexane ............... 1166 
1-Bromodecane.... 1164 
Bromodichloromethane ........ 1188 
2-Bromodiphenyl ether (PBDE-1) ........ 2401 
3-Bromodiphenyl ether (PBDE-2) ........ 2402 
4-Bromodiphenyl ether (PBDE-3) ........ 2403 
1-Bromododecane 1165 
Bromoethane (Ethyl bromide) ............... 1139 
1-Bromoheptane .. 1161 
1-Bromohexane ... 1160 
4-Bromoiodobenzene ........... 1453 
Bromomethane (Methyl bromide) ......... 1123 
1-Bromonaphthalene .............. 875 
2-Bromonaphthalene .............. 879 
1-Bromooctane .... 1162 
1-Bromopentane (n-Amyl bromide)...... 1158 
© 2006 by Taylor & Francis Group, LLC

Appendix 2 4139 
4-Bromophenyl phenyl ether 2403 
Bromophos .......... 3734 
Bromophos-ethyl . 3736 
1-Bromopropane (n-Propyl bromide).... 1148 
2-Bromopropane (i-Propyl bromide)..... 1152 
2-Bromotoluene... 1431 
3-Bromotoluene... 1433 
4-Bromotoluene... 1435 
Bromoxynil.......... 3489 
sec-Bumeton........ 3491 
Bupirimate ........... 4035 
Butachlor ............. 3493 
1,3-Butadiene......... 317 
Butanal (n-butyraldehyde).... 2600 
n-Butane . 70 
1-Butanethiol (Butyl mercaptan)........... 3409 
1-Butanol (n-Butanol) .......... 2497 
2-Butanone (Methyl ethyl ketone)......... 2626 
1-Butene ................273 
Butralin ................ 3495 
Butyl acetate ........ 3052 
sec-Butyl alcohol . 2511 
tert-Butyl alcohol. 2518 
n-Butyl amine ...... 3234 
Butylate................ 3497 
n-Butylbenzene...... 520 
sec-Butylbenzene... 528 
tert-Butylbenzene .. 532 
Butylbenzyl phthalate (BBP)3135 
Butyl ethyl ether .. 2285 
Butyl 2-ethylhexyl phthalate (BOP)...... 3111 
4-tert-Butylphenol (p-tert-Butylphenol) 2858 
t-Butylphenyl diphenyl phosphate (t-BPDP)........... 3139 
1-Butyne ................338 
Butyric acid ......... 2701 
Butyronitrile ........ 3207 
Caproic acid (Hexanoic acid) ................ 2712 
Captan. 4037 
Carbaryl ............... 3738 
Carbazole............. 3375 
Carbendazim........ 4040 
Carbofuran........... 3742 
Carbon disulfide .. 3383 
Carbon tetrachloride (Tetrachloromethane) .............. 950 
Carbophenothion . 3746 
Carbosulfan.......... 3748 
Carboxin ..............4042 
Catechol (1,2-Dihydroxybenzene) ........ 2952 
Chloramben ......... 3499 
Chlorazine............ 3501 
Chlorbromuron .... 3502 
Chlordane ............ 3750 
Chlorfenvinphos .. 3758 
Chloroacetic acid . 2720 
2-Chloroanisole ... 2334 
© 2006 by Taylor & Francis Group, LLC

4140 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
3-Chloroanisole ... 2335 
4-Chloroanisole ... 2336 
2-Chloroaniline.... 3249 
3-Chloroaniline.... 3253 
4-Chloroaniline.... 3257 
Chlorobenzene..... 1259 
2-Chlorobenzoic acid............ 2751 
3-Chlorobenzoic acid............ 2753 
4-Chlorobenzoic acid............ 2755 
2-Chlorobiphenyl (PCB-1) ... 1492 
3-Chlorobiphenyl (PCB-2) ... 1497 
4-Chlorobiphenyl (PCB-3) ... 1501 
1-Chlorobutane (n-Butyl chloride) ........ 1041 
2-Chlorobutane (i-Butyl chloride) ......... 1045 
4-Chloro- m-cresol 2930 
1-Chlorodecane.... 1061 
1-Chlorodibenzo-p-dioxin.... 2067 
2-Chlorodibenzo-p-dioxin.... 2070 
2-Chlorodibenzofuran........... 2173 
3-Chlorodibenzofuran........... 2175 
Chlorodifluoromethane (HCFC-22) ....... 1193 
1-Chloro-1,1-difluoroethane. 1209 
2-Chlorodiphenyl ether (2-Chloro-DPE) (PCDPE-1) .............. 2359 
4-Chlorodiphenyl ether (4-Chloro-DPE)2360 
Chloroethane (Ethyl chloride) 960 
Chloroethene........ 1063 
2-Chloroethyl vinyl ether...... 2325 
Chlorofluoromethane............ 1209 
1-Chloro-2-fluoroethane....... 1209 
Chloroform (Trichloromethane) .............. 939 
4-Chloroguaiacol . 2973 
1-Chloroheptane .. 1054 
1-Chlorohexane ... 1050 
2-Chloroiodobenzene ........... 1454 
3-Chloroiodobenzene ........... 1455 
4-Chloroiodobenzene ........... 1456 
Chloromethane ...... 924 
Chloromethyl methyl ether... 2315 
Chloroneb ............ 4044 
1-Chlorononane ... 1059 
1-Chlorooctane .... 1056 
1-Chloronaphthalene .............. 842 
2-Chloronaphthalene .............. 845 
1-Chloropentane ( n-Pentyl chloride)..... 1047 
Chloropentafluorobenzene ... 1406 
1-Chloropentafluoroethane... 1209 
2-Chlorophenol ( o-Chlorophenol)......... 2877 
3-Chlorophenol ( m-Chlorophenol)........ 2882 
4-Chlorophenol ( p-Chlorophenol)......... 2886 
4-Chlorophenyl phenyl ether 2360 
Chloroprene......... 1117 
Chloropicrin......... 4046 
1-Chloropropane (n-Propyl chloride) ..... 1024 
2-Chloropropane (i-Propyl chloride)..... 1028 
© 2006 by Taylor & Francis Group, LLC

Appendix 2 4141 
o-Chlorostyrene ... 1374 
m-Chlorostyrene .. 1375 
p-Chlorostyrene ... 1377 
3-Chlorosyringol.. 2990 
2-Chlorosyringolaldehyde .... 2993 
1-Chloro-1,2,2,2-tetrafluoroethane........ 1209 
Chlorothalonil...... 4049 
.-Chlorotoluene .. 1368 
2-Chlorotoluene... 1352 
3-Chlorotoluene... 1355 
4-Chlorotoluene... 1357 
1-Chloro-1,1,2-trifluoroethane .............. 1209 
Chlorotrifluoroethene ........... 1209 
Chlorotrifluoromethane ........ 1209 
1-Chloro-2,2,2-trifluoropropane............ 1209 
5-Chlorovanillin... 2985 
6-Chlorovanillin... 2987 
Chlorpropham...... 3504 
Chlorpyrifos......... 3760 
Chlorpyrifos-methyl ............. 3765 
Chlorsulfuron....... 3507 
Chlortoluron ........ 3510 
Chrysene ................771 
Coronene................837 
o-Cresol ............... 2794 
m-Cresol ..............2803 
p-Cresol ............... 2812 
Cresyl diphenyl phosphate (CDPP)....... 3141 
Crotoxyphos ........ 3767 
4-Cumylphenyl diphenyl phosphate (CPDPP) ........ 3145 
Cyanazine ............ 3513 
Cycloheptane ......... 254 
Cycloheptatriene.... 367 
Cycloheptene ......... 359 
1,4-Cyclohexadiene ................ 364 
Cyclohexane .......... 224 
Cyclohexanol....... 2560 
Cyclohexanone .... 2660 
Cyclohexene .......... 352 
Cyclooctane ........... 258 
Cyclooctene ........... 361 
Cyclopentane ......... 211 
Cyclopentene ......... 349 
Cyhalothrin .......... 3769 
Cypermethrin....... 3772 
2,4-D (2,4-dichlorophenoxyacetic acid)........ 2761, 3517 
Dalapon................ 3522 
Dazomet............... 4051 
2,4-DB (2,4-dichlorophenoxy)butanoic acid........... 3525 
DDD (o,p.-DDD, p,p.-DDD)3774 
DDE (o,p.-DDE, p,p.-DDE) . 3779 
DDT (o,p.-DDT, p,p.-DDT) . 3785 
Decabromobiphenyl ............... 890 
Decabromodiphenyl ether (PBDE 209).. 2453 
© 2006 by Taylor & Francis Group, LLC

4142 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2,2.,3,3.,4,4.,5,5.,6,6.-Decachlorobiphenyl (PCB-209)............ 1995 
Decachlorodiphenyl ether (PCDE-209) . 2400 
Decalin.. 263 
n-Decane................159 
Decanol................ 2549 
1-Decene................314 
Decylbenzene ........ 564 
Deltamethrin ........ 3798 
Diallyl phthalate (DAP)........ 3090 
Demeton ..............3800 
Dialifor ................ 3802 
Diallate ................ 3527 
Diazinon ..............3804 
Dibenz[a,c]anthracene............ 828 
Dibenz[a,h]anthracene............ 830 
Dibenz[a,j]anthracene ............ 834 
Dibenzo-p-dioxin. 2064 
Dibenzofuran ....... 2168 
Dibenzothiophene 3421 
1,2-Dibromobenzene ............ 1416 
1,3-Dibromobenzene ............ 1418 
1,4-Dibromobenzene ............ 1420 
4,4.-Dibromobiphenyl ............ 885 
2,4-Dibromodiphenyl ether (PBDE-7) ... 2405 
2,4.-Dibromodiphenyl ether (PBDE-9) .. 2406 
2,6-Dibromodiphenyl ether (PBDE-10) . 2407 
3,4-Dibromodiphenyl ether (PBDE-12) . 2408 
3,4.-Dibromodiphenyl ether (PBDE-13) 2409 
4,4.-Dibromodiphenyl ether (PBDE-15) 2410 
Dibromochloromethane........ 1190 
1,2-Dibromoethane............... 1143 
Dibromomethane . 1128 
1,4-Dibromonaphthalene ........ 882 
2,3-Dibromonaphthalene ........ 883 
1,2-Dibromopropane ............ 1154 
Di-n-butyl ether ... 2289 
Dibutyl phenyl phosphate (DBPP) ........ 3159 
Di-n-butyl phthalate (DBP) .. 3095 
Dicamba............... 3530 
Dichlobenil .......... 3534 
Dichlone ..............4052 
Dichloroacetic acid ............... 2723 
3,4-Dichloroaniline............... 3261 
2,3-Dichloroanisole .............. 2337 
2,6-Dichloroanisole .............. 2338 
1,2-Dichlorobenzene (o-Dichlorobenzene) ............. 1268 
1,3-Dichlorobenzene (m-Dichlorobenzene) ............ 1278 
1,4-Dichlorobenzene (p-Dichlorobenzene) ............. 1287 
3,3.-Dichlorobenzidine ......... 3285 
2,2.-Dichlorobiphenyl (PCB-4) ............. 1508 
2,3-Dichlorobiphenyl (PCB-5) .............. 1511 
2,3.-Dichlorobiphenyl (PCB-6) ............. 1514 
2,4-Dichlorobiphenyl (PCB-7) .............. 1516 
2,4.-Dichlorobiphenyl (PCB-8) ............. 1519 
2,5-Dichlorobiphenyl (PCB-9) .............. 1522 
© 2006 by Taylor & Francis Group, LLC

Appendix 2 4143 
2,6-Dichlorobiphenyl (PCB-10) ............ 1525 
3,3.-Dichlorobiphenyl (PCB-11) ........... 1528 
3,4-Dichlorobiphenyl (PCB-12) ............ 1530 
3,4.-Dichlorobiphenyl (PCB-13) .......... 1533 
3,5-Dichlorobiphenyl (PCB-14) ............ 1535 
4,4.-Dichlorobiphenyl (PCB-15) ........... 1537 
Dichlorobiphenyls (isomer group) ........ 2001 
3,5-Dichlorocatechol ............ 2956 
4,5-Dichlorocatechol ............ 2957 
2,3-Dichlorodibenzo- p-dioxin............... 2073 
2,7-Dichlorodibenzo- p-dioxin............... 2076 
2,8-Dichlorodibenzo- p-dioxin............... 2080 
2,3-Dichlorodibenzofuran .... 2177 
2,7-Dichlorodibenzofuran .... 2179 
2,8-Dichlorodibenzofuran .... 2181 
3,6-Dichlorodibenzofuran .... 2184 
1,2-Dichloro-1,1-difluoroethane............ 1209 
1,1-Dichloro-2,2-difluoroethene............ 1209 
1,2-Dichloro-1,2-difluoroethene............ 1209 
Dichlorodifluoromethane ..... 1196 
2,4-Dichlorodiphenyl ether (PCDE-8) ... 2362 
2,6-Dichlorodiphenyl ether (PCDE-10) . 2363 
1,1-Dichloroethane 966 
1,2-Dichloroethane 975 
1,1-Dichloroethene............... 1070 
cis-1,2-Dichloroethene ......... 1077 
tra ns-1,2-Dichloroethene...... 1084 
1,1-Dichloro-1-fluoroethane. 1209 
Dichlorofluoromethane......... 1209 
4,5-Dichloroguaiacol ............ 2975 
Dichloromethane ... 930 
1,2-Dichloronaphthalene ........ 848 
1,4-Dichloronaphthalene ........ 849 
1,8-Dichloronaphthalene ........ 851 
2,3-Dichloronaphthalene ........ 852 
2,7-Dichloronaphthalene ........ 853 
2,4-Dichlorophenol............... 2892 
2,6-Dichlorophenol............... 2898 
3,4-Dichlorophneol............... 2901 
2,4-Dichlorophenoxyacetic acid (2,4-D)....... 2761, 3517 
1,2-Dichloropropane............. 1031 
1,3-Dichloropropene............. 1115 
3,5-Dichlorosyringol ............ 2991 
2,6-Dichlorosyringolaldehyde............... 2994 
1,1-Dichloro-1,2,2,2-tetrafluoroethane.. 1209 
1,2-Dichloro-1,1,2,2-tetrafluoroethane.. 1209 
2,4-Dichlorotoluene.............. 1360 
2,6-Dichlorotoluene.............. 1362 
3,4-Dichlorotoluene.............. 1364 
1,1-Dichlorotrifluoroethane.. 1209 
4,5-Dichloroveratrole ........... 2345 
5,6-Dichlorovanillin ............. 2988 
Dichlorprop.......... 3537 
Dichlorvos ........... 3811 
Diclofop-methyl .. 3539 
© 2006 by Taylor & Francis Group, LLC

4144 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Dicofol 4054 
Dicrotophos ......... 3816 
Dieldrin................ 3819 
Diethanolamine.... 3239 
Diethylamine ....... 3228 
Diethyl ether (ethyl ether) .... 2266 
Diethyl phthalate (DEP) ....... 3084 
Diflubenzuron...... 3827 
1,2-Difluorobenzene............. 1384 
1,3-Difluorobenzene............. 1386 
1,4-Difluorobenzene............. 1388 
1,1-Difluoroethane................ 1209 
1,2-Difluoroethane................ 1209 
1,1-Difluoroethene................ 1209 
Difluoromethane.. 1209 
1,1-Difluorotetrachloroethane ............... 1209 
Di- n-hexyl phthalate (DHP) . 3108 
1,2-Diiodobenzene................ 1441 
1,3-Diiodobenzene................ 1442 
1,4-Diiodobenzene................ 1443 
Di-isobutyl phthalate (DIBP)3104 
Di-isodecyl phthalate (DIDP)................ 3129 
Di-isononyl phthalate (DINP) ............... 3127 
Di-isooctyl phthalate (DIOP) ................ 3116 
Di-isopropyl phthalate (DIPP)............... 3094 
Di-isopropyl ether 2280 
Dimethoate .......... 3829 
Dimethylamine .... 3218 
N,N.-Dimethylaniline ........... 3274 
9,10-Dimethylanthracene ....... 745 
7,12-Dimethylbenz[a]anthracene ............ 818 
9,10-Dimethylbenz[a]anthracene ............ 820 
4,4.-Dimethylbiphenyl............ 678 
2,3-Dimethyl-1,3-butadiene.... 328 
2,2-Dimethylbutane . 77 
2,3-Dimethylbutane . 79 
1,2-cis-Dimethylcyclohexane . 240 
1,4-trans-Dimethylcyclohexane .............. 245 
Dimethyl disulfide ................ 3391 
Dimethyl ether (methyl ether) ............... 2262 
1,3-Dimethylnaphthalene ....... 651 
1,4-Dimethylnaphthalene ....... 653 
1,5-Dimethylnaphthalene ....... 655 
2,3-Dimethylnaphthalene ....... 657 
2,6-Dimethylnaphthalene ....... 659 
2,2-Dimethylpentane .............. 101 
2,4-Dimethylpentane .............. 103 
3,3-Dimethylpentane .............. 105 
2,2-Dimethylpropane (Neopentane) .......... 67 
2,3-Dimethylphenol.............. 2821 
2,4-Dimethylphenol.............. 2825 
2,5-Dimethylphenol.............. 2831 
2,6-Dimethylphenol.............. 2834 
3,4-Dimethylphenol.............. 2838 
3,5-Dimethylphenol.............. 2842 
© 2006 by Taylor & Francis Group, LLC

Appendix 2 4145 
Dimethyl phthalate (DMP)... 3079 
2,3-Dimethylpyridine ........... 3362 
Dimethyl sulfate .. 3397 
Dimethyl sulfide .. 3386 
Dimethylsulfoxide (DMSO) . 3394 
Dinitramine.......... 3542 
4,6-Dinitro-o-cresol .............. 2950 
2,4-Dinitrophenol 2945 
2,4-Dinitrotoluene (DNT)..... 3313 
2,6-Dinitrotoluene ................ 3317 
Dinoseb................ 3544 
Di-isononyl phthalate (DINP) ............... 3127 
Di-n-octyl phthalate (DOP) .. 3113 
1,4-Dioxane ......... 2309 
Dipentyl phthalate (DPP) ..... 3106 
Diphenamid ......... 3547 
Diphenylamine .... 3279 
Diphenyl ether ..... 2355 
4-Diphenylmethane ................ 679 
Diphenyl nitrosamine ........... 3340 
Di-i-propyl ether .. 2280 
Di-n-propyl ether . 2276 
Di-n-propyl phthalate (DnPP) ............... 3092 
Diquat . 3549 
Disulfoton ............ 3832 
Dithianon ............. 4056 
Di-tridecyl phthalate (DTPP) ................ 3133 
Di-undecyl phthalate (DUP). 3131 
Diuron. 3551 
n-Dodecane............ 167 
Dodecylbenzene .... 569 
Edifenphos........... 4058 
Eicosane 194 
Endosulfan........... 3835 
Endrin . 3840 
Epichlorohydrin... 2313 
EPTC .. 3555 
Ethalfluralin......... 3558 
Ethanal (Acetaldehyde) ........ 2589 
Ethanethiol........... 3402 
Ethanol 2480 
Ethanolamine....... 3236 
Ethiofencarb ........ 3845 
Ethion . 3847 
Ethoprop ..............3849 
Ethoprophos......... 3849 
Ethyl acetate ........ 3041 
Ethylamine........... 3225 
Ethyl acrylate....... 3062 
Ethylbenzene ......... 439 
Ethyl benzoate ..... 3072 
Ethylcyclohexane... 249 
Ethyl formate ....... 3028 
Ethylene Glycol ... 2553 
2-Ethylhexyl diphenyl phosphate (EHPP)............... 3161 
© 2006 by Taylor & Francis Group, LLC

4146 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
1-Ethyl-2-methylbenzene ....... 505 
1-Ethyl-3-methylbenzene ....... 508 
1-Ethyl-4-methylbenzene ....... 512 
1-Ethylnaphthalene 661 
2-Ethylnaphthalene 665 
2-Ethylphenol ( o-Ethylphenol).............. 2850 
4-Ethylphenol ( p-Ethylphenol).............. 2853 
Etridiazole............ 4060 
Fenarimol............. 4062 
Fenfuram..............4064 
Fenitrothion ......... 3851 
Fenoprop..............3560 
Fenoxycarb .......... 3854 
Fenpropathrin ...... 3855 
Fensulfothion....... 3857 
Fenthion............... 3859 
Fenuron................ 3562 
Fenvalerate........... 3862 
Fluchloralin.......... 3564 
Flucythrinate........ 3865 
Fluometuron ........ 3566 
Fluoranthene.......... 759 
Fluorene 699 
Fluorobenzene ..... 1380 
Fluorodifen .......... 3568 
Fluoroethane........ 1209 
Fluoroethene........ 1209 
Fluoromethane..... 1209 
2-Fluoropropane .. 1209 
3-Fluoropropene .. 1209 
Fluridone..............3569 
Folpet .. 4065 
Fonofos ................ 3867 
Formaldehyde............. 2584, 4067 
Formic acid.......... 2688 
Furan... 2297 
Furfural (2-Furaldehyde) ...... 2609 
Glyphosate........... 3572 
Guaiacol............... 2968 
.-HCH 3869 
.-HCH 3876 
.-HCH 3881 
2,2.,3,4,5,5.,6-Heptabromodiphenyl ether (PBDE-183)........... 2450 
2.,3,3.,4,4.,5,6-Heptabromodiphenyl ether (PBDE-190).......... 2452 
Heptachlor ........... 3885 
Heptachlor epoxide............... 3890 
2,2.,3,3.,4,4.,5-Heptachlorobiphenyl (PCB-170)..... 1911 
2,2.,3,3.,4,4.,6-Heptachlorobiphenyl (PCB-171)..... 1913 
2,2.,3,3.,4,5,5.-Heptachlorobiphenyl (PCB-172)..... 1915 
2,2.,3,3.,4,5,6-Heptachlorobiphenyl (PCB-173)...... 1917 
2,2.,3,3.,4,5,6.-Heptachlorobiphenyl (PCB-174)..... 1919 
2,2.,3,3.,4,5.,6-Heptachlorobiphenyl (PCB-175)..... 1921 
2,2.,3,3.,4,6,6.-Heptachlorobiphenyl (PCB-176)..... 1923 
2,2.,3,3.,4,5.,6.-Heptachlorobiphenyl (PCB-177).... 1925 
2,2.,3,3.,5,5.,6-Heptachlorobiphenyl (PCB-178)..... 1927 
© 2006 by Taylor & Francis Group, LLC

Appendix 2 4147 
2,2.,3,3.,5,6,6.-Heptachlorobiphenyl (PCB-179)..... 1929 
2,2.,3,4,4.,5,5.-Heptachlorobiphenyl (PCB-180)..... 1931 
2,2.,3,4,4.,5,6-Heptachlorobiphenyl (PCB-181)...... 1935 
2,2.,3,4,4.,5,6.-Heptachlorobiphenyl (PCB-182)..... 1937 
2,2.,3,4,4.,5.,6-Heptachlorobiphenyl (PCB-183)..... 1939 
2,2.,3,4,4.,6,6.-Heptachlorobiphenyl (PCB-184)..... 1941 
2,2.,3,4,5,5.,6-Heptachlorobiphenyl (PCB-185)...... 1943 
2,2.,3,4,5,6,6.-Heptachlorobiphenyl (PCB-186)...... 1945 
2,2.,3,4.,5,5.,6-Heptachlorobiphenyl (PCB-187)..... 1947 
2,2.,3,4.,5,6,6.-Heptachlorobiphenyl (PCB-188)..... 1950 
2,3,3.4,4.,5,5.-Heptachlorobiphenyl (PCB-189)...... 1952 
2,3,3.,4,4.,5,6-Heptachlorobiphenyl (PCB-190)...... 1954 
2,3,3.,4,4.,5.,6-Heptachlorobiphenyl (PCB-191)..... 1956 
2,3,3.,4,5,5.,6-Heptachlorobiphenyl (PCB-192)...... 1958 
2,3,3.,4.,5,5.,6-Heptachlorobiphenyl (PCB-193)..... 1960 
1,2,3,4,6,7,8-Heptachlorodibenzo- p-dioxin ............ 2141 
1,2,3,4,7,8,9-Heptachlorodibenzo- p-dioxin ............ 2146 
1,2,3,4,6,7,8-Heptachlorodibenzofuran. 2234 
1,2,3,4,6,8,9-Heptachlorodibenzofuran. 2237 
1,2,3,4,7,8,9-Heptachlorodibenzofuran. 2239 
Heptachlorobiphenyls (isomer group) .... 2011 
2,2.,3,4,4.,5,5.-Heptachlorodiphenyl ether (PCDE-180).......... 2392 
2,2.,3,4,4.,5,6.-Heptachlorodiphenyl ether (PCDE-182).......... 2394 
2,2.,3,4,4.,6,6.-Heptachlorodiphenyl ether (PCDE-184).......... 2395 
1,2,3,4,5,6,7-Heptachloronaphthalene..... 871 
1,2,3,4,5,6,8-Heptachloronaphthalene..... 872 
n-Heptadecane ....... 187 
1,6-Heptadiene....... 337 
1,1,1,2,3,3,3-Heptafluoropropane.......... 1209 
n-Heptane .............. 129 
1-Heptanol ........... 2535 
2-Heptanone ........ 2655 
1-Heptene .............. 304 
1-Heptylbenzene.... 557 
1-Heptyne .............. 344 
Hexabromobenzene .............. 1429 
2,2.,4,4.,6,6.-Hexabromobiphenyl ........... 889 
2,2.,3,4,4.,5-Hexabromodiphenyl ether (PBDE-138)............... 2442 
2,2.,4,4.,5,5.-Hexabromodiphenyl ether (PBDE-153).............. 2443 
2,2.,4,4.,5,6.-Hexabromodiphenyl ether (PBDE-154).............. 2446 
2,3,3.,4,4.,5,-Hexabromodiphenyl ether (PBDE-156).............. 2448 
Hexachlorobenzene .... 1343, 4069 
2,2.3,3.,4,4.-Hexachlorobiphenyl (PCB-128).......... 1813 
2,2.,3,3.,4,5-Hexachlorobiphenyl (PCB-129).......... 1816 
2,2.,3,3.,4,5.-Hexachlorobiphenyl (PCB-130)......... 1818 
2,2.3,3.,4,6-Hexachlorobiphenyl (PCB-131)........... 1820 
2,2.,3,3.,4,6.-Hexachlorobiphenyl (PCB-132)......... 1822 
2,2.,3,3.,5,5.-Hexachlorobiphenyl (PCB-133)......... 1824 
2,2.,3,3.,5,6-Hexachlorobiphenyl (PCB-134).......... 1826 
2,2.,3,3.,5,6.-Hexachlorobiphenyl (PCB-135)......... 1828 
2,2.,3,3.,6,6.-Hexachlorobiphenyl (PCB-136)......... 1830 
2,2.,3,4,4.,5-Hexachlorobiphenyl (PCB-137).......... 1833 
2,2.,3,4,4.,5.-Hexachlorobiphenyl (PCB-138)......... 1835 
2,2.3,4,4.,6-Hexachlorobiphenyl (PCB-139)........... 1840 
2,2.,3,4,4.,6.-Hexachlorobiphenyl (PCB-140)......... 1842 
© 2006 by Taylor & Francis Group, LLC

4148 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2,2.,3,4,5,5.-Hexachlorobiphenyl (PCB-141).......... 1844 
2,2.,3,4,5,6-Hexachlorobiphenyl (PCB-142)........... 1847 
2,2.,3,4,5,6.-Hexachlorobiphenyl (PCB-143).......... 1849 
2,2.,3,4,5.,6,-Hexachlorobiphenyl (PCB-144)......... 1851 
2,2.,3,4,6,6.-Hexachlorobiphenyl (PCB-145).......... 1853 
2,2.,3,4.,5,5.-Hexachlorobiphenyl (PCB-146)......... 1855 
2,2.,3,4.,5,6-Hexachlorobiphenyl (PCB-147).......... 1857 
2,2.,3,4.,5,6.-Hexachlorobiphenyl (PCB-148)......... 1859 
2,2.,3,4.,5.,6-Hexachlorobiphenyl (PCB-149)......... 1861 
2,2.,3,4.,6,6.-Hexachlorobiphenyl (PCB-150)......... 1863 
2,2.,3,5,5.,6-Hexachlorobiphenyl (PCB-151).......... 1865 
2,2.,3,5,6,6.-Hexachlorobiphenyl (PCB-152).......... 1868 
2,2.,4,4.,5,5.-Hexachlorobiphenyl (PCB-153)......... 1870 
2,2.,4,4.,5,6.-Hexachlorobiphenyl (PCB154) .......... 1877 
2,2.,4,4.,6,6.-Hexachlorobiphenyl (PCB-155)......... 1879 
2,3,3.4,4.,5-Hexachlorobiphenyl (PCB-156)........... 1883 
2,3,3.4,4.,5.-Hexachlorobiphenyl (PCB-157).......... 1885 
2,3,3.,4,4.,6-Hexachlorobiphenyl (PCB-158).......... 1887 
2,3,3.,4,5,5.-Hexachlorobiphenyl (PCB-159).......... 1889 
2,3,3.,4,5,6-Hexachlorobiphenyl (PCB-160)........... 1891 
2,3,3.,4,5.,6-Hexachlorobiphenyl (PCB-161).......... 1893 
2,3,3.,4.,5,5.-Hexachlorobiphenyl (PCB-162)......... 1895 
2,3,3.,4.,5,6-Hexachlorobiphenyl (PCB-163).......... 1897 
2,3,3.,4.,5.,6-Hexachlorobiphenyl (PCB-164)......... 1899 
2,3,3.,5,5.,6-Hexachlorobiphenyl (PCB-165).......... 1901 
2,3,4,4.,5,6-Hexachlorobiphenyl (PCB-166)........... 1903 
2,3.,4,4.,5,5.-Hexachlorobiphenyl (PCB-167)......... 1905 
2,3.,4,4.,5.,6-Hexachlorobiphenyl (PCB-168)......... 1907 
3,3.,4,4.,5,5.-Hexachlorobiphenyl (PCB-169)......... 1909 
Hexachlorobiphenyls (isomer group) ..... 2009 
Hexachlorobutadiene ............ 1119 
Hexachlorocyclopentadiene.. 1121 
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin2128 
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin2133 
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin2136 
1,2,4,6,7,9-Hexachlorodibenzo-p-dioxin2139 
1,2,3,4,6,8-Hexachlorodibenzofuran ...... 2218 
1,2,3,4,7,8-Hexachlorodibenzofuran ...... 2220 
1,2,3,6,7,8-Hexachlorodibenzofuran ...... 2223 
1,2,3,7,8,9-Hexachlorodibenzofuran ...... 2226 
1,2,4,6,7,8-Hexachlorodibenzofuran ...... 2228 
1,2,4,6,8,9-Hexachlorodibenzofuran ...... 2230 
2,3,4,6,7,8-Hexachlorodibenzofuran ...... 2232 
2,2.,3,3.,4,4.-Hexachlorodiphenyl ether (PCDE-128) .............. 2381 
2,2.,3,4,4.,5-Hexachlorodiphenyl ether (PCDE-137) ............... 2382 
2,2.,3,4,4.,5.-Hexachlorodiphenyl ether (PCDE-138) .............. 2384 
2,2.,3,4,4.,6-Hexachlorodiphenyl ether (PCDE-140) ............... 2385 
2,2.,4,4.,5,5.-Hexachlorodiphenyl ether (PCDE-153) .............. 2386 
2,2.,4,4.,5,6.-Hexachlorodiphenyl ether (PCDE-154) .............. 2388 
2,3.,4,4.,5,5.-Hexachlorodiphenyl ether (PCDE-167) .............. 2390 
Hexachloroethane 1021 
1,2,3,4,5,7-Hexachloronaphthalene......... 867 
1,2,3,4,6,7-Hexachloronaphthalene......... 868 
1,2,3,5,6,7-Hexachloronaphthalene......... 869 
1,2,3,5,7,8-Hexachloronaphthalene......... 870 
© 2006 by Taylor & Francis Group, LLC

Appendix 2 4149 
Hexacosane............ 206 
Hexadecane............ 183 
1,5-Hexadiene........ 334 
Hexafluorobenzene............... 1401 
Hexafluoroethane 1209 
1,1,1,2,3,3-Hexafluoropropane.............. 1209 
1,1,1,3,3,3-Hexafluoropropane.............. 1209 
Hexafluoropropene............... 1209 
Hexamethylbenzene................ 550 
n-Hexane................114 
Hexanoic acid (Caproic acid) ................ 2712 
1-Hexanol ............ 2529 
2-Hexanone.......... 2650 
1-Hexene................299 
1-Hexyne ............... 342 
n-Hexylbenzene..... 553 
Hydroquinone (1,4-Dihydroxybenzene) 2964 
Imazalil ................ 4075 
Indan ..... 620 
Indeno[1,2,3-cd]pyrene .......... 826 
Indole.. 3346 
Iodobenzene......... 1437 
1-Iodobutane (n-Butyl iodide) ............... 1183 
Iodoethane (Ethyl iodide) ..... 1174 
Iodomethane ........ 1169 
1-Iodopentane ...... 1185 
1-Iodopropane (n-Propyl iodide) ........... 1178 
2-Iodopropane (i-Propyl iodide)............ 1181 
Isobutane (2-Methylpropane) ... 64 
Isobutanol (i-Butyl alcohol).. 2507 
Isobutylbenzene ..... 525 
Isobutyric acid ..... 2705 
Isodecyl diphenyl phosphate (IDDP) ..... 3163 
Isopentane................ 73 
Isopropalin........... 3575 
Isopropanol (i-Propyl alcohol) .............. 2491 
Isopropylbenzene... 500 
1-Isopropyl-4-methylbenzene. 516 
Isopropylphenyl diphenyl phosphate (IPPDP) ........ 3143 
Isoproturon .......... 3577 
Isoquinoline ......... 3369 
Kepone 3893 
lambda-Cyhalothrin.............. 3770 
Leptophos ............ 3896 
dextro-Limonene [(R)-(+)-limonene] ....... 371 
Lindane ( .-HCH). 3898 
Linuron ................ 3580 
Malathion............. 3912 
Mancozeb ............ 4077 
Maneb. 4078 
MCPA (4-chloro-2-methylphenoxy)acetic acid) ..... 3584 
MCPB (4-chloro-2-methylphenoxy)butanoic acid). 3587 
Mecoprop............. 3589 
Metalaxyl............. 4080 
Methanal (Formaldehyde) .... 2584 
© 2006 by Taylor & Francis Group, LLC

4150 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Methanethiol........ 3399 
Methanol..............2474 
Methiocarb........... 3916 
Methomyl ............ 3918 
Methoxychlor ...... 3920 
2-Methoxyphenol (Guaiacol) ................ 2968 
3-Methoxyphenol 2971 
4-Methoxyphenol 2972 
Methyl acetate ..... 3034 
Methyl acrylate.... 3060 
2-Methylanthracene................ 739 
9-Methylanthracene................ 742 
Methylbenzene (toluene) ........ 425 
Methyl benzoate .. 3069 
2-Methylbenzoic acid (o-Toluic acid) .... 2735 
3-Methylbenzoic acid (m-Toluic acid) ... 2738 
4-Methylbenzoic acid (p-Toluic acid) .... 2741 
4-Methylbiphenyl .. 677 
2-Methyl-1,3-butadiene (isoprene).......... 322 
2-Methylbutane (isopentane).... 73 
2-Methyl-1-butene . 276 
3-Methyl-1-butene . 280 
2-Methyl-2-butene . 283 
Methyl t-butyl ether (MTBE) ................ 2271 
Methyl butyl ketone (2-Hexanone)........ 2650 
Methyl chloride ..... 924 
3-Methylcholanthrene............. 821 
Methylcyclohexane 233 
1-Methylcyclohexene ............. 357 
Methylcyclopentane................ 217 
Methyl ethyl ketone (2-Butanone)......... 2626 
1-Methylfluorene... 708 
Methyl formate .... 3025 
2-Methylfuran...... 2301 
2-Methylheptane.... 137 
3-Methylheptane.... 139 
2-Methylhexane (Isoheptane) . 123 
3-Methylhexane..... 125 
Methyl iodide....... 1169 
Methyl isobutyl ketone (1-Hexanone) (MIBK)....... 2644 
Methyl methacrylate............. 3065 
1-Methylnaphthalene.............. 639 
2-Methylnaphthalene.............. 646 
4-Methyloctane...... 150 
2-Methylpentane (Isohexane) ... 93 
3-Methylpentane...... 98 
4-Methyl-2-pentanone (Methyl isobutyl ketone) .... 2644 
2-Methyl-1-pentene ................ 295 
4-Methyl-1-pentene ................ 297 
1-Methylphenanthrene............ 722 
2-Methylpropene ... 270 
2-Methylpyridine . 3354 
3-Methylpyridine . 3358 
.-Methylstyrene .... 582 
.-Methylstyrene .... 584 
© 2006 by Taylor & Francis Group, LLC

Appendix 2 4151 
o-Methylstyrene..... 586 
m-Methylstyrene.... 588 
p-Methylstyrene..... 591 
Metolachlor.......... 3591 
Metribuzin ........... 3595 
Mevinphos ........... 3925 
Mirex .. 3927 
Molinate............... 3597 
Monochlorobiphenyls (isomer group)... 1999 
Monocrotophos.... 3930 
Monolinuron ........ 3600 
Monuron ..............3602 
Naled... 3932 
Naphthacene .......... 785 
Naphthalene........... 623 
1-Naphthylamine (.-Aminonaphthalene) ............... 3289 
2-Naphthylamine (.-Aminonaphthalene) ............... 3291 
1-Naphthol........... 2865 
2-Naphthol........... 2868 
Napropamide ....... 3606 
Neburon ............... 3608 
Nitralin 3610 
Nitrapyrin ............ 4082 
2-Nitroaniline ...... 3293 
4-Nitroaniline ...... 3295 
Nitrobenzene........ 3297 
Nitrofen................ 3612 
1-Nitronaphthalene (.-Nitronaphthalene).............. 3326 
2-Nitrophenol ...... 2931 
3-Nitrophenol ...... 2937 
4-Nitrophenol ...... 2940 
N-Nitrosodimethylamine ...... 3336 
N-Nitrosodipropylamine....... 3338 
2-Nitrotoluene...... 3304 
4-Nitrotoluene...... 3308 
2,2.,3,3.,4,4.,5,5.,6-Nonachlorobiphenyl (PCB-206) ............... 1989 
2,2.,3,3.,4,4.,5,6,6.-Nonachlorobiphenyl (PCB-207) ............... 1991 
2,2.,3,3.,4,5,5.,6,6.-Nonachlorobiphenyl (PCB-208) ............... 1993 
Nonachlorobiphenyls (isomer group).... 2014 
2,2.,3,3.,4,4.,5,5.,6-Nonachlorodiphenyl ether (PCDE-206).... 2399 
n-Nonane ............... 152 
1-Nonanol ............ 2546 
1-Nonene ............... 311 
Nonylbenzene ........ 562 
4-Nonylphenol ..... 2862 
Nonylphenyl diphenyl phosphate (NPDPP) ............ 3147 
1-Nonyne ............... 348 
Norflurazon.......... 3614 
2,2.,3,3.,4,4.,5,5.-Octachlorobiphenyl (PCB-194)... 1962 
2,2.,3,3.,4,4.,5,6-Octachlorobiphenyl (PCB-195).... 1965 
2,2.,3,3.,4,4.,5,6.-Octachlorobiphenyl (PCB-196)... 1967 
2,2.,3,3.,4,4.,6,6.-Octachlorobiphenyl (PCB-197)... 1969 
2,2.,3,3.,4,5,5.,6-Octachlorobiphenyl (PCB-198).... 1971 
2,2.,3,3.,4,5,5.,6.-Octachlorobiphenyl (PCB-199)... 1973 
2,2.,3,3.,4,5,6,6.-Octachlorobiphenyl (PCB-200).... 1975 
© 2006 by Taylor & Francis Group, LLC

4152 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2,2.,3,3.,4,5.,6,6.-Octachlorobiphenyl (PCB-201)... 1977 
2,2.,3,3.,5,5.,6,6.-Octachlorobiphenyl (PCB-202)... 1979 
2,2.,3,4,4.,5,5.,6-Octachlorobiphenyl (PCB-203).... 1983 
2,2.,3,3,4.,5,6,6.-Octachlorobiphenyl (PCB-204).... 1985 
2,3,3.,4,4.,5,5.,6-Octachlorobiphenyl (PCB-205).... 1987 
Octachlorobiphenyls (isomer group) ...... 2013 
Octachlorodibenzo- p-dioxin. 2148 
Octachlorodibenzofuran ....... 2242 
2,2.,3,3.,4,4.,5,5.-Octachlorodiphenyl ether (PCDE-194)........ 2396 
2,2.,3,3.,4,4.,5,6.-Octachlorodiphenyl ether (PCDE-196)........ 2397 
2,2.,3,3.,4,4.,6,6.-Octachlorodiphenyl ether (PCDE-197)........ 2398 
Octachloronaphthalene........... 873 
Octachlorostyrene 1379 
n-Octadecane......... 190 
Octafluoropropane................ 1209 
n-Octane ................141 
1-Octanol (n-Octyl alcohol) . 2540 
1-Octene ................308 
Octylbenzene ......... 559 
4-Octylphenol ...... 2861 
1-Octyne ................346 
Oleic acid............. 2717 
Oryzalin ............... 3616 
Oxamyl ................ 3934 
Oxycarboxin ........ 4084 
Parathion..............3936 
Parathion-methyl . 3942 
PCP..... 2922 
Pebulate ............... 3618 
Penconazole......... 4086 
Pendimethalin ...... 3620 
2,2.,4,5,5.-Pentabromobiphenyl............... 888 
2,2.,3,3.,4-Pentabromodiphenyl ether (PBDE-82) .. 2430 
2,2.,3,4,4.-Pentabromodiphenyl ether (PBDE-85) .. 2431 
2,2.,4,4.,5-Pentabromodiphenyl ether (PBDE-99) .. 2433 
2,2.,4,4.,6-Pentabromodiphenyl ether (PBDE-100) 2436 
2,3,4,4.,6-Pentabromodiphenyl ether (PBDE-115) . 2439 
3,3.,4,4.,5-Pentabromodiphenyl ether (PBDE-126) 2440 
Pentacene............... 835 
Pentachlorobenzene.............. 1335 
2,2.,3,3.,4-Pentachlorobiphenyl (PCB-82) .............. 1706 
2,2.,3,3.,5-Pentachlorobiphenyl (PCB-83) .............. 1708 
2,2.,3,3.,6-Pentachlorobiphenyl (PCB-84) .............. 1710 
2,2.,3,4,4.-Pentachlorobiphenyl (PCB-85) .............. 1712 
2,2.,3,4,5-Pentachlorobiphenyl (PCB-86) ............... 1714 
2,2.,3,4,5.-Pentachlorobiphenyl (PCB-87) .............. 1716 
2,2.,3,4,6-Pentachlorobiphenyl (PCB-88) ............... 1719 
2,2.,3,4,6.-Pentachlorobiphenyl (PCB-89) .............. 1721 
2,2.,3,4.,5-Pentachlorobiphenyl (PCB-90) .............. 1723 
2,2.,3,4.,6-Pentachlorobiphenyl (PCB-91) .............. 1725 
2,2.,3,5,5.-Pentachlorobiphenyl (PCB-92) .............. 1727 
2,2.,3,5,6-Pentachlorobiphenyl (PCB-93) ............... 1729 
2,2.,3,5,6.-Pentachlorobiphenyl (PCB-94) .............. 1731 
2,2.,3,5.,6-Pentachlorobiphenyl (PCB-95) .............. 1733 
2,2.,3,6,6.-Pentachlorobiphenyl (PCB-96) .............. 1736 
© 2006 by Taylor & Francis Group, LLC

Appendix 2 4153 
2,2.,3,4.,5.-Pentachlorobiphenyl (PCB-97) ............. 1738 
2,2.,3,4.,6.-Pentachlorobiphenyl (PCB-98) ............. 1741 
2,2.,4,4.,5-Pentachlorobiphenyl (PCB-99) .............. 1743 
2,2.,4,4.,6-Pentachlorobiphenyl (PCB-100) ............ 1746 
2,2.,4,5,5.-Pentachlorobiphenyl (PCB-101) ............ 1748 
2,2.,4,5,6.-Pentachlorobiphenyl (PCB-102) ............ 1755 
2,2.,4,5.,6-Pentachlorobiphenyl (PCB-103) ............ 1757 
2,2.,4,6,6.-Pentachlorobiphenyl (PCB-104) ............ 1759 
2,3,3.,4,4.-Pentachlorobiphenyl (PCB-105) ............ 1761 
2,3,3.,4,5-Pentachlorobiphenyl (PCB-106) ............. 1765 
2,3,3.,4.,5-Pentachlorobiphenyl (PCB-107) ............ 1767 
2,3,3.,4,5.-Pentachlorobiphenyl (PCB-108) ............ 1769 
2,3,3.,4,6-Pentachlorobiphenyl (PCB-109) ............. 1771 
2,3,3.,4.,6-Pentachlorobiphenyl (PCB-110) ............ 1773 
2,3,3.,5,5.-Pentachlorobiphenyl (PCB-111) ............ 1776 
2,3,3.,5,6-Pentachlorobiphenyl (PCB-112) ............. 1778 
2,3,3.,5.,6-Pentachlorobiphenyl (PCB-113) ............ 1780 
2,3,4,4.,5-Pentachlorobiphenyl (PCB-114) ............. 1782 
2,3,4,4.,6-Pentachlorobiphenyl (PCB-115) ............. 1784 
2,3,4,5,6-Pentachlorobiphenyl (PCB-116) .............. 1786 
2,3,4.,5,6-Pentachlorobiphenyl (PCB-117) ............. 1788 
2,3.,4,4.,5-Pentachlorobiphenyl (PCB-118) ............ 1790 
2,3.,4,4.,6-Pentachlorobiphenyl (PCB-119) ............ 1794 
2,3.,4,5,5.-Pentachlorobiphenyl (PCB-120) ............ 1796 
2,3.,4,5.,6-Pentachlorobiphenyl (PCB-121) ............ 1798 
2,3,3.,4.,5.-Pentachlorobiphenyl (PCB-122) ........... 1800 
2,3.,4,4.,5.-Pentachlorobiphenyl (PCB-123) ........... 1802 
2,3.,4.,5,5.-Pentachlorobiphenyl (PCB-124) ........... 1804 
2,3.,4.,5.,6-Pentachlorobiphenyl (PCB-125) ........... 1807 
3,3.,4,4.,5-Pentachlorobiphenyl (PCB-126) ............ 1808 
3,3.,4,5,5.-Pentachlorobiphenyl (PCB-127) ............ 1811 
Pentachlorobiphenyls (isomer group).... 2007 
1,2,3,4,7-Pentachlorodibenzo-p-dioxin .. 2119 
1,2,3,7,8-Pentachlorodibenzo-p-dioxin .. 2123 
1,2,4,7,8-Pentachlorodibenzo-p-dioxin .. 2126 
1,2,3,4,7-Pentachlorodibenzofuran........ 2209 
1,2,3,7,8-Pentachlorodibenzofuran........ 2211 
1,2,4,7,8-Pentachlorodibenzofuran........ 2213 
2,3,4,7,8-Pentachlorodibenzofuran........ 2215 
2,2.,3,4,4.-Pentachlorodiphenyl ether (PCDE-85)... 2373 
2,2.,4,4.,5-Pentachlorodiphenyl ether (PCDE-99)... 2374 
2,2.,4,4.,6-Pentachlorodiphenyl ether (PCDE-100). 2376 
2,3,3.,4,4.-Pentachlorodiphenyl ether (PCDE-101). 2378 
2,3,3.,4,4.-Pentachlorodiphenyl ether (PCDE-105). 2379 
3,3.,4,4.,5-Pentachlorodiphenyl ether (PCDE-126). 2380 
2,3,3.,4,4.-Pentachlorodiphenyl ether (PCDE-128). 2381 
Pentachloroethane 1017 
1,2,3,4,6-Pentachloronaphthalene ........... 864 
1,2,3,5,7-Pentachloronaphthalene ........... 865 
1,2,3,5,8-Pentachloronaphthalene ........... 866 
Pentachlorophenol (PCP) ............ 2922, 3947 
Pentachlorotoluene ............... 1373 
Pentadecane ........... 179 
1,4-Pentadiene ....... 330 
Pentafluorobenzene .............. 1399 
© 2006 by Taylor & Francis Group, LLC

4154 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Pentafluoroethane 1209 
1,1,1,2,2-Pentafluoropropane ................ 1209 
1,1,1,3,3-Pentafluoropropane ................ 1209 
1,1,2,2,3-Pentafluoropropane ................ 1209 
Pentafluorophenol 1408 
Pentafluorotoluene................ 1404 
Pentamethylbenzene............... 545 
n-Pentane 85 
1-Pentanol ( n-Amyl alcohol)2523 
2-Pentanone......... 2634 
3-Pentanone......... 2639 
1-Pentene ............... 288 
cis-2-Pentene ......... 292 
Pentyl acetate....... 3057 
Pentylbenzene........ 547 
Pentylcyclopentane 223 
1-Pentyne............... 340 
Perfluorobutane ... 1209 
Perfluorocyclobutane............ 1209 
Perfluorocyclohexane ........... 1209 
Perfluorocyclopentane.......... 1209 
Perfluorohexane... 1209 
Perfluoro-2-methylcyclopentane ........... 1209 
Perfluoro-3-methylcyclopentane ........... 1209 
Perfluoropentane.. 1209 
Permethrin ........... 3953 
Perylene 814 
Phenanthrene ......... 709 
Phenetole ............. 2348 
Phenol . 2781 
Phenthoate ........... 3957 
Phenylacetic acid . 2745 
2-Phenylphenol (2-Hydroxybiphenyl)... 2872 
4-Phenylphenol (4-Hydroxybiphenyl)... 2875 
Phorate 3959 
Phosmet ............... 3962 
Phthalic acid ........ 2748 
Picloram............... 3622 
.-Pinene ................373 
.-Pinene 379 
Pirimicarb ............ 3964 
Procymidone........ 4088 
Profluralin............ 3626 
Prometon..............3628 
Prometryn ............ 3631 
Pronamide............ 3634 
Propachlor............ 3636 
Propanal (Propionaldehyde) . 2595 
1-Propanethiol ..... 3406 
Propanil................ 3639 
Propanol (n-Propyl alcohol) . 2486 
Propargite ............ 4090 
Propazine ............. 3642 
2-Propenal (Acrolein)........... 2605 
Propham............... 3645 
© 2006 by Taylor & Francis Group, LLC

Appendix 2 4155 
Propiconazole ...... 4091 
Propionic acid...... 2697 
Propionitrile......... 3203 
Propoxur ..............3966 
Propyl acetate ...... 3047 
n-Propylamine ..... 3231 
n-Propylbenzene .... 493 
n-Propyl benzoate 3075 
n-Propylcyclopentane ............. 221 
1,2-Propylene oxide.............. 2293 
Propyl formate ..... 3031 
4-Propylphenol .... 2857 
Pyrazon ................ 3647 
Pyrene ... 748 
Pyridine................ 3348 
Pyrrole 3342 
Quinoline ............. 3365 
Quintozene........... 4093 
Resorcinol (1,3-Dihydroxybenzene) ...... 2961 
Ronnel. 3969 
Salicylic acid ....... 2757 
Simazine ..............3649 
Stearic (Octadecanoic) acid.. 2716 
trans-Stilbene ........ 685 
Styrene.. 576 
Styrene oxide ....... 2353 
Syringol ............... 2989 
2,4,5-T 3653 
Terbacil ................ 3657 
Terbufos ............... 3971 
Terbutryn ............. 3659 
o-Terphenyl............ 780 
m-Terphenyl........... 781 
p-Terphenyl............ 783 
1,2,4,5-Tetrabromobenzene .. 1427 
2,2.,5,5.-Tetrabromobiphenyl . 887 
2,2.,4,4.-Tetrabromodiphenyl ether (PBDE-47) ...... 2422 
2,3.,4,4.-Tetrabromodiphenyl ether (PBDE-66) ...... 2425 
2,4,4.,6-Tetrabromodiphenyl ether (PBDE-69) ....... 2427 
3,3.,4,4.-Tetrabromodiphenyl ether (PBDE-77) ...... 2428 
2,3,4,5-Tetrachloroanisole .... 2341 
2,3,5,6-Tetrachloroanisole .... 2342 
1,2,3,4-Tetrachlorobenzene .. 1320 
1,2,3,5-Tetrachlorobenzene .. 1326 
1,2,4,5-Tetrachlorobenzene .. 1330 
2,2.,3,3.-Tetrachlorobiphenyl (PCB-40). 1601 
2,2.,3,4-Tetrachlorobiphenyl (PCB-41).. 1604 
2,2.,3,4.-Tetrachlorobiphenyl (PCB-42). 1606 
2,2.,3,5-Tetrachlorobiphenyl (PCB-43).. 1608 
2,2.,3,5.-Tetrachlorobiphenyl (PCB-44). 1610 
2,2.,3,6-Tetrachlorobiphenyl (PCB-45).. 1613 
2,2.,3,6.-Tetrachlorobiphenyl (PCB-46). 1615 
2,2.,4,4.-Tetrachlorobiphenyl (PCB-47). 1617 
2,2.,4,5-Tetrachlorobiphenyl (PCB-48).. 1620 
2,2.,4,5.-Tetrachlorobiphenyl (PCB-49). 1622 
© 2006 by Taylor & Francis Group, LLC

4156 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2,2.4,6-Tetrachlorobiphenyl (PCB-50)... 1625 
2,2.,4,6.-Tetrachlorobiphenyl (PCB-51). 1627 
2,2.,5,5.-Tetrachlorobiphenyl (PCB-52). 1629 
2,2.,5,6.-Tetrachlorobiphenyl (PCB-53). 1636 
2,2.,6,6.-Tetrachlorobiphenyl (PCB-54). 1639 
2,3,3.,4-Tetrachlorobiphenyl (PCB-55).. 1641 
2,3,3.,4.-Tetrachlorobiphenyl (PCB-56). 1643 
2,3,3.,5-Tetrachlorobiphenyl (PCB-57).. 1645 
2,3,3.,5.-Tetrachlorobiphenyl (PCB-58). 1647 
2,3,3.,6-Tetrachlorobiphenyl (PCB-59).. 1649 
2,3,4,4.-Tetrachlorobiphenyl (PCB-60).. 1651 
2,3,4,5-Tetrachlorobiphenyl (PCB-61)... 1654 
2,3,4,6-Tetrachlorobiphenyl (PCB-62)... 1658 
2,3,4.,5-Tetrachlorobiphenyl (PCB-63).. 1660 
2,3,4.,6-Tetrachlorobiphenyl (PCB-64).. 1662 
2,3,5,6-Tetrachlorobiphenyl (PCB-65)... 1664 
2,3.,4,4.-Tetrachlorobiphenyl (PCB-66). 1666 
2,3.,4,5-Tetrachlorobiphenyl (PCB-67).. 1670 
2,3.,4,5.-Tetrachlorobiphenyl (PCB-68). 1672 
2,3., 4,6-Tetrachlorobiphenyl (PCB-69). 1674 
2,3.,4.,5-Tetrachlorobiphenyl (PCB-70). 1676 
2,3.,4.,6-Tetrachlorobiphenyl (PCB-71). 1680 
2,4.,5,5.-Tetrachlorobiphenyl (PCB-72). 1682 
2,3.,5.,6-Tetrachlorobiphenyl (PCB-73). 1684 
2,4,4.,6-Tetrachlorobiphenyl (PCB-74).. 1686 
2,4,4.,6-Tetrachlorobiphenyl (PCB-75).. 1689 
2,3.,4.,5.-Tetrachlorobiphenyl (PCB-76) 1691 
3,3.,4,4.-Tetrachlorobiphenyl (PCB-77). 1693 
3,3.,4,5-Tetrachlorobiphenyl (PCB-78).. 1698 
3,3.,4,5.-Tetrachlorobiphenyl (PCB-79). 1700 
3,3.,5,5.-Tetrachlorobiphenyl (PCB-80). 1702 
3,4,4.,5-Tetrachlorobiphenyl (PCB-81).. 1704 
Tetrachlorobiphenyls (isomer group) ..... 2005 
Tetrachlorocatechol .............. 2959 
1,2,3,4-Tetrachlorodibenzo-p-dioxin..... 2092 
1,2,3,7-Tetrachlorodibenzo-p-dioxin..... 2096 
1,2,7,8-Tetrachlorodibenzo-p-dioxin..... 2100 
1,3,6,8-Tetrachlorodibenzo-p-dioxin..... 2102 
1,3,7,8-Tetrachlorodibenzo-p-dioxin..... 2107 
1,3,7,9-Tetrachlorodibenzo-p-dioxin..... 2109 
2,3,7,8-Tetrachlorodibenzo-p-dioxin..... 2111 
1,2,3,4-Tetrachlorodibenzofuran ........... 2193 
1,2,3,7-Tetrachlorodibenzofuran ........... 2195 
1,2,7,8-Tetrachlorodibenzofuran ........... 2197 
1,3,6,8-Tetrachlorodibenzofuran ........... 2199 
1,3,7,8-Tetrachlorodibenzofuran ........... 2201 
1,3,7,9-Tetrachlorodibenzofuran ........... 2203 
2,3,7,8-Tetrachlorodibenzofuran ........... 2205 
1,1,2,2-Tetrachloro-1,2-difluoroethane .. 1207 
2,2.,4,4.-Tetrachlorodiphenyl ether (PCDE-47) ...... 2368 
2,3.,4,4.-Tetrachlorodiphenyl ether (PCDE-66) ...... 2369 
2,4,4.,5-Tetrachlorodiphenyl ether (PCDE-74) ....... 2370 
3,3.,4,4.-Tetrachlorodiphenyl ether (PCDE-77) ...... 2371 
1,1,1,2-Tetrachloroethane ..... 1004 
1,1,2,2-Tetrachloroethane ..... 1009 
© 2006 by Taylor & Francis Group, LLC

Appendix 2 4157 
Tetrachloroethylene .............. 1104 
3,4,5,6-Tetrachloroguaiacol.. 2981 
Tetrachloromethane ................ 950 
1,2,3,4-Tetrachloronaphthalene............... 857 
1,2,3,5-Tetrachloronaphthalene............... 859 
1,3,5,7-Tetrachloronaphthalene............... 860 
1,3,5,8-Tetrachloronaphthalene............... 862 
2,3,4,5-Tetrachlorophenol .... 2916 
2,3,4,6-Tetrachlorophenol .... 2918 
2,3,5,6-Tetrachlorophenol .... 2921 
2,4,4.,6-Tetrachloro-p-terphenyl.............. 841 
Tetrachloroveratrole.............. 2347 
n-Tetracosane......... 201 
n-Tetradecane ........ 175 
Tetradecylbenzene . 574 
1,2,3,4-Tetrafluorobenzene... 1393 
1,2,3,5-Tetrafluorobenzene... 1395 
1,2,4,5-Tetrafluorobenzene... 1397 
1,1,1,2-Tetrafluoroethane ..... 1209 
1,1,2,2-Tetrafluoroethane ..... 1209 
Tetrafluoroethene. 1209 
Tetrafluoromethane............... 1209 
Tetrahydrofuran ... 2303 
Tetrahydropyran... 2307 
Tetralin.. 594 
1,2,3,4-Tetramethylbenzene ... 536 
1,2,3,5-Tetramethylbenzene ... 539 
1,2,4,5-Tetramethylbenzene ... 542 
Thioacetamide ..... 3425 
Thiobencarb......... 3662 
Thiodicarb............ 3973 
Thiophanate-methyl.............. 4095 
Thiophene ............ 3415 
Thiourea............... 3423 
Thiram 4097 
Tolclofos-methyl.. 4099 
Toluene . 425 
o-Toluic acid ........ 2735 
m-Toluic acid ....... 2738 
p-Toluic acid ........ 2741 
o-Toluidine (2-Methylbenzeneamine) .... 3263 
m-Toluidine (3-Methylbenzeneamine) ... 3267 
p-Toluidine (4-Methylbenzeneamine) .... 3270 
Tolylfluanid ......... 4101 
Toxaphene............ 3975 
Triadimefon ......... 4103 
Triallate................ 3664 
1,2,3-Tribromobenzene ........ 1423 
1,2,4-Tribromobenzene ........ 1424 
1,3,5-Tribromobenzene ........ 1425 
2,4,6-Tribromobiphenyl.......... 886 
2,2.,4-Tribromodiphenyl ether (BDE-17)................ 2412 
2,4,4.-Tribromodiphenyl ether (BDE-28)................ 2414 
2,4,6-Tribromodiphenyl ether (BDE-30)2417 
2,4.,6-Tribromodiphenyl ether (BDE-32)................ 2418 
© 2006 by Taylor & Francis Group, LLC

4158 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.,3,4-Tribromodiphenyl ether (BDE-33)................ 2419 
3,3.,4-Tribromodiphenyl ether (BDE-35)................ 2420 
3,4,4.-Tribromodiphenyl ether (BDE-37)................ 2421 
Tribromomethane 1134 
Tributyl phosphate (TBP) ..... 3165 
Trichlorfon........... 3980 
Trichloroacetic acid .............. 2725 
2,3,4-Trichloroanisole .......... 2339 
2,4,6-Trichloroanisole .......... 2340 
1,2,3-Trichlorobenzene......... 1298 
1,2,4-Trichlorobenzene......... 1305 
1,3,5-Trichlorobenzene......... 1314 
2,2.,3-Trichlorobiphenyl (PCB-16) ........ 1542 
2,2.,4-Trichlorobiphenyl (PCB-17) ........ 1545 
2,2.,5-Trichlorobiphenyl (PCB-18) ........ 1547 
2,2.,6-Trichlorobiphenyl (PCB-19) ........ 1551 
2,3,3.-Trichlorobiphenyl (PCB-20) ........ 1553 
2,3,4-Trichlorobiphenyl (PCB-21) ........ 1555 
2,3,4.-Trichlorobiphenyl (PCB-22) ........ 1557 
2,3,5-Trichlorobiphenyl (PCB-23) ........ 1559 
2,3,6-Trichlorobiphenyl (PCB-24) ........ 1561 
2,3.,4-Trichlorobiphenyl (PCB-25) ........ 1564 
2,3.,5-Trichlorobiphenyl (PCB-26) ........ 1566 
2,3.,6-Trichlorobiphenyl (PCB-27) ........ 1568 
2,4,4.-Trichlorobiphenyl (PCB-28) ........ 1570 
2,4,5-Trichlorobiphenyl (PCB-29) ........ 1574 
2,4,6-Trichlorobiphenyl (PCB-30) ........ 1578 
2,4.,5-Trichlorobiphenyl (PCB-31) ........ 1580 
2,4.,6.-Trichlorobiphenyl (PCB-32) ....... 1584 
2,3.,4.-Trichlorobiphenyl (PCB-33) ....... 1586 
2,3.,5.-Trichlorobiphenyl (PCB-34) ....... 1589 
3,3.,4-Trichlorobiphenyl (PCB-35) ........ 1591 
3,3.,5-Trichlorobiphenyl (PCB-36) ........ 1593 
3,4,4.-Trichlorobiphenyl (PCB-37) ........ 1595 
3,4,5-Trichlorobiphenyl (PCB-38) ........ 1597 
3,4.,5-Trichlorobiphenyl (PCB-39) ........ 1599 
Trichlorobiphenyls (isomer group)........ 2003 
3,4,5-Trichlorocatechol ........ 2958 
1,2,4-Trichlorodibenzo-p-dioxin ........... 2083 
1,3,7-Trichlorodibenzo-p-dioxin ........... 2086 
2,3,7-Trichlorodibenzo-p-dioxin ........... 2089 
2,3,8-Trichlorodibenzofuran. 2186 
2,4,6-Trichlorodibenzofuran. 2188 
2,4,8-Trichlorodibenzofuran. 2190 
2,4,4.-Trichlorodiphenyl ether (PCDE-28).............. 2364 
2,4,5-Trichlorodiphenyl ether (PCDE-29)............... 2365 
2,4.,5-Trichlorodiphenyl ether (PCDE-31).............. 2367 
1,1,1-Trichloroethane ............. 985 
1,1,2-Trichloroethane ............. 996 
Trichloroethylene. 1091 
Trichlorofluoromethane........ 1199 
3,4,5-Trichloroguaiacol ........ 2977 
4,5,6-Trichloroguaiacol ........ 2979 
Trichloromethane (chloroform)............... 939 
1,2,3-Trichloronaphthalene .... 854 
© 2006 by Taylor & Francis Group, LLC

Appendix 2 4159 
1,3,7-Trichloronaphthalene .... 855 
2,3,4-Trichlorophenol ........... 2903 
2,4,5-Trichlorophenol ........... 2905 
2,4,6-Trichlorophenol ........... 2910 
1,2,3-Trichloropropane......... 1038 
Trichlorosyringol . 2992 
2,4.,5-Trichloro-p-terphenyl ... 840 
2,3,6-Trichlorotoluene.......... 1365 
2,4,5-Trichlorotoluene.......... 1366 
., ., .-Trichlorotoluene ........ 1371 
1,1,1-Trichloro-2,2,2-trifluoroethane ..... 1209 
1,1,2-Trichloro-1,2,2-trifluoroethane ..... 1203 
Trichlorotrifluoropropane..... 1209 
3,4,5-Trichloroveratrole........ 2346 
Triclopyr ..............3668 
Tricresyl phosphate (TCP).... 3152 
n-Tridecane............ 172 
Tridecylbenzene..... 572 
Triethanolamine... 3241 
1,2,4-Trifluorobenzene ......... 1390 
1,3,5-Trifluorobenzene ......... 1391 
1,1,1-Trifluoroethane............ 1209 
1,1,2-Trifluoroethane............ 1209 
Trifluoromethane. 1209 
Triflumizole......... 4105 
Trifluralin............. 3670 
Triforine............... 4107 
1,2,3-Triiodobenzene............ 1444 
1,2,4-Triiodobenzene............ 1445 
1,3,5-Triiodobenzene............ 1446 
Trimethylamine ... 3222 
1,2,3-Trimethylbenzene.......... 476 
1,2,4-Trimethylbenzene.......... 481 
1,3,5-Trimethylbenzene.......... 486 
2,2,3-Trimethylbutane .............. 83 
1,1,3-Trimethylcyclohexane ... 247 
1,1,3-Trimethylcyclopentane..219 
2,2,5-Trimethylhexane............ 127 
1,4,5-Trimethylnaphthalene.... 668 
2,2,4-Trimethylpentane (Isooctane) ........ 109 
2,3,4-Trimethylpentane .......... 112 
2,3,5-Trimethylphenol .......... 2845 
2,4,6-Trimethylphenol .......... 2848 
3,4,5-Trimethylphenol .......... 2849 
2,4,6-Trinitrophenol (Picric acid) .......... 2948 
2,4,6-Trinitrotoluene (TNT) . 3320 
Triphenylene .......... 777 
Triphenyl phosphate (TPP)... 3149 
Tris(2-chloroethyl) phosphate (TCEP)... 3171 
Tris(1,3-dibromopropyl) phosphate (TDBPP) ........ 3175 
Tris(1,3-dichloropropyl) phosphate (TDCPP)......... 3173 
Tris(2-ethylhexyl) phosphate (TEHP) .... 3169 
Trixylenyl phosphate (TXP). 3157 
n-Undecane............ 164 
Undecylbenzene .... 567 
© 2006 by Taylor & Francis Group, LLC

4160 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Urea .... 3333 
n-Valeric acid....... 2708 
Vanillin ................ 2983 
Veratrole ..............2343 
Vernolate..............3677 
Vinclozolin .......... 4108 
Vinyl acetate ........ 3038 
Vinyl bromide ...... 1167 
Vinyl chloride (Chloroethene) ............... 1063 
Warfarin ............... 4110 
o-Xylene ................450 
m-Xylene ............... 459 
p-Xylene ................467 
2,6-Xylidine (2,6-Dimethylbenzamine) . 3277 
Zineb... 4112 
Ziram .. 4114 
© 2006 by Taylor & Francis Group, LLC

4161 
Appendix 3 
3.1 CAS REGISTRY NUMBER INDEX 
50-00-0 Methanal (formaldehyde) 2584 
50-29-3 DDT (p,p.-DDT) . . . . . . . 3785 
50-32-8 Benzo[a]pyrene . . . . . . . . 804 
52-68-6 Trichlorfon . . . . . . . . . . . 3980 
53-10-0 o,p.-DDD . . . . . . . . . . . . 3774 
53-70-3 Dibenz[a,h]anthracene . . . 830 
55-21-0 Benzamide . . . . . . . . . . . 3331 
55-38-9 Fenthion . . . . . . . . . . . . . 3859 
56-23-5 Carbon tetrachloride . . . . . 950 
56-38-2 Parathion . . . . . . . . . . . . . 3936 
56-49-5 3-Methylcholanthrene . . . . 821 
56-55-3 Benz[a]anthracene . . . . . . 788 
56-56-4 9,10-Dimethylbenz[a]anthracene . . . . . . . . . . . . 818 
57-11-4 Stearic (Octadecanoic) acid . . . . . . . . . . . . . . . 2716 
57-13-6 Urea . . . . . . . . . . . . . . . . 3333 
57-28-5 2,4-Dinitrophenol . . . . . . 2945 
57-74-9 Chlordane . . . . . . . . . . . . 3750 
57-97-6 7,12-Dimethylbenz[a]anthracene . . . . . . . . . . . . 818 
58-70-3 Dibenz[a,j]anthracene . . . 834 
58-89-9 Lindane (.-HCH) . . . . . . 3898 
58-90-3 2,3,4,6-Tetrachlorophenol . . . . . . . . . . . . . . . . 2918 
59-50-7 4-Chloro-m-cresol . . . . . . 2930 
60-29-7 Diethyl ether (Ethyl ether) . . . . . . . . . . . . . . . . 2266 
60-35-5 Acetamide . . . . . . . . . . . . 3328 
60-51-5 Dimethoate . . . . . . . . . . . 3829 
60-57-1 Dieldrin . . . . . . . . . . . . . . 3819 
61-82-5 Amitrole . . . . . . . . . . . . . 3469 
62-53-3 Aniline . . . . . . . . . . . . . . 3243 
62-55-5 Thioacetamide . . . . . . . . 3425 
62-56-6 Thiourea . . . . . . . . . . . . . 3423 
62-73-7 Dichlorvos . . . . . . . . . . . 3811 
62-75-9 N-Nitrosodimethylamine 3336 
63-25-2 Carbaryl . . . . . . . . . . . . . 3738 
64-17-5 Ethanol . . . . . . . . . . . . . . 2480 
64-18-6 Formic acid . . . . . . . . . . . 2688 
64-19-7 Acetic acid . . . . . . . . . . . 2692 
65-85-0 Benzoic acid . . . . . . . . . . 2728 
67-56-1 Methanol . . . . . . . . . . . . . 2474 
67-63-0 Isopropanol . . . . . . . . . . . 2491 
67-64-1 Acetone . . . . . . . . . . . . . . 2619 
67-66-3 Chloroform . . . . . . . . . . . . 939 
© 2006 by Taylor & Francis Group, LLC

4162 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
67-68-5 Dimethylsulfoxide (DMSO) . . . . . . . . . . . . . . . 3394 
67-72-1 Hexachloroethane . . . . . . 1021 
69-72-7 Salicylic acid . . . . . . . . . 2757 
71-23-8 Propanol . . . . . . . . . . . . . 2595 
71-36-3 n-Butanol . . . . . . . . . . . . 2497 
71-41-0 n-Pentanol (1-Pentanol) . 2523 
71-43-2 Benzene . . . . . . . . . . . . . . 407 
71-55-6 1,1,1-Trichloroethane . . . . 985 
72-20-8 Endrin . . . . . . . . . . . . . . . 3840 
72-43-5 Methoxychlor . . . . . . . . . 3920 
72-54-8 DDD (p,p.-DDD) . . . . . . 3774 
72-55-9 DDE (p,p.-DDE) . . . . . . . 3779 
74-11-3 4-Chlorobenzoic acid . . . 2755 
74-83-9 Bromomethane . . . . . . . . 1123 
74-87-3 Chloromethane (Methyl chloride) . . . . . . . . . . . 924 
74-88-4 Methyl iodide . . . . . . . . . 1169 
74-93-1 Methanethiol . . . . . . . . . . 3399 
74-95-3 Dibromomethane . . . . . . 1128 
74-96-4 Bromoethane (Ethyl bromide) . . . . . . . . . . . . . 1139 
74-97-5 Bromochloromethane . . . 1186 
75-00-3 Chloroethane (Ethyl chloride) . . . . . . . . . . . . . . 960 
75-01-4 Vinyl chloride . . . . . . . . . 1063 
75-02-5 Fluoroethene . . . . . . . . . . 1209 
75-03-6 Iodoethane (Ethyl iodide) 1174 
75-04-7 Ethylamine . . . . . . . . . . . 3225 
75-05-8 Acetonitrile . . . . . . . . . . . 3197 
75-07-0 Ethanal (Acetaldehyde) . 2589 
75-08-1 Ethanethiol . . . . . . . . . . . 3402 
75-09-2 Dichloromethane . . . . . . . 930 
75-10-5 Difluoromethane . . . . . . . 1209 
75-15-0 Carbon disulfide . . . . . . . 3383 
75-18-3 Dimethyl sulfide . . . . . . . 3386 
75-25-2 Tribromomethane . . . . . . 1134 
75-26-3 2-Bromopropane . . . . . . . 1152 
75-27-4 Bromodichloromethane . 1188 
75-28-5 Isobutane (2-Methylpropane) . . . . . . . . . . . . . . . . 64 
75-29-6 2-Chloropropane . . . . . . . 1028 
75-30-9 2-Iodopropane . . . . . . . . . 1181 
75-34-3 1,1-Dichloroethane . . . . . . 966 
75-35-4 1,1-Dichloroethene . . . . . 1070 
75-37-6 1,1-Difluoroethane . . . . . 1209 
75-38-7 1,1-Difluoroethene . . . . . 1209 
75-43-4 Dichlorofluoromethane . . 1209 
75-45-6 Chlorodifluoromethane . . 1193 
75-46-7 Trifluoromethane . . . . . . 1209 
75-50-3 Trimethylamine . . . . . . . 3222 
75-56-9 1,2-Propylene oxide . . . . 2293 
75-65-0 tert-Butyl alcohol . . . . . . 2518 
75-68-3 1-Chloro-1,1-difluoroethane . . . . . . . . . . . . . . . 1209 
75-69-4 Trichlorofluoromethane . 1199 
75-71-8 Dichlorodifluoromethane 1196 
75-72-9 Chlorotrifluoromethane . 1209 
75-73-0 Tetrafluoromethane . . . . . 1209 
75-83-2 2,2-Dimethylbutane . . . . . . 77 
75-99-0 Dalapon . . . . . . . . . . . . . . 3522 
© 2006 by Taylor & Francis Group, LLC

Appendix 3 4163 
76-01-7 Pentachloroethane . . . . . . 1017 
76-03-9 Trichloroacetic acid . . . . 2725 
76-06-2 Chloropicrin . . . . . . . . . . 4046 
76-12-0 1,1,2,2-Tetrachloro-1,2-difluoroethane . . . . . . 1207 
76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane . . . . . . . . 1203 
76-14-2 1,2-Dichloro-1,1,2,2-tetrafluoroethane . . . . . . . 1209 
76-15-3 1-Chloropentafluoroethane . . . . . . . . . . . . . . . . 1209 
76-16-4 Hexafluoroethane . . . . . . 1209 
76-19-7 Octafluoropropane . . . . . 1209 
76-44-8 Heptachlor . . . . . . . . . . . 3885 
77-47-4 Hexachlorocyclopentadiene . . . . . . . . . . . . . . . 1121 
77-78-1 Dimethyl sulfate . . . . . . . 3397 
78-30-8 Tricresyl phosphate (o-TCP) . . . . . . . . . . . . . . 3152 
78-31-9 Cresyl diphenyl phosphate (p-CDP) . . . . . . . . . 3141 
78-32-0 Tricresyl phosphate (p-TCP) . . . . . . . . . . . . . . 3152 
78-42-2 Tris(2-ethylhexyl) phosphate . . . . . . . . . . . . . . 3169 
78-75-1 1,2-Dibromopropane . . . 1154 
78-78-4 2-Methylbutane (Isopentane) . . . . . . . . . . . . . . . . 73 
78-79-5 2-Methyl-1,3-butadiene (Isoprene) . . . . . . . . . . . 322 
78-83-1 Isobutanol . . . . . . . . . . . . 2507 
78-86-4 2-Chlorobutane . . . . . . . . 1045 
78-87-5 1,2-Dichloropropane . . . . 1031 
78-92-2 sec-Butyl alcohol . . . . . . 2511 
78-93-3 2-Butanone (Methyl ethyl ketone) . . . . . . . . . . 2626 
79-00-5 1,1,2-Trichloroethane . . . . 996 
79-01-6 Trichloroethylene . . . . . . 1091 
79-06-1 Acrylamide . . . . . . . . . . . 3330 
79-09-4 Propionic acid . . . . . . . . . 2697 
79-10-7 Acrylic acid (2-Propenoic acid) . . . . . . . . . . . . 2718 
79-11-8 Chloroacetic acid . . . . . . 2720 
79-20-9 Methyl acetate . . . . . . . . 3034 
79-29-8 2,3-Dimethylbutane . . . . . . 79 
79-31-2 Isobutyric acid . . . . . . . . 2705 
79-34-5 1,1,2,2-Tetrachloroethane 1004 
79-35-6 1,1-Dichloro-2,2-difluoroethene . . . . . . . . . . . . 1209 
79-38-9 Chlorotrifluoroethene . . . 1209 
79-43-6 Dichloroacetic acid . . . . . 2723 
80-62-6 Methyl methacrylate . . . . 3065 
81-61-6 1,2,3-Trichlorobenzene . . 1298 
81-81-2 Warfarin . . . . . . . . . . . . . 4110 
82-68-8 Quintozene . . . . . . . . . . . 4093 
83-53-4 1,4-Dibromonaphtalene . . 882 
83-32-9 Acenaphthene . . . . . . . . . . 691 
84-66-2 Diethyl phthalate (DEP) . 3084 
84-69-5 Di-isobutyl phthalate . . . 3104 
84-74-2 Di-n-butyl phthalate (DBP) . . . . . . . . . . . . . . . 3095 
84-75-3 Di-n-hexyl phthalate . . . . 3108 
85-01-8 Phenanthrene . . . . . . . . . . 709 
85-02-9 Benzo[f]quinoline . . . . . . 3372 
85-68-7 Butylbenzyl phthalate . . . 3135 
85-69-8 Butyl 2-ethylhexyl phthalate . . . . . . . . . . . . . . 3111 
86-30-6 Diphenyl nitrosamine . . . 3340 
86-50-0 Azinphos-methyl . . . . . . 3729 
86-57-7 1-Nitronaphthalene (.-Nitronaphthalene) . . . . 3326 
86-73-7 Fluorene . . . . . . . . . . . . . . 699 
© 2006 by Taylor & Francis Group, LLC

4164 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
86-74-8 Carbazole . . . . . . . . . . . . 3375 
87-40-1 2,4,6-Trichloroanisole . . 2340 
87-62-7 2,6-Xylidine (2,6-Dimethylbenzamine) . . . . . . 3277 
87-65-0 2,6-Dichlorophenol . . . . . 2898 
87-68-3 Hexachlorobutadiene . . . 1110 
87-82-1 Hexabromobenzene . . . . 1429 
87-86-5 Pentachlorophenol (PCP) 2922 
87-95-4 Hexamethylbenzene . . . . . 550 
88-06-2 2,4,6-Trichlorophenol . . . 2910 
88-72-2 2-Nitrotoluene . . . . . . . . . 3304 
88-74-4 2-Nitroaniline . . . . . . . . . 3293 
88-75-5 2-Nitrophenol . . . . . . . . . 2931 
88-85-7 Dinoseb . . . . . . . . . . . . . . 3544 
88-89-1 2,4,6-Trinitrophenol (Picric acid) . . . . . . . . . . . 2948 
88-99-3 Phthalic acid . . . . . . . . . . 2748 
90-00-6 o-Ethylphenol . . . . . . . . . 2850 
90-05-1 2-Methoxyphenol (Guaiacol) . . . . . . . . . . . . . . 2968 
90-11-9 1-Bromonaphtalene . . . . . 875 
90-12-0 1-Methylnaphthalene . . . . 639 
90-13-1 1-Chloronaphthalene . . . . 842 
90-15-3 1-Naphthol . . . . . . . . . . . 2865 
90-43-7 2-Phenylphenol (2-Hydroxybiphenyl) . . . . . . . 2872 
91-10-1 Syringol . . . . . . . . . . . . . 2989 
91-16-7 Veratrole . . . . . . . . . . . . . 2343 
91-17-8 Decalin . . . . . . . . . . . . . . . 263 
91-20-3 Naphthalene . . . . . . . . . . . 623 
91-22-5 Quinoline . . . . . . . . . . . . 3365 
91-57-6 2-Methylnaphthalene . . . . 646 
91-58-7 2-Chloronaphthalene . . . . 845 
91-59-8 .-Naphthylamine (2-Aminonaphthalene) . . . . 3291 
91-94-1 3,3.-Dichlorobenzidine . . 3285 
92-24-0 Naphthacene . . . . . . . . . . . 785 
92-52-4 Biphenyl . . . . . . . . . . . . . . 669 
92-66-0 4-Bromobiphenyl . . . . . . . 884 
92-69-3 4-Phenylphenol (4-Hydroxybiphenyl) . . . . . . . 2875 
92-86-4 4,4.-Dibromobiphenyl . . . 885 
92-87-5 Benzidine . . . . . . . . . . . . 3283 
92-94-4 p-Terphenyl . . . . . . . . . . . . 783 
93-58-3 Methyl benzoate . . . . . . . 3069 
93-72-1 Fenoprop . . . . . . . . . . . . . 3560 
93-76-5 2,4,5-T . . . . . . . . . . . . . . 3653 
93-89-0 Ethyl benzoate . . . . . . . . 3072 
94-74-6 MCPA . . . . . . . . . . . . . . . 3584 
94-75-7 2,4-D . . . . . . . . . . . . . . . . 2761 
94-81-5 MCPB . . . . . . . . . . . . . . . 3587 
94-82-6 2,4-DB . . . . . . . . . . . . . . 3525 
95-15-8 Benzo[b]thiophene . . . . . 3419 
95-46-5 2-Bromotoluene . . . . . . . 1431 
95-47-6 o-Xylene . . . . . . . . . . . . . . 450 
95-48-7 o-Cresol . . . . . . . . . . . . . 2794 
95-49-8 2-Chlorotoluene . . . . . . . 1352 
95-50-1 1,2-Dichlorobenzene . . . 1268 
95-51-2 2-Chloroaniline . . . . . . . . 3249 
95-53-4 o-Toluidine (2-Methylbenzeneamine) . . . . . . . 3263 
95-57-8 2-Chlorophenol . . . . . . . . 2877 
© 2006 by Taylor & Francis Group, LLC

Appendix 3 4165 
95-63-6 1,2,4-Trimethylbenzene . . 481 
95-65-8 3,4-Dimethylphenol . . . . 2838 
95-73-8 2,4-Dichlorotoluene . . . . 1360 
95-76-1 3,4-Dichloroaniline . . . . . 3261 
95-77-2 3,4-Dichlorophneol . . . . . 2901 
95-87-4 2,5-Dimethylphenol . . . . 2831 
95-93-2 1,2,4,5-Tetramethylbenzene . . . . . . . . . . . . . . . . 542 
95-94-3 1,2,4,5-Tetrachlorobenzene . . . . . . . . . . . . . . . 1330 
95-95-4 2,4,5-Trichlorophenol . . . 2905 
96-09-3 Styrene oxide . . . . . . . . . 2353 
96-14-0 3-Methylpentane . . . . . . . . . 98 
96-18-4 1,2,3-Trichloropropane . . 1038 
96-22-0 3-Pentanone . . . . . . . . . . 2639 
96-33-3 Methyl acrylate . . . . . . . . 3060 
96-37-3 Methylcyclopentane . . . . . 217 
98-01-1 Furfural (2-Furaldehyde) 2609 
98-06-6 tert-Butylbenzene . . . . . . . 532 
98-07-7 ., ., .-Trichlorotoluene . 1371 
98-54-4 p-tert-Butylphenol . . . . . 2858 
98-82-8 Isopropylbenzene . . . . . . . 500 
98-86-2 Acetophenone . . . . . . . . . 2668 
98-95-3 Nitrobenzene . . . . . . . . . . 3297 
99-04-7 3-Methylbenzoic acid (m-Toluic acid) . . . . . . . 2738 
99-87-6 1-Isopropyl-4-Methylbenzene . . . . . . . . . . . . . . 516 
99-94-5 4-Methylbenzoic acid (p-Toluic acid) . . . . . . . 2741 
99-99-0 4-Nitrotoluene . . . . . . . . . 3308 
100-01-6 4-Nitroaniline . . . . . . . . . 3295 
100-02-7 4-Nitrophenol . . . . . . . . . 2940 
100-41-4 Ethylbenzene . . . . . . . . . . 439 
100-42-1 m-Methylstyrene . . . . . . . . 588 
100-42-5 Styrene . . . . . . . . . . . . . . . 576 
100-47-0 Benzonitrile . . . . . . . . . . 3214 
100-51-6 Benzyl alcohol . . . . . . . . 2565 
100-52-7 Benzaldehyde . . . . . . . . . 2613 
100-66-3 Anisole . . . . . . . . . . . . . . 2329 
101-05-3 Anilazine . . . . . . . . . . . . . 4027 
101-21-3 Chlorpropham . . . . . . . . . 3504 
101-27-9 Barban . . . . . . . . . . . . . . . 3480 
101-42-8 Fenuron . . . . . . . . . . . . . . 3562 
101-55-3 4-Bromophenyl phenyl ether . . . . . . . . . . . . . . 2403 
101-81-5 4-Diphenylmethane . . . . . 679 
101-84-8 Diphenyl ether . . . . . . . . 2355 
101-85-5 Diphenylmethane . . . . . . . 679 
102-71-6 Triethanolamine . . . . . . . 3241 
103-29-7 Bibenzyl . . . . . . . . . . . . . . 682 
103-30-0 trans-Stilbene . . . . . . . . . . 685 
103-65-1 n-Propylbenzene . . . . . . . . 493 
103-73-1 Phenetole . . . . . . . . . . . . 2348 
103-82-2 Phenylacetic acid . . . . . . 2745 
104-40-5 4-Nonylphenol . . . . . . . . 2862 
104-51-8 n-Butylbenzene . . . . . . . . . 520 
105-67-9 2,4-Dimethylphenol . . . . 2825 
106-37-6 1,4-Dibromobenzene . . . 1420 
106-38-7 4-Bromotoluene . . . . . . . 1435 
106-42-3 p-Xylene . . . . . . . . . . . . . . 467 
© 2006 by Taylor & Francis Group, LLC

4166 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
106-43-4 4-Chlorotoluene . . . . . . . 1357 
106-44-5 p-Cresol . . . . . . . . . . . . . 2812 
106-46-7 1,4-Dichlorobenzene . . . 1287 
106-47-8 4-Chloroaniline . . . . . . . . 3257 
106-48-9 4-Chlorophenol . . . . . . . . 2886 
106-49-0 p-Toluidine (4-Methylbenzeneamine) . . . . . . . 3270 
106-89-8 Epichlorohydrin . . . . . . . 2313 
106-93-4 1,2-Dibromoethane . . . . . 1143 
106-94-5 1-Bromopropane (n-Propyl bromide) . . . . . . . . 1148 
106-97-8 n-Butane . . . . . . . . . . . . . . . 70 
106-98-9 1-Butene . . . . . . . . . . . . . . 273 
106-99-0 1,3-Butadiene . . . . . . . . . . 317 
107-00-6 1-Butyne . . . . . . . . . . . . . . 338 
107-02-8 2-Propenal (acrolein) . . . 2605 
107-03-9 1-Propanethiol . . . . . . . . 3406 
107-06-2 1,2-Dichloroethane . . . . . . 975 
107-08-4 1-Iodopropane (n-Propyl iodide) . . . . . . . . . . . 1178 
107-10-8 n-Propyl amine . . . . . . . . 3231 
107-12-0 Propionitrile . . . . . . . . . . 3203 
107-13-1 Acrylonitrile (2-Propenenitrile) . . . . . . . . . . . . 3210 
107-18-6 Allyl alcohol . . . . . . . . . . 2557 
107-21-1 Ethylene glycol . . . . . . . . 2553 
107-30-2 Chloromethyl methyl ether . . . . . . . . . . . . . . . . 2315 
107-31-3 Methyl formate . . . . . . . . 3025 
107-83-5 2-Methylpentane (Isohexane) . . . . . . . . . . . . . . . . 93 
107-87-9 2-Pentanone . . . . . . . . . . 2634 
107-92-6 Butyric acid . . . . . . . . . . 2701 
108-05-4 Vinyl acetate . . . . . . . . . . 3038 
108-08-7 2,4-Dimethylpentane . . . . 103 
108-10-1 4-Methyl-2-pentanone (Methyl isobutyl ketone) (1-Hexanone) . . . . 2644 
108-20-3 Di-isopropyl ether . . . . . . 2280 
108-36-1 1,3-Dibromobenzene . . . 1418 
108-38-3 m-Xylene . . . . . . . . . . . . . 459 
108-39-4 m-Cresol . . . . . . . . . . . . . 2803 
108-41-8 3-Chlorotoluene . . . . . . . 1355 
108-42-9 3-Chloroaniline . . . . . . . . 3253 
108-43-0 3-Chlorophenol . . . . . . . . 2882 
108-44-1 m-Toluidine (3-Methylbenzeneamine) . . . . . . . 3267 
108-46-3 Resorcinol (1,3-Dihydroxybenzene) . . . . . . . . 2961 
108-60-1 Bis(2-chloroisopropyl)ether . . . . . . . . . . . . . . . 2322 
108-67-8 1,3,5-Trimethylbenzene . . 486 
108-68-9 3,5-Dimethylphenol . . . . 2842 
108-70-3 1,3,5-Trichlorobenzene . . 1314 
108-85-0 Bromocyclohexane . . . . . 1166 
108-86-1 Bromobenzene . . . . . . . . 1410 
108-87-2 Methylcyclohexane . . . . . . 233 
108-88-3 Methylbenzene (Toluene) . 425 
108-90-7 Chlorobenzene . . . . . . . . 1259 
108-93-0 Cyclohexanol . . . . . . . . . 2560 
108-94-1 Cyclohexanone . . . . . . . . 2660 
108-95-2 Phenol . . . . . . . . . . . . . . . 2781 
108-98-5 Benzenethiol . . . . . . . . . . 3412 
108-99-6 3-Methylpyridine . . . . . . 3358 
109-06-8 2-Methylpyridine . . . . . . 3354 
109-52-4 n-Valeric acid . . . . . . . . . 2708 
© 2006 by Taylor & Francis Group, LLC

Appendix 3 4167 
109-60-4 Propyl acetate . . . . . . . . . 3047 
109-65-9 1-Bromobutane . . . . . . . . 1156 
109-66-0 n-Pentane . . . . . . . . . . . . . . 85 
109-67-1 1-Pentene . . . . . . . . . . . . . 288 
109-69-3 1-Chlorobutane (n-Butyl chloride) . . . . . . . . . . 1041 
109-73-9 n-Butyl amine . . . . . . . . . 3234 
109-74-0 Butyronitrile . . . . . . . . . . 3207 
109-79-5 1-Butanethiol (Butyl mercaptan) . . . . . . . . . . . 3409 
109-89-7 Diethylamine . . . . . . . . . 3228 
109-94-4 Ethyl formate . . . . . . . . . 3028 
109-97-7 Pyrrole . . . . . . . . . . . . . . 3342 
109-99-9 Tetrahydrofuran . . . . . . . 2303 
110-00-9 Furan . . . . . . . . . . . . . . . . 2297 
110-02-1 Thiophene . . . . . . . . . . . . 3315 
110-43-0 2-Heptanone . . . . . . . . . . 2655 
110-53-2 1-Bromopentane . . . . . . . 1158 
110-54-3 n-Hexane . . . . . . . . . . . . . . 114 
110-74-7 Propyl formate . . . . . . . . 3031 
110-75-8 2-Chloroethyl vinyl ether 2325 
110-82-7 Cyclohexane . . . . . . . . . . . 224 
110-83-8 Cyclohexene . . . . . . . . . . . 352 
110-86-1 Pyridine . . . . . . . . . . . . . . 3348 
111-25-1 1-Bromohexane . . . . . . . 1160 
111-27-3 1-Hexanol . . . . . . . . . . . . 2529 
111-42-2 Diethanolamine . . . . . . . . 3239 
111-43-3 Di-n-propyl ether . . . . . . 2276 
111-44-4 Bis(2-chloroethyl)ether . . 2319 
111-65-9 n-Octane . . . . . . . . . . . . . . 141 
111-66-0 1-Octene . . . . . . . . . . . . . . 308 
111-70-6 1-Heptanol . . . . . . . . . . . 2535 
111-83-1 1-Bromooctane . . . . . . . . 1162 
111-84-2 n-Nonane . . . . . . . . . . . . . 152 
111-85-3 1-Chlorooctane . . . . . . . . 1056 
111-87-5 1-Octanol . . . . . . . . . . . . 2540 
111-91-1 Bis(2-chloroethoxy)methane . . . . . . . . . . . . . . 2327 
112-30-1 1-Decanol . . . . . . . . . . . . 2549 
112-40-3 n-Dodecane . . . . . . . . . . . . 167 
112-80-1 Oleic acid . . . . . . . . . . . . 2717 
114-26-1 Propoxur . . . . . . . . . . . . . 3966 
115-10-6 Dimethyl ether (Methyl ether) . . . . . . . . . . . . . 2262 
115-11-7 2-Methylpropene . . . . . . . 270 
115-25-3 Perfluorocyclobutane . . . 1209 
115-29-7 Endosulfan . . . . . . . . . . . 3835 
115-32-2 Dicofol . . . . . . . . . . . . . . 4054 
115-86-6 Triphenyl phosphate . . . . 3149 
115-90-2 Fensulfothion . . . . . . . . . 3857 
115-96-8 Tris(2-chloroethyl) phosphate . . . . . . . . . . . . . 3171 
116-06-3 Aldicarb . . . . . . . . . . . . . 3717 
116-14-3 Tetrafluoroethene . . . . . . 1209 
116-15-4 Hexafluoropropene . . . . . 1209 
117-80-6 Dichlone . . . . . . . . . . . . . 4052 
117-81-7 Bis(2-ethylhexyl) phthalate (DEHP) . . . . . . . . 3118 
117-84-0 Di-n-octyl phthalate (DOP) . . . . . . . . . . . . . . . 3113 
118-69-4 2,6-Dichlorotoluene . . . . 1362 
118-74-1 Hexachlorobenzene . . . . 1343 
© 2006 by Taylor & Francis Group, LLC

4168 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
118-90-1 2-Methylbenzoic acid (o-Toluic acid) . . . . . . . 2735 
118-91-2 2-Chlorobenzoic acid . . . 2751 
118-96-7 2,4,6-Trinitrotoluene . . . . 3320 
119-06-2 Di-tridecyl phthalate . . . . 3133 
119-61-9 Benzophenone . . . . . . . . 2670 
119-64-2 Tetralin . . . . . . . . . . . . . . . 594 
119-65-3 Isoquinoline . . . . . . . . . . 3369 
120-12-7 Anthracene . . . . . . . . . . . . 725 
120-36-5 Dichlorprop . . . . . . . . . . . 3537 
120-51-4 Benzyl benzoate . . . . . . . 3077 
120-72-9 Indole . . . . . . . . . . . . . . . 3346 
120-80-9 Catechol (1,2-Dihydroxybenzene) . . . . . . . . . . 2952 
120-82-1 1,2,4-Trichlorobenzene . . 1305 
120-83-2 2,4-Dichlorophenol . . . . . 2892 
121-14-2 2,4-Dinitrotoluene (DNT) 3313 
121-33-5 Vanillin . . . . . . . . . . . . . . 2983 
121-69-7 N,N.-Dimethylaniline . . . 3274 
121-75-5 Malathion . . . . . . . . . . . . 3912 
122-14-5 Fenitrothion . . . . . . . . . . 3851 
122-34-9 Simazine . . . . . . . . . . . . . 3649 
122-39-4 Diphenylamine . . . . . . . . 3279 
122-42-9 Propham . . . . . . . . . . . . . 3645 
122-66-7 N,N.-Bianiline . . . . . . . . 3287 
123-01-3 Dodecylbenzene . . . . . . . . 569 
123-02-4 Tridecylbenzene . . . . . . . . 572 
123-07-9 p-Ethylphenol . . . . . . . . . 2853 
123-31-9 Hydroquinone (1,4-Dihydroxybenzene) . . . . . . 2964 
123-38-6 Propanal (Propionaldehyde) . . . . . . . . . . . . . . . 2595 
123-72-8 Butanal (n-Butylaldehyde) . . . . . . . . . . . . . . . . 2600 
123-86-4 Butyl acetate . . . . . . . . . . 3052 
123-91-1 1,4-Dioxane . . . . . . . . . . 2309 
124-11-8 1-Nonene . . . . . . . . . . . . . 311 
124-18-5 n-Decane . . . . . . . . . . . . . . 159 
124-40-3 Dimethylamine . . . . . . . . 3218 
124-48-1 Dibromochloromethane . 1190 
126-72-7 Tris(2,3-dibromopropyl) phosphate . . . . . . . . . 3175 
126-73-8 Tributyl phosphate . . . . . 3165 
126-99-8 Chloroprene . . . . . . . . . . 1117 
127-18-4 Tetrachloroethylene . . . . 1104 
129-00-0 Pyrene . . . . . . . . . . . . . . . . 748 
131-11-3 Dimethyl phthalate (DMP) . . . . . . . . . . . . . . . . 3079 
131-16-8 Di-n-propyl phthalate . . . 3092 
131-17-9 Diallyl phthalate . . . . . . . 3090 
131-18-0 Di-pentyl phthalate . . . . . 3106 
132-64-9 Dibenzofuran . . . . . . . . . 2168 
132-65-0 Dibenzothiophene . . . . . . 3421 
133-06-2 Captan . . . . . . . . . . . . . . . 4037 
133-07-3 Folpet . . . . . . . . . . . . . . . 4065 
133-90-4 Chloramben . . . . . . . . . . 3499 
134-32-7 .-Naphthylamine (1-Aminonaphthalene) . . . . 3289 
135-19-3 2-Naphthol . . . . . . . . . . . 2868 
135-48-8 Pentacene . . . . . . . . . . . . . 835 
135-98-8 sec-Butylbenzene . . . . . . . 528 
137-26-8 Thiram . . . . . . . . . . . . . . 4097 
137-30-4 Ziram . . . . . . . . . . . . . . . 4114 
© 2006 by Taylor & Francis Group, LLC

Appendix 3 4169 
139-40-2 Propazine . . . . . . . . . . . . 3642 
140-88-5 Ethyl acrylate . . . . . . . . . 3062 
141-43-5 Ethanolamine . . . . . . . . . 3236 
141-66-2 Dicrotophos . . . . . . . . . . 3816 
141-78-6 Ethyl acetate . . . . . . . . . . 3041 
142-29-0 Cyclopentene . . . . . . . . . . 349 
142-62-1 Hexanoic acid (Caproic acid) . . . . . . . . . . . . . . 2712 
142-68-7 Tetrahydropyran . . . . . . . 2307 
142-82-5 n-Heptane . . . . . . . . . . . . . 129 
142-96-1 Di-n-butyl ether . . . . . . . 2289 
143-08-8 1-Nonanol . . . . . . . . . . . . 2546 
143-50-0 Kepone . . . . . . . . . . . . . . 3893 
150-19-6 3-Methoxyphenol . . . . . . 2971 
150-68-5 Monuron . . . . . . . . . . . . . 3602 
150-76-5 4-Methoxyphenol . . . . . . 2972 
156-59-2 cis-1,2-Dichloroethene . . 1077 
156-60-5 trans-1,2-Dichloroethene 1084 
191-07-1 Coronene . . . . . . . . . . . . . . 837 
191-24-2 Benzo[ghi]perylene . . . . . 823 
192-97-2 Benzo[e]pyrene . . . . . . . . . 811 
193-39-5 Indeno[1,2,3-cd]pyrene . . 826 
194-59-2 7H-Dibenzo[c,g]carbazole . . . . . . . . . . . . . . . . 3378 
198-55-0 Perylene . . . . . . . . . . . . . . 814 
205-82-3 Benzo[j]fluoranthene . . . . 799 
205-99-2 Benzo[b]fluoranthene . . . . 796 
206-44-0 Fluoranthene . . . . . . . . . . . 759 
207-08-9 Benzo[k]fluoranthene . . . . 800 
208-96-8 Acenaphthylene . . . . . . . . 688 
215-58-7 Dibenz[a,c]anthracene . . . 828 
217-59-4 Triphenylene . . . . . . . . . . . 777 
218-01-9 Chrysene . . . . . . . . . . . . . . 771 
238-84-6 Benzo[a]fluorene . . . . . . . 767 
243-17-4 Benzo[b]fluorene . . . . . . . 769 
260-94-6 Acridine . . . . . . . . . . . . . 3380 
262-12-4 Dibenzo-p-dioxin . . . . . . 2064 
287-92-3 Cyclopentane . . . . . . . . . . 211 
291-64-5 Cycloheptane . . . . . . . . . . 254 
292-64-8 Cyclooctane . . . . . . . . . . . 258 
298-00-0 Parathion-methyl . . . . . . 3942 
298-01-1 Mevinphos . . . . . . . . . . . 3925 
298-02-2 Phorate . . . . . . . . . . . . . . 3959 
298-04-4 Disulfolton . . . . . . . . . . . 3832 
299-84-3 Ronnel . . . . . . . . . . . . . . . 3969 
300-76-5 Naled . . . . . . . . . . . . . . . . 3932 
306-83-2 1,1-Dichlorotrifluoroethane . . . . . . . . . . . . . . . 1209 
309-00-2 Aldrin . . . . . . . . . . . . . . . 3721 
311-81-9 1,2-Dichloro-1,2-difluoroethene . . . . . . . . . . . . 1209 
314-40-9 Bromacil . . . . . . . . . . . . . 3486 
319-84-6 .-HCH . . . . . . . . . . . . . . 3869 
319-85-7 .-HCH . . . . . . . . . . . . . . 3876 
319-86-8 .-HCH . . . . . . . . . . . . . . 3881 
330-54-1 Diuron . . . . . . . . . . . . . . . 3551 
330-55-2 Linuron . . . . . . . . . . . . . . 3580 
333-41-5 Diazinon . . . . . . . . . . . . . 3804 
338-65-8 1-Chloro-2,2-difluoroethane . . . . . . . . . . . . . . . 1209 
© 2006 by Taylor & Francis Group, LLC

4170 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
344-07-0 Chloropentafluorobenzene . . . . . . . . . . . . . . . . 1406 
353-36-6 Fluoroethane . . . . . . . . . . 1209 
354-33-6 Pentafluoroethane . . . . . . 1209 
354-58-5 1,1,1-Trichloro-2,2,2-trifluoroethane . . . . . . . . 1209 
355-25-9 Perfluorobutane . . . . . . . 1209 
355-42-0 Perfluorohexane . . . . . . . 1209 
355-68-0 Perfluorocyclohexane . . . 1209 
359-35-3 1,1,2,2-Tetrafluoroethane 1209 
367-11-3 1,2-Difluorobenzene . . . . 1209 
372-18-9 1,3-Difluorobenzene . . . . 1386 
374-07-2 1,1-Dichloro-1,2,2,2-tetrafluoroethane . . . . . . . 1209 
376-77-2 Perfluorocyclopentane . . 1209 
392-56-3 Hexafluorobenzene . . . . . 1401 
406-33-7 1-Fluoropropene . . . . . . . 1209 
420-26-8 2-Fluoropropane . . . . . . . 1209 
420-45-1 2,2-Difluoropropane . . . . 1209 
420-46-2 1,1,1-Trifluoroethane . . . 1209 
421-04-5 1-Chloro-1,1,2-trifluoroethane . . . . . . . . . . . . . 1209 
430-53-5 1,1-Dichloro-2-fluoroethane . . . . . . . . . . . . . . . 1209 
430-66-0 1,1,2-Trifluoroethane . . . 1209 
431-63-0 1,1,1,2,3,3-Hexafluoropropane . . . . . . . . . . . . . 1209 
431-89-0 1,1,1,2,3,3,3-Heptafluoropropane . . . . . . . . . . . 1209 
460-73-1 1,1,1,3,3-Pentafluoropropane . . . . . . . . . . . . . . 1209 
462-06-6 Fluorobenzene . . . . . . . . 1380 
463-82-1 2,2-Dimethylpropane (Neopentane) . . . . . . . . . . . 67 
464-06-2 2,2,3-Trimethylbutane . . . . 83 
470-90-6 Chlorfenvinphos . . . . . . . 3758 
488-23-3 1,2,3,4-Tetramethylbenzene . . . . . . . . . . . . . . . . 536 
496-11-7 Indan 620 
504-84-1 2,2,4-Trimethylpentane (Isooctane) . . . . . . . . . . 109 
513-35-9 2-Methyl-2-butene . . . . . . 283 
513-81-5 2,3-Dimethyl-1,3-butadiene . . . . . . . . . . . . . . . . 328 
526-73-8 1,2,3-Trimethylbenzene . . 476 
526-75-0 2,3-Dimethylphenol . . . . 2821 
527-53-7 1,2,3,5-Tetramethylbenzene . . . . . . . . . . . . . . . . 539 
527-60-6 2,4,6-Trimethylphenol . . 2848 
527-54-8 3,4,5-Trimethylphenol . . 2849 
533-74-4 Dazomet . . . . . . . . . . . . . 4051 
534-22-5 2-Methylfuran . . . . . . . . . 2301 
534-52-1 4,6-Dinitro- o-cresol . . . . 2950 
535-80-8 3-Chlorobenzoic acid . . . 2753 
538-68-1 Pentylbenzene . . . . . . . . . . 547 
538-93-2 Isobutylbenzene . . . . . . . . 525 
539-30-0 Benzyl ethyl ether . . . . . . 2351 
540-36-3 1,4-Difluorobenzene . . . . 1388 
540-54-5 1-Chloropropane ( n-Propyl chloride) . . . . . . . . 1024 
541-73-1 1,3-Dichlorobenzene . . . 1278 
542-69-8 1-Iodobutane . . . . . . . . . . 1183 
542-75-6 1,3-Dichloropropene . . . . 1115 
542-88-1 Bis(chloromethyl)ether . . 2317 
543-59-9 1-Chloropentane . . . . . . . 1047 
544-10-5 1-Chlorohexane . . . . . . . 1050 
544-25-2 Cycloheptatriene . . . . . . . . 367 
554-84-7 3-Nitrophenol . . . . . . . . . 2937 
555-37-3 Neburon . . . . . . . . . . . . . 3608 
© 2006 by Taylor & Francis Group, LLC

Appendix 3 4171 
562-49-2 3,3-Dimethylpentane . . . . 105 
563-04-2 Tricresyl phosphate (m-TCP) . . . . . . . . . . . . . . 3152 
563-12-2 Ethion . . . . . . . . . . . . . . . 3847 
563-45-1 3-Methyl-1-butene . . . . . . 280 
563-46-2 2-Methyl-1-butene . . . . . . 276 
565-75-3 2,3,4-Trimethylpentane . . 112 
571-58-4 1,4-Dimethylnaphthalene . 653 
571-61-9 1,5-Dimethylnaphthalene . 655 
575-41-7 1,3-Dimethylnaphthalene . 651 
576-26-1 2,6-Dimethylphenol . . . . 2834 
580-13-2 2-Bromonaphthalene . . . . 879 
580-48-3 Chlorazine . . . . . . . . . . . . 3501 
581-42-0 2,6-Dimethylnaphthalene . 659 
581-40-8 2,3-Dimethylnaphthalene . 657 
583-53-9 1,2-Dibromobenzene . . . 1416 
583-61-9 2,3-Dimethylpyridine . . . 3362 
589-34-4 3-Methylhexane . . . . . . . . 125 
589-81-1 3-Methylheptane . . . . . . . . 139 
590-35-2 2,2-Dimethylpentane . . . . 101 
591-17-3 3-Bromotoluene . . . . . . . 1433 
591-49-1 1-Methylcyclohexene . . . . 357 
591-50-4 Iodobenzene . . . . . . . . . . 1437 
591-76-4 2-Methylhexane (Isoheptane) . . . . . . . . . . . . . . . 123 
591-78-6 2-Hexanone . . . . . . . . . . . 2650 
591-93-5 1,4-Pentadiene . . . . . . . . . 330 
592-27-8 2-Methylheptane . . . . . . . . 137 
592-42-7 1,5-Hexadiene . . . . . . . . . . 334 
592-76-7 1-Heptene . . . . . . . . . . . . . 304 
593-53-3 Fluoromethane . . . . . . . . 1209 
593-60-2 Vinyl bromide . . . . . . . . . 1167 
593-70-4 Chlorofluoromethane . . . 1209 
605-45-8 Di-isopropyl phthalate . . 3094 
606-20-2 2,6-Dinitrotoluene . . . . . 3317 
608-21-9 1,2,3-Tribromobenzene . 1423 
608-29-7 1,2,3-Triiiodobenzene . . . 1444 
608-93-5 Pentachlorobenzene . . . . 1335 
611-14-3 1-Ethyl-2-methylbenzene . 505 
613-12-7 2-Methylanthracene . . . . . 739 
613-33-2 4,4.-Dimethylbiphenyl . . . 678 
615-42-9 1,2-Diiodobenzene . . . . . 1441 
615-54-3 1,2,4-Tribromobenzene . 1424 
615-68-9 1,2,4-Triiodobenzene . . . 1445 
620-14-4 1-Ethyl-3-methylbenzene (m-Ethyltoluene) . . . . 508 
621-64-7 n-Nitrosodipropylamine . 3338 
622-96-8 1-Ethyl-4-methylbenzene . 512 
622-97-9 p-Methyl styrenes . . . . . . . 591 
623-12-1 4-Chloroanisole . . . . . . . 2336 
624-38-4 1,4-Diiodobenzene . . . . . 1443 
624-72-6 1,2-Difluoroethane . . . . . 1209 
624-92-0 Dimethyl disulfide . . . . . 3391 
626-00-6 1,3-Diiodobenzene . . . . . 1442 
626-39-1 1,3,5-Tribromobenzene . 1425 
626-44-8 1,3,5-Triiodobenzene . . . 1446 
627-19-0 1-Pentyne . . . . . . . . . . . . . 340 
627-20-3 cis-2-Pentene . . . . . . . . . . 292 
© 2006 by Taylor & Francis Group, LLC

4172 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
628-41-1 1,4-Cyclohexadiene . . . . . 364 
628-63-7 Pentyl acetate . . . . . . . . . 3057 
628-71-7 1-Heptyne . . . . . . . . . . . . . 344 
628-81-9 Butyl ethyl ether . . . . . . . 2285 
628-92-2 Cycloheptene . . . . . . . . . . 359 
628-17-1 1-Iodopentane . . . . . . . . . 1185 
629-04-9 1-Bromoheptane . . . . . . . 1161 
629-05-0 1-Octyne . . . . . . . . . . . . . . 346 
629-06-1 1-Chloroheptane . . . . . . . 1054 
630-20-6 1,1,1,2-Tetrachloroethane 1004 
634-66-2 1,2,3,4-Tetrachlorobenzene . . . . . . . . . . . . . . . 1320 
634-90-2 1,2,3,5-Tetrachlorobenzene . . . . . . . . . . . . . . . 1326 
636-28-2 1,2,4,5-Tetrabromobenzene . . . . . . . . . . . . . . . 1427 
644-08-6 4-Methylbiphenyl . . . . . . . 677 
645-56-7 4-Propylphenol . . . . . . . . 2857 
646-04-8 1-Hexene . . . . . . . . . . . . . . 299 
646-31-1 n-Tetracosane . . . . . . . . . . 201 
678-26-2 Perfluoropentane . . . . . . . 1209 
679-86-7 1,1,2,2,3-Pentafluoropropane . . . . . . . . . . . . . . 1209 
690-39-1 1,1,1,3,3,3-Hexafluoropropane . . . . . . . . . . . . . 1209 
691-37-2 4-Methyl-1-pentene . . . . . 297 
693-02-7 1-Hexyne . . . . . . . . . . . . . 342 
697-82-5 2,3,5-Trimethylphenol . . 2845 
700-12-9 Pentamethylbenzene . . . . . 545 
709-98-8 Propanil . . . . . . . . . . . . . . 3639 
731-27-1 Tolylfluanid . . . . . . . . . . 4101 
732-11-6 Phosmet . . . . . . . . . . . . . 3962 
759-94-4 EPTC . . . . . . . . . . . . . . . 3555 
762-50-5 1-Chloro-2-fluoroethane . 1209 
763-29-1 2-Methyl-1-pentene . . . . . 295 
766-51-8 2-Chloroanisole . . . . . . . 2334 
771-56-2 Pentafluorotoluene . . . . . 1404 
771-61-9 Pentafluorophenol . . . . . . 1408 
779-02-2 9-Methylanthracene . . . . . 742 
786-19-6 Carbophenothion . . . . . . 3746 
781-43-1 9,10-Dimethylanthracene . 745 
789-02-6 o,p.-DDT . . . . . . . . . . . . . 3785 
811-97-2 1,1,1,2-Tetrafluoroethane 1209 
818-92-8 3-Fluoropropane . . . . . . . 1209 
832-69-6 1-Methylphenanthrene . . . 722 
834-12-8 Ametryn . . . . . . . . . . . . . 3466 
872-05-9 1-Decene . . . . . . . . . . . . . . 314 
877-11-2 Pentachlorotoluene . . . . . 1373 
886-50-0 Terbutryn . . . . . . . . . . . . 3659 
935-95-5 2,3,5,6-Tetrachlorophenol . . . . . . . . . . . . . . . . 2921 
938-86-3 2,3,4,5-Tetrachloroanisole . . . . . . . . . . . . . . . . 2341 
939-27-5 2-Ethylnaphthalene . . . . . . 665 
944-22-9 Fonofos . . . . . . . . . . . . . . 3867 
944-61-6 Tetrachloroveratrole . . . . 2347 
957-51-7 Diphenamid . . . . . . . . . . 3547 
959-98-8 Endosulfan I, .-endosulfan . . . . . . . . . . . . . . . 3835 
1024-57-3 Heptachlor epoxide . . . . . 3890 
1071-83-6 Glyphosate . . . . . . . . . . . 3572 
1073-67-2 p-Chlorostyrene . . . . . . . 1377 
1077-16-3 Hexylbenzene . . . . . . . . . . 553 
© 2006 by Taylor & Francis Group, LLC

Appendix 3 4173 
1078-71-3 Heptylbenzene . . . . . . . . . 557 
1114-71-2 Pebulate . . . . . . . . . . . . . 3618 
1120-21-4 n-Undecane . . . . . . . . . . . . 164 
1127-76-0 1-Ethylnaphthalene . . . . . . 661 
1163-19-5 Decabromodiphenyl ether (PBDE-209) . . . . . . 2453 
1194-65-6 Dichlobenil . . . . . . . . . . . 3534 
1198-55-6 Tetrachlorocatechol . . . . 2959 
1241-94-7 2-Ethylhexyl diphenyl phosphate . . . . . . . . . . . 3161 
1459-10-5 Tetradecylbenzene . . . . . . 574 
1563-66-2 Carbofuran . . . . . . . . . . . 3742 
1582-09-8 Trifluralin . . . . . . . . . . . . 3670 
1595-06-0 2,3,4-Trichlorophenol . . . 2903 
1610-18-0 Prometon . . . . . . . . . . . . . 3628 
1634-04-4 Methyl t-butyl ether . . . . 2271 
1649-08-7 1,2-Dichloro-1,1-difluoroethane . . . . . . . . . . . . 1209 
1678-91-7 Ethylcyclohexane . . . . . . . 249 
1689-84-5 Bromoxynil . . . . . . . . . . . 3489 
1698-60-8 Pyrazon . . . . . . . . . . . . . . 3647 
1717-00-6 1,1-Dichloro-1-fluoroethane . . . . . . . . . . . . . . . 1209 
1730-37-6 1-Methylfluorene . . . . . . . 708 
1746-01-6 2,3,7,8-Tetrachlorodibenzo-p-dioxin . . . . . . . . 2111 
1746-81-2 Monolinuron . . . . . . . . . . 3600 
1806-26-4 4-Octylphenol . . . . . . . . . 2861 
1825-31-6 1,4-Dichloronaphthalene . 849 
1836-75-5 Nitrofen . . . . . . . . . . . . . . 3612 
1861-40-1 Benefin . . . . . . . . . . . . . . 3482 
1897-45-6 Chlorothalonil . . . . . . . . . 4049 
1912-24-9 Atrazine . . . . . . . . . . . . . 3471 
1918-00-9 Dicamba . . . . . . . . . . . . . 3530 
1918-02-1 Picloram . . . . . . . . . . . . . 3622 
1918-16-7 Propachlor . . . . . . . . . . . . 3636 
1929-77-7 Vernolate . . . . . . . . . . . . . 3677 
1929-82-4 Nitrapyrin . . . . . . . . . . . . 4082 
1984-59-4 2,3-Dichloroanisole . . . . 2337 
1984-65-2 2,6-Dichloroanisole . . . . 2338 
2008-41-5 Butylate . . . . . . . . . . . . . . 3497 
2032-59-9 Aminocarb . . . . . . . . . . . 3728 
2032-65-7 Methiocarb . . . . . . . . . . . 3916 
2039-85-2 m-Chlorostyrene . . . . . . . 1375 
2039-87-4 o-Chlorostyrene . . . . . . . 1374 
2040-96-2 Propylcyclopentane . . . . . 221 
2050-47-7 4,4.-Dibromodiphenyl ether (PBDE-15) . . . . . 2410 
2050-67-1 3,3.-Dichlorobiphenyl (PCB-11) . . . . . . . . . . . 1528 
2050-68-2 4,4.-Dichlorobiphenyl (PCB-15) . . . . . . . . . . . 1537 
2050-69-3 1,2-Dichloronaphthalene . 848 
2050-74-0 1,8-Dichloronaphthalene . 851 
2050-75-1 2,3-Dichloronaphthalene . 852 
2051-24-3 2,2.,3,3.,4,4.,5,5.,6,6.-Decachlorobiphenyl (PCB-209) . . . . . . . . . . . 1995 
2051-60-7 2-Chlorobiphenyl (PCB-1) . . . . . . . . . . . . . . . . 1492 
2051-61-8 3-Chlorobiphenyl (PCB-2) . . . . . . . . . . . . . . . . 1497 
2051-62-9 4-Chlorobiphenyl (PCB-3) . . . . . . . . . . . . . . . . 1501 
2077-46-5 2,3,6-Trichlorotoluene . . 1365 
2104-96-3 Bromophos . . . . . . . . . . . 3734 
2131-41-1 1,4,5-Trimethylnaphthalene . . . . . . . . . . . . . . . . 668 
2136-99-4 2,2.,3,3.,5,5.,6,6.-Octachlorobiphenyl (PCB-202) . . . . . . . . . . . . . . . 1979 
© 2006 by Taylor & Francis Group, LLC

4174 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2164-17-2 Fluometuron . . . . . . . . . . 3566 
2198-77-8 2,7-Dichloronaphthalene . 853 
2207-01-4 1,2-cis-Dimethylcyclohexane . . . . . . . . . . . . . . . 240 
2207-04-7 1,4-trans-Dimethylcyclohexane . . . . . . . . . . . . . 245 
2212-67-1 Molinate . . . . . . . . . . . . . 3597 
2216-34-4 4-Methyloctane . . . . . . . . . 150 
2234-13-1 Octachloronaphthalene . . . 873 
2268-46-4 1,1,1,3-Tetrachlorotetrafluoropropane . . . . . . . 1209 
2303-16-4 Diallate . . . . . . . . . . . . . . 3527 
2303-17-5 Triallate . . . . . . . . . . . . . . 3664 
2312-35-8 Propargite . . . . . . . . . . . . 1490 
2315-68-6 Propyl benzoate . . . . . . . 3075 
2385-85-5 Mirex . . . . . . . . . . . . . . . 3927 
2437-79-8 2,2.,4,4.-Tetrachlorobiphenyl (PCB-47) . . . . . . 1617 
2460-49-3 4,5-Dichloroguaiacol . . . 2975 
2473-01-0 1-Chlorononane . . . . . . . 1059 
2539-17-5 Tetrachloroguaiacol . . . . 2981 
2539-26-6 Trichlorosyringol . . . . . . 2992 
2593-15-9 Etridiazole . . . . . . . . . . . . 4060 
2597-03-7 Phenthoate . . . . . . . . . . . 3957 
2668-24-8 4,5,6-Trichloroguaiacol . 2979 
2675-77-6 Chloroneb . . . . . . . . . . . . 4044 
2764-72-9 Diquat . . . . . . . . . . . . . . . 3549 
2772-46-5 4,5-Dichloroveratrole . . . 2345 
2837-89-0 1-Chloro-1,2,2,2-tetrafluoroethane . . . . . . . . . . 1209 
2845-89-8 2-Chloroanisole . . . . . . . 2335 
2921-88-2 Chlorpyrifos . . . . . . . . . . 3760 
2974-90-5 3,4.-Dichlorobiphenyl (PCB-13) . . . . . . . . . . . 1533 
2974-92-7 3,4-Dichlorobiphenyl (PCB-12) . . . . . . . . . . . . 1530 
3070-53-9 1,6-Heptadiene . . . . . . . . . 337 
3073-66-3 1,1,3-Trimethylcyclohexane . . . . . . . . . . . . . . . . 247 
3268-87-9 Octachlorodibenzo-p-dioxin . . . . . . . . . . . . . . . 2148 
3347-22-6 Dithianon . . . . . . . . . . . . 4056 
3424-82-6 o,p.-DDE . . . . . . . . . . . . . 3779 
3428-24-8 4,5-Dichlorocatechol . . . 2957 
3452-09-3 1-Nonyne . . . . . . . . . . . . . 348 
3522-94-9 2,2,5-Trimethylhexane . . . 127 
3741-00-2 Pentylcyclopentane . . . . . . 223 
4516-69-2 1,1,3-Trimethylcyclopentane . . . . . . . . . . . . . . . 219 
4726-14-1 Nitralin . . . . . . . . . . . . . . 3710 
4824-78-6 Bromofos-ethyl . . . . . . . . 3736 
4901-51-3 2,3,4,5-Tetrachlorophenol . . . . . . . . . . . . . . . . 2916 
5234-68-4 Carboxin . . . . . . . . . . . . . 4042 
5254-12-6 Cresyl diphenyl phosphate (o-CDP) . . . . . . . . . 3141 
5259-88-1 Oxycarboxin . . . . . . . . . . 4084 
5409-83-6 2,8-Dichlorodibenzofuran . . . . . . . . . . . . . . . . 2181 
5436-43-1 2,2.,4,4.-Tetrabromodiphenyl ether (PBDE-47) 2422 
5598-13-0 Chlorpyrifos-methyl . . . . 3765 
5902-51-2 Terbacil . . . . . . . . . . . . . . 3657 
5989-27-5 dextro-Limonene [(R)-(+)-limonene] . . . . . . . . . 371 
6639-30-1 2,4,5-Trichlorotoluene . . 1366 
6742-54-7 Undecylbenzene . . . . . . . . 567 
6876-00-2 3-Bromodiphenyl ether (PBDE-2) . . . . . . . . . . 2402 
6923-22-4 Monocrotophos . . . . . . . . 3930 
6936-40-9 Tetrachloroanisole . . . . . 2342 
© 2006 by Taylor & Francis Group, LLC

Appendix 3 4175 
7005-72-3 4-Chlorophenyl phenyl ether . . . . . . . . . . . . . . 2360 
7012-37-5 2,4,4.-Trichlorobiphenyl (PCB-28) . . . . . . . . . 1570 
7025-06-1 2-Bromodiphenyl ether(PBDE-1) . . . . . . . . . . 2401 
7085-19-0 Mecoprop . . . . . . . . . . . . 3589 
7287-19-6 Prometryn . . . . . . . . . . . . 3631 
7700-17-6 Crotoxyphos . . . . . . . . . . 3767 
8001-35-2 Toxaphene . . . . . . . . . . . . 3975 
8065-48-3 Demeton . . . . . . . . . . . . . 3800 
10311-84-9 Dialifos . . . . . . . . . . . . . . 3802 
10605-21-7 Carbendazim . . . . . . . . . . 4040 
11096-82-5 Aroclor 1260 . . . . . . . . . . 2030 
11097-69-1 Aroclor 1254 . . . . . . . . . . 2026 
11104-28-2 Aroclor 1221 . . . . . . . . . . 2017 
11141-16-5 Aroclor 1232 . . . . . . . . . . 2019 
12122-67-7 Zineb . . . . . . . . . . . . . . . . 4112 
12427-38-2 Maneb . . . . . . . . . . . . . . . 4078 
12672-29-6 Aroclor 1248 . . . . . . . . . . 2024 
12674-11-2 Aroclor 1016 . . . . . . . . . . 2015 
13029-08-8 2,2.-Dichlorobiphenyl (PCB-4) . . . . . . . . . . . . 1508 
13071-79-9 Terbufos . . . . . . . . . . . . . 3971 
13194-48-4 Ethoprophos (Ethoprop) . 3849 
13360-45-7 Chlorbromuron . . . . . . . . 3502 
13654-09-6 Decabromobiphenyl . . . . . 890 
13673-92-2 3,5-Dichlorocatechol . . . 2956 
15299-99-7 Napropamide . . . . . . . . . 3606 
15457-05-3 Fluorodifen . . . . . . . . . . . 3568 
15545-48-9 Chlortoluron . . . . . . . . . . 3510 
15862-07-4 2,4,5-Trichlorobiphenyl (PCB-29) . . . . . . . . . . 1574 
15968-05-5 2,2.,6,6.-Tetrachlorobiphenyl (PCB-54) . . . . . . 1639 
15972-60-8 Alachlor . . . . . . . . . . . . . 3461 
16605-91-7 2,3-Dichlorobiphenyl (PCB-5) . . . . . . . . . . . . . 1511 
16606-02-3 2,4.,5-Trichlorobiphenyl (PCB-31) . . . . . . . . . 1580 
16752-77-5 Methomyl . . . . . . . . . . . . 3918 
16766-29-3 3,4,5-Trichloroveratrole . 2346 
16766-30-6 4-Chloroguaiacol . . . . . . 2973 
17109-49-8 Edifenphos . . . . . . . . . . . 4058 
17804-35-2 Benomyl . . . . . . . . . . . . . 4031 
18113-22-9 3-Chlorosyringol . . . . . . . 2990 
18259-05-7 2,3,4,5,6-Pentachlorobiphenyl (PCB-116) . . . . 1786 
18268-69-4 5,6-Dichlorovanillin . . . . 2988 
18268-76-3 6-Chlorovanillin . . . . . . . 2987 
19044-88-3 Oryzalin . . . . . . . . . . . . . 3616 
19463-48-0 5-Chlorovanillin . . . . . . . 2985 
20020-02-4 1,2,3,4-Tetrachloronaphthalene . . . . . . . . . . . . . 857 
21087-64-9 Metribuzin . . . . . . . . . . . 3595 
21609-90-5 Leptophos . . . . . . . . . . . . 3896 
21725-46-2 Cyanazine . . . . . . . . . . . . 3513 
22781-23-3 Bendiocarb . . . . . . . . . . . 3732 
23103-98-2 Primicarb . . . . . . . . . . . . 3964 
23135-22-0 Oxamyl . . . . . . . . . . . . . . 3934 
23184-66-9 Butachlor . . . . . . . . . . . . 3493 
23564-05-8 Thiophanate-methyl . . . . 4095 
23950-58-5 Pronamide . . . . . . . . . . . . 3634 
24478-72-6 1,2,3,4-Tetrachlorodibenzofuran . . . . . . . . . . . 2193 
24691-80-3 Fenfuram . . . . . . . . . . . . . 4064 
© 2006 by Taylor & Francis Group, LLC

4176 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
25074-67-3 3-Chlorodibenzofuran . . . 2175 
25155-15-1 1-Isopropyl-4-methylbenzene . . . . . . . . . . . . . . . 516 
25569-80-6 2,3-Dichlorobiphenyl (PCB-6) . . . . . . . . . . . . . 1514 
26259-45-0 sec-Bumeton . . . . . . . . . . 3491 
26399-36-0 Profluralin . . . . . . . . . . . . 3626 
26644-46-2 Triforine . . . . . . . . . . . . . 4107 
26761-40-0 Di-isodecyl phthalate . . . 3129 
27193-28-8 4-Octylphenol . . . . . . . . . 2861 
27314-13-2 Norflurazon . . . . . . . . . . . 3614 
27554-26-3 Di-isooctyl phthalate . . . 3116 
28076-73-5 2,2.,4,4.-Tetrachloro-DPE (PCDE-47) . . . . . . . 2368 
28249-77-6 Thiobencarb . . . . . . . . . . 3662 
28419-69-4 2,6-Dichloro DPE (PCDE-10) . . . . . . . . . . . . . 2363 
28533-12-0 Di-isononyl phthalate . . . 3127 
29082-74-4 Octachlorostyrene . . . . . . 1379 
29091-05-2 Dinitramine . . . . . . . . . . . 3542 
29446-15-9 2,3-Dichlorodibenzo-p-dioxin . . . . . . . . . . . . . 2073 
29973-13-5 Ethiofencarb . . . . . . . . . . 3845 
30560-19-1 Acephate . . . . . . . . . . . . . 3715 
30746-58-8 1,2,3,4-Tetrachlorodibenzo-p-dioxin . . . . . . . . 2092 
31508-00-6 2,3.,4,4.,5-Pentachlorobiphenyl (PCB-118) . . . 1790 
31604-28-1 1,3,5,8-Tetrachloronaphthalene . . . . . . . . . . . . . 862 
31710-30-2 Decachlorodiphenyl ether (PCDE-209) . . . . . . 2400 
32598-10-0 2,3.,4,4.-Tetrachlorobiphenyl (PCB-66) . . . . . . 1666 
32598-11-1 2,3.,4.,5-Tetrachlorobiphenyl (PCB-70) . . . . . . 1676 
32598-12-2 2,4,4.,6-Tetrachlorobiphenyl (PCB-75) . . . . . . 1689 
32598-13-3 3,3.,4,4.-Tetrachlorobiphenyl (PCB-77) . . . . . . 1693 
32598-14-4 2,3,3.,4,4.-Pentachlorobiphenyl (PCB-105) . . . 1761 
32690-93-0 2,4,4.,5-Tetrachlorobiphenyl (PCB-74) . . . . . . 1686 
32774-16-6 3,3.,4,4.,5,5.-Hexachlorobiphenyl (PCB-169) . 1909 
32809-16-8 Procymidone . . . . . . . . . . 4088 
33146-45-1 2,6-Dichlorobiphenyl (PCB-10) . . . . . . . . . . . . 1525 
33213-65-9 Endosulfan II, .-endosulfan . . . . . . . . . . . . . . . 3835 
33025-41-1 2,3,4,4.-Tetrachlorobiphenyl (PCB-60) . . . . . . 1651 
33091-17-7 2,2.,3,3.,4,4.,6,6.-Octachlorobiphenyl (PCB-197) . . . . . . . . . . . . . . . 1969 
33245-39-5 Fluchloralin . . . . . . . . . . . 3564 
33284-50-3 2,4-Dichlorobiphenyl (PCB-7) . . . . . . . . . . . . . 1516 
33284-52-5 3,3.,5,5.-Tetrachlorobiphenyl (PCB-80) . . . . . . 1702 
33284-53-6 2,3,4,5-Tetrachlorobiphenyl (PCB-61) . . . . . . . 1654 
33284-54-7 2,3,5,6-Tetrachlorobiphenyl (PCB-65) . . . . . . . 1664 
33423-92-6 1,3,6,8-Tetrachlorodibenzo-p-dioxin . . . . . . . . 2102 
33629-47-9 Butralin . . . . . . . . . . . . . . 3495 
33820-53-0 Isopropalin . . . . . . . . . . . 3575 
33857-26-0 2,7-Dichlorodibenzo-p-dioxin . . . . . . . . . . . . . 2076 
33857-28-2 2,3,7-Trichlorodibenzo-p-dioxin . . . . . . . . . . . 2089 
33979-03-2 2,2.,4,4.,6,6.-Hexachlorobiphenyl (PCB-155) . 1879 
34123-59-6 Isoproturon . . . . . . . . . . . 3577 
34816-53-0 1,2,7,8-Tetrachlorodibenzo-p-dioxin . . . . . . . . 2100 
34883-39-1 2,5-Dichlorobiphenyl (PCB-9) . . . . . . . . . . . . . 1522 
34883-41-5 3,5-Dichlorobiphenyl (PCB-14) . . . . . . . . . . . . 1535 
34883-43-7 2,4.-Dichlorobiphenyl (PCB-8) . . . . . . . . . . . . 1519 
35065-27-1 2,2.,4,4.,5,5.-Hexachlorobiphenyl (PCB-153) . 1870 
35065-28-2 2,2.,3,4,4.,5.-Hexachlorobiphenyl (PCB-138) . 1835 
35065-29-3 2,2.,3,4,4.,5,5.-Heptachlorobiphenyl (PCB-180) . . . . . . . . . . . . . . . . 1931 
35065-30-6 2,2.,3,3.,4,4.,5-Heptachlorobiphenyl (PCB-170) . . . . . . . . . . . . . . . . 1911 
© 2006 by Taylor & Francis Group, LLC

Appendix 3 4177 
35367-38-5 Diflubenzuron . . . . . . . . . 3827 
35554-44-0 Imazalil . . . . . . . . . . . . . . 4075 
35693-92-6 2,4,6-Trichlorobiphenyl (PCB-30) . . . . . . . . . . 1578 
35693-99-3 2,2.,5,5.-Tetrachlorobiphenyl (PCB-52) . . . . . . 1629 
35694-04-3 2,2.,3,3.,5,5.-Hexachlorobiphenyl (PCB-133) . 1824 
35694-06-5 2,2.,3,4,4.,5-Hexachlorobiphenyl (PCB-137) . . 1833 
35694-08-7 2,2.,3,3.,4,4.,5,5.-Octachlorobiphenyl (PCB-194) . . . . . . . . . . . . . . . 1962 
35822-46-9 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin . . . 2141 
36559-22-5 2,2.,3,4.-Tetrachlorobiphenyl (PCB-42) . . . . . . 1606 
37680-65-2 2,2.,5-Trichlorobiphenyl (PCB-18) . . . . . . . . . 1547 
37680-66-3 2,2.,4-Trichlorobiphenyl (PCB-17) . . . . . . . . . 1545 
37680-68-5 2,3.,5.-Trichlorobiphenyl (PCB-34) . . . . . . . . . 1589 
37680-69-6 3,3.,4-Trichlorobiphenyl (PCB-35) . . . . . . . . . 1591 
37680-72-3 2,2.,4,5,5.-Pentachlorobiphenyl (PCB-101) . . . 1748 
38379-99-6 2,2.,3,5.,6-Pentachlorobiphenyl (PCB-95) . . . . 1733 
38380-01-7 2,2.,4,4.,5-Pentachlorobiphenyl (PCB-99) . . . . 1743 
38380-02-8 2,2.,3,4,5.-Pentachlorobiphenyl (PCB-87) . . . . 1716 
38380-03-9 2,3,3.,4.,6-Pentachlorobiphenyl (PCB-110) . . . 1773 
38380-04-0 2,2.,3,4.,5.,6-Hexachlorobiphenyl (PCB-149) . 1861 
38380-05-1 2,2.,3,3.,4,6.-Hexachlorobiphenyl (PCB-132) . 1822 
38380-07-3 2,2.,3,3.,4,4.-Hexachlorobiphenyl (PCB-128) . 1813 
38380-08-4 2,3,3.,4,4.,5-Hexachlorobiphenyl (PCB-156) . . 1883 
38411-22-2 2,2.,3,3.,6,6.-Hexachlorobiphenyl (PCB-136) . 1830 
38411-25-5 2,2.,3,3.,4,5,6.-Heptachlorobiphenyl (PCB-174) . . . . . . . . . . . . . . . . 1919 
38444-73-4 2,2.,6-Trichlorobiphenyl (PCB-19) . . . . . . . . . 1551 
38444-76-7 2,3.,6-Trichlorobiphenyl (PCB-27) . . . . . . . . . 1568 
38444-77-8 2,4.,6.-Trichlorobiphenyl (PCB-32) . . . . . . . . . 1584 
38444-78-9 2,2.,3-Trichlorobiphenyl (PCB-16) . . . . . . . . . 1542 
38444-81-4 2,3.,5-Trichlorobiphenyl (PCB-26) . . . . . . . . . 1566 
38444-84-7 2,3,3.-Trichlorobiphenyl (PCB-20) . . . . . . . . . 1553 
38444-85-8 2,3,4.-Trichlorobiphenyl (PCB-22) . . . . . . . . . 1557 
38444-86-9 2,3.,4.-Trichlorobiphenyl (PCB-33) . . . . . . . . . 1586 
38444-87-0 3,3.,5-Trichlorobiphenyl (PCB-36) . . . . . . . . . 1593 
38444-88-1 3,4.,5-Trichlorobiphenyl (PCB-39) . . . . . . . . . 1599 
38444-90-5 3,4,4.-Trichlorobiphenyl (PCB-37) . . . . . . . . . 1595 
38444-93-8 2,2.,3,3.-Tetrachlorobiphenyl (PCB-40) . . . . . . 1601 
38964-22-6 2,8-Dichlorodibenzo-p-dioxin . . . . . . . . . . . . . 2080 
39001-02-0 Octachlorodibenzofuran . 2242 
39227-26-8 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin . . . . . 2128 
39227-53-7 1-Chlorodibenzo-p-dioxin . . . . . . . . . . . . . . . . 2067 
39227-54-8 2-Chlorodibenzo-p-dioxin . . . . . . . . . . . . . . . . 2070 
39227-58-2 1,2,4-Trichlorodibenzo-p-dioxin . . . . . . . . . . . 2083 
39227-61-7 1,2,3,4,7-Pentachlorodibenzo-p-dioxin . . . . . . 2119 
39485-83-1 2,2.,4,4.,6-Pentachlorobiphenyl (PCB-100) . . . 1746 
39515-41-8 Fenpropathrin . . . . . . . . . 3855 
39635-31-9 2,3,3.,4,4.,5,5.-Heptachlorobiphenyl (PCB-189) . . . . . . . . . . . . . . . . 1952 
39635-32-0 2,3,3.,5,5.-Pentachlorobiphenyl (PCB-111) . . 1776 
39635-33-1 3,3.,4,5,5.-Pentachlorobiphenyl (PCB-127) . . 1811 
39635-34-2 2,3,3.,4.,5,5.-Hexachlorobiphenyl (PCB-162) . 1895 
39635-35-3 2,3,3',4,5,5'-Hexachlorobiphenyl (PCB-159) . 1889 
40186-70-7 2,2.,3,3.,4,5.,6-Heptachlorobiphenyl (PCB-175) . . . . . . . . . . . . . . . . 1921 
40186-71-8 2,2.,3,3.,4,5.,6,6.-Octachlorobiphenyl (PCB-201) . . . . . . . . . . . . . . . 1977 
40186-72-9 2,2.,3,3.,4,4.,5,5.,6-Nonachlorobiphenyl (PCB-206) . . . . . . . . . . . . . 1989 
40321-76-4 1,2,3,7,8-Pentachlorodibenzo-p-dioxin . . . . . . 2123 
40487-42-1 Pendimethalin . . . . . . . . . 3620 
© 2006 by Taylor & Francis Group, LLC

4178 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
41318-75-6 2,4,4.-Tribromodiphenyl ether (PBDE-28) . . . 2414 
41411-61-4 2,2.,3,4,5,6-Hexachlorobiphenyl (PCB-142) . . 1847 
41411-62-5 2,3,3.,4,5,6-Hexachlorobiphenyl (PCB-160) . . 1891 
41411-63-6 2,3,4,4',5,6-Hexachlorobiphenyl (PCB-166) . . 1903 
41411-64-7 2,3,3',4,4',5,6-Heptachlorobiphenyl (PCB-190) . . . . . . . . . . . . . . . . 1954 
41464-40-8 2,2.,4,5.-Tetrachlorobiphenyl (PCB-49) . . . . . . 1622 
41464-39-5 2,2.,3,5.-Tetrachlorobiphenyl (PCB-44) . . . . . . 1610 
41464-41-9 2,2.,5,6.-Tetrachlorobiphenyl (PCB-53) . . . . . . 1636 
41464-42-0 2,4.,5,5.-Tetrachlorobiphenyl (PCB-72) . . . . . . 1682 
41464-43-1 2,3,3.,4.-Tetrachlorobiphenyl (PCB-56) . . . . . . 1647 
41464-46-4 2,3.,4.,6-Tetrachlorobiphenyl (PCB-71) . . . . . . 1680 
41464-47-5 2,2.,3,6.-Tetrachlorobiphenyl (PCB-46) . . . . . . 1615 
41464-48-6 3,3.,4,5.-Tetrachlorobiphenyl (PCB-79) . . . . . . 1700 
41464-49-7 2,3,3.,5.-Tetrachlorobiphenyl (PCB-58) . . . . . . 1647 
41464-51-1 2,2.,3,4.,5.-Pentachlorobiphenyl (PCB-97) . . . 1738 
41483-43-6 Bupirimate . . . . . . . . . . . 4035 
42576-02-3 Bifenox . . . . . . . . . . . . . . 3484 
42740-50-1 2,2.,3,3.,4,4.,5,6.-Octachlorobiphenyl (PCB-196) . . . . . . . . . . . . . . . 1967 
43121-43-3 Triadimefon . . . . . . . . . . 4103 
50471-44-8 Vinclozolin . . . . . . . . . . . 4108 
50585-46-1 1,3,7,8-Tetrachlorodibenzo-p-dioxin . . . . . . . . 2107 
51207-31-9 2,3,7,8-Tetrachlorodibenzofuran . . . . . . . . . . . 2205 
51218-45-2 Metolachlor . . . . . . . . . . . 3591 
51230-49-0 2-Chlorodibenzofuran . . . 2173 
51338-27-3 Diclofop-methyl . . . . . . . 3539 
51630-58-1 Fenvalerate . . . . . . . . . . . 3862 
51892-26-3 2,4-Dichloro DPE (PCDE-8) . . . . . . . . . . . . . . 2362 
51908-16-8 2,2.,3,4.,5,5.-Hexachlorobiphenyl (PCB-146) . 1855 
51930-04-2 2,6-Dibromodiphenyl ether (PBDE-10) . . . . . . 2407 
52315-07-8 Cypermethrin . . . . . . . . . 3772 
52645-53-1 Permethrin . . . . . . . . . . . 3953 
52663-58-8 2,3,4.,6-Tetrachlorobiphenyl (PCB-64) . . . . . . 1662 
52663-59-9 2,2.,3,4-Tetrachlorobiphenyl(PCB-41) . . . . . . . 1604 
52663-60-2 2,2.,3,3.,6-Pentachlorobiphenyl (PCB-84) . . . . 1710 
52663-61-3 2,2.,3,5,5.-Pentachlorobiphenyl (PCB-92) . . . . 1727 
52663-62-4 2,2.,3,3.,4-Pentachlorobiphenyl (PCB-82) . . . . 1706 
52663-63-5 2,2.,3,5,5.,6-Heptachlorobiphenyl (PCB-151) . 1865 
52663-64-6 2,2.,3,3.,5,6,6.-Heptachlorobiphenyl (PCB-179) . . . . . . . . . . . . . . . . 1929 
52663-65-7 2,2.,3,3.,4,6,6.-Heptachlorobiphenyl (PCB-176) . . . . . . . . . . . . . . . . 1923 
52663-66-8 2,2.,3,3.,4,5.-Hexachlorobiphenyl (PCB-130) . 1818 
52663-67-9 2,2.,3,3.,5,5.,6-Heptachlorobiphenyl (PCB-178) . . . . . . . . . . . . . . . . 1927 
52663-68-0 2,2.,3,4.,5,5.,6-Heptachlorobiphenyl (PCB-187) . . . . . . . . . . . . . . . . 1947 
52663-69-1 2,2.,3,4,4.,5.,6-Heptachlorobiphenyl (PCB-183) . . . . . . . . . . . . . . . 1939 
52663-70-4 2,2.,3,3.,4,5.,6.-Heptachlorobiphenyl (PCB-177) . . . . . . . . . . . . . . . . 1925 
52663-71-5 2,2.,3,3.,4,4.,6-Heptachlorobiphenyl (PCB-171) . . . . . . . . . . . . . . . . 1913 
52663-72-6 2,3.,4,4.,5,5.-Hexachlorobiphenyl (PCB-167) . 1905 
52663-73-7 2,2.,3,3.,4,5,6,6.-Octachlorobiphenyl (PCB-200) . . . . . . . . . . . . . . . 1975 
52663-74-8 2,2.,3,3.,4,5,5.-Heptachlorobiphenyl (PCB-172) . . . . . . . . . . . . . . . . 1915 
52663-75-9 2,2.,3,3.,4,5,5.,6.-Octachlorobiphenyl (PCB-199) . . . . . . . . . . . . . . . 1973 
52663-76-0 2,2.,3,4,4.,5,5.,6-Octachlorobiphenyl (PCB-203) . . . . . . . . . . . . . . . 1983 
52663-77-1 2,2.,3,3.,4,5,5.,6,6.-Nonachlorobiphenyl (PCB-208) . . . . . . . . . . . . . 1993 
52663-78-2 2,2.,3,3.,4,4.,5,6-Octachlorobiphenyl (PCB-195) . . . . . . . . . . . . . . . 1965 
52663-79-3 2,2.,3,3.,4,4.,5,6,6.-Nonachlorobiphenyl (PCB-207) . . . . . . . . . . . . . 1991 
52704-70-8 2,2.,3,3.,5,6-Hexachlorobiphenyl (PCB-134) . . 1826 
52712-04-6 2,2.,3,4,5,5.-Hexachlorobiphenyl (PCB-141) . . 1844 
© 2006 by Taylor & Francis Group, LLC

Appendix 3 4179 
52712-05-7 2,2.,3,4,5,5.,6-Heptachlorobiphenyl (PCB-185) . . . . . . . . . . . . . . . . 1943 
52744-13-5 2,2.,3,3.,5,6.-Hexachlorobiphenyl (PCB-135) . 1828 
52918-63-5 Deltamethrin . . . . . . . . . . 3798 
53469-21-9 Aroclor 1242 . . . . . . . . . . 2021 
53555-64-9 1,3,5,7-Tetrachloronaphthalene . . . . . . . . . . . . . 860 
53555-65-0 1,2,3,5,7-Pentachloronaphthalene . . . . . . . . . . . 865 
53555-66-1 3,4,5-Trichlorobiphenyl(PCB-38) . . . . . . . . . . 1597 
54135-80-7 2,3,4-Trichloroanisole . . 2339 
54230-23-7 2,3,4,6-Tetrachlorobiphenyl(PCB-62) . . . . . . . 1658 
54589-71-8 2,4,8-Trichlorodibenzofuran . . . . . . . . . . . . . . . 2190 
55215-17-3 2,2.,3,4,6-Pentachlorobiphenyl (PCB-88) . . . . 1719 
55215-18-4 2,2.,3,3.,4,5-Hexachlorobiphenyl (PCB-129) . . 1816 
55283-68-6 Ethalfluralin . . . . . . . . . . 3558 
55285-14-8 Carbosulfan . . . . . . . . . . . 3748 
55312-69-1 2,2.,3,4,5-Pentachlorobiphenyl (PCB-86) . . . . 1714 
55335-06-3 Triclopyr . . . . . . . . . . . . . 3668 
55673-89-7 1,2,3,4,7,8,9-Heptachlorodibenzo-p-dioxin . . . 2239 
55702-45-9 2,3,6-Trichlorobiphenyl (PCB-24) . . . . . . . . . . 1561 
55702-46-0 2,3,4-Trichlorobiphenyl (PCB-21) . . . . . . . . . . 1555 
55712-37-3 2,3.,4-Trichlorobiphenyl (PCB-25) . . . . . . . . . 1564 
55720-37-1 1,3,7-Trichloronaphthalene . . . . . . . . . . . . . . . . 855 
55720-44-0 2,3,5-Trichlorobiphenyl (PCB-23) . . . . . . . . . . 1577 
55864-04-5 p-Isopropylphenyl diphenyl phosphate (p-IPPDP) . . . . . . . . . . . . . . . 3143 
56030-56-9 2,2.,3,4,4.,6-Hexachlorobiphenyl (PCB-139) . . 1840 
56348-72-2 3,3.,4,4.-Tetrachloro-DPE (PCDE-77) . . . . . . . 2371 
56558-16-8 2,2.,4,6,6.-Pentachlorobiphenyl (PCB-104) . . . 1759 
56558-17-9 2,3.,4,4.,6-Pentachlorobiphenyl (PCB-119) . . 1794 
56558-18-0 2,3.,4,5.,6-Pentachlorobiphenyl (PCB-121) . . 1798 
57018-04-9 Tolclofos-methyl . . . . . . . 4099 
57057-83-7 3,4,5-Trichloroguaiacol . 2977 
57117-31-4 2,3,4,7,8-Pentachlorodibenzofuran . . . . . . . . . . 2215 
57117-32-5 2,3,8-Trichlorodibenzofuran . . . . . . . . . . . . . . . 2186 
57117-35-8 1,3,7,8-Tetrachlorodibenzofuran . . . . . . . . . . . 2201 
57117-41-6 1,2,3,7,8-Pentachlorodibenzofuran . . . . . . . . . . 2211 
57117-44-9 1,2,3,6,7,8-Hexachlorodibenzofuran . . . . . . . . 2223 
57465-28-8 3,3.,4,4.,5-Pentachlorobiphenyl (PCB-126) . . . 1808 
57837-19-1 Metalaxyl . . . . . . . . . . . . 4080 
58194-04-7 2,2.,4,6.-Tetrachlorobiphenyl (PCB-51) . . . . . . 1627 
58802-08-7 1,2,4,7,8-Pentachlorodibenzo-p-dioxin . . . . . . 2126 
58802-14-5 2,4,6-Trichlorodibenzofuran . . . . . . . . . . . . . . . 2188 
58802-20-3 1,2,7,8-Tetrachlorodibenzofuran . . . . . . . . . . . 2197 
58863-15-3 1,2,3,4,5,6,8-Heptachloronaphthalene . . . . . . . . 872 
59291-64-4 2,2.,3,4,4.,6.-Hexachlorobiphenyl (PCB-140) . 1842 
59669-26-0 Thiodicarb . . . . . . . . . . . . 3973 
59756-60-4 Fluridone . . . . . . . . . . . . . 3569 
60123-64-0 2,2.,4,4.,5-Petachloro-DPE (PCDE-99) . . . . . . 2374 
60145-20-2 2,2.,3,3.,5-Pentachloro-DPE (PCB-83) . . . . . . 1708 
60145-21-3 2,2.,4,5.,6-Pentachlorobiphenyl (PCB-103) . . . 1757 
60145-22-4 2,2.,4,4.,5,6.-Hexachlorobiphenyl (PCB-154) . 1877 
60145-23-5 2,2.,3,4,4.,5,6.-Heptachlorobiphenyl (PCB-182) . . . . . . . . . . . . . . . 1937 
60168-88-9 Fenarimol . . . . . . . . . . . . 4062 
60207-90-1 Propiconazole . . . . . . . . . 4091 
60233-24-1 2,3.,4,6-Tetrachlorobiphenyl (PCB-69) . . . . . . 1674 
60233-25-2 2,2.,3,4.,6.-Pentachlorobiphenyl (PCB-98) . . . 1741 
60348-60-9 2,2.,4,4.,5-Pentabromodiphenyl ether (BDE-99) . . . . . . . . . . . . . . . . 2433 
© 2006 by Taylor & Francis Group, LLC

4180 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
60851-34-5 1,2,4,6,7,8-Hexachlorodibenzofuran . . . . . . . . 2232 
61328-45-8 2,4,4.,5-Tetrachloro-DPE (PCDE-74) . . . . . . . 2370 
61328-46-9 2,3.,4,4.-Tetrachloro-DPE (PCDE-66) . . . . . . . 2369 
61798-70-7 2,2.,3,3.,4,6-Hexachlorobiphenyl (PCB-131) . . 1820 
62470-53-5 1,3,7,9-Tetrachlorodibenzo-p-dioxin . . . . . . . . 2109 
62796-65-8 2,2.,4,6-Tetrachlorobiphenyl (PCB-50) . . . . . . 1625 
62927-67-4 1,2,3,4,5,7-Hexachloronaphthalene . . . . . . . . . . 867 
64126-86-9 2,3,-Dichlorodibenzofuran . . . . . . . . . . . . . . . . 2177 
64257-84-7 Fenpropathrin (racemate) 3855 
64532-94-1 Isopropylphenyl diphenyl phosphate (o-IPPDP) . . . . . . . . . . . . . . . . 3143 
64532-97-4 Nonylphenyl diphenyl phosphate (p-NPDPP) . 3147 
64650-17-4 1,3,7,9-Tetrachlorodibenzofuran . . . . . . . . . . . 2203 
64902-72-3 Chlorsulfuron . . . . . . . . . 3507 
65075-00-5 2,4.,5-Trichloro-DPE (PCDE-31) . . . . . . . . . . . 2367 
65510-44-3 2,3.,4,4.,5.-Pentachlorobiphenyl (PCB-123) . . 1802 
65510-45-4 2,2.,3,4,4.-Pentachlorobiphenyl (PCB-85) . . . . 1712 
66246-88-6 Penconazole . . . . . . . . . . 4086 
67028-18-6 1,2,3,7-Tetrachlorodibenzo-p-dioxin . . . . . . . . 2096 
67462-39-4 1,2,3,4,6,7,8-Heptachlorodibenzofuran . . . . . . 2234 
68085-85-8 Cyhalothrin . . . . . . . . . . . 3769 
68194-05-8 2,2.,3,4.,6-Pentachlorobiphenyl (PCB-91) . . . . 1725 
68194-06-9 2,2.,4,5,6.-Pentachlorobiphenyl (PCB-102) . . . 1755 
68194-07-0 2,2.,3,4.,5-Pentachlorobiphenyl (PCB-90) . . . . 1723 
68194-08-1 2,2.,3,4.,6,6.-Hexachlorobiphenyl (PCB-150) . 1863 
68194-09-2 2,2.,3,5,6,6.-Hexachlorobiphenyl (PCB-152) . . 1868 
68194-10-5 2,3,3.,5.,6-Pentachlorobiphenyl (PCB-113) . . 1780 
68194-11-6 2,3,4.,5,6-Pentachlorobiphenyl (PCB-117) . . . 1788 
68194-12-7 2,3.,4,5,5.-Pentachlorobiphenyl (PCB-120) . . 1796 
68194-13-8 2,2.,3,4.,5,6-Hexachlorobiphenyl (PCB-147) . . 1857 
68194-14-9 2,2.,3,4,5.,6-Hexachlorobiphenyl (PCB-144) . . 1851 
68194-15-0 2,2.,3,4,5,6.-Hexachlorobiphenyl (PCB-143) . . 1849 
68194-16-1 2,2.,3,3.,4,5,6-Heptachlorobiphenyl (PCB-173) . . . . . . . . . . . . . . . . 1917 
68194-17-2 2,2.,3,3.,4,5,5.,6-Octachlorobiphenyl (PCB-198) . . . . . . . . . . . . . . . 1971 
68515-47-9 Di-tridecyl phthalate . . . . 3133 
68515-48-0 Di-isononyl phthalate . . . 3127 
68515-50-4 Di-n-hexyl phthalate . . . . 3108 
68631-49-2 2,2.,4,4.,5,5.-Hexabromodiphenyl ether (PBDE-153) . . . . . . . . . . . . 2443 
68694-11-1 Triflumizole . . . . . . . . . . 4105 
68698-59-5 1,2,4,6,8,9-Hexachlorodibenzofuran . . . . . . . . 2230 
69500-28-3 Cresyl diphenyl phosphate (m-CDP) . . . . . . . . 3141 
69515-46-4 Isopropylphenyl diphenyl phosphate (m-IPPDP) . . . . . . . . . . . . . . . . 3143 
69698-58-4 1,2,3,4,7,8,9-Heptachlorodibenzofuran . . . . . . 2237 
69698-60-8 1,2,3,4,6,8-Hexachlorodibenzofuran . . . . . . . . 2218 
69782-90-7 2,3,3.,4,4.,5.-Hexachlorobiphenyl (PCB-157) . 1885 
69782-91-8 2,3,3.,4.,5,5.,6-Heptachlorobiphenyl (PCB-193) . . . . . . . . . . . . . . . 1960 
70124-77-5 Flucythrinate . . . . . . . . . . 3865 
70362-41-3 2,3,3.,4,5.-Pentachlorobiphenyl (PCB-108) . . 1769 
70362-45-7 2,2.,3,6-Tetrachlorobiphenyl (PCB-45) . . . . . . 1613 
70362-46-8 2,2.,3,5-Tetrachlorobiphenyl (PCB-43) . . . . . . 1608 
70362-47-9 2,2.,4,5-Tetrachlorobiphenyl (PCB-48) . . . . . . 1620 
70362-48-0 2,3.,4.,5.-Tetrachlorobiphenyl (PCB-76) . . . . . 1691 
70362-49-1 3,3.,4,5-Tetrachlorobiphenyl (PCB-78) . . . . . . 1698 
70362-50-4 3,4,4.,5-Tetrachlorobiphenyl (PCB-81) . . . . . . 1704 
70424-67-8 2,3,3.,5-Tetrachlorobiphenyl (PCB-57) . . . . . . 1645 
70424-68-9 2,3,3.,4.,5-Pentachlorobiphenyl (PCB-107) . . 1767 
© 2006 by Taylor & Francis Group, LLC

Appendix 3 4181 
70424-69-0 2,3,3.,4,5-Pentachlorobiphenyl (PCB-106) . . . 1765 
70424-70-3 2,3.,4.,5,5.-Pentachlorobiphenyl (PCB-124) . . 1804 
70585-38-5 Bitertanol . . . . . . . . . . . . 4033 
70658-26-9 1,2,3,4,7,8-Hexachlorodibenzofuran . . . . . . . . 2220 
71585-36-9 2,2.,3,4,4.,5-Hexachloro-DPE (PCDE-137) . . . 2382 
71585-37-0 2,2.,3,4,4.-Petachloro-DPE (PCDE-85) . . . . . . 2373 
71585-38-1 2,2.,3,4,4.,5.-Hexachloro-DPE (PCDE-138) . . 2384 
71585-39-2 2,3,3.,4,4.-Petachloro-DPE (PCDE-128) . . . . . 2381 
71626-11-4 Benalaxyl . . . . . . . . . . . . 4029 
71859-30-8 2,2.,4,4.,5,5.-Hexachloro-DPE (PCDE-153) . . 2386 
71998-72-6 1,3,6,8-Tetrachlorodibenzofuran . . . . . . . . . . . 2199 
72918-21-9 1,2,3,7,8,9-Hexachlorodibenzofuran . . . . . . . . 2226 
73575-52-7 2,3.,4,5.-Tetrachlorobiphenyl (PCB-68) . . . . . . 1672 
73575-53-8 2,3.,4,5-Tetrachlorobiphenyl (PCB-67) . . . . . . 1670 
73575-54-9 2,2.,3,6,6.-Pentachlorobiphenyl (PCB-96) . . . . 1736 
73575-55-0 2,2.,3,5,6.-Pentachlorobiphenyl (PCB-94) . . . . 1731 
73575-56-1 2,2.,3,5,6-Pentachlorobiphenyl (PCB-93) . . . . 1729 
73575-57-2 2,2.,3,4,6.-Pentachlorobiphenyl (PCB-89) . . . . 1721 
73992-98-6 2,7-Dichlorodibenzofuran . . . . . . . . . . . . . . . . 2179 
74338-23-1 2,3.,5.,6-Tetrachlorobiphenyl (PCB-73) . . . . . . 1684 
74338-24-2 2,3,3.,4-Tetrachlorobiphenyl (PCB-55) . . . . . . 1641 
74472-33-6 2,3,3.,6-Tetrachlorobiphenyl (PCB-59) . . . . . . 1649 
74472-34-7 2,3,4.,5-Tetrachlorobiphenyl (PCB-63) . . . . . . 1660 
74472-35-8 2,3,3.,4,6-Pentachlorobiphenyl (PCB-109) . . . 1771 
74472-36-9 2,3,3.,5,6-Pentachlorobiphenyl (PCB-112) . . . 1778 
74472-37-0 2,3,4,4.,5-Pentachlorobiphenyl (PCB-114) . . . 1782 
74472-38-1 2,3,4,4.,5-Pentachlorobiphenyl (PCB-115) . . . 1784 
74472-39-2 2,3.,4.,5.,6-Pentachlorobiphenyl (PCB-125) . . 1806 
74472-40-5 2,2.,3,4,6,6.-Hexachlorobiphenyl (PCB-145) . . 1853 
74472-41-6 2,2.,3,4.,5,6.-Hexachlorobiphenyl (PCB-148) . 1859 
74472-42-7 2,3,3.,4,4.,6-Hexachlorobiphenyl (PCB-158) . 1887 
74472-43-8 2,3,3.,4,5.,6-Hexachlorobiphenyl (PCB-161) . 1893 
74472-44-9 2,3,3.,4.,5,6-Hexachlorobiphenyl (PCB-163) . 1897 
74472-45-0 2,3,3.,4.,5.,6-Hexachlorobiphenyl (PCB-164) . 1899 
74472-46-1 2,3,3.,5,5.,6-Hexachlorobiphenyl (PCB-165) . 1901 
74472-47-2 2,2.,3,4,4.,5,6-Heptachlorobiphenyl (PCB-181) . . . . . . . . . . . . . . . . 1935 
74472-48-3 2,2.,3,4,4.,6,6.-Heptachlorobiphenyl (PCB-184) . . . . . . . . . . . . . . . 1941 
74472-49-4 2,2.,3,4,5,6,6.-Heptachlorobiphenyl (PCB-186) . . . . . . . . . . . . . . . . 1945 
74472-50-7 2,3,3.,4,4.,5.,6-Heptachlorobiphenyl (PCB-191) . . . . . . . . . . . . . . . 1956 
74472-51-8 2,3,3.,4,5,5.,6-Heptachlorobiphenyl (PCB-192) . . . . . . . . . . . . . . . . 1958 
74472-52-9 2,2.,3,4,4.,5,6,6.-Octachlorobiphenyl (PCB-204) . . . . . . . . . . . . . . . 1985 
74472-53-0 2,3,3.,4,4.,5,5.,6-Octachlorobiphenyl (PCB-205) . . . . . . . . . . . . . . . 1987 
74487-85-7 2,2.,3,4.,5,6,6.-Heptachlorobiphenyl (PCB-188) . . . . . . . . . . . . . . . 1950 
76330-06-8 2,6-Dichlorosyringolaldehyde . . . . . . . . . . . . . 2994 
76341-69-0 2-Chlorosyringolaldehyde . . . . . . . . . . . . . . . . 2993 
76842-07-4 2,3,3.,4.,5.-Pentachlorobiphenyl (PCB-122) . . 1800 
79127-80-3 Fenoxycarb . . . . . . . . . . . 3854 
83242-22-2 m-tert-Butylphenyl diphenyl phosphate (m-TBPDP) . . . . . . . . . . . . . 3139 
83242-23-3 o-tert-Butylphenyl diphenyl phosphate (o-TBPDP) . . . . . . . . . . . . . . 3139 
83694-71-7 3,4.-Dibromodiphenyl ether (PBDE-13) . . . . . 2409 
83704-22-7 1,2,3,7-Tetrachlorodibenzofuran . . . . . . . . . . . 2195 
83704-48-7 1,2,3,4,7-Pentachlorodibenzofuran . . . . . . . . . . 2209 
83704-51-2 1,2,4,7,8-Pentachlorodibenzofuran . . . . . . . . . . 2213 
83992-69-2 2,2.,3,4,4.,5,5.-Heptachloro-DPE (PCDE-180) 2392 
83992-73-8 2,2.,3,3.,4,4.,5,5.,6-Nonachloro-DPE (PCDE-206) . . . . . . . . . . . . . . 2399 
© 2006 by Taylor & Francis Group, LLC

4182 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
84602-55-1 Nonylphenyl diphenyl phosphate (m-NPDPP) . 3147 
84602-56-2 4-Cumylphenyl diphenyl phosphate (CPDPP) . 3145 
85918-31-6 2,3,3.,4,4.-Pentachloro-DPE (PCDE-105) . . . . 2379 
85918-38-3 2,2.,3,3.,4,4.,5,6.-Octachloro-DPE (PCDE-196) . . . . . . . . . . . . . . . . 2397 
88467-63-4 2,2.,3,4,4.,5,6.-Heptachloro-DPE (PCDE-182) 2394 
91465-08-6 lambda-Cyhalothrin . . . . 3770 
93703-48-1 3,3.,4,4.-Tetrabromodiphenyl ether (BDE-77) . 2428 
94339-59-0 3,3.,4,4.,5-Pentachloro-DPE (PCDE-126) . . . . 2380 
94570-83-9 3,6-Dichlorodibenzofuran . . . . . . . . . . . . . . . . 2184 
104294-16-8 2,2.,4,4.,6-Pentachloro-DPE (PCDE-100) . . . . 2376 
106220-81-9 2,2.,4,4.,5,6.-Hexachloro-DPE (PCDE-154) . . 2388 
106220-82-0 2,2.,3,3.,4,6-Hexachloro-DPE (PCDE-140) . . . 2385 
106220-84-2 2,2.,3,4,4.,6,6.-Heptachloro-DPE (PCDE-184) 2395 
117948-62-6 2,2.,3,3.,4,4.,6,6.-Octachloro-DPE (PCDE-197) . . . . . . . . . . . . . . . . 2398 
131138-20-0 2,3.,4,4.,5,5.-Hexachloro-DPE (PCDE-167) . . 2390 
131138-21-1 2,3,3.,4,4.-Pentachloro-DPE (PCDE-101) . . . . 2378 
147217-71-8 2,4.-Dibromodiphenyl ether (PBDE-9) . . . . . . 2406 
147217-75-2 2,2.,4-Tribromodiphenyl ether (PBDE-17) . . . 2412 
147217-78-5 2.,3,4-Tribromodiphenyl ether (PBDE-33) . . . 2419 
147217-80-9 3,3.,4-Tribromodiphenyl ether (PBDE-35) . . . 2420 
147217-81-0 3,4,4.-Tribromodiphenyl ether (PBDE-37) . . . 2421 
155999-95-4 2,4,6-Tribromodiphenyl ether (PBDE-30) . . . . 2417 
171977-44-9 2,4-Dibromodiphenyl ether (PBDE-7) . . . . . . . 2405 
182346-21-0 2,2.,3,4,4.-Pentabromodiphenyl ether (PBDE-85) . . . . . . . . . . . . . . . 2431 
182677-30-1 2,2.,3,4,4.,5-Hexabromodiphenyl ether (PBDE-138) . . . . . . . . . . . . . 2442 
189084-59-1 3,4-Dibromodiphenyl ether (PBDE-12) . . . . . . 2408 
189084-60-4 2,4.,6-Tribromodiphenyl ether (PBDE-32) . . . 2418 
189084-61-5 2,3.,4,4.-Tetrabromodiphenyl ether (PBDE-66) 2425 
189084-64-8 2,2.,4,4.,6-Pentachloro-DPE (PCDE-100) . . . . 2436 
189084-68-2 2,3,3.,4,4.,5,6-Heptabromodiphenyl ether (PBDE-190) . . . . . . . . . . . 2452 
207122-15-4 2,2.,4,4.,5,6.-Hexabromodiphenyl ether (PBDE-154) . . . . . . . . . . . . 2446 
207122-16-5 2,2.,3,4,4.,5.,6-Heptabromodiphenyl ether (PBDE-183) . . . . . . . . . . 2450 
327185-09-1 2,4,4.,6-Tetrabromodiphenyl ether (PBDE-69) 2427 
327185-11-5 2,2.,3,3.,4-Pentabromodiphenyl ether (PBDE-82) . . . . . . . . . . . . . . . 2430 
366791-32-4 3,3.,4,4.,5-Pentabromodiphenyl ether (PBDE-126) . . . . . . . . . . . . . . 2440 
405237-85-6 2,3,3.,4,4.,5-Hexabromodiphenyl ether (PBDE-156) . . . . . . . . . . . . . 2448 
446254-78-0 2,3,4,4.,6-Pentabromodiphenyl ether (PBDE-115) . . . . . . . . . . . . . . 2439 
© 2006 by Taylor & Francis Group, LLC