Physical-Chemical Properties and Environmental Fate for Organic Chemicals
 
Second Edition 
HANDBOOK OF © 2006 by Taylor & Francis Group, LLC
Volume I Introduction and Hydrocarbons 
Volume II Halogenated Hydrocarbons 
Volume III Oxygen Containing Compounds 
Volume IV Nitrogen and Sulfur Containing Compounds and Pesticides

A CRC title, part of the Taylor & Francis imprint, a member of the 
Taylor & Francis Group, the academic division of T&F Informa plc. 
Boca Raton London New York 
Physical-Chemical 
Properties and 
Environmental Fate for 
Organic Chemicals 
Volume I 
Introduction and Hydrocarbons 
Donald Mackay 
Wan Ying Shiu 
Kuo-Ching Ma 
Sum Chi Lee 
Second Edition 
HANDBOOK OF 
Volume II 
Halogenated Hydrocarbons 
Volume III 
Oxygen Containing Compounds 
Volume IV 
Nitrogen and Sulfur Containing Compounds 
and Pesticides 
© 2006 by Taylor & Francis Group, LLC

Published in 2006 by 
CRC Press 
Taylor & Francis Group 
6000 Broken Sound Parkway NW, Suite 300 
Boca Raton, FL 33487-2742 
© 2006 by Taylor & Francis Group, LLC 
CRC Press is an imprint of Taylor & Francis Group 
No claim to original U.S. Government works 
Printed in the United States of America on acid-free paper 
10 9 8 7 6 5 4 3 2 1 
International Standard Book Number-10: 1-56670-687-4 (Hardcover) 
International Standard Book Number-13: 978-1-56670-687-2 (Hardcover) 
Library of Congress Card Number 2005051402 
This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are 
indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the 
publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. 
No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known 
or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission 
from the publishers. 
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact 
the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that 
provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system 
of payment has been arranged. 
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation 
without intent to infringe. 
Library of Congress Cataloging-in-Publication Data 
Handbook of physical-chemical properties and environmental fate for organic chemicals.--2nd ed. / by Donald Mackay ... [et al.]. 
p. cm. 
Rev. ed. of: Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals / Donald Mackay, 
Wan Ying Shiu, and Kuo Ching Ma. c1992-c1997. 
Includes bibliographical references and index. 
ISBN 1-56670-687-4 (set : acid-free paper) 
1. Organic compounds--Environmental aspects--Handbooks, manuals, etc. 2. Environmental chemistry--Handbooks, manuals, etc. 
I. Mackay, Donald, 1936- II. Mackay, Donald, 1936- Illustrated handbook of physical-chemical properties and environmental fate 
for organic chemicals. 
TD196.O73M32 2005 
628.5'2--dc22 2005051402 
Visit the Taylor & Francis Web site at 
http://www.taylorandfrancis.com 
and the CRC Press Web site at 
http://www.crcpress.com Taylor & Francis Group is the Academic Division of T&F Informa plc. 
© 2006 by Taylor & Francis Group, LLC

Preface 
This handbook is a compilation of environmentally relevant physical-chemical data for similarly structured groups of 
chemical substances. These data control the fate of chemicals as they are transported and transformed in the multimedia 
environment of air, water, soils, sediments, and their resident biota. These fate processes determine the exposure experienced 
by humans and other organisms and ultimately the risk of adverse effects. The task of assessing chemical fate locally, 
regionally, and globally is complicated by the large (and increasing) number of chemicals of potential concern; by 
uncertainties in their physical-chemical properties; and by lack of knowledge of prevailing environmental conditions 
such as temperature, pH, and deposition rates of solid matter from the atmosphere to water, or from water to bottom 
sediments. Further, reported values of properties such as solubility are often in conflict. Some are measured accurately, 
some approximately, and some are estimated by various correlation schemes from molecular structures. In some cases, 
units or chemical identity are wrongly reported. The user of such data thus has the difficult task of selecting the “best” 
or “right” values. There is justifiable concern that the resulting deductions of environmental fate may be in substantial 
error. For example, the potential for evaporation may be greatly underestimated if an erroneously low vapor pressure 
is selected. 
To assist the environmental scientist and engineer in such assessments, this handbook contains compilations of 
physical-chemical property data for over 1000 chemicals. It has long been recognized that within homologous series, 
properties vary systematically with molecular size, thus providing guidance about the properties of one substance from 
those of its homologs. Where practical, plots of these systematic property variations can be used to check the reported 
data and provide an opportunity for interpolation and even modest extrapolation to estimate unmeasured properties of 
other substances. Most handbooks treat chemicals only on an individual basis and do not contain this feature of chemicalto-
chemical comparison, which can be valuable for identifying errors and estimating properties. This most recent edition 
includes about 1250 compounds and contains about 30 percent additional physical-chemical property data. There is a 
more complete coverage of PCBs, PCDDs, PCDFs, and other halogenated hydrocarbons, especially brominated and 
fluorinated substances that are of more recent environmental concern. Values of the physical-chemical properties are 
generally reported in the literature at a standard temperature of 20 or 25°C. However, environmental temperatures vary 
considerably, and thus reliable data are required on the temperature dependence of these properties for fate calculations. 
A valuable enhancement to this edition is the inclusion of extensive measured temperature-dependent data for the first 
time. The data focus on water solubility, vapor pressure, and Henry’s law constant but include octanol/water and octanol/air 
partition coefficients where available. They are provided in the form of data tables and correlation equations as well as 
graphs. 
We also demonstrate in Chapter 1 how the data may be taken a stage further and used to estimate likely environmental 
partitioning tendencies, i.e., how the chemical is likely to become distributed between the various media that comprise 
our biosphere. The results are presented numerically and pictorially to provide a visual impression of likely environmental 
behavior. This will be of interest to those assessing environmental fate by confirming the general fate characteristics or 
behavior profile. It is, of course, only possible here to assess fate in a “typical” or “generic” or “evaluative” environment. 
No claim is made that a chemical will behave in this manner in all situations, but this assessment should reveal the 
broad characteristics of behavior. These evaluative fate assessments are generated using simple fugacity models that 
flow naturally from the compilations of data on physical-chemical properties of relevant chemicals. Illustrations of 
estimated environmental fate are given in Chapter 1 using Levels I, II, and III mass balance models. These and other 
models are available for downloading gratis from the website of the Canadian Environmental Modelling Centre at Trent 
University (www.trent.ca/cemc). 
It is hoped that this new edition of the handbook will be of value to environmental scientists and engineers and to 
students and teachers of environmental science. Its aim is to contribute to better assessments of chemical fate in our 
multimedia environment by serving as a reference source for environmentally relevant physical-chemical property data 
of classes of chemicals and by illustrating the likely behavior of these chemicals as they migrate throughout our biosphere. 
© 2006 by Taylor & Francis Group, LLC

Acknowledgments 
We would never have completed the volumes for the first and second editions of the handbook and the CD-ROMs 
without the enormous amount of help and support that we received from our colleagues, publishers, editors, friends, 
and family. We are long overdue in expressing our appreciation. 
We would like first to extend deepest thanks to these individuals: Dr. Warren Stiver, Rebecca Lun, Deborah Tam, 
Dr. Alice Bobra, Dr. Frank Wania, Ying D. Lei, Dr. Hayley Hung, Dr. Antonio Di Guardo, Qiang Kang, Kitty Ma, 
Edmund Wong, Jenny Ma, and Dr. Tom Harner. During their past and present affiliations with the Department of 
Chemical Engineering and Applied Chemistry and/or the Institute of Environment Studies at the University of Toronto, 
they have provided us with many insightful ideas, constructive reviews, relevant property data, computer know-how, 
and encouragement, which have resulted in substantial improvements to each consecutive volume and edition through 
the last fifteen years. 
Much credit goes to the team of professionals at CRC Press/Taylor & Francis Group who worked on this second 
edition. Especially important were Dr. Fiona Macdonald, Publisher, Chemistry; Dr. Janice Shackleton, Input Supervisor; 
Patrica Roberson, Project Coordinator; Elise Oranges and Jay Margolis, Project Editors; and Marcela Peres, Production 
Assistant. 
We are indebted to Brian Lewis, Vivian Collier, Kathy Feinstein, Dr. David Packer, and Randi Cohen for their 
interest and help in taking our idea of the handbook to fruition. 
We also would like to thank Professor Doug Reeve, Chair of the Department of Chemical Engineering and Applied 
Chemistry at the University of Toronto, as well as the administrative staff for providing the resources and assistance 
for our efforts. 
We are grateful to the University of Toronto and Trent University for providing facilities, to the Natural Sciences 
and Engineering Research Council of Canada and the consortium of chemical companies that support the Canadian 
Environmental Modelling Centre for funding of the second edition. It is a pleasure to acknowledge the invaluable 
contributions of Eva Webster and Ness Mackay. 
© 2006 by Taylor & Francis Group, LLC

Biographies 
Donald Mackay, born and educated in Scotland, received his degrees in Chemical Engineering from the University of 
Glasgow. After working in the petrochemical industry he joined the University of Toronto, where he taught for 28 years 
in the Department of Chemical Engineering and Applied Chemistry and in the Institute for Environmental Studies. In 
1995 he moved to Trent University to found the Canadian Environmental Modelling Centre. Professor Mackay’s primary 
research is the study of organic environmental contaminants, their properties, sources, fates, effects, and control, and 
particularly understanding and modeling their behavior with the aid of the fugacity concept. His work has focused 
especially on the Great Lakes Basin; on cold northern climates; and on modeling bioaccumulation and chemical fate 
at local, regional, continental and global scales. 
His awards include the SETAC Founders Award, the Honda Prize for Eco-Technology, the Order of Ontario, and 
the Order of Canada. He has served on the editorial boards of several journals and is a member of SETAC, the American 
Chemical Society, and the International Association of Great Lakes Research. 
Wan-Ying Shiu is a Senior Research Associate in the Department of Chemical Engineering and Applied Chemistry, 
and the Institute for Environmental Studies, University of Toronto. She received her Ph.D. in Physical Chemistry from 
the Department of Chemistry, University of Toronto, M.Sc. in Physical Chemistry from St. Francis Xavier University, 
and B.Sc. in Chemistry from Hong Kong Baptist College. Her research interest is in the area of physical-chemical 
properties and thermodynamics for organic chemicals of environmental concern. 
Kuo-Ching Ma obtained his Ph.D. from Florida State University, M.Sc. from The University of Saskatchewan, and 
B.Sc. from The National Taiwan University, all in Physical Chemistry. After working many years in the aerospace, 
battery research, fine chemicals, and metal finishing industries in Canada as a Research Scientist, Technical Supervisor/ 
Director, he is now dedicating his time and interests to environmental research. 
Sum Chi Lee received her B.A.Sc. and M.A.Sc. in Chemical Engineering from the University of Toronto. She has 
conducted environmental research at various government organizations and the University of Toronto. Her research 
activities have included establishing the physical-chemical properties of organochlorines and understanding the sources, 
trends, and behavior of persistent organic pollutants in the atmosphere of the Canadian Arctic. 
Ms. Lee also possesses experience in technology commercialization. She was involved in the successful commercialization 
of a proprietary technology that transformed recycled material into environmentally sound products for the 
building material industry. She went on to pursue her MBA degree, which she earned from York University’s Schulich 
School of Business. She continues her career, combining her engineering and business experiences with her interest in 
the environmental field. 
© 2006 by Taylor & Francis Group, LLC

Contents 
Volume I 
Chapter 1 Introduction . . . . 1 
Chapter 2 Aliphatic and Cyclic Hydrocarbons . . 61 
Chapter 3 Mononuclear Aromatic Hydrocarbons . . . . . . . . . . . . . . . . 405 
Chapter 4 Polynuclear Aromatic Hydrocarbons (PAHs) and Related Aromatic Hydrocarbons . . . . . . . . . . . . . . 617 
Volume II 
Chapter 5 Halogenated Aliphatic Hydrocarbons . . . . . . . . . . . . . . . . 921 
Chapter 6 Chlorobenzenes and Other Halogenated Mononuclear Aromatics . . . . . . . . . . 1257 
Chapter 7 Polychlorinated Biphenyls (PCBs) . 1479 
Chapter 8 Chlorinated Dibenzo-p-dioxins . . . 2063 
Chapter 9 Chlorinated Dibenzofurans . . . . . . . 2167 
Volume III 
Chapter 10 Ethers . . . . . . 2259 
Chapter 11 Alcohols . . . . 2473 
Chapter 12 Aldehydes and Ketones . . . . . . . . . 2583 
Chapter 13 Carboxylic Acids . . . . . . . . . . . . . . 2687 
Chapter 14 Phenolic Compounds . . . . . . . . . . . 2779 
Chapter 15 Esters . . . . . . 3023 
Volume IV 
Chapter 16 Nitrogen and Sulfur Compounds . . 3195 
Chapter 17 Herbicides . . . 3457 
Chapter 18 Insecticides . . 3711 
Chapter 19 Fungicides . . . 4023 
Appendix 1 . . . . . . . . . . . . . . 4133 
Appendix 2 . . . . . . . . . . . . . . 4137 
Appendix 3 . . . . . . . . . . . . . . 4161 
© 2006 by Taylor & Francis Group, LLC

16 Nitrogen and Sulfur Compounds 
CONTENTS 
16.1 List of Chemicals and Data Compilations . . 3197 
16.1.1 Nitriles (Organic cyanides) . . . . . . 3197 
16.1.1.1 Acetonitrile . . . . . . . . . 3197 
16.1.1.2 Propionitrile . . . . . . . . . 3203 
16.1.1.3 Butyronitrile . . . . . . . . 3207 
16.1.1.4 Acrylonitrile (2-Propenenitrile) . . . . . . . . . . 3210 
16.1.1.5 Benzonitrile . . . . . . . . . 3214 
16.1.2 Aliphatic amines . . . . . . . . . . . . . . 3218 
16.1.2.1 Dimethylamine . . . . . . 3218 
16.1.2.2 Trimethylamine . . . . . . 3222 
16.1.2.3 Ethylamine . . . . . . . . . 3225 
16.1.2.4 Diethylamine . . . . . . . . 3228 
16.1.2.5 n-Propylamine . . . . . . . 3231 
16.1.2.6 n-Butylamine . . . . . . . . 3234 
16.1.2.7 Ethanolamine . . . . . . . . 3236 
16.1.2.8 Diethanolamine . . . . . . 3239 
16.1.2.9 Triethanolamine . . . . . . 3241 
16.1.3 Aromatic amines . . . . . . . . . . . . . . 3243 
16.1.3.1 Aniline . . . . . . . . . . . . . 3243 
16.1.3.2 2-Chloroaniline . . . . . . 3249 
16.1.3.3 3-Chloroaniline . . . . . . 3253 
16.1.3.4 4-Chloroaniline . . . . . . 3257 
16.1.3.5 3,4-Dichloroaniline . . . 3261 
16.1.3.6 o-Toluidine (2-Methylbenzeneamine) . . . . . . 3263 
16.1.3.7 m-Toluidine (3-Methylbenzeneamine) . . . . . 3267 
16.1.3.8 p-Toluidine (4-Methylbenzeneamine) . . . . . . 3270 
16.1.3.9 N,N.-Dimethylaniline . 3274 
16.1.3.10 2,6-Xylidine (2,6-Dimethylbenzeneamine) . 3277 
16.1.3.11 Diphenylamine . . . . . . 3279 
16.1.3.12 Benzidine . . . . . . . . . . . 3283 
16.1.3.13 3,3.-Dichlorobenzidine 3285 
16.1.3.14 N,N.-Bianiline . . . . . . . 3287 
16.1.3.15 .-Naphthylamine (1-Aminonaphthalene) . . . 3289 
16.1.3.16 .-Naphthylamine (2-Aminonaphthalene) . . . 3291 
16.1.3.17 2-Nitroaniline . . . . . . . 3293 
16.1.3.18 4-Nitroaniline . . . . . . . 3295 
16.1.4 Nitroaromatic compounds . . . . . . . 3297 
16.1.4.1 Nitrobenzene . . . . . . . . 3297 
16.1.4.2 2-Nitrotoluene . . . . . . . 3304 
16.1.4.3 4-Nitrotoluene . . . . . . . 3308 
16.1.4.4 2,4-Dinitrotoluene (DNT) . . . . . . . . . . . . . . . 3313 
© 2006 by Taylor & Francis Group, LLC

3196 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.4.5 2,6-Dinitrotoluene . . . . 3317 
16.1.4.6 2,4,6-Trinitrotoluene (TNT) . . . . . . . . . . . . . 3320 
16.1.4.7 1-Nitronaphthalene (.-Nitronaphthalene) . . 3326 
16.1.5 Amides and ureas . . . . . . . . . . . . . 3328 
16.1.5.1 Acetamide . . . . . . . . . . 3328 
16.1.5.2 Acrylamide . . . . . . . . . 3330 
16.1.5.3 Benzamide . . . . . . . . . . 3331 
16.1.5.4 Urea . . . . . . . . . . . . . . . 3333 
16.1.6 Nitrosamines 3336 
16.1.6.1 N-Nitrosodimethylamine . . . . . . . . . . . . . . . . 3336 
16.1.6.2 N-Nitrosodipropylamine . . . . . . . . . . . . . . . . 3338 
16.1.6.3 Diphenylnitrosoamine . 3340 
16.1.7 Heterocyclic compounds . . . . . . . . 3342 
16.1.7.1 Pyrrole . . . . . . . . . . . . . 3342 
16.1.7.2 Indole . . . . . . . . . . . . . . 3346 
16.1.7.3 Pyridine . . . . . . . . . . . . 3348 
16.1.7.4 2-Methylpyridine . . . . . 3354 
16.1.7.5 3-Methylpyridine . . . . . 3358 
16.1.7.6 2,3-Dimethylpyridine . 3362 
16.1.7.7 Quinoline . . . . . . . . . . . 3365 
16.1.7.8 Isoquinoline . . . . . . . . . 3369 
16.1.7.9 Benzo[f]quinoline . . . . 3372 
16.1.7.10 Carbazole . . . . . . . . . . . 3375 
16.1.7.11 Benzo[c,g]carbazole . . 3378 
16.1.7.12 Acridine . . . . . . . . . . . . 3380 
16.1.8 Sulfur compounds . . . . . . . . . . . . . 3383 
16.1.8.1 Carbon disulfide . . . . . 3383 
16.1.8.2 Dimethyl sulfide . . . . . 3386 
16.1.8.3 Dimethyl disulfide . . . . 3391 
16.1.8.4 Dimethyl sulfoxide (DMSO) . . . . . . . . . . . . 3394 
16.1.8.5 Dimethyl sulfate . . . . . 3397 
16.1.8.6 Methanethiol . . . . . . . . 3399 
16.1.8.7 Ethanethiol . . . . . . . . . 3402 
16.1.8.8 1-Propanethiol . . . . . . . 3406 
16.1.8.9 1-Butanethiol (Butyl mercaptan) . . . . . . . . . 3409 
16.1.8.10 Benzenethiol . . . . . . . . 3412 
16.1.8.11 Thiophene . . . . . . . . . . 3415 
16.1.8.12 Benzo[b]thiophene . . . 3419 
16.1.8.13 Dibenzothiophene . . . . 3421 
16.1.8.14 Thiourea . . . . . . . . . . . 3423 
16.1.8.15 Thioacetamide . . . . . . . 3425 
16.2 Summary Tables . . . . 3427 
16.3 References . . . . . . . . . 3438 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3197 
16.1 LIST OF CHEMICALS AND DATA COMPILATIONS 
16.1.1 NITRILES (ORGANIC CYANIDES) 
16.1.1.1 Acetonitrile 
Common Name: Acetonitrile 
Synonym: cyanomethane, ethanenitrile, methyl cyanide 
Chemical Name: acetonitrile 
CAS Registry No: 75-05-8 
Molecular Formula: C2H3N, CH3CN 
Molecular Weight: 41.052 
Melting Point (°C): 
–43.82 (Lide 2003) 
Boiling Point (°C): 
81.65 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.7857 (Dreisbach 1961; Weast 1982–83; Dean 1985) 
0.7803 (25°C, Dreisbach 1961) 
Molar Volume (cm3/mol): 
52.7 (calculated-density, Rohrschneider 1973) 
57.4 (exptl. at normal bp, Lee et al. 1972) 
56.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
29.1 (pKa, Riddick et al. 1986; Howard 1993) 
32.2 (pKs, Riddick et al. 1986) 
–10.12 (pKBH + , Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
35.01, 31.51 (25°C, bp, Dreisbach 1961) 
32.94, 29.82 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
8.167 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
> 3.1 . 106 (Booth & Everson 1948) 
miscible (Dean 1985; Riddick et al. 1986; Yaws et al. 1990; Howard 1993) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
11870* (interpolated-regression of tabulated data, temp range –47–81.8°C, Stull 1947) 
log (P/mmHg) = 7.12257 – 1315.2/(230 + t/°C), (Antoine eq., Dreisbach & Martin 1949) 
11240 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 7.07354 – 1279.2/(224.0 + t/°C), temp range 5–119°C, (Antoine eq. for liquid state, Dreisbach 
1961) 
12156* (25.56°C, measured range 7.3–27.38°C, Putnam et al. 1965) 
log (P/mmHg) = 7.89511 – 1773.06/(T/K); temp range 280–300.5 K (Antoine eq., Putnam et al. 1965) 
11510 (Hoy 1970) 
24459* (41.82°C, ebulliometry, measured range 41–82°C, Meyer et al. 1971) 
log (P/mmHg) = 6.23655 – 1397.9228/(239.275 + t/°C); temp range 41–82°C (ebulliometry, Meyer et al. 1971) 
log (P/mmHg) = [–0.2185 . 8173.2/(T/K)] + 7.938662; temp range: –47.0 to 81.8°C, (Antoine eq., Weast 
1972–73) 
11919* (25.3°C, measured range 15.1–89.2°C, Dojcanske & Heinrich 1974) 
N 
© 2006 by Taylor & Francis Group, LLC

3198 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
8306* (saturated-vapor volume, extrapolated from fitted Antoine eq., Mousa 1981) 
log (P/kPa) = 6.4914 – 1420.8649/(T/K – 42.15); temp range 438.9–530.1 K (ebulliometry, Mousa 1981) 
9864, 15330 (20°C, 30°C, Verschueren 1983) 
11790, 11830 (interpolated values-Antoine equations, Boublik et al. 1984) 
log (P/kPa) = 6.39532 – 1420.682/(241.852 + t/°C), temp range: 15.1–89.2°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
log (P/kPa) = 7.54606 – 2093.145/(298.369 + t/°C), temp range: 7.26–27.4°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
12310 (calculated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.11988 – 1314.4/(230 + t/°C), temp range: liquid (Antoine eq., Dean 1985, 1992) 
11840 (Riddick et al. 1986; Howard et al. 1986; quoted, Banerjee et al. 1990; Howard 1993) 
log (P/kPa) = 6.24747 – 1315.2/(230.0 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
11800 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.34522 – 1388.446/(–34.856 + T/K), temp range: 314–355 K, (Antoine eq., Stephenson & 
Malanowski 1987) 
11840 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.24724 – 1315.2/(230 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
log (P/mmHg) = 23.1953 – 2.3389 . 103/(T/K) –5.4954·log (T/K) + 7.9894 . 10–10 · (T/K) + 2.3293 . 10–6 · 
(T/K)2; temp range 229–546 K (vapor pressure eq., Yaws 1994) 
10604* (22.634°C, comparative ebulliometry, measured range 278–373 K, Ewing & Sanchez Ochoa 2004) 
ln (P/kPa) = 14.7340 – 3268.53/(T/K – 31.615), for temp range 290–362 K (comparative ebulliometry, Ewing 
& Sanchez Ochoa 2004) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional 
data at other temperatures designated* are compiled at the end of this section): 
3.50, 2.78 (exptl., calculated-bond contribution, Hine & Mookerjee 1975) 
2.07* (headspace-GC, measured range 0–25°C, Snider & Dawson 1985) 
2.033 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 
1.474* (20°C, headspace-GC, measured range 6.0–30°C, Benkelberg et al. 1995) 
1.474, 1.477, 1.685 (20°C, headspace-GC, deionized water, rain water, artificial seawater, Benkelberg et al. 1995) 
ln (kH/atm) = (13.8 ± 0.3) – (4106 ± 101)/T/K), temp range: 6–30°C (headspace-GC measurement, Benkelberg 
et al. 1995) 
1.55 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 2.353 – 1627/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
2.05 (Ostwald concentration coefficient-concn ratio-GC/FID, Bebahani et al. 2002) 
Octanol/Water Partition Coefficient, log KOW: 
–0.34 (shake flask-GC, Hansch & Anderson 1967; Leo et al. 1969, 1971; Hansch & Leo 1985) 
–0.54 (shake flask-GC, Tanii & Hashimoto 1984) 
–0.34 (recommended, Sangster 1989, 1993) 
–0.34 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
2.31 (head-space GC, Abraham et al. 2001) 
Bioconcentration Factor, log BCF: 
–0.523 (estimated-KOW as per regression eq of Bysshe 1982, Howard 1993) 
Sorption Partition Coefficient, log KOC: 
–0.523 (soil, estimated-KOW, Lyman et al. 1982; quoted, Howard 1993) 
–0.714 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. ~ 21 h from a model river of 1-m deep flowing at 1 m/s with a wind velocity of 3 m/s based 
on Henry’s law constant (Lyman et al. 1982; quoted, Howard 1993) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3199 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression 
see reference: 
photooxidation t. = 314 – 12559 yr in water, based on measured rate data for reaction with hydroxyl radical 
in aqueous solution (Dorfman & Adams 1973; Howard et al. 1991) 
kOH* = (4.94 ± 0.6) . 10–14 cm3 molecule–1 s–1 at 297.2 K, measured range 297–424 K (flash photolysisresonance 
fluorescence, Harris et al. 1981; quoted, Howard 1993) 
kOH* = (1.94 ± 0.37) . 10–14 cm3 molecule–1 s–1 at 298 K, measured range 250–363 K (flash photolysisresonance 
fluorescence, Kurylo & Knable 1984) 
kOH* = (2.1 ± 0.3) . 10–14 cm3 molecule–1 s–1 at 295 K, measured range 295–393 K (discharge flow-EPR, 
Poulet et al. 1984) 
kOH(exptl) = 2.1 . 10–14 cm3 molecule–1 s–1, kOH(calc) = 2.0 . 10–14 cm3 molecule–1 s–1 at 298 K (Atkinson 
1985) 
kOH = 3 . 10–14 cm3 molecule–1 s–1 (Atkinson 1985; quoted, Howard et al. 1991; Howard 1993) 
kOH = 1.90 . 10–14 cm3 molecule–1 s–1 and k(soln) = 3.70 . 10–14 cm3 molecule–1 s–1 for the solution-phase 
reaction with hydroxyl radical in aqueous solution (Wallington et al. 1988) 
kOH* = 2.14 . 10–14 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1989) 
Hydrolysis: 
k = 5.8 . 10–3 M–1 h–1 at pH 7 and 25°C with t. > 150000 yr (Ellington et al. 1987) 
kO3(aq.) . 6 . 10–5 M–1 s–1 for direct reaction with ozone in water at pH 2 and 22°C, with t. . 18 yr at pH 
7 (Yao & Haag 1991). 
Biodegradation: t.(aq. aerobic) = 168 – 672 h, based on aerobic river die-away test data (Ludzack et al. 1958; 
quoted, Howard et al. 1991); t.(aq. anaerobic) = 672 – 2688 h, based on estimated aqueous aerobic 
biodegradation half-life (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 1299 – 12991 h, based on measured rate constant k = 3 . 10–14 cm3 molecule–1 s–1 for 
the vapor phase reaction with hydroxyl radical in air (Atkinson 1985; quoted, Howard et al. 1991; Howard 
1993); 
atmospheric transformation lifetime was estimated to be > 5 d (Kelly et al. 1994). 
Surface water: t. = 168 – 672 h, based on aerobic river die-away test data (Howard et al. 1991); 
photooxidation t. = 314 – 12559 yr, based on measured rate data for reaction with hydroxyl radical in 
aqueous solution (Dorfman & Adams 1973; Howard et al. 1991); 
t. . 18 yr for direct reaction with ozone in water at pH 7 and 22°C (Yao & Haag 1991). 
Groundwater: t. = 336 – 8640 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
Sediment: 
Soil: t. = 168 – 672 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biota: 
TABLE 16.1.1.1.1 
Reported vapor pressures of acetonitrile at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3200 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.1.1.1 (Continued) 
1. 
Stull 1947 Putnam et al. 1965 Meyer et al. 1971 Dojcanske & Heinrich 1974 
summary of literature data manometer ebulliometry in Boublik et al. 1984 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–47.0 133.3 7.259 4997 41.82 24459 15.1 7359 
–26.6 666.6 10.47 5861 46.09 29026 20.1 9413 
–16.3 1333 13.791 6914 46.11 29032 25.3 11919 
–5.0 2666 18.701 8809 50.36 34288 30.7 15252 
7.7 5333 21.905 10244 55.37 41393 35 18292 
15.9 7999 23.401 11031 60.64 50155 39.95 22465 
27 13332 25.563 12156 65.91 60390 40 22625 
43.7 26664 27.38 13187 70.74 71145 44.9 27638 
62.5 53329 76.31 85512 50.1 33797 
81.8 101325 eq. 1 P/mmHg 81.87 101990 54.9 40517 
A 7.89511 81.89 102010 60 49022 
mp/°C –41.0 B 1773.06 64.4 57182 
bp/°C 81.66 64.95 58102 
eq. 2 P/mmHg 70 68967 
A 6.23655 73.05 76713 
B 1397.923 75.1 81380 
C 239.275 77.2 87952 
81.1 99431 
85.2 112364 
88.2 123189 
89.2 124776 
2. 
Mousa 1981 Ewing & Sanchez Ochoa 2004 
ebulliometry-pressure gauge comparative ebulliometry 
T/K P/kPa t/°C P/Pa t/°C P/kPa 
set A set B 
438.9 784.4 4.772 4323# 81.4 100.745 
440.9 842.8 5.475 4490# 87.792 122.631 
442.6 862.3 8.417 5247# 98.589 168.122 
444.5 876.9 12.226 6385# 105.665 204.592 
447.9 960.3 14.517 7165# 110.961 235.792 
450.5 999.2 17.497 8296 121.144 306.279 
455.7 1116.5 19.596 9182 132.086 399.5 
460.2 1234.6 22.634 10604 142.063 502.665 
505.3 2604.9 27.674 13366 150.533 605.601 
508.1 1704.6 30.661 15271 157.974 708.993 
512.1 1924.0 36.486 19639 164.152 804.861 
519.7 3243.3 42.283 24972 170.346 910.819 
521.6 3303.1 47.968 31311 176.446 1025.47 
524.8 3482.8 51.872 36387 182.586 1151.97 
530.1 3722.1 58.125 45907 188.724 1290.2 
63.263 55169 195.22 1450.28 
bp/K 354.8 68.029 65092 200.902 1602.63 
72.425 75440 206.004 1749.88 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3201 
TABLE 16.1.1.1.1 (Continued) 
Mousa 1981 Ewing & Sanchez Ochoa 2004 
ebulliometry-pressure gauge comparative ebulliometry 
T/K P/kPa t/°C P/Pa t/°C P/kPa 
eq.3 P/kPa 76.178 85311 211.619 2110.77 
A 6.4914 79.929 95589 217.22 2303.51 
B 1420.8649 81.515 101120 222.602 2523.66 
C –42.15 84.406 110614 228.33 2747.95 
88.462 125129 233.771 2999.22 
95.816 155329 339.66 3254.08 
100.02 175036 244.858 3512.89 
254.64 3760.37 
for temp range 290–373 K 258.929 4001.46 
eq. 2a P/mmHg 261.882 4174.61 
A 14.734 
B 3268.53 data fitted to Wagner eq. 
C –31.615 for temp range 354.5–535 K 
# data not used in regression 
FIGURE 16.1.1.1.1 Logarithm of vapor pressure versus reciprocal temperature for acetonitrile. 
Acetonitrile: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 
1/(T/K) 
P( gol 
S 
) aP/ 
experimental data 
Stull 1947 
b.p. = 81.65 °C m.p. = -43.82 °C 
© 2006 by Taylor & Francis Group, LLC

3202 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.1.1.2 
Reported Henry’s law constants of acetonitrile at various temperatures and temperature dependence 
equations 
ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a) 
ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a) 
ln (kH/atm) = A – B/(T/K) (3) 
ln [H/(Pa m3/mol)] = A – B/(T/K) (4) ln [H/(atm·m3/mol)] = A – B/(T/K) (4a) 
KAW = A – B·(T/K) + C·(T/K)2 (5) 
Snider & Dawson 1985 Benkelberg et al. 1995 
gas stripping-GC equil. vapor phase concn-GC 
t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) 
deionized water 
0 0.614 6 0.72 
25 2.066 10 1.0706 
20 1.474 
enthalpy of transfer: 30 2.356 
.H/(kJ mol–1) = 30.54 rain water 
20 1.477 
artificial 
20 1.685 
eq. 3 H/atm 
A 13.8 ± 0.3 
B 4106 ± 101 
FIGURE 16.1.1.1.2 Logarithm of Henry’s law constant versus reciprocal temperature for acetonitrile. 
Acetonitrile: Henry's law constant vs. 1/T 
-2.0 
-1.0 
0.0 
1.0 
2.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
m. aP( / H nl 
3 
) l om 
/ 
Snider & Dawson 1985 
Benkelberg et al. 1995 (in deionized water) 
Benkelberg et al. 1995 (in rain water) 
Hine & Mookerjee 1975 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3203 
16.1.1.2 Propionitrile 
Common Name: Propionitrile 
Synonym: propanenitrile, ethyl cyanide, cyanoethane, propyl nitrile 
Chemical Name: propionitrile 
CAS Registry No: 107-12-0 
Molecular Formula: C3H5N, CH3CH2CN 
Molecular Weight: 55.079 
Melting Point (°C): 
–92.78 (Lide 2003) 
Boiling Point (°C): 
97.14 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.7818 (Weast 1982–83; Dean 1985) 
0.78182, 0.77682 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
70.4 (calculated-density, Taft et al. 1985; Leahy 1986; Kamlet et al. 1986, 1987) 
78.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
33.54 (pKs, Riddick et al. 1986) 
Enthalpy of Vaporization, .Hvap, (kJ/mol): 
37.41, 32.77 (25°C, bp, Dreisbach 1961) 
36.03, 30.96 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
5.045 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
104950 (Seidell 1941) 
105200 (Hansch et al. 1968) 
103000 (Dean 1985; Riddick et al. 1986; Howard 1990) 
55000, 65000 (20°C, 30°C, shake flask-GC, measured range 0–90°C, Stephenson 1994) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
6005* (interpolated-regression of tabulated data, temp range –35–97.1°C, Stull 1947) 
10114* (35.5°C, ebulliometry, measured range 35.5–97.35°C, Dreisbach & Shrader 1949) 
log (P/mmHg) = 7.15217 – 1398.2/(230 + t/°C); temp range 35.5–97.35°C, (Antoine eq., Dreisbach & Martin 
1949) 
5333* (22.05°C, measured range –84.66–22.05°C, Milazzo 1956) 
5950 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 7.05846 – 1327.9/(221.0 + t/°C), temp range: 17–137°C, (Antoine eq. for liquid state, Dreisbach 
1961) 
log (P/mmHg) = [–0.2185 . 8769.0/(T/K)] + 8.079473; temp range: –35 to 97.1°C, (Antoine eq., Weast 1972–73) 
6140 (22.05°C, quoted exptl., Boublik et al. 1973, 1984) 
6163, 6143 (extrapolated values-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 5.89149 – 1181.562/(206.603 + t/°C), temp range: 35.5–97.39°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
log (P/kPa) = 4.43918 – 677.415/(160.551 + t/°C), temp range: –84.7 to 22.05°C (Antoine eq. from reported 
exptl. data, Boublik et al. 1984) 
N 
© 2006 by Taylor & Francis Group, LLC

3204 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
6140 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 5.2782 – 665.52/(159.0 + t/°C), temp range: –84 to 22°C (Antoine eq., Dean 1985, 1992) 
5950 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.27702 – 1398.2/(230 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
log (P/kPa) = 7.15190 – 1894.10/(T/K); temp range: 9–25°C, (Antoine eq., Riddick et al. 1986) 
6306 (calculated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.395 – 3213/(T/K), temp range: 357–413 K, (Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 10.31055 – 3994.667/(T/K), temp range: 373–413 K, (Antoine eq.-II, Stephenson & Malanowski 
1987) 
log (P/mmHg) = 33.7908 – 2.9113 . 103/(T/K) – 9.1506·log (T/K) + 1.1173 . 10–11·(T/K) + 3.2756 . 10–6·(T/K)2; 
temp range 180–564 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
3.800 (partial pressure, Butler & Ramchandani 1935) 
3.748 (partial vapor pressure-GC, Buttery et al. 1969) 
3.752, 3.752, 4.114 (exptl., calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
5.947 (Howard 1990) 
Octanol/Water Partition Coefficient, log KOW: 
0.041 (shake flask, Collander 1951) 
0.16 (shake flask-GC, Hansch & Anderson 1967; Hansch et al. 1968) 
– 0.10 (shake flask-GC, Tanii & Hashimoto 1984) 
0.16 (recommended, Sangster 1989, 1993) 
0.16 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
2.69 (head-space GC, Abraham et al. 2001) 
Bioconcentration Factor, log BCF: 
– 0.108 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
0.079 (soil, estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. = 13.3 h was estimated for a model river 1 m deep flowing 1 m/s 
with wind speed 3 m/s (Lyman et al. 1982; quoted, Howard 1990). 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression 
see reference: 
kOH* = (1.94 ± 0.20) . 10–13 cm3 molecule–1 s–1 at 298.2 K, measured range 298–423 K (flash photolysisresonance 
fluorescence, Harris et al. 1981) 
kOH = 1.9 . 10–13 cm3 molecule–1 s–1 at 298 K (Atkinson 1985) 
kOH = 1.94 . 10–13 cm3 molecule–1 s–1 at 298.2 K, k(soln) = 1.60 . 10–13 cm3 molecule–1 s–1 for the solutionphase 
reaction with hydroxyl radical in aqueous solution (Wallington et al. 1988) 
photooxidation t. = 83 d in air, based on experimental rate constant assuming t. = 12 h of sunlight for the 
vapor-phase reaction with hydroxyl radical in air and t. > 100 d for the reaction with ozone in the 
atmosphere (Howard 1990) 
kOH = 0.194 . 10–12 cm3 molecule–1 s–1 at 298.2 K (review, Atkinson 1989) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3205 
Half-Lives in the Environment: 
Air: t. = 83 d, based on experimental rate constant assuming 12 h of sunlight for the vapor-phase reaction with 
hydroxyl radical in air and t. > 100 d for the reaction with ozone in the atmosphere (Harris et al. 1981; 
quoted, Howard 1990). 
TABLE 16.1.1.2.1 
Reported aqueous solubilities and vapor pressures of propionitrile at various temperatures 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Aqueous solubility Vapor pressure 
Stephenson 1994 Stull 1947 Dreisbach & Shrader 1949 Milazzo 1956 
shake flask-GC summary of literature data ebulliometry 
t/°C S/g·m–3 t/°C P/Pa t/°C P/Pa t/°C P/Pa 
0 62000 –35.0 133.3 35.5 10114 –84.66 1 
20 55000 –13.8 666.6 43.76 16500 –77.01 2 
30 65000 –3.0 1333 70.45 42066 –67.42 6 
40 79000 8.8 2666 84.44 67661 –65.49 7 
50 94000 22 5333 97.35 101325 –59.72 13 
60 98000 30.1 7999 –52.96 17 
70 134000 41.4 13332 –46.19 49 
80 156000 58.2 26664 –34.95 133 
90 195000 77.7 53329 –22.85 356 
97.1 101325 –13.08 707 
–2.95 1347 
mp/°C –91.9 6.36 2400 
16.42 4146 
22.05 5333 
FIGURE 16.1.1.2.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for propionitrile. 
Propionitrile: solubility vs. 1/T 
-4.5 
-4.0 
-3.5 
-3.0 
-2.5 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x 
nl 
Stephenson 1994 
© 2006 by Taylor & Francis Group, LLC

3206 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.1.2.2 Logarithm of vapor pressure versus reciprocal temperature for propionitrile. 
Propionitrile: vapor pressure vs. 1/T 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
0.0026 0.003 0.0034 0.0038 0.0042 0.0046 0.005 0.0054 0.0058 
1/(T/K) 
P( gol 
S 
) aP/ 
Dreisbach & Shrader 1949 
Milazzo 1956 
Stull 1947 
b.p. = 97.14 °C m.p. = -92.78 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3207 
16.1.1.3 Butyronitrile 
Common Name: n-Butyronitrile 
Synonym: butanenitrile 
Chemical Name: butyronitrile 
CAS Registry No: 109-74-0 
Molecular Formula: C4H7N, CH3CH2CH2CN 
Molecular Weight: 69.106 
Melting Point (°C): 
–111.9 (Lide 2003) 
Boiling Point (°C): 
117.6 (Lide 2003) 
Density (g/cm3): 
0.7911, 0.7865 (20°C, 25°C, Riddick et al. 1986) 
Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
88.4 (30°C, Stephenson & Malanowski 1987) 
100.7 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Vaporization, .HV (kJ/mol): 
39.33, 34.43 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Sublimation, .Hsubl (kJ/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
5.021 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Other data at other temperatures designated * are compiled 
at the end of this section): 
33000 (selected, Riddick et al. 1986) 
33500* (20°C, shake flask-GC/TC, measured range 0–90°C, Stephenson 1994) 
Vapor Pressure (Pa at 25°C or as indicated and the reported temperature dependence equations. Additional data at 
other temperatures designated * are compiled at the end of this section): 
1333* (25.7°C, summary of literature data, temp range –20 to 117.5°C, Stull 1947) 
3592* (30.64°C, ebulliometry, measured range 30.64–120.223°C, Meyer et al. 1971) 
log (P/mmHg) = 6.771124 – 1444.5851/(t/°C + 223.275); temp range 30.64–120.223°C (Antoine eq., 
ebulliometric measurements, Meyer et al. 1971) 
13831* (59.807°C, ebulliometry, measured range 59.807–127.707°C, Meyer & Hotz 1976) 
2546 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.25390 – 1452.076/(t/°C + 224.1855); temp range not specified (Riddick et al. 1986) 
log (PL/kPa) = 6.25397 – 1452.076/(–46.9645 + T/K); temp range 332–401 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 4.8780 – 2.5505 . 103/(T/K) + 3.6306·log (T/K) – 1.663 . 10–2·(T/K) + 1.0604 . 10–5·(T/K)2; 
temp range 161–582 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
0.53 (shake flask-GC, Tanii & Hashimoto 1984) 
0.53 (recommended, Sangster 1993; Hansch et al. 1995) 
N 
© 2006 by Taylor & Francis Group, LLC

3208 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
TABLE 16.1.1.3.1 
Reported aqueous solubilities and vapor pressures of butyronitrile at various temperatures 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Aqueous solubility Vapor pressure 
Stephenson 1994 Stull 1947 Meyer et al. 1971 Meyer & Hotz 1976 
shake flask-GC summary of literature data ebulliometry ebulliometry 
t/°C S/g·m–3 t/°C P/Pa t/°C P/Pa t/°C P/Pa 
0 37500 –20.0 133.3 30.64 3592 59.807 13831 
20 33500 2.10 666.6 39.03 5459 65.615 17513 
30 33100 13.4 1333 49.913 9041 71.638 22151 
40 32500 25.7 2666 59.226 13527 77.023 27111 
50 32300 38.4 5333 67.536 18888 83.599 34366 
60 32100 47.3 7999 77.313 27448 89.462 42109 
70 31900 59.0 13332 86.71 39316 96.022 52382 
80 34000 76.7 26664 93.675 48525 102.279 63984 
90 36100 96.8 53329 100.638 60811 109.175 79081 
117.5 101325 100.701 60928 115.651 95737 
107.041 74214 121.838 114148 
mp/°C 112.04 88451 127.707 134135 
117.254 100344 
120.223 109170 
bp/°C 117.583 
log P = A – B/(C + t/°C) 
P/mmHg 
A 6.771124 
B 1444.5851 
C 223.275 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3209 
FIGURE 16.1.1.3.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for butyronitrile. 
FIGURE 16.1.1.3.2 Logarithm of vapor pressure versus reciprocal temperature for butyronitrile. 
Butyronitrile: solubility vs. 1/T 
-5.5 
-5.0 
-4.5 
-4.0 
-3.5 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x nl 
Stephenson 1994 
Butyronitrile: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0022 0.0026 0.003 0.0034 0.0038 0.0042 
1/(T/K) 
P 
( gol 
S 
) aP/ 
Meyer et al. 1971 
Meyer & Hotz 1976 
Stull 1947 
b.p. = 117.6 °C 
© 2006 by Taylor & Francis Group, LLC

3210 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.1.4 Acrylonitrile (2-Propenenitrile) 
Common Name: Acrylonitrile 
Synonym: cyanoethylene, propenenitrile, 2-propenenitrile, vinyl cyanide 
Chemical Name: acrylonitrile, cyanoethylene 
CAS Registry No: 107-13-1 
Molecular Formula: C3H3N, CH2=CHCN 
Molecular Weight: 53.063 
Melting Point (°C): 
–83.48 (Lide 2003) 
Boiling Point (°C): 
77.30 (Riddick et al. 1986; Howard 1989; Lide 2003) 
Density (g/cm3 at 20°C): 
0.8060, 0.8004 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
65.8 (20°C, calculated-density) 
71.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
6.230 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
79000 (Klein et al. 1957) 
75000 (Gunther et al. 1968) 
73500 (20°C, Windholz 1976) 
73240 (shake flask-LSC, Veith et al. 1980) 
7.35 wt%* (20°C, Kirk-Othmer Encyclopedia 3rd ed., measured range 0–60°C, quoted, Basu et al. 1983) 
73500 (20°C, Riddick et al. 1986) 
69000*, 66400 (20°C, 30°C, shake flask-GC, measured range 0–70°C, Stephenson 1994) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
14340* (interpolated-regression of tabulated data, temp range –51 to 78.5°C, Stull 1947) 
11732* (20°C, temp range 20–77°C, Gudkov et al. 1964; quoted, Boublik et al. 1984) 
14100 (Hoy 1970) 
log (P/mmHg) = [–0.2185 . 7941.4/(T/K)] + 7.851016; temp range: –51 to 78.5°C, (Antoine eq., Weast 1972–73) 
14720 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 4.77668 – 649.583/(155.006 + t/°C), temp range 20–70°C (Antoine eq. from reported exptl. data, 
Boublik et al. 1984) 
14370 (Daubert & Danner 1985) 
15240 (calculated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.03855 – 1232.53/(222.47 + t/°C), temp range –20 to 140°C (Antoine eq., Dean 1985, 1992) 
11000 (20°C, Riddick et al. 1986) 
log (P/kPa) = 6.643 – 11644.7/(T/K), temp range not specified (Antoine eq., Riddick et al. 1986) 
14560 (interpolated-Antoine eq.-II, Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.12021 – 1288.9/(–38.74 + T/K); temp range 257–352 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.4811 – 1518.381/(–12.003 + T/K); temp range 283–343 K (Antoine eq.-II, Stephenson & 
Malanowski 1987)
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3211 
15600 (calculated-solvatochromic parameters, Banerjee et al. 1990) 
log (P/mmHg) = 35.921 – 2.7763 . 103/(T/K) – 10.101·log (T/K) – 3.1547 . 10–10·(T/K) + 4.7299 . 10–6·(T/K)2; 
temp range 190–535 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
11.14 (Bocek 1976; quoted, Basu et al. 1983; Howard 1989) 
8.918 (calculated-P/C, Mabey et al. 1982) 
9.420 (quoted, WERL Treatability Database, Ryan et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
0.25 (shake flask-HPLC, Pratesi et al. 1979) 
0.00 (shake flask, Fujisawa & Masuhara 1980, 1981) 
0.09 (shake flask-GC, Tanii & Hashimoto 1984) 
0.25 (Hansch & Leo 1985) 
0.25 (recommended, Sangster 1989) 
0.25 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.68 (bluegill sunfish, Barrows et al. 1978) 
0.00 (estimated-S, Kenaga 1980) 
1.68, 0.32 (bluegill sunfish, calculated-KOW, Veith et al. 1980) 
0.017 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
Sorption Partition Coefficient, log KOC: 
0.954 (soil, calculated-S, Kenaga 1980) 
–0.071 (sediment-water, calculated-KOW, Mabey et al. 1982) 
1.101, 1.006; 1.09 (Captina silt loam, McLaurin sandy loam; weighted mean, batch equilibrium-sorption isotherm, 
Walton et al. 1992) 
–0.0899 (calculated-KOW, Walton et al. 1992) 
–0.0890 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 6, 1.2, 4.8 d in a typical pond, river and lake are 6, 1.2, and 4.8 d, respectively, with the 
reaeration for oxygen in typical bodies of water (Lyman et al. 1982; quoted, Howard 1989) 
evaporation t. = 795 min from water with an assumed 1-m depth (Basu et. al. 1983). 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
k < 1 . 108 M–1 h–1 for singlet oxygen, and 36 M–1 h–1 for peroxy radical at 25°C (Mabey et al. 1982) 
t. = 4.0 h for photooxidation in the troposphere (Callahan et al. 1979) 
kOH = (40.6 ± 4.1) . 10–13 cm3 molecule–1 s–1 at 299 K (flash photolysis-resonance fluorescence technique, 
Harris et al. 1981) 
kO3 < 1 . 10–19 cm3 molecule–1 s–1 at 296 ± 2 K, and tropospheric lifetimes, . > 115 d and . = 3 d due to 
reactions with O3 and OH radical, respectively (Atkinson et al. 1982) 
kO3 < 1 . 10–19 cm3 molecule–1 s–1 at 296 ± 2 K (Atkinson et al. 1983; quoted, Atkinson & Carter 1984) 
t. = 3.5 d for the reaction with photochemically produced hydroxyl radical by the sunlight (Edney et al. 
1983; quoted, Howard 1989) 
kOH = 4.8 . 10–12 cm3 molecule–1 s–1 at 298.7 K, and kOH = 3.4 . 10–12 cm3 molecule–1 s–1 at 296 K (review, 
flash photolysis-resonance fluorescence technique Atkinson 1985) 
photooxidation t. = 3.4–189 h, based on measured rate constant for the reaction with hydroxyl radical in 
air (Howard et al. 1991) 
kOH = (3.4 – 4.80) . 10–12 cm3 molecule–1 s–1 at 296–298.2 K (review, Atkinson 1989) 
© 2006 by Taylor & Francis Group, LLC

3212 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Hydrolysis: k(acid) = 4.2 . 10–2 M–1 h–1 at pH 5.0 with t. = 188 yr and k(base) = 6.1 . 10–2 M–1 h–1 at pH 9.0 
with t. = 13 yr (Ellington et al. 1987; quoted, Howard et al. 1991, Kollig 1993); 
t. = 1210 yr at pH 7.0, based on measured acid and base catalyzed hydrolysis constants (Ellington et al. 
1987; quoted, Howard et al. 1991) 
t. = 69 d at pH 2, t. = 440000 d at pH 7 and t. = 4.7 d at pH 12 in natural waters (Capel & Larson 1995). 
Biodegradation: t.(aq. aerobic) = 30–552 h, based on river die-away test data (Going et al. 1979; Ludzack 
et al. 1958; quoted, Howard et al. 1991); t.(aq. anaerobic) = 120–2208 h, based on estimated aqueous aerobic 
biodegradation half-life (Howard et al. 1991) 
14C labeled acrylonitrile at concentrations up to 100 ppm was completely degraded within 2.0 d in a London 
soil under aerobic conditions (Donberg et al. 1992) 
t.(aerobic) = 1.3 d, t.(anaerobic) = 5 d in natural waters (Capel & Larson 1995) 
Biotransformation: k = of 3 . 10–9 mL cell–1 h–1 for bacterial transformation in water (Mabey et al. 1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 4.0 h for photooxidation in the troposphere (Callahan et al. 1979); 
t. = 3.5 d for the reaction with photochemically produced hydroxyl radical by the sunlight (Edney et al. 
1983; quoted, Howard 1989); 
photooxidation t. = 13.4–189 h, based on measured rate constant for the reaction with hydroxyl radicals in 
air (Atkinson 1985; quoted, Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be 1 – 5 to > 5 d (Kelly et al. 1994). 
Surface water: t. = 30–552 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991) 
Biodegradation t.(aerobic) = 100 d, t.(anaerobic) = 400 d; hydrolysis t. = 69 d at pH 2, t. = 440000 d at 
pH 7 and t. = 4.7 d at pH 12 in natural waters (Capel & Larson 1995). 
Groundwater: t. = 60–1104 h based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Sediment: 
Soil: t. < 10 d in soil (USEPA 1979; quoted, Ryan et al. 1988); 
t. = 30–552 h based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biota: 
TABLE 16.1.1.4.1 
Reported aqueous solubilities and vapor pressures of acrylonitrile at various temperatures 
Aqueous solubility Vapor pressure 
Othmer Encyclopedia Stephenson 1994 Stull 1947 Gudkov et al. 1964 
Basu et al. 1983 shake flask-GC summary of literature data in Boublik et al. 1984 
t/°C S/g·m–3 t/°C S/g·m–3 t/°C P/Pa t/°C P/Pa 
0 72000 0 65800 –51.0 133.3 20 11732 
20 73500 10 66800 –30.7 666.6 30 18932 
40 79000 20 69000 –20.3 1333 40 27998 
60 91000 30 66400 –9.0 2666 50 38530 
40 68800 3.8 5333 60 57328 
50 73600 11.8 7999 70 78660 
60 73900 22.8 13332 
70 85600 38.7 26664 
58.3 53329 
78.5 101325 
mp/°C –82.0 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3213 
FIGURE 16.1.1.4.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for acrylonitrile. 
FIGURE 16.1.1.4.2 Logarithm of vapor pressure versus reciprocal temperature for acrylonitrile. 
Acrylonitrile: solubility vs. 1/T 
-4.5 
-4.0 
-3.5 
-3.0 
-2.5 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x nl 
Basu et al. 1983 
Stephenson 1994 
Veith et al. 1980 
Acrylonitrile: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0026 0.003 0.0034 0.0038 0.0042 0.0046 0.005 0.0054 
1/(T/K) 
P( gol 
S 
) aP/ 
Gudkov et al. 1964 
Stull 1947 
b.p. = 77.3 °C m.p. = -83.48 °C 
© 2006 by Taylor & Francis Group, LLC

3214 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.1.5 Benzonitrile 
Common Name: Benzonitrile 
Synonym: benzenecarbonitrile, cyanobenzene, phenyl cyanide 
Chemical Name: benzonitrile, benzoic acid nitrile 
CAS Registry No: 100-47-0 
Molecular Formula: C6H5CN 
Molecular Weight: 103.122 
Melting Point (°C): 
–13.99 (Lide 2003) 
Boiling Point (°C): 
191.1 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.0006 (25°C, Dean 1985; Riddick et al. 1986) 
Molar Volume (cm3/mol): 
103.1 (25°C, calculated-density) 
107.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
55.48, 45.94 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
10.88 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
4330 (shake flask-UV, McGowan et al. 1966) 
2000 (Dean 1985; Riddick et al. 1986) 
10000 (selected, Yaws et al. 1990) 
4000* (shake flask-GC/TC, measured range 0–90°C, Stephenson 1994) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
133.3* (38.4°C, static method, measured range 38.4–190.6°C, Kahlbaum 1898) 
133.3* (28.2°C, summary of literature data, temp range 28.2–190.6°C, Stull 1947) 
log (P/mmHg) = [–0.2185 . 11341.0/(T/K)] + 8.239760; temp range: 28.2–190.6°C (Antoine eq., Weast 1972–73) 
78.86 (calculated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 6.74631 – 1436.72/(181 + t/°C), temp range: liquid (Antoine eq., Dean 1985, 1992) 
100.0 (Riddick et al. 1986) 
log (P/kPa) = 5.87121 – 1436.72/(181.0 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
106.0 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.79506 – 2066.71/(–32.19 + T/K), temp range 301–464 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
55.32 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 
Octanol/Water Partition Coefficient, log KOW: 
1.56 (shake flask-UV spectrophotometry, Fujita et al. 1964; quoted, Leo et al. 1969; Hansch & Leo 1979) 
1.56 (shake flask-UV, Holmes & Lough 1976) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3215 
1.67 (calculated-fragment const., Rekker 1977) 
1.56 (shake flask at pH 7, Unger et al. 1978) 
1.66 (RP-HPLC-k. correlation, Miyake & Terada 1982) 
1.65 ± 0.01 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
1.50 (HPLC-k. correlation, Haky & Young 1984) 
1.56 (shake flask-GC, Tanii & Hashimoto 1984) 
1.56 (RP-HPLC-capacity ratio, Minick et al. 1988) 
1.45 (RP-HPLC-RT correlation, ODS column with masking agent, Bechalany et al. 1989) 
1.56 (recommended, Sangster 1989, 1993) 
1.56 (shake flask-GC, Alcorn et al. 1993) 
1.56 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
4.46 (head-space GC, Abraham et al. 2001) 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k; for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = 3.3 . 10–13 cm3 molecule–1 s–1 at room temp. (Zetzsch 1982; Atkinson 1989) 
kOH(calc) = 4.2 . 10–13 cm3 molecule–1 s–1 at room temp. (Atkinson 1985) 
kOH(calc) = 3.9 . 10–13 cm3 molecule–1 s–1 at room temp. (Atkinson et al. 1985) 
kOH(calc) = 3.6 . 10–13 cm3 molecule–1 s–1, kOH(obs) = 3.3 . 10–13 cm3 molecule–1 s–1 at room temp. (SAR 
structure-activity relationship, Atkinson 1987) 
kOH(calc) = 4.1 . 10–13 cm3 molecule–1 s–1 (molecular orbital calculations, Klamt 1993) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: an estimated t. = 1.3 d in Rhine River in case of first order reduction process (Zoeteman et al. 1980) 
TABLE 16.1.1.5.1 
Reported aqueous solubilities and vapor pressures of butyronitrile at various temperatures 
Aqueous solubility Vapor pressure 
Stephenson 1994 Kahlbaum 1898* Stull 1947 
shake flask-GC static-manometer summary of literature data 
t/°C S/g·m–3 t/°C P/Pa t/°C P/Pa t/°C P/Pa 
0 3500 38.4 133.3 141.4 26664 28.2 133.3 
10 3300 45.3 266.6 155.8 39997 55.3 666.6 
20 4000 50.0 400.0 165.8 53329 69.2 1333 
40 4500 53.8 533.3 174.4 66661 83.4 2666 
50 3800 56.9 666.6 181.6 79993 99.6 5333 
60 4200 69.1 1333.2 187.7 93326 109.8 7999 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3216 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.1.5.1 (Continued) 
Aqueous solubility Vapor pressure 
Stephenson 1994 Stull 1947 Meyer et al. 1971 Meyer & Hotz 1976 
shake flask-GC summary of literature data ebulliometry ebulliometry 
t/°C S/g·m–3 t/°C P/Pa t/°C P/Pa t/°C P/Pa 
70 6000 83.0 2666.4 190.6 101325 123.5 13332 
80 9500 92.1 3999.7 144.1 26664 
90 9100 98.5 5332.9 *complete list see ref. 156.7 53329 
103.9 6666.1 190.6 101325 
.Hsol/(kJ mol–1) 113.7 9999.2 
25 EC 121.3 13332 mp/EC –12.9 
FIGURE 16.1.1.5.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for benzonitrile. 
Benzonitrile: solubility vs. 1/T 
-8.0 
-7.5 
-7.0 
-6.5 
-6.0 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x n l 
Stephenson 1994 
McGowan et al. 1966 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3217 
FIGURE 16.1.1.5.2 Logarithm of vapor pressure versus reciprocal temperature for benzonitrile. 
Benzonitrile: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 
1/(T/K) 
log(PS/Pa) 
Kahlbaum 1898 
Stull 1947 
b.p. = 191.1 °C m.p. = -13.99 °C 
© 2006 by Taylor & Francis Group, LLC

3218 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.2 ALIPHATIC AMINES 
16.1.2.1 Dimethylamine 
Common Name: Dimethylamine 
Synonym: aminomethylmethane, N-methylmethanamine 
Chemical Name: aminomethylmethane, dimethylamine 
CAS Registry No: 124-40-3 
Molecular Formula: C2H7N, CH3NHCH3 
Molecular Weight: 45.084 
Melting Point (°C): 
–92.18 (Lide 2003) 
Boiling Point (°C): 
6.88 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.6804 (0°C, Weast 1982–83) 
0.6556, 0.6496 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
68.8 (20°C, calculated-density) 
67.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
10.732 (Perrin 1965; Weast 1982–83; Howard 1990) 
10.77 (protonated cation + 1, Dean 1985) 
10.77 (Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
23.84, 24.61 (25°C, bp, Dreisbach 1961) 
23.65, 24.61 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
5.941 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
very soluble (Dean 1985) 
620000 (selected, Yaws et al. 1990) 
miscible (Stephenson 1993b) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
101141* (280.018 K, static method, measured range 201.387–280.018 K, Ashton et al. 1939) 
236420* (extrapolated-regression of tabulated data, temp range –87.2 to + 7.4°C, Stull 1947) 
196800 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 7.06396 – 1024.4/(238.0 + t/°C), temp range –55 to 37°C, (Antoine eq. for liquid state, 
Dreisbach 1961) 
log (P/mmHg) = [–0.2185 . 6660.0/(T/K)] + 7.995166; temp range –87.7 to 162.6°C, (Antoine eq., Weast 
1972–73) 
172220 (20°C, Verschueren 1983) 
206180 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.21132 – 962.001/(221.852 + t/°C), temp range –71.77 to 6.858°C (Antoine eq. from reported 
exptl. data, Boublik et al. 1984) 
202620 (Daubert & Danner 1985) 
206000 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.08212 – 960.242/(221.67 + t/°C), temp range –72 to 6°C (Antoine eq., Dean 1985, 1992) 
HN 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3219 
196800 (quoted lit., Riddick et al. 1986) 
log (P/kPa) = 6.18886 – 1-024.40/(238.0 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
205300 (interpolated-Antoine eq-II., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.29031 – 993.586/(–48.12 + T/K), temp range 201–280 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.20646 – 965.728/(–50.151 + T/K), temp range 277–360 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.81489 – 2369.425/(141.433 + T/K), temp range 358–438 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 36.9182 – 2.4965 . 103/(T/K) – 10.417·log (T/K) – 1.6287 . 10–9·(T/K) + 4.6496 . 10–6·(T/K)2; 
temp range 181–438 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
1.796 (exptl., Hine & Mookerjee 1975; quoted, Howard 1990) 
1.796, 1.03 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
2.718 (calculated-molecular structure, Russell et al. 1992) 
Octanol/Water Partition Coefficient, log KOW: 
–0.38 (shake flask-RC at pH 13, Wolfenden 1978) 
–0.38 (Hansch & Leo 1985) 
–0.38 (recommended, Sangster 1989; 1993) 
–0.38 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
2.00 (calculated-Soct and vapor pressure P, Abraham et al. 2001) 
Bioconcentration Factor, log BCF: 
–0.523 (calculated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
2.638 (adsorption isotherm average for five soils, Rao & Davidson 1982; quoted, Howard 1990) 
0.602; 2.212; 2.706 (Podzol soil; Alfisol soil; sediment, von Oepen et al. 1991) 
2.63 (soil, calculated-MCI, Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. = 35.1 h was estimated for a model river of 1 m deep flowing at 
1 m/s with a wind velocity of 3 m/s (Lyman et al. 1982; selected, Howard 1990). 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated: 
kOH = 6.54 . 10–11 cm3 molecule–1 s–1 at 299 K (Atkinson et al. 1977; quoted, Carlier et al. 1986; Atkinson 
1989) 
photooxidation t. = 5.9 h in air was estimated for the vapor phase reaction with hydroxyl radical of 5 . 105 
radicals/cm3 in air (Atkinson et al. 1978; Atkinson 1985; quoted, Howard 1990); 
kO3 = (2.61 ± 0.30) . 10–18 cm3 molecule–1 s–1 at 296 ± 2 K (Atkinson & Carter 1984; quoted, Atkinson 1985) 
kOH = 6.5 . 10–11 cm3 ± molecule–1 s–1 for the gas-phase reaction with 5 . 105 OH radicals/cm3 at room temp. 
having a loss rate of 2.8 d–1 (Atkinson 1985) 
kOH(calc) = 63 . 10–12 cm3 molecule–1 s–1 at room temp. (Atkinson 1987). 
Hydrolysis: 
Biodegradation: aqueous aerobic t. = 2–79 h, based on river die-away test data (Digeronimo et al. 1979; Dojlido 
1979; selected, Howard et al. 1991); aqueous anaerobic t. = 8–316 h, based on estimated unacclimated 
aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
© 2006 by Taylor & Francis Group, LLC

3220 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Half-Lives in the Environment: 
Air: t. = 5.9 h was estimated for the vapor phase reaction with hydroxyl radical of 5 . 105 radicals/cm3 in air 
(Atkinson et al. 1978; Atkinson 1985; quoted, Howard 1990); 
photooxidation t. = 0.892–9.20 h, based on measured rate constant for the gas-phase reaction with OH 
radical (Atkinson 1985; quoted, Howard et al. 1991) and ozone (Tuazon et al. 1978; selected, Howard 
et al. 1991). 
Surface water: t. = 2–79 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Groundwater: t. = 4–158 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Sediment: 
Soil: t. = 86–336 h, based on soil die-away test data (Tate & Alexander 1976; Greene et al. 1981; selected, 
Howard et al. 1991). 
Biota: 
TABLE 16.1.2.1.1 
Reported vapor pressures of dimethylamine at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
log P = A – B/(T/K) – C log (T/K) + D·(T/K) – E·(T/K)2 + F·(T/K)3 (5) 
Ashton et al. 1939 Stull 1947 
static method summary of literature data 
T/K P/Pa t/°C P/Pa 
201.387 648 bp/K 280.04 –87.7 133.3 
213.802 1959 mp/K 180.97 –72.2 666.6 
222.078 3780 .HV/(kJ mol–1) = 26.48 (bp) –64.6 1333 
232.137 7775 .Hfus/(kJ mol–1) = 5.94 (mp) –56.0 2666 
242.078 14743 –46.7 5333 
249.640 22949 eq. 5 P/mmHg –40.7 7999 
256.449 33269 A 32.26370 –32.6 13332 
262.977 46404 B 2460.10 –20.4 26664 
270.182 65491 C 8.6390 –7.1 53329 
275.934 84860 D 7.6055.10–3 7.4 101325 
279.980 100974 E 3.51389.10–5 
277.680 91519 F 5.3241.10–8 mp/°C –96.0 
280.018 101141 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3221 
FIGURE 16.1.2.1.1 Logarithm of vapor pressure versus reciprocal temperature for dimethylamine. 
Dimethylamine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0034 0.0038 0.0042 0.0046 0.005 0.0054 0.0058 
1/(T/K) 
P 
( gol 
S 
) aP/ 
Aston et al. 1939 
Stull 1947 
b.p. = 6.88 °C m.p. = -92.18 °C 
© 2006 by Taylor & Francis Group, LLC

3222 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.2.2 Trimethylamine 
Common Name: Trimethylamine 
Synonym: dimethylamino methane, TMA 
Chemical Name: trimethylamine 
CAS Registry No: 75-50-3 
Molecular Formula: C3H9N, CH3N(CH3)2 
Molecular Weight: 59.110 
Melting Point (°C): 
–117.1 (Lide 2003) 
Boiling Point (C): 
2.87 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.6356 (Weast 1982–83) 
Molar Volume (cm3/mol): 
93 (20°C, calculated-density) 
93.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
9.801, 9.987 (Perrin 1972; quoted, Howard 1990) 
9.80 (pKa, protonated cation + 1, Dean 1985) 
9.79 (pKa, Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
22.85, 24.13 (25°C, bp, Dreisbach 1961) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C) or as indicated: 
410000 (Dean 1985) 
890000 (30°C, Howard 1990) 
291000 (selected, Yaws et al. 1990) 
miscible (Stephenson 1993b) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this chapter): 
221715* (isoteniscope, measured range 0–40°C, Swift & Hochanadel 1945) 
log (P/mmHg) = 24.91300 – 2018.37/(T/K) – 6.0303 · log (T/K); temp range 0–40°C (isoteniscope method, 
Swift & Hochanadel 1945) 
265200* (extrapolated-regression of tabulated data, temp range –97.1 to + 2.9°C, Stull 1947) 
226540 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 6.97038 – 968.7/(234.0 + t/°C), temp range –58 to 32°C (Antoine eq. for liquid state, Dreisbach 1961) 
log (P/mmHg) = [–0.2185 . 6361.7/(T/K)] + 7.952370; temp range –97.1 to 2.9°C (Antoine eq., Weast 1972–73) 
192500 (20°C, 30°C, Verschueren 1983) 
219300, 221800 (extrapolated-Antoine eq., interpolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 5.98554 – 1957.276/(237.664 + t/°C), temp range –80.3 to 3.45°C (Antoine eq. from reported 
exptl. data, Boublik et al. 1984) 
log (P/kPa) = 5.87712 – 894.366/(228.276 + t/°C), temp range 0–40°C (Antoine eq. from reported exptl. data, 
Boublik et al. 1984) 
214200 (Daubert & Danner 1985) 
219000 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 6.85755 – 955.94/(237.52 + t/°C), temp range –80 to 3°C (Antoine eq., Dean 1985, 1992) 
219900 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3223 
log (PL/kPa) = 6.01402 – 968.978/(–34.253 + T/K), temp range 192–277 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 58.6807 – 2.686 . 103/(T/K) – 20.36·log (T/K) + 1.3131 . 10–2·(T/K) – 6.563 . 10–13·(T/K)2; 
temp range 156–433 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
6.672 (exptl., Hine & Mookerjee 1975) 
12.71, 2.16 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
15.64 (calculated-molecular structure, Russell et al. 1992) 
Octanol/Water Partition Coefficient, log KOW: 
0.27 (shake flask-TN, Sandell 1962; quoted, Leo et al. 1971) 
0.27; 0.20 (calculated-f const., calculated-. const., Rekker 1977) 
0.16 (shake flask, Hansch & Leo 1985) 
0.16 (recommended, Sangster 1989) 
0.16 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 0.0 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
1.462 (soil, estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
0.602 (soil, estimated-solubility, Lyman et al. 1982; quoted, Howard 1990) 
0.778; 2.365; 2.831 (Podzol soil; Alfisol soil;, sediments von Oepen et al. 1991) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. = 11 h was estimated for a model river 1 m deep flowing at 1 m/s 
with a wind velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1990). 
Photolysis: 
Hydrolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = 6.09 . 10–11 cm3 molecule–1 s–1 at 299 K (Atkinson et al. 1977; Atkinson 1989) 
photooxidation t. = 62 d in water, based on rate constant k = 1.3 . 1010 L mol–1 s–1 for the reaction with 
photochemically produced hydroxyl radicals of 1 . 10–17 mol · L–1 in water (Mill et al. 1980; Guesten 
et al. 1981; quoted, Howard 1990) 
kOH = 6.10 . 10–11 cm3 molecule–1 s–1 for the gas-phase reaction with 1 . 106 OH radicals/cm3 with a loss 
rate of 5.0 d–1 and rate constant kO3 = 9.70 . 10–18 cm3 molecule–1 s–1 for the gas-phase reaction with 
7 . 1011 O3 molecules/cm3 with a loss rate of 0.6 d–1 both at room temp. (Atkinson & Carter 1984) 
calculated kOH = 64 . 10–12 cm3 molecule–1 s–1 at room temp. (SAR, Atkinson 1987). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 4.0 h, based on rate constant k = 6.09 . 10–11 cm3 molecule–1 s–1 for the vapor-phase 
reaction with photochemically produced hydroxyl radical of 8 . 105 radicals/cm3 in air at 25.5°C and 
t. = 1.4 d, based on rate constant k = 9.73 . 10–18 cm3 molecule–1 s–1 for the vapor-phase reaction with ozone 
of 6 . 1011 molecules/cm3 in air at 24.4°C (Atkinson 1985; GEMS 1986; quoted, Howard 1990). 
Surface water: t. = 62 d, based on rate constant k = 1.3 . 1010 L mol–1 s–1 for the reaction with photochemically 
produced hydroxyl radicals of 1 . 10–17 mol L–1 in water (Mill et al. 1980; Guesten et al. 1981; quoted, 
Howard 1990). 
© 2006 by Taylor & Francis Group, LLC

3224 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.2.2.1 
Reported vapor pressures of trimethylamine at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Aston et al. 1944 Swift & Hochanadel 1945 Stull 1947 
static method isoteniscope summary of literature data 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–80.315 805 0 91059 –97.1 133.3 
–74.081 1367 15 158520 –81.7 666.6 
–62.339 3354 20 188651 –73.8 1333 
–51.938 6777 25 221715 –65.0 2666 
–46.842 9305 30 259444 –55.2 5333 
–41.774 12548 35 302107 –48.8 7999 
–35.617 17684 40 349437 –40.3 13332 
–28.507 25624 –27.0 26664 
–24.155 31772 bp/K 276.03 –12.5 53329 
–23.067 33494 2.90 101325 
–20.164 38401 eq. 4 P/mmHg 
–15.974 46505 A 24.91300 mp/°C –117.1 
–11.422 56802 B 2018.37 
–8.985 63039 C 6.0303 
–7.399 67346 
–3.113 80208 .HV/(kJ mol–1) = 23.93 
0.780 93495 at bp 
2.928 101526 
3.454 103611 
FIGURE 16.1.2.2.1 Logarithm of vapor pressure versus reciprocal temperature for trimethylamine. 
Trimethylamine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.003 0.0034 0.0038 0.0042 0.0046 0.005 0.0054 0.0058 
1/(T/K) 
P( gol 
S 
) aP 
/ 
Aston et al. 1944 
Swift & Hochanadel 1945 
Stull 1947 
b.p. = 2.87 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3225 
16.1.2.3 Ethylamine 
Common Name: Ethylamine 
Synonym: aminoethane, ethanamine, monoethylamine 
Chemical Name: aminoethane, ethylamine 
CAS Registry No: 75-04-7 
Molecular Formula: C2H7N, CH3CH2NH2 
Molecular Weight: 45.084 
Melting Point (°C): 
–80.5 (Lide 2003) 
Boiling Point (°C): 
16.5 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.6829 (Dreisbach 1961; Weast 1982–83) 
0.6769 (25°C, Dreisbach 1961) 
Molar Volume (cm3/mol): 
65.4 (5°C, Stephenson & Malanowski 1987) 
66.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
10.79 (Perrin 1972) 
10.81 (20°C, Weast 1982–83) 
10.63 (protonated cation + 1, Dean 1985) 
10.70 (Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
27.08, 27.57 (25°C, bp, Dreisbach 1961) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Dean 1985; Howard 1990; Stephenson 1993b) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated* are compiled at the end of this section): 
156200* (extrapolated-regression of tabulated data, temp range –82.3 to 16.6°C, Stull 1947) 
141620 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 7.3862 – 1137.30/(235.85 + t/°C); temp range –43 to 47°C (Antoine eq. for liquid state, 
Dreisbach 1961) 
93325* (20°C, temp range 1.95 to 20°C, Bittrich et al. 1962) 
log (P/mmHg) = [–0.2185 . 6845.1/(T/K)] + 7.973674; temp range –82.3 to 176°C, (Antoine eq., Weast 
1972–73) 
121570, 172220 (20°C, 30°C, Verschueren 1983) 
139100 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 5.12561 – 559.427/(162.579 + t/°C); temp range 1.95–14.65°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
139700 (Daubert & Danner 1985) 
141000 (calculated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.05413 – 987.31/(220.0 + t/°C); temp range –20 to 90°C (Antoine eq., Dean l985, 1992) 
137500, 141200 (calculated-Antoine eq.-II, III, Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.57462 – 1167.57/(–34.18 + T/K); temp range 213–297 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.43082 – 1140.62/(–32.433 + T/K); temp range 290–449 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
NH2 
© 2006 by Taylor & Francis Group, LLC

3226 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (PL/kPa) = 6.21526 – 1009.66/(–49.804 + T/K); temp range 291–367 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.48782 – 1176.995/(–26.674 + T/K); temp range 377–456 K (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
140900 (calculated-Cox eq., Chao et al. 1990) 
log (P/mmHg) = 33.2962 – 2.4307 . 103/(T/K) – 9.0779·log (T/K) – 1.3848 . 10–9·(T/K) + 3.8183 . 10–6·(T/K)2; 
temp range 192–456 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
1.012 (partial pressure, Butler & Ramchandani 1935) 
0.683 (exptl., Hine & Mookerjee 1975) 
0.859, 0.730 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
0.421 (calculated-molecular structure, Russell et al. 1992) 
Octanol/Water Partition Coefficient, log KOW: 
–0.30 (shake flask-titration with ion correction, Korenman et al. 1973) 
–0.16, –0.14; –0.19 (calculated-fragment const.; calculated-. const., Rekker 1977) 
–0.13 (Hansch & Leo 1985) 
–0.13 (recommended, Sangster 1989) 
–0.14 (calculated-CLOGP, Jackel & Klein 1991) 
–0.13 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 0.0 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. = 2.0 d was estimated for a model river of 1 m deep flowing at 
1 m/s with a wind velocity of 3 m/s (Howard 1990). 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
photooxidation t. > 9.9 d for the gas-phase reaction with OH radical in air, based on the rate of disappearance 
of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976) 
kOH = 2.77 . 10–11 cm3·molecules–1·s–1 at 299 K (Atkinson et al. 1977; quoted, Carlier et al. 1986) 
photooxidation t. = 321 d in water, based on a rate constant k = 2.5 . 109 L·mol–1·s–1 for the aqueous-phase 
reaction with photochemically produced OH radical of 1 . 10–17 mol·L–1 (Mill et al. 1980; Guesten et al. 
1981; quoted, Howard 1990) 
kO3 = (2.76 ± 0.34) . 10–20 cm3·molecules–1·s–1 at 296 ± 2 K under atmospheric conditions (Atkinson & Carter 
1984) 
kOH = 27.7 . 10–12 cm3 molecule–1 s–1 at 299.6 K (Atkinson 1989) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. > 9.9 d for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of 
hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976); 
photooxidation t. = 8.6 h, based on rate constant k = 6.54 . 10–11 cm3·molecules–1·s–1 for the vapor-phase 
reaction with an average hydroxyl radical of 5 . 105 radicals/cm3 at 25.5°C (Atkinson 1985; quoted, 
Howard 1990). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3227 
Surface water: t. = 321 d, based on a rate constant k = 2.5 . 109 L·mol–1·s–1 for the aqueous-phase reaction with 
photochemically produced hydroxyl radical of 1 . 10–17 mol·L–1 (Mill et al. 1980; Guesten et al. 1981; 
quoted, Howard 1990). 
TABLE 16.1.2.3.1 
Reported vapor pressures of ethylamine at various temperatures 
Stull 1947 Bittrich et al. 1962 
summary of literature data 
t/°C P/Pa t/°C P/Pa 
–82.3 133.3 1.95 53329 
–66.4 666.6 4.55 59995 
–58.3 1333 6.85 66661 
–48.6 2666 9.15 73327 
–39.8 5333 11.05 79993 
–33.4 7999 12.85 86659 
–25.1 13332 14.65 93325 
–12.3 26664 
2.0 53329 
16.6 101325 
mp/°C –80.6 
FIGURE 16.1.2.3.1 Logarithm of vapor pressure versus reciprocal temperature for ethylamine. 
Ethylamine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.003 0.0034 0.0038 0.0042 0.0046 0.005 0.0054 
1/(T/K) 
P( gol 
S 
) aP/ 
Bittrich et al. 1962 
Stull 1947 
b.p. = 16.5 °C m.p. = -80.5 °C 
© 2006 by Taylor & Francis Group, LLC

3228 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.2.4 Diethylamine 
Common Name: Diethylamine 
Synonym: aminoethylethane, N-ethylethanamine 
Chemical Name: aminoethylethane, diethylamine 
CAS Registry No: 109-89-7 
Molecular Formula: C4H11N, CH3CH2NHCH2CH3 
Molecular Weight: 73.137 
Melting Point (°C): 
–49.8 (Lide 2003) 
Boiling Point (°C): 
55.5 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.6993, 0.6926 (20°C, 25°C, Dreisbach. 1961) 
0.7056 (Weast 1982–83) 
0.7070, 0.7016 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
103.4 (20°C, calculated-density) 
109.0 (exptl. at normal bp, Lee et al. 1972) 
111.9 (calculated-Le Bas method at normal boiling point,) 
Dissociation Constant, pKa: 
10.98 (Perrin 1965; quoted, Howard 1990) 
10.80 (35°C, Perrin 1972) 
10.80 (protonated cation + 1, Dean 1985) 
11.07 (Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
31.38, 29.50 (25°C, bp, Dreisbach 1961) 
31.32, 29.07 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
815000 (14°C, quoted, Verschueren 1983) 
miscible (Dean 1985; Riddick et al. 1986; Yaws et al. 1990) 
miscible (Stephenson 1993b) 
Vapor Pressure (Pa at 25°C and or as indicated reported temperature dependence equations. Additional data at other 
temperatures designated* are compiled at the end of this section): 
26664* (21°C, summary of literature data, temp range –33.0 to 55.5°C, Stull 1947) 
31130 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 7.14099 – 1209.9/(229.0 + t/°C); temp range –15 to 90°C (Antoine eq. for liquid state, Dreisbach 
1961) 
39997* (31.45°C, temp range 31.45–60.58°C, Bittrich & Kauer 1962) 
31471* (25.17°C, temp range 19.73–40.22°C, Kilian & Bittrich 1965) 
log (P/mmHg) = [–0.2185 . 7307.5/(T/K)] + 7.701718; temp range –33.0 to 210°C (Antoine eq., Weast 1972–73) 
26660, 38660 (20°C, 30°C, Verschueren 1983) 
30110, 31310 (extrapolated-Antoine eq., interpolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 4.97981 – 580.448/(143.68 + t/°C); temp range 31.45–60.58°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
log (P/kPa) = 5.84728 – 994.478/(203.53 + t/°C); temp range 19.758–40.22°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
NH 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3229 
31130 (selected, Riddick et al. 1986) 
log (P/kPa) = 4.92649 – 583.297/(144.145 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
31490 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 5.96802 – 1058.538/(–61.331 + T/K); temp range 302–328 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 5.92678 – 1028.405/(–66.2061 + T/K); temp range 325–437 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 5.8016 – 583.3/(144.1 + t/°C); temp range 31–61°C (Antoine eq., Dean 1992) 
log (P/mmHg) = 32.626 – 2.4918 . 103/(T/K) – 9.3285·log (T/K) + 3.990 . 10–3·(T/K) + 1.1732 . 10–12·(T/K)2; 
temp range 223–497 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
2.596 (exptl., Hine & Mookerjee 1975) 
2.537, 2.37 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
6.67 (calculated-vapor liquid equilibrium VLE data, Yaws et al. 1991) 
Octanol/Water Partition Coefficient, log KOW: 
0.43 (shake flask, Collander 1951) 
0.57 (shake flask-titration, Sandell 1962) 
0.60, 0.61; 0.70 (calculated-fragment const.; calculated-. const., Rekker 1977) 
0.58 (Hansch & Leo 1985) 
0.58 (20°C, shake flask-GC, Takayama et al. 1985) 
0.81 (HPLC-k. correlation, Eadsforth 1986) 
0.58 (recommended, Sangster 1989) 
0.58 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
0.210 (calculated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
1.699 (soil, calculated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. ~ 31.6 h for a model river 1 m deep flowing at 1 m/s with a wind 
velocity of 3 m/s (estimated, Lyman et al. 1982; quoted, Howard 1990). 
Photolysis: 
Oxidation: photooxidation t. > 9.9 d for the gas-phase reaction with hydroxyl radical in air, based on the rate 
of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976); 
photooxidation t. = 0.21 d in air, based on an estimated second-order rate constant k = 77.1 . 10–12 cm3 
molecule–1 s–1 for the vapor-phase reaction with photochemically produced hydroxyl radicals of 5 . 105 
radicals/cm3 in air (Atkinson 1987; quoted, Howard 1990). 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. > 9.9 d for the gas-phase reaction with hydroxyl radicals in air, based on the rate of disappearance of 
hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976); 
t. = 0.21 d, based on an estimated rate constant k ~ 77.1 . 10–12 cm3 molecule–1 s–1 for the vapor-phase 
reaction with photochemically produced hydroxyl radicals of 5 . 105 radicals/cm3 in air (Atkinson 1987; 
quoted, Howard 1990). 
© 2006 by Taylor & Francis Group, LLC

3230 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.2.4.1 
Reported vapor pressures of diethylamine at various temperatures 
Stull 1947 Bittrich & Kauer 1962 Kilian & Bittrich 1965 
summary of literature data 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–33.0 1333 31.45 39997 19.73 24718 
–22.6 2666 34.75 46663 25.17 31471 
–11.3 5333 38.05 53329 30.31 39343 
–4.0 7999 41.1 59995 34.99 47596 
6.0 13332 43.85 66661 40.22 58582 
21.0 26664 46.5 73327 
38.0 53329 48.85 79993 
55.5 101325 51.10 86659 
53.20 93325 
mp/°C –38.9 55.53 101325 
57.05 106658 
59.00 113324 
60.58 119990 
FIGURE 16.1.2.4.1 Logarithm of vapor pressure versus reciprocal temperature for diethylamine. 
Diethylamine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0028 0.0032 0.0036 0.004 0.0044 0.0048 
1/(T/K) 
P( gol 
S 
) aP 
/ 
Bittrich & Kauer 1962 
Kilian & Bittrich 1965 
Stull 1947 
b.p. = 55.5 °C m.p. = -49.8 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3231 
16.1.2.5 n-Propylamine 
Common Name: Propylamine 
Synonym: 1-aminopropane, 1-propanamine, n-propylamine 
Chemical Name: aminopropane, n-propylamine 
CAS Registry No: 107-10-8 
Molecular Formula: C3H9N, CH3CH2CH2NH2 
Molecular Weight: 59.110 
Melting Point (°C): 
–84.75 (Lide 2003) 
Boiling Point (°C): 
47.22 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.7173 (Dreisbach 1961; Weast 1982–83; Dean 1985; Riddick et al. 1986) 
0.7123 (25°C, Dreisbach 1961) 
Molar Volume (cm3/mol): 
82.4 (liquid molar volume, Kamlet et al. 1986, 1987) 
88.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
10.74, 10.789 (20°C, Perrin 1972) 
10.71 (pKa, 20°C, Weast 1982–83) 
10.57 (pKBH 
+ , Dean 1985; Riddick et al. 1986) 
10.68 (pKa, Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
31.13, 29.73 (25°C, bp, Dreisbach 1961) 
31.26, 29.54 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
10.974 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Dean 1985; Stephenson 1993b) 
miscible (Riddick et al. 1986; Howard 1990; Yaws et al. 1990) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
41800* (interpolated-regression of tabulated data, temp range –64.4 to 48.5°C, Stull 1947) 
41050 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 7.2672 – 1218.1/(229.9 + t/°C); temp range –20 to 81°C (Antoine eq. for liquid state, Dreisbach 
1961) 
42100* (ebulliometry, calculated-Antoine eq., Osborn & Douslin 1968) 
log (P/mmHg) = 6.92646 – 1044.028/(t/°C + 210.833); temp range 23–77.6°C (ebulliometric method, Antoine 
eq., Osborn & Douslin 1968) 
log [(P/atm) = [1 – 320.379 ± (T/K)] . 10^{0.922208 – 10.51259 . 10–4·(T/K) + 11.25530 . 10–7·(T/K)2}, temp 
range: 34–77.6°C (ebulliometric method, Cox eq., Osborn & Douslin 1968) 
log (P/mmHg) = [–0.2185 . 7408.0/(T/K)] + 7.867998; temp range –64.4 to 214.5°C (Antoine eq., Weast 
1972–73) 
32660 (20°C, 31°C, Verschueren 1983) 
38550; 42110 (22.97°C, quoted exptl., calculated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.05146 – 1044.082/(210.84 + t/°C); temp range 22.97–77.6°C (Antoine eq. from reported exptl. 
data of Osborn & Douslin 1968, Boublik et al. 1984) 
42120 (calculated-Antoine eq., Dean 1985, 1992) 
NH2 
© 2006 by Taylor & Francis Group, LLC

3232 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/mmHg) = 6.92651 – 1044.05/(210.84 + t/°C); temp range: 23–77°C (Antoine eq., Dean l985, 1992) 
41050 (Riddick et al. 1986) 
log (P/kPa) = 6.05136 – 1044.028/(210.833 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
42120 (interpolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.04693 – 1041.725/(–62.596 + T/K); temp range 295–351 K (Antoine eq., Stephenson & 
Malanowski 1987) 
42125 (calculated-Cox eq., Chao et al. 1990) 
log (P/mmHg) = 24.6420 – 2.3152 . 103/(T/K) – 5.8711·log (T/K) – 4.6258 . 10–11·(T/K) + 1.582 . 10–6·(T/K)2; 
temp range 190–497 (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
1.274 (partial pressure, Butler & Ramchandani 1935) 
0.784; 0.732 (exptl.; calculated-group contribution, Hine & Mookerjee 1975) 
1.330 (calculated-bond contribution, Hine & Mookerjee 1975) 
0.637 (calculated-molecular structure, Russell et al. 1992) 
2.01 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
0.28 (shake flask-GC, Korenman et al. 1973) 
0.37, 0.39; 0.31‘ (calculated-f const.; calculated-. const., Rekker 1977) 
0.48 (shake flask-GC, pH 13, Yakayama et al. 1985) 
0.48 (recommended, Sangster 1989) 
0.48 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
–0.886 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
< 1.699 (soil, estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. ~ 2.44 d was estimated for a model river 1 m deep flowing at 
1 m/s with a wind speed of 3 m/s (estimated, Lyman et al. 1982; quoted, Howard 1990). 
Photolysis: 
Oxidation: photooxidation t. = 12 h in air, based on estimated rate constant k = 3.21 . 10–12 cm3·molecule–1·s–1 
for the vapor-phase reaction with hydroxyl radical of 5 . 105/cm3 at 25°C in the atmosphere (Atkinson 1987; 
quoted, Howard 1990). 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 12 h, based on estimated second-order rate constant of 3.21 . 10–12 cm3·molecule–1·s–1 for the vaporphase 
reaction with hydroxyl radical of 5 . 105/cm3 at 25°C in the atmosphere (Atkinson 1987; quoted, 
Howard 1990). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3233 
TABLE 16.1.2.5.1 
Reported vapor pressures of n-propylamine at various temperatures 
Stull 1947 Osborn & Douslin 1968 
summary of literature data ebulliometric method 
t/°C P/Pa t/°C P/Pa 
–64.4 133.3 22.973 38547 
–46.3 666.6 27.750 47359 
–37.2 1333 32.564 57803 
–27.1 2666 37.414 70109 
–16.0 5333 42.304 84525 
–9.0 7999 47.229 101325 
0.50 13332 52.193 120798 
15.0 26664 57.195 143268 
31.5 53329 62.235 169052 
48.5 101325 67.314 198530 
72.430 232087 
mp/°C –83.0 77.587 270110 
FIGURE 16.1.2.5.1 Logarithm of vapor pressure versus reciprocal temperature for n-propylamine. 
n -Propylamine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0026 0.003 0.0034 0.0038 0.0042 0.0046 0.005 0.0054 
1/(T/K) 
log(PS/Pa) 
Osborn & Douslin 1968 
Stull 1947 
b.p. = 47.22 °C m.p. = -84.75 °C 
© 2006 by Taylor & Francis Group, LLC

3234 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.2.6 n-Butylamine 
Common Name: Butylamine 
Synonym: 1-aminobutane, n-butylamine. 1-butanamine 
Chemical Name: 1-aminobutane, n-butylamine 
CAS Registry No: 109-73-9 
Molecular Formula: C4H11N, CH3CH2CH2CH2NH2 
Molecular Weight: 73.137 
Melting Point (°C): 
–49.1 (Dreisbach 1961; Riddick et al. 1986; Stephenson & Malanowski 1987; Lide 2003) 
Boiling Point (°C): 
77.0 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.7414 (Dreisbach 1961; Weast 1982–83) 
0.7392 (Riddick et al. 1986) 
Molar Volume (cm3/mol): 
98.8 (20°C, calculated-density) 
110.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
10.77 (Perrin 1965; pKa, 20°C, Weast 1982–83; Howard 1990) 
10.65 (Perrin 1972) 
10.64 (pKa, protonated + 1, Dean 1985; Sangster 1989) 
10.77 (pKBH + , Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
35.54, 32.11 (25°C, bp, Dreisbach 1961) 
35.74, 31.80 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Dean 1985; Howard 1990; Yaws et al. 1990) 
miscible (Riddick et al. 1986) 
miscible (Stephenson 1993b) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
13850 (Hoy 1970; Abraham 1984) 
12230 (calculated by formula, Dreisbach 1961) 
log (P/mmHg) = 7.213 – 1308.4/(224.2 + t/°C); temp range 4–114°C (Antoine eq. for liquid state, Dreisbach 
1955) 
9600 (20°C, Verschueren 1983) 
12230 (quoted lit., Riddick et al. 1986; quoted, Howard 1990) 
log (P/kPa) = 6.07009 – 1157.810/(207.80 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
12520 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.2635 – 1258.745/(–54.49 + T/K); temp range 313–350 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 25.0711 – 2.5701 . 103/(T/K) – 5.8985·log (T/K) + 7.9399 . 10–10·(T/K) + 1.192 . 10–6·(T/K)2; 
temp range 124–532 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
1.526 (partial pressure, Butler & Ramchandani 1935) 
1.528 (exptl., Hine & Mookerjee 1975) 
NH2 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3235 
1.676, 1.68 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
0.880 (calculated-molecular structure, Russell et al. 1992) 
1.785 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
0.68 (shake flask, Collander 1951) 
0.88 (shake flask-titration, Sandell 1962) 
0.81 (shake flask, unpublished result, Leo et al. 1971; Hansch & Leo 1987) 
0.74 (shake flask-titration, Korenman et al. 1973) 
0.90, 0.92; 0.81 (calculated-f const.; calculated-. const., Rekker 1977) 
0.80 (inter-lab. shake flask average, Eadsforth & Moser 1983) 
0.97 (shake flask-GC, Takayama et al. 1985) 
0.86 (recommended, Sangster 1989) 
0.97 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
3.61 (calculated-Soct and vapor pressure P, Abraham et al. 2001) 
Bioconcentration Factor, log BCF: 
0.505 (calculated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
1.903 (soil, calculated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
1.176, 2.021, 2.029 (Podzol soil, Alfisol soil, sediment, von Oepen et al. 1991) 
1.880 (soil, quoted exptl., Meylan et al. 1992) 
1.780 (soil, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. =1.95 d was predicted for evaporation from a model river 1 m 
deep, flowing at 1 m/s with a wind velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1990). 
Photolysis: 
Oxidation: estimated vapor phase photooxidation t. = 0.479 d in air, based on a result of reaction with 
photochemically produced hydroxyl radical at a concentration of 5 . 105 radicals/cm3 (USEPA 1986; quoted, 
Howard 1990). 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: estimated vapor phase t. = 0.479 d, based on a result of reaction with photochemically produced hydroxyl 
radical at a concentration of 5 . 105 radicals/cm3 (USEPA 1986; quoted, Howard 1990). 
© 2006 by Taylor & Francis Group, LLC

3236 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.2.7 Ethanolamine 
Common Name: Ethanolamine 
Synonym: .-aminoethyl alcohol, ethylolamine, 2-hydroxyethylamine, .-hydroxyethylamine, monoethanolamine, MEA 
Chemical Name: ethanolamine, 2-aminoethanol 
CAS Registry No: 141-43-5 
Molecular Formula: C2H7NO, HOCH2CH2NH2 
Molecular Weight: 61.098 
Melting Point (°C): 
10.5 (Lide 2003) 
Boiling Point (°C): 
171 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.0180 (Weast 1982–83) 
1.0147 (Riddick et al. 1986) 
Molar Volume (cm3/mol): 
60.4 (Stephenson & Malanowski 1987) 
73.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
9.48, 9.4994 (Perrin 1972; quoted, Howard 1990) 
9.50 (pKBH 
+ , Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
92.09, 49.831 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
20.50 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus J/mol K: 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Dean 1985) 
miscible (Riddick et al. 1986; quoted, Howard 1990) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
deisgnated * are compiled at the end of this section): 
893* (65.4°C, Ramsay-Young method, measured range 65.4–170.9°C, Matthews et al. 1950) 
log (P/mmHg) = 44.008 – 4089/(T/K) – 11.446 ± log (T/K); temp range 65.4–170.9°C (Kirchhoff eq., ebulliometry, 
Matthews et al. 1950) 
8707* (106.1°C, ebulliometry, measured range 106.1–170.37°C, McDonald et al. 1959) 
log (P/mmHg) = 7.7380 –1772.11/(186.25 + t/°C); temp range 106–170°C, or pressure range 65.31–760 mmHg 
(ebulliometry, McDonald et al. 1959) 
53.32 (20°C, Verschueren 1983) 
41.64, 46.67 (extrapolated values-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.54175 – 1554.149/(171.175 + t/°C); temp range 65.5–170.9°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
log (P/kPa) = 6.86239 – 1725.168/(185.556 + t/°C); temp range 106.1–170.37°C (Antoine eq. from reported 
exptl. data, Boublik et al. 1984) 
42.51 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.4568 – 1577.67/(172.37 + t/°C); temp range 65–171°C (Antoine eq., Dean 1985, 1992) 
48.0 (Riddick et al. 1986) 
log (P/kPa) = 6.86290 – 1732.11/(186.215 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
47.34 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.8629 – 1732.11/(–86.6 + T/K); temp range 310–444 K (liquid, Antoine eq., Stephenson & 
Malanowski 1987) 
NH2 
HO 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3237 
34.66 (from Dow Chemical’s Handbook, Howard 1990) 
log (P/mmHg) = 72.9125 – 5.8595 . 103/(T/K) –21.914·log (T/K) – 7.1511 . 10–10·(T/K) + 5.9841 . 10–6·(T/K)2; 
temp range 284–638 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0041 (calculated-bond method, Hine & Mookerjee 1975) 
Octanol/Water Partition Coefficient, log KOW: 
–1.31 (shake flask, Collander 1951) 
–1.29; –1.35 (calculated-f const., calculated-. const., Rekker 1977) 
–1.31 (recommended, Sangster 1993) 
–1.31 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 0.0 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
0.699 (soil, estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
Oxidation: photooxidation t. = 11 h in air, based on an estimated rate constant k ~ 3.5 . 10–11 cm3 ± molecule–1 s–1 
for the vapor phase reaction with photochemically produced hydroxyl radical of 5 . 105 radicals/cm3 in air 
(Atkinson 1987; quoted, Howard 1990). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: half-life of 11 h, based on an estimated rate constant of 3.5 . 10–11 cm3 molecule–1 s–1 for the vapor phase 
reaction with photochemically produced hydroxyl radical of 5 . 105 radicals/cm3 in air (Atkinson 1987; 
quoted, Howard 1990). 
© 2006 by Taylor & Francis Group, LLC

3238 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.2.7.1 
Reported vapor pressures of ethanolamine at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Matthews et al. 1950 McDonald et al. 1959 
Ramsay-Young method ebulliometric method 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
65.4 893 137.9 32264 106.1 8707 
65.5 947 144.6 42236 108.43 10058 
69.5 1160 150.0 54195 112.29 11427 
70.0 1253 161.4 73860 114.55 12702 
75.4 1760 170.9 100125 116.79 14049 
81.1 2320 125.73 20454 
86.4 3280 bp/K 444.1 159.79 71862 
90.0 3813 169.20 97584 
96.4 5440 .HV/(kJ mol–1) = 46.07 at bp 170.37 101325 
101.7 7146 Kirchhoff, Rankine, Dupre 
105.5 8559 eq. 4 P/mmHg mp/°C 10.31 
112.1 11306 A 44.008 eq. 2 P/mmHg 
117.3 14012 B 4809 A 7.7380 
125.0 19452 C 11.446 B 173211 
132.0 25771 C 186.215 
FIGURE 16.1.2.7.1 Logarithm of vapor pressure versus reciprocal temperature for ethanolamine. 
Ethanolamine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Matthews et al. 1950 
McDonald et al. 1959 
b.p. = 171 °C m.p. = 10.5 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3239 
16.1.2.8 Diethanolamine 
Common Name: Diethanolamine 
Synonym: 2,2.-amino-diethanol, 3-aza-1,5-pentanediol, diethylolamine, bis(hydroxyethyl)amine, 2,2.-dihydroxydiethylamine, 
.,..-dihydroxydiethylamine, 2,2.-iminobisethanol, 2,2.-iminodiethanol 
Chemical Name: diethanolamine 
CAS Registry No: 111-42-2 
Molecular Formula: C4H11NO2, HOCH2CH2NHCH2CH2OH 
Molecular Weight: 105.136 
Melting Point (°C): 
28.0 (Weast 1982–83; Dean 1985; Riddick et al. 1986; Stephenson & Malanowski 1987; Lide 2003) 
Boiling Point (°C): 
268.8 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.0966 (Weast 1982–83) 
1.0936 (25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
96.5 (30°C, Stephenson & Malanowski 1987) 
126.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
8.88, 8.97 (Perrin 1972) 
8.88 (pKBH 
+ , Dean 1985; Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
70.3, 65.229 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
25.104 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.934 (mp at 28°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
954000 (Verschueren 1983) 
964000 (Dean 1985) 
954000 (20°C, Riddick et al. 1986) 
miscible (from Dow Chemical’s Handbook, Howard 1990) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
< 1.333 (20°C, Verschueren 1983) 
0.040 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 8.1388 – 2327.9/(174.4 + t/°C); temp range 194–241°C (Antoine eq., Dean l985, 1992) 
0.030 (quoted lit., Riddick et al. 1986) 
log (P/kPa) = 7.26458 – 2328.56/(174.399 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
log (PL/kPa) = 7.26044 – 2326.23/(–98.907 + T/K); temp range: 423–542 K (liquid, Antoine eq., Stephenson & 
Malanowski 1987) 
0.0373 (quoted from Dow Chemical’s Handbook, Howard 1990) 
log (P/mmHg) =122.0877 –8.8422 . 103/(T/K) –40.422·log (T/K) + 1.4062 . 10–2·(T/K) + 1.1986 . 10–12·(T/K)2; 
temp range 301–542 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
5.42 . 10–9 (Hine & Mookerjee 1975) 
HN
OH HO 
© 2006 by Taylor & Francis Group, LLC

3240 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
–1.43 (shake flask, Collander 1951) 
–1.51 (calculated-fragment const., Rekker & De Kort 1979) 
–1.43 (recommended, Sangster 1993) 
–1.43 (recommended, Hansch et al 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 0.0 (estimated-KOW, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
0.602 (soil, estimated-KOW, Howard 1990) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
Oxidation: photooxidation t. = 0.72–7.2 h in air, based on estimated rate constant for the reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard 1990; Howard et al. 1991). 
Biodegradation: aqueous aerobic t. = 14.4–168 h, based on measured half-life in surface water grab sample 
experiment (Boethling & Alexander 1979; quoted, Howard et al. 1991) and aqueous aerobic screening test 
data (Gerike & Fischer 1979; Bridie et al. 1979; quoted, Howard et al. 1991); aqueous anaerobic 
t. = 57.6–672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 0.72–7.2 h, based on estimated rate constant for the reaction with hydroxyl radical in 
air (Atkinson 1987; quoted, Howard 1990; Howard et al. 1991); 
atmospheric transformation lifetime by reaction with water was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: t. = 14.4–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Groundwater: t. = 28.8–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: 
Soil: t. = 14.4–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3241 
16.1.2.9 Triethanolamine 
Common Name: Triethanolamine 
Synonym: 2,2.,2.-nitrilotriethanol, 2,2.,2.-nitrilotrisethanol, triethylolamine, trihydroxytriethylamine, trolamine, 
tris(hydroxyethyl)–amine, TEA 
Chemical Name: triethanolamine 
CAS Registry No: 102-71-6 
Molecular Formula: C6H15NO3, (HOCH2CH2)3N 
Molecular Weight: 149.188 
Melting Point (°C): 
20.5 (Lide 2003) 
Boiling Point (°C): 
335.4 (Dean 1985; Riddick et al. 1986; Stephenson & Malanowski 1987; Lide 2003) 
Density (g/cm3 at 20°C): 
1.1242 (Weast 1982–83; Dean 1985) 
1.1196 (25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
133.3 (Stephenson & Malanowski 1987) 
182.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
7.92 (Perrin 1972; quoted, Howard 1990) 
7.76 (pKBH 
+ , Dean 1985; Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
67.475 (bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
27.20 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Dean 1985; Howard 1990) 
miscible (Riddick et al. 1986) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
< 1.33 (20°C, Verschueren 1983) 
0.0131 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 9.19319 – 4543.817/(297.839 + t/°C), temp range: 252.7–305.6°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
0.0100 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 10.0675 – 4542.78/(297.76 + t/°C), temp range: 252–305°C (Antoine eq., Dean l985, 1992) 
< 1.30 (20°C, Riddick et al. 1986) 
log (P/kPa) = 7.67989 – 2962.73/(186.75 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
log (PL/kPa) = 9.53861 – 4951.87/(49.99 + T/K), temp range: 523–579 K, (Antoine eq., Stephenson & 
Malanowski 1987) 
4.79 . 10–4 (quoted from Dow Chemical’s Handbook, Howard 1990) 
log (P/mmHg) = 135.3206 –1.0312 . 104/(T/K) –44.637·log (T/K) + 1.4368 . 10–2·(T/K) – 1.7552 . 10–13·(T/K)2; 
temp range 294–787 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
3.42 . 10–14 (Hine & Mookerjee 1975) 
N 
OH HO 
OH 
© 2006 by Taylor & Francis Group, LLC

3242 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
–1.32, –1.75 (calculated, Verschueren 1983) 
–1.59 (Howard 1990) 
–1.00 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 0.0 (estimated-KOW, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
0.477 (soil, estimated-KOW, Howard 1990) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
Oxidation: photooxidation t. = 4.0 h in air, based on an estimated rate constant k ~ 10.4 . 10–11 cm3·molecule–1 s–1 
for the vapor phase reaction with photochemically produced hydroxyl radical of 5 . 105 radicals/cm3 in air 
at 25°C (Atkinson 1987; quoted, Howard 1990). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 4.0 h, based on an estimated rate constant k ~ 10.4 . 10–11 cm3 molecule–1 s–1 for the vapor phase 
reaction with photochemically produced hydroxyl radical of 5 . 105 radicals/cm3 in air at 25°C (Atkinson 
1987; quoted, Howard 1990). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3243 
16.1.3 AROMATIC AMINES 
16.1.3.1 Aniline 
Common Name: Aniline 
Synonym: phenylamine, aminobenzene, benzeneamine, benzenamine 
Chemical Name: aniline 
CAS Registry No: 62-53-3 
Molecular Formula: C6H5NH2 
Molecular Weight: 93.127 
Melting Point (°C): 
–6.02 (Lide 2003) 
Boiling Point (°C): 
184.1 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.02173, 1.01750 (20°C, 25°C, Dreisbach 1955) 
1.02173 (20°C, Weast 1982–83) 
Molar Volume (cm3/mol): 
91.2 (20°C, calculated-density) 
110.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
4.596 (Perrin 1972; Howard 1989) 
4.600 (McLeese et al. 1979; Riddick et al. 1986; Sangster 1989 ) 
4.630 (Weast 1982–83) 
4.58, 3.96 (quoted, HPLC, Miyake et al. 1987) 
Enthalpy of Vaporization, .HV (kJ/mol): 
54.28, 43.17 (25°C, bp, Dreisbach 1955) 
55.843, 44.53 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
36650 (Hill & Macy 1924) 
36070 (Seidell 1941) 
38670 (shake flask-residue volume method, Booth & Everson 1948) 
36220 (shake flask-interferometry, Donahue & Bartell 1952) 
34100 (Stephen & Stephen 1963) 
36600 (Kenaga 1980) 
34000 (Verschueren 1983) 
56900 (calculated-activity coeff. . by UNIFAC, Fu & Luthy 1985, 1986) 
33800 (selected, Riddick et al. 1986) 
34200 (selected, Yaws et al. 1990) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
133.3 (43.7°C, static method, measured range 43.7–183.9°C, Kahlbaum 1898) 
85.71* (extrapolated-regression of tabulated data, temp range 34.8–184.4°C Stull 1947) 
log (P/mmHg) = 7.57170 – 1941.7/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 
10351* (112.92°C, ebulliometry, measured range 112.92–183.93°C, Dreisbach & Shrader 1949) 
89.52 (calculated by formula, Dreisbach 1955; quoted, Riddick et al. 1986) 
NH2 
© 2006 by Taylor & Francis Group, LLC

3244 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/mmHg) = 7.24179 – 1674.3/(200.0 + t/°C); temp range 90–250°C (Antoine eq. for liquid state, Dreisbach 
1955) 
6806* (102.59°C, ebulliometry, measured range 102.59–185.15°C, McDonald et al. 1959) 
log (P/mmHg) = 7.25375 – 1684.35/(201.175 + t/°C, temp range 103–185°C (Antoine eq., ebulliometry, 
McDonald et al. 1959) 
133.3* (31.55°C, calculated-thermodynamic properties, temp range 31.55–184.40°C, Hatton et al. 1962) 
log (P/mmHg) = [–0.2185 . 11307.6/(T/K)] + 8.221995; temp range 34.8–422.4°C (Antoine eq., Weast 1972–73) 
88.30 (extrapolated-Antoine eq., Boublik et al. 1973) 
log (P/mmHg) = 7.3201 – 1731.515/(205.049 + t/°C); temp range 102.6–185.2°C (Antoine eq. from reported 
exptl. data of McDonald et al.1959, Boublik et al. 1973) 
log (P/mmHg) = [–0.2185 . 11307.6/(T/K)] + 8.221995; temp range 34.8–422.4°C (Antoine eq., Weast 1972–73) 
82.71 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 457.025/(T/K)] . 10^{0.911551 – 6.64936 . 10–4·(T/K) + 5.25455 . 10–7·(T/K)2}; temp range: 
267.3–695.0 K (Cox eq., Chao et al. 1983) 
80 ± 6 (gas saturation-HPLC/UV, Sonnefeld et al. 1983) 
40.0 (20°C, Verschueren 1983) 
88.0, 48.24 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.43196 – 1722.154/(205.002 + t/°C); temp range 102.6–185.2°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
log (P/kPa) = 5.68977 – 1234.569/(151.207 + t/°C); temp range 112.9–183.9°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
65.18 (Daubert & Danner 1985) 
89.30 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.32010 – 1731.515/(206.049 + t/°C); temp range 102–185°C (Antoine eq., Dean l985, 1992) 
log (P/kPa) = 5.69066 – 1941.7/(230.0 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
89.60 (calculated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.40627 – 1702.817/(–70.155 + T/K); temp range 304–458 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 8.1019 – 2728/(T/K); temp range 273–338 K (Antoine eq.-II, Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.41147 – 1708.239/(–69.454 + T/K); temp range 373–458 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.44338 – 1682.348/(–78.065 + T/K); temp range: 455–523 K (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
86.70 (calculated-Cox eq., Chao et al. 1990) 
log (P/mmHg) =124.3764 –7.1676 . 103/(T/K) –42.763·log (T/K) + 1.7336 . 10–2·(T/K) + 5.7138 . 10–15·(T/K)2; 
temp range 267–699 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
13778 (Hakuta et al. 1977) 
12.16 (measured, Yoshida et al. 1983) 
0.193 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
0.90 (shake flask-UV, Fujita et al. 1964) 
0.90 (shake flask, Iwasa et al. 1965) 
0.90 (shake flask-UV, Hansch et al. 1968) 
0.90 (Leo et al. 1971; Hansch & Leo 1979; Hansch & Leo 1983, Hansch & Leo 1985) 
0.89 (shake flask-UV at pH 5.6, Umeyama et al. 1971) 
0.90 (HPLC-k. correlation, Carlson et al. 1975) 
0.85 (shake flask, Lu & Metcalf 1975) 
0.90 (HPLC-RT correlation, Mirrlees et al. 1976) 
0.93 ± 0.05 (shake flask at pH 7, Unger et al. 1978) 
0.90, 0.98, 0.85 (shake flask, Hansch & Leo 1979) 
0.91 (HPLC-k. correlation, Konemann et al. 1979) 
0.90 (shake flask-UV, Briggs 1981) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3245 
1.03 (RP-HPLC-k. correlation, D’Amboise & Hanai 1982) 
0.90 (HPLC-k. correlation, Hammers et al. 1982) 
0.90 (inter-laboratory studies. shake flask average, Eadsforth & Moser 1983) 
1.09 (inter-laboratory studies, HPLC-RT correlation, average, Eadsforth & Moser 1983; Brooke et al. 
1990) 
1.34, 1.27, 1.08 (HPLC-RT correlation, Harnish et al. 1983) 
1.08 (shake flask average, OECD/EEC lab. comparison tests, Harnish et al. 1983) 
0.79, 0.96 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
0.89 (shake flask-UV at pH 7.4, El Tayar et al. 1984) 
0.99 (calculated-activity coeff. . from UNIFAC, Campbell & Luthy 1985) 
0.81, 1.08 (HPLC-k. correlation, Eadsforth 1986) 
0.91 (RP-HPLC-RT correlation, Eadsforth 1986) 
0.98 (shake flask-UV at pH 7.5, Martin-Villodre et al. 1986) 
0.93 (HPLC method average, Ge et al. 1987) 
0.78 (HPLC-k. correlation, Miyake et al. 1987) 
1.18 (calculated-activity coeff. . from UNIFAC, Banerjee & Howard 1988) 
0.940 ± 0.006 ( shake flask/slow-stirring-GC, De Bruijn et al. 1989) 
0.90 (recommended, Sangster 1989, 1993) 
0.942 ± 0.010; 0.940 ± 0.006 (shake flask/stir-flask method by BRE; RITOX, inter-laboratory studies, Brooke 
et al. 1990) 
0.90 (shake flask-GC, Alcorn et al. 1993) 
1.21, 0.89, 0.87, 1.09 (HPLC-k. correlation, different combinations of stationary and mobile phases under 
isocratic conditions, Makovskaya et al. 1995) 
0.92 (shake flask-dialysis tubing-HPLC/UV, both phases, Andersson & Schrader 1999) 
0.88 (microemulsion electrokinetic chromatography-retention factor correlation, Jia et al. 2003) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
0.78 (fish, Lu & Metcalf 1975) 
0.30 (calculated-S, Kenaga 1980) 
< 1.0 (fish, Freitag et al. 1982) 
< 1.0, 0.602, 3.01 (golden orfe, algae, activated sludge, Freitag et al. 1982) 
0.602 (alga Chlorella fusca, wet wt. basis, Geyer et al. 1984) 
0.845 (alga Chlorella fusca, calculated-KOW, Geyer et al. 1984) 
< 1.0, < 1.0, 2.70 (golden ide, algae, activated sludge, Freitag et al. 1985) 
2.77 (Daphnia magna, based on elimination phase, Dauble et al. 1986) 
1.87 (Daphnia magna, based on 14C and exposure water, Dauble et al. 1986) 
0.70 (fish, correlated-KOW, Isnard & Lambert 1988) 
0.78 (quoted, Isnard & Lambert 1988, 1989) 
0.41 (zebrafish, Kalsch et al. 1991) 
0.41 (zebrafish, Zok et al. 1991) 
0.41; 1.04, –0.87, 0.03 (quoted exptl.; calculated values-KOW, Bintein et al. 1993) 
Sorption Partition Coefficient, log KOC: 
3.11; 2.11 (H-montmorillonite at pH 8.35; pH 6.80, Bailey et al. 1968) 
1.86 (soil average, Moreale & Van Bladel 1976) 
1.41 (average of seven agricultural soils, Briggs 1981) 
3.59 (colloidal organic carbon/ground water, Means et al.1982) 
2.11; 2.61 (soil; more acidic soil, Pillai et al. 1982) 
2.49; 2.11 (nonsterile Hagerstown soil; sterile Hagerstown soil, Pillai et al. 1982) 
2.96; 2.61 (nonsterile Palouse soil; sterile Palouse soil, Pillai et al. 1982) 
1.17 (soil, quoted as log KOM, Sabljic 1987) 
2.12, 2.05, 2.06 (calculated values: Podzol soil, Alfisol soil, sediment, von Oepen et al. 1991) 
0.596 (calculated-KOW, Kollig 1993) 
© 2006 by Taylor & Francis Group, LLC

3246 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
1.08, 1.25, 0.98 (RP-HPLC-k. correlation on 3 different stationary phases, Szabo et al. 1995) 
1.41 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.07; 1.65 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
2.70, 1.64, 2.08, 2.04, 2.29 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask-batch equilibrium-
HPLC/UV, Gawlik et al. 1998) 
2.384, 1.503, 1.279, 1.437, 2.136 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask-batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
1.0–1.54 (5 soils, pH 2.8–7.2, batch equilibrium-sorption isotherm, Li et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 12 d from a measured Henry’s law constant of 1.2 . 10–4 atm m3 mol–1 (Yoshida 
et al. 1983; quoted, Howard 1989) for a model river of 1-m deep with a 1 m/s current and a 3 m/s wind 
(Lyman et al. 1982; quoted, Howard 1989); 
volatilization t.(calc) = 55 d (Torang et al. 2002). 
Photolysis: first-order rate constants for photosensitized reactions in water with various humic substances as 
sensitizers: k = 0.17 h–1 with aquatic humus from Aucilla River, k = 0.12 h–1 with Aldrich humic acid, 
k = 0.091 h–1 with Fluka humic acid and k = 0.11 h–1 with Contech fulvic acid in sunlight, corresponding 
to half-lives of 4 to 8 h (Zepp et al. 1981); photolysis t. = > 50 yr at 15°C and a pH 5–9 (Torang et al. 2002). 
Oxidation: rate constant k; for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression 
see reference: 
k = 1 . 104 M–1 s–1 for oxidation by RO2 radical at 30°C in aquatic systems with t. = 0.8 d (Howard 1972; 
Hendry et al. 1974; quoted, Mill 1982) 
k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 yr (Foote 1976; 
Mill 1979; quoted, Mill 1982) 
kOH = 1.20 . 10–10 cm3 molecule–1 s–1, kOH(av.) = 1.17 . 10–10 cm3 molecule–1 s–1 at 296 K (flash photolysis 
-RF, Rinke & Zetzsch 1984; Witte et al. 1986) 
kOH* = 1.10 . 10–10 cm3 molecule–1 s–1 at 298 K, measured range: 239–362 K (flash photolysis-resonance 
fluorescence, Witte et al. 1986) 
kOH(calc) = 1.54 . 10–10 cm3·molecule–1 s–1 at room temp. (Atkinson et al. 1985) 
kOH(obs) . 6.0 . 10–11 cm3 molecule–1 s–1; kOH(calc.) = 1.16 . 10–10 cm3 molecule–1 s–1 at room temp. 
(Atkinson 1985) 
kOH(calc) = 1.36 . 10–10 cm3 molecule–1 s–1, kOH(obs.) = 1.17 . 10–10 cm3 molecule–1 s–1, (SAR structureactivity 
relationship, Atkinson 1987) 
kOH*(exptl) = 1.18 . 10–10 cm3 molecule–1 s–1 at 296 ± 2 K, measured range: 265–455 K; and kO3 = 1.12 . 
10–18 cm3 molecule–1 s–1 at 296 ± 2 K (relative rate method, Atkinson et al. 1987) 
kOH* = 1.11 . 10–10 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1989) 
kOH(calc) = 1.385 . 10–10 cm3 molecule–1 s–1 (molecular orbital calculations, Klamt 1993) 
Hydrolysis: 
Biodegradation: completely degraded by a soil inoculum in 4 d (Alexander & Lustigman 1966; quoted, Verschueren 
1983; Howard 1989); 
completely degraded in 20 d by bacteria in river mud (Calamari et al. 1980; quoted, Howard 1989); 
k = 0.23 d–1 and corresponding to a t. = 3 d in samples of White Lake water at 29°C (Subba-Rao et al. 
1982); 
average rate of biodegradation k = 19.0 mg COD g–1 h–1 for 94.5% removal (Scow 1982); 
biodegradation t. = 4.5 d in unpolluted and t. < 0.5 d in polluted pond water as model environments (Lyons 
et al. 1984); 
0.46 mM aniline solution degraded by strain Ani1 within 14 d in water (Schnell et al. 1989); 
average exptl. k = 0.044 h–1 compared to the group-contribution method predicted rate constants of 0.050 h–1 
(nonlinear) and 0.018 h–1 (Tabak & Govind 1993); 
first-order k = 1.0 d–1 for batch expt. with Elbe water at 20°C (Bornick et al. 2001); 
field first-order degradation k ~ 1.8 d–1 for 2 different dates with water temperatures of 21.9 and 14.7°C, 
respectively, in Rhine river and rate constant obtained in laboratory shake flask batch tests with Rhine 
water averaged 1.5 d–1 at 15°C and 2.0 d–1 at 20°C (Torang et al. 2002). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3247 
Biotransformation: mean bacteria transformation rate constant for all three sites of (1.1 ± 0.8) . 10–11 
L·organism–1·h–1 (Paris & Wolfe 1987; quoted, Steen 1991). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 0.052 ± 0.0067 h–1; k2 = 7.200 ± 1.3000 h–1 (Kalsch et al. 1991) 
k1 = 11.10 ± 3.2000 h–1 (zebrafish, Zok et al. 1991) 
Half-Lives in the Environment: 
Air: atmospheric lifetimes of 2.3 h in clean troposphere and 1.2 h in moderately polluted atmosphere, based on 
gas-phase reaction with hydroxyl radical at room temp.; atmospheric lifetimes of 15.0 d in clean troposphere 
and 5.0 d in moderately polluted atmosphere, based on gas-phase reaction with O3 at room temp. (Atkinson 
et al. 1987) 
t. ~ 3.3 h, based on reaction with photochemically produced hydroxyl radical (Howard 1989); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: estimated t. = 2.3 d in Rhine river in case of a first order reduction process (Zoeteman et al. 
1980; quoted, Howard 1989); 
estimated t. = 0.3–3.0 d in river waters (Zoeteman et al. 1980); 
t. = 4 to 8 h in May sunlight with both commercial humic acids and aquatic humus as photosensitizers 
near-surface water and t. ~ 1 wk in distilled water (Zepp et al. 1981); 
t. = 6 d in eutropic pond and t. = 21 d in an oligotrophic lake (Subba-Rao et al. 1982; quoted, Howard 1989); 
biodegradation t. = 4.5 d in unpolluted and t. < 0.5 d in polluted pond water as model environments (Lyons 
et al. 1984); 
t. = 4–33 d at 15°C (Ingerslev & Nyholm 2000); 
t. ~ 9 h in the Rhine river at 15 and 22°C (Torang et al. 2002). 
Ground water: estimated t. ~ 30–300 d (Zoeteman et al. 1980). 
Sediment: 
Soil: 
Biota: 
TABLE 16.1.3.1.1 
Reported vapor pressures of aniline at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 Dreisbach & Shrader 1949 McDonald et al. 1959 Hatton et al. 1962 
summary of literature data ebulliometry ebulliometry calc-thermodynamic properties 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
34.8 133.3 112.92 10351 102.59 6806 31.55 133.3 
57.9 666.6 125.16 17039 117.22 12295 41.82 666.6 
69.4 1333 153.2 42103 137.5 25439 52.59 1333 
82.0 2666 168.21 67701 160.08 51913 68.62 2666 
96.7 5333 183.93 101325 182.4 97103 82.11 5333 
106.0 7999 184.24 101912 97.02 7999 
119.9 13332 bp/°C 183.93 185.15 104589 119.41 13332 
140.1 26664 138.90 26664 
161.9 53329 mp/°C –6.02 161.05 53329 
184.4 101325 184.40 101325 
eq. 2 P/mmHg 
mp/°C –6.2 A 7.25375 
B 1684.35 
C 201.175 
© 2006 by Taylor & Francis Group, LLC

3248 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.3.1.1 Logarithm of vapor pressure versus reciprocal temperature for aniline. 
Aniline: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.002 0.0024 0.0028 0.0032 0.0036 0.004 
1/(T/K) 
P( gol 
S 
) aP/ 
Kahlbaum 1898 
Dreisbach & Shrader 1949 
McDonald et al. 1959 
Hatton et al. 1962 
Stull 1947 
b.p. = 184.17 °C m.p. = -6.02 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3249 
16.1.3.2 2-Chloroaniline 
Common Name: 2-Chloroaniline 
Synonym: 1-amino-2-chlorobenzene, o-aminochlorobenzene, o-chloroaniline, 2-chlorophenylamine 
Chemical Name: 1-amino-2-chlorobenzene, o-chloroaniline, 2-chloroaniline 
CAS Registry No: 95-51-2 
Molecular Formula: C6H4NH2Cl 
Molecular Weight: 127.572 
Melting Point (°C): 
–1.94 (.-2-chloroaniline, Dreisbach 1955; Weast 1872–83, Riddick et al. 1986) 
–14.0 (.-2-chloroaninline, Weast 1982–83; Verschueren 1983; Howard 1989) 
–1.9 (Lide 2003) 
Boiling Point (°C): 
208.8 (Kahlbaum 1898; Stull 1947; Dreisbach 1955; Weast 1982–83; Lide 2003) 
Density (g/cm3 at 20°C): 
1.21266, 1.20787 (20°C, 25°C, Dreisbach 1955) 
1.21251, 1.20775 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
105.2 (20°C, Stephenson & Malanowski 1987) 
131.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
2.661 (Perrin 1972; quoted, Howard 1989) 
2.650 (Weast 1982–83) 
2.640 (protonated cation + 1, Dean 1985) 
2.640 (Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
57.5 ± 5 (25°C, Piacente et al. 1985) 
56.756, 44.35 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
11.88 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
8760 (Dreisbach 1955) 
3765 (20°C, shake flask-GC, Chiou 1981; Chiou & Schmedding 1981; Chiou et al. 1982) 
3763 (calculated-KOW, Muller & Klein 1992) 
4740 (calculated-group contribution method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
40.31* (extrapolated-regression of tabulated data, measured range 64.4–208.8°C, Kahlbaum 1898) 
37.77* (extrapolated-regression of tabulated data, temp range 46.3–208.8°C, Stull 1947) 
log (P/mmHg) = 7.63311 – 2085.5/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 
7605* (124.48°C, ebulliometry, measured range 124.48–208.84°C, Dreisbach & Shrader 1949) 
33.77 (calculated by formula, Dreisbach 1955; selected, Riddick et al. 1986) 
log (P/mmHg) = 7.19240 – 1762.74/(200.0 + t/°C); temp range 110–330°C (Antoine eq. for liquid state, 
Dreisbach 1955) 
log (P/mmHg) = [–0.2185 . 12441.0/(T/K)] + 8.56946; temp range 46.3–208.8°C (Antoine eq., Weast 1972–73) 
33.88 (calculated-Antoine eq., Dean 1985, 1992) 
NH2 
Cl 
© 2006 by Taylor & Francis Group, LLC

3250 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/mmHg) = 7.56265 – 1998.6/(220.0 + t/°C), temp range 20–108°C (Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.19240 – 1762.74/(200.0 + t/°C), temp range: 108–300°C (Antoine eq., Dean 1985, 1992) 
35.30* (torsion-weighing effusion, Piacente et al. 1985) 
log (P/kPa) = (8.63 ± 0.16) – (3006 ± 56)/(T/K); temp range: 287–336 K (Antoine eq., combined torsionweighing 
effusion, Piacente et al. 1985) 
log (P/kPa) = 6.75801 – 2085.50/(230.0 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
18.97 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 5.84227 – 1432.2/(–108.81 + T/K); temp range 397–482 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 90.6491 – 6.041 . 103/(T/K) – 31.118·log (T/K) + 1.1564 . 10–2·(T/K) + 4.8388 . 10–13·(T/K)2; 
temp range 271–722 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.760 (calculated-P/C, Howard 1989) 
0.425 (calculated-P/C, Meylan & Howard 1991) 
0.143 (estimated-bond contribution, Meylan & Howard 1991) 
Octanol/Water Partition Coefficient, log KOW: 
1.81 (shake flask, Fujita et al. 1964) 
1.90 (Leo et al. 1971; Hansch & Leo 1979; Hansch & Leo 1985) 
1.92 (exptl., Leo et al. 1971; McCall 1975; Rekker 1977) 
1.92 (HPLC-k. correlation, Carlson et al. 1975) 
1.63 (calculated-. const., Norrington et al. 1975) 
1.61, 1.73 (calculated-. const., calculated-f const., Rekker 1977) 
1.90, 1.92 (shake flask, Hansch & Leo 1979) 
1.74 (HPLC-k. correlation, Konemann et al. 1979) 
1.74 (calculated-f const., Rekker & De Kort 1979) 
1.91 ± 0.01 (HPLC-k., Hammers et al. 1982) 
1.99 (HPLC-k. correlated, Hammers et al. 1982) 
1.926 ± 0.021 (slow-stirring-GC, De Bruijn et al. 1989) 
1.88 (recommended, Sangster 1993) 
1.93 ± 0.14, 1.55 ± 0.51 (solvent generated liquid-liquid chromatography SGLLC-correlation, RP-HPLC-k. 
correlation, Cichna et al. 1995) 
1.90 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 2.0 (Kawasaki 1980) 
1.30 (estimated, Canton et al. 1985) 
1.18 (zebrafish, Zok et al. 1991) 
0.301–0.57 (carp, Tsuda et al. 1993) 
1.18; 1.56, 0.73, 0.94 (quoted; calculated values-KOW, Bintein et al. 1993) 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: using Henry’s law constant, t. ~ 5.6 d was estimated for a model river of 1-m deep (Lyman 
et al. 1982; quoted, Howard 1989); 
estimated t. = 64 d from a representative environmental pond (stagnant) (USEPA 1987; quoted, Howard 1989). 
Photolysis: 
Oxidation: rate constant of 5.1 . 10–12 cm3/molecule·s for the reaction with hydroxyl radical in a typical ambient 
atmosphere at 25°C with t. ~ 2 d (GEMS 1987; quoted, Howard 1989). 
Hydrolysis: 
Biodegradation: average biodegradation rate of 25 mg COD g–1 h–1 for 95.6% removal (Scow 1982). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3251 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 7.10 h–1 (zebrafish, Zok et al. 1991) 
k2 = 0.19 h–1 (carp, Tsuda et al. 1993) 
Half-Lives in the Environment: 
Air: estimated atmospheric t. = 2 d, based on the reaction with sunlight-produced hydroxyl radical (GEMS 
1987; quoted, Howard 1989). 
Surface water: 
Groundwater: 
Sediment: 
Soil: 
Biota: t. = 3.6 h in carp with excretion rate constant k = 0.19 h–1 (Tsuda et al. 1993). 
TABLE 16.1.3.2.1 
Reported vapor pressures of 2-chloroaniline at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Kahlbaum 1898 Stull 1947 Piacente et al. 1985 Piacente et al. 1985 
static method summary of literature data torsion-weighing effusion torsion-weighing effusion 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
run 62 average average 
64.4 400 46.3 133.3 14 18 23 36 
72.3 666.6 72.3 666.6 20 32 24 41 
84.8 1333 84.8 1333 27 45 28 50 
92.9 2000 99.2 2666 32 72 30 66 
99.2 2666 115.6 5333 34 96 31 62 
104.2 3333 125.7 7999 34.5 86 32 83 
108.4 4000 139.5 13332 38 117 34 87 
112.0 4666 160.0 26664 43 200 35 90 
115.2 6333 183.7 53329 34 203 38 112 
118.1 6000 208.8 101325 48.5 251 41 167 
120.7 6666 52.5 347 43 190 
131.4 9999 mp/°C - 54 362 45 200 
139.5 13332 63 505 47 218 
160.0 26664 49 269 
173.6 39997 Dreisbach & Shrader 1949 51 275 
183.7 53329 ebulliometry 51 309 
192.0 66661 t/°C P/Pa 55 343 
199.4 79993 56 354 
208.8 101325 124.48 7605 57 398 
131.54 10114 
145.3 16500 overall vapor pressure eq. 
154.55 42066 eq. 1 P/kPa 
192.71 67661 A 8.63 ± 0.16 
208.84 101325 B 3006 ± 56 
.HV/(kJ mol–1) = 57.5 ± 5 
at 25°C 
© 2006 by Taylor & Francis Group, LLC

3252 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.3.2.1 Logarithm of vapor pressure versus reciprocal temperature for 2-chloroaniline. 
2-Chloraniline: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Kahlbaum 1898 
Dreisbach & Shrader 1949 
Piacente et al. 1985 
Stull 1947 
b.p. = 208.8 °C m.p. = -1.9 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3253 
16.1.3.3 3-Chloroaniline 
Common Name: 3-Chloroaniline 
Synonym: 1-amino-3-chlorobenzene, m-chloroaniline, 3-chlorophenylamine 
Chemical Name: 1-amino-3-chlorobenzene, m-chloroaniline, 3-chloroaniline 
CAS Registry No: 108-42-9 
Molecular Formula: C6H4NH2Cl 
Molecular Weight: 127.572 
Melting Point (°C): 
–10.28 (Lide 2003) 
Boiling Point (°C): 
230.5 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.21606 (20°C, Weast 1982–83) 
1.2150 (22°C, Dean 1985; Budavari 1989) 
Molar Volume (cm3/mol): 
105.0 (22°C, calculated-density, Stephenson & Malanowski 1987) 
131.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
3.52 (Perrin 1972) 
3.50 (McLeese et al. 1979) 
3.46 (Weast 1982–83) 
3.52 (protonated cation + 1, Dean 1985) 
Enthalpy of Vaporization, .HV (kJ/mol): 
61.04, 46.016 (25°C, bp, Dreisbach 1955) 
60.9 ± 5 (25°C, Piacente et al. 1985) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
10.25 (Dreisbach 1955) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
5442 (20°C, shake flask-GC, Chiou 1981; Chiou & Schmedding 1981; Chiou et al. 1982) 
5447 (calculated-KOW, Muller & Klein 1992) 
4740 (calculated-group contribution method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
13.14* (extrapolated-regression of tabulated data, measured range 81.7–228.5°C, Kahlbaum 1898) 
11.94* (extrapolated-regression of tabulated data, temp range 63.5–228.5°C, Stull 1947) 
11.17 (calculated by formula, Dreisbach 1955) 
log (P/mmHg) = 7.23603 – 1857.75/(196.64 + t/°C); temp range 125–350°C (Antoine eq. for liquid state, 
Dreisbach 1955) 
log (P/mmHg) = [–0.2185 . 133854.6/(T/K)] + 8.761546; temp range 63.5–228.5°C (Antoine eq., Weast 
1972–73) 
11.06 (calculated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.59939 – 2073.75/(215.0 + t/°C), temp range 15–125°C (Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.23603 – 1857.75/(196.64 + t/°C), temp range 125–310°C (Antoine eq., Dean 1985, 1992) 
15.60* (torsion-weighing effusion, Piacente et al. 1985) 
NH2 
Cl 
© 2006 by Taylor & Francis Group, LLC

3254 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/kPa) = (8.86 ± 0.10) – (3180 ± 40)/(T/K); temp range ~290–345 K (Antoine eq., combined torsionweighing 
effusion, Piacente et al. 1985) 
9.530 (extrapolated from Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.36093 – 1857.75/(–76.51 + T/K); temp range 398–573 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 65.6033 – 5.3779 . 103/(T/K) –20.518·log (T/K) + 6.7861 . 10–3·(T/K) + 2.1167 . 10–13·(T/K)2; 
temp range 263–751 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.223 (calculated-P/C) 
0.102 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
1.88 (shake flask-UV, Fujita et al. 1964) 
1.88 (Ichikawa et al. 1969) 
1.88 (Leo et al. 1971; Hansch & Leo 1979) 
1.90 (exptl., Leo et al. 1971; Rekker 1977) 
1.98 (calculated-. const., Norrington et al. 1975) 
1.73, 1.75; 1.61 (calculated-f const., calculated-. const., Rekker 1977) 
1.90, 1.88 (shake flask, Hansch & Leo 1979) 
1.57 (HPLC-k. correlation, Konemann et al. 1979) 
1.89 ± 0.01 (HPLC-k. correlation, Hammers et al. 1982) 
2.00 (HPLC-k. correlation, Hammers et al. 1982) 
1.910 ± 0.013 (slow-stirring-GC, De Bruijn et al. 1989) 
1.88 (recommended, Sangster 1993) 
1.91 ± 0.14, 1.52 ± 0.51 (solvent generated liquid-liquid chromatography SGLLC-correlation, RP-HPLC-k. correlation, 
Cichna et al. 1995) 
1.88 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.06 (zebrafish, Zok et al. 1991) 
–0.097 to 0.342 (average for carp, Tsuda et al. 1993) 
1.06; 1.55, 0.70, 0.92 (quoted; calculated values, Bintein et al. 1993) 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: direct aqueous photolysis rate constant k = 0.393 ± 0.006 min–1 with a calculated t. = 1.76 min 
(Stegeman et al. 1993). 
Oxidation: 
Hydrolysis: direct photohydrolysis rate constant k = 0.393 ± 0.006 min–1 with a calculated t. = 1.76 min 
(Stegeman et al. 1993). 
Biodegradation: average biodegradation rate of 6.2 mg COD g–1 h–1 for 97.2% removal (Scow 1982). 
Biotransformation: mean bacteria transformation rate constant for all three sites of (2.2 ± 1.7) . 10–12 
L·organism–1·h–1 (Paris & Wolfe 1987; quoted, Steen 1991). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 19.1 h–1 (zebrafish, Zok et al. 1991) 
k2 = 0.21 h–1 (carp, Tsuda et al. 1993) 
Half-Lives in the Environment: 
Biota: t. = 3.3 h in carp with excretion rate k = 0.21 h–1 (Tsuda et al. 1993). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3255 
TABLE 16.1.3.3.1 
Reported vapor pressures of 3-chloroaniline at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Kahlbaum 1898 Stull 1947 Piacente et al. 1985 
static method summary of literature data torsion-weighing effusion 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
run 63 average run 64 average 
81.7 400 63.5 133.3 19 8 31 19 
89.8 666.6 89.8 666.6 29 17 39 41 
102 1333 102 1333 36.5 33 42 50 
110.4 2000 116.7 2666 43 49 44 52 
116.8 2666 133.6 5333 50 89 45 56 
122.0 3333 144.1 7999 57.5 145 46 66 
126.2 4000 158 13332 65 250 47 70 
129.8 4666 179.5 26664 73 376 49 89 
133.2 6333 203.5 53329 50 85 
136.2 6000 228.5 101325 51 95 
138.8 6666 52 105 
149.9 9999 mp/°C –10.4 53 102 
158.0 13332 55 126 
179.5 26664 57 146 
193.2 53329 59 151 
203.5 66661 60.5 170 
211.9 79993 62 190 
228.5 101325 63 204 
65 240 
69 296 
overall vapor pressure eq. 
eq. 1 P/kPa 
A 8.86 ± 0.10 
B 3180 ± 40 
.HV/(kJ mol–1) = 60.9 ± 5 
at 25°C 
© 2006 by Taylor & Francis Group, LLC

3256 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.3.3.1 Logarithm of vapor pressure versus reciprocal temperature for 3-chloroaniline. 
3-Chloraniline: vapor pressure vs. 1/T 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 
1/(T/K) 
P 
( gol 
S 
) aP/ 
Kahlbaum 1898 
Piacente et al. 1985 
Stull 1947 
b.p. = 230.5 °C m.p. = -10.28 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3257 
16.1.3.4 4-Chloroaniline 
Common Name: 4-Chloroaniline 
Synonym: 1-amino-4-chlorobenzene, p-chloroaniline, 4-chlorophenylamine 
Chemical Name: 1-amino-4-chlorobenzene, p-chloroaniline, 4-chloroaniline 
CAS Registry No: 106-47-8 
Molecular Formula: NH2C6H4Cl 
Molecular Weight: 127.572 
Melting Point (°C): 
70.5 (Lide 2003) 
Boiling Point (°C): 
232.0 (Weast 1982–83; Verschueren 1983; Howard 1989) 
Density (g/cm3 at 20°C): 
1.429 (19°C, Weast 1982–83) 
Molar Volume (cm3/mol): 
131.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
3.98 (Perrin 1972; Freitag et al. 1984; quoted, Howard 1989) 
4.20 (McLeese et al. 1979) 
4.15 (Weast 1982–83) 
3.99 (protonated + 1, Dean 1985) 
Enthalpy of Vaporization, .HV (kJ/mol): 
79 ± 5 (25°C, Piacente et al. 1985) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
15.69 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
57.74 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.358 (mp at 70.5°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
3000 (Philpot et al. 1940) 
3900 (Kilzer et al. 1979) 
2620 (Schmidt-Bleek et al. 1982; Rott et al. 1982) 
2487 (calculated-group contribution method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
1.707* (20°C, Knkudsen effusion, measured range 10–30°C, Swan & Mack 1925) 
15.19* (extrapolated-regression of tabulated data, temp range 59.3–230.5°C, Stull 1947) 
log (P/mmHg) = [–0.2185 . 12832.8/(T/K)] + 8.461034; temp range 59.3–230.5°C (Antoine eq., Weast 
1972–73) 
3.173 (effusion method, DePablo 1976) 
3.33 (extrapolated, Verschueren 1977) 
2.00, 6.67 (20°C, 30°C, quoted, Verschueren 1983) 
0.224 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 3.55438 – 521.556/(47.392 + t/°C); temp range 90–150°C (Antoine eq. from reported exptl. data, 
Boublik et al. 1984) 
1.636* (torsion-weighing effusion, Piacente et al. 1985) 
NH2 
Cl 
© 2006 by Taylor & Francis Group, LLC

3258 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/kPa) = (11.20 ± 0.20) – (4170 ± 60)/(T/K); temp range ~298–360 K (Antoine eq., combined torsionweighing 
effusion, Piacente et al. 1985) 
3.66 (calculated-Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PS/kPa) = 13.448 – 4736/(T/K), temp range 283–303 K (Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.3489 – 2729/(T/K), temp range 363–505 K (Antoine eq.-II, Stephenson & Malanowski 1987) 
3.33, 32.0 (quoted, calculated-solvatochromic parameters, Banerjee et al. 1990) 
log (P/mmHg) = –15.3259 – 2.8592 . 103/(T/K) + 11.527·log (T/K) – 1.8071 . 10–2·(T/K) + 7.2359 . 10–6·(T/K)2; 
temp range 343–754 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
1.0840 (calculated-P/C, Howard 1989) 
0.0395 (calculated-P/C, Meylan & Howard 1991) 
0.1430 (estimated-bond contribution, Meylan & Howard 1991) 
Octanol/Water Partition Coefficient, log KOW: 
1.84 (Ichikawa et al. 1969) 
1.83 (quoted exptl., Leo et al. 1969, 1971; Hansch & Leo 1985) 
1.83 (HPLC-k. correlation; Carlson et al. 1975) 
1.83 (shake flask, Hansch & Leo 1979) 
1.57 (HPLC-k. correlation, Konemann et al. 1979) 
1.83, 20.2 (HPLC-k. correlation, Hammers et al. 1982) 
1.64 (inter-laboratory studies, HPLC-RT correlation average, Eadsforth & Moser 1983) 
1.88 ± 0.02 (HPLC-RV correlation-ALPM; Garst & Wilson 1984) 
2.78 (shake flask, OECD 1981 Guidelines, Geyer et al. 1984) 
1.83 (shake flask, Log P Database, Hansch & Leo 1987) 
1.83 (RP-HPLC-k. correlation, Minick et al. 1988) 
1.88 ± 0.014 (shake flask/slow-stirring-GC, De Brujin et al. 1989) 
1.83 (shake flask, Leahy et al. 1989) 
1.80, 1.82 (shake flask, HPLC-RT correlation, Wang et al. 1989) 
2.01 (centrifugal partition chromatography CPC-RV correlation, El Tayar et al. 1991) 
1.83 (recommended, Sangster 1993) 
1.83 (pH 7.4, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 1.30 (golden orfe for 3-d exposure, Korte et al. 1978) 
3.08 (green algae for 24-h exposure of dry wt. basis, Korte et al. 1978) 
2.42 (green algae for 24-h exposure of wet wt. basis, Korte et al. 1978) 
< 1.0, 2.41, 3.11 (golden orfe, algae, activated sludge, Freitag et al. 1982) 
2.42 (alga Chlorella fusca, wet wt. basis, Geyer et al. 1984) 
2.06 (alga Chlorella fusca, calculated-KOW, Geyer et al. 1984) 
1.11, 2.42, 2.45 (golden ide, algae, activated sludge, Freitag et al. 1985) 
0.91 (zebrafish, Zok et al. 1991) 
–0.097–0.23 (carp, Tsuda et al. 1993) 
0.91; 1.52, 0.63, 0.88 (quoted; calculated values, Bintein et al. 1993) 
2.58 (algae Chlorella fusca, wet wt basis, Wang et al. 1996) 
Sorption Partition Coefficient, log KOC: 
2.36–2.67 (five Belgium soils, Van Bladel & Moreale 1977) 
1.98–3.18 (five German soils, Rott et al. 1982) 
3.74 (colloidal org. matter in ground water, Means 1983) 
1.86 (calculated-MCI ., Sabljic 1987) 
2.08 (RP-HPLC-k. correlation, cyanopropyl column, Hodson & Williams 1988) 
1.96, 1.86 (soil, quoted exptl., calculated-MCI . and fragment contribution, Meylan et al. 1992) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3259 
1.61 (calculated-KOW, Kollig 1993) 
1.96 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.28; 1.86 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
3.086, 2.21, 2.48, 2.374, 2.973 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1998) 
2.801, 2.326, 2.145, 2.420 (second generation Eurosoils ES-1, ES-3, ES-4, ES-5, shake flask/batch equilibrium- 
HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 6.4 h from using Henry’s law constant for a model river of 1-m deep with 1 m/s 
current and 3 m/s wind (Lyman et al. 1982; quoted, Howard 1989); 
t. = 3 d in an experimental pond with spiked 4-chloroaniline (Schauerte et al. 1982; quoted, Howard 1989). 
Photolysis: 
Oxidation: rate constant k; for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = (8.3 ± 0.42) . 10–11 cm3 molecule–1 s–1 at 295 K (flash photolysis-resonance fluorescence, Wahner & 
Zetzsch 1983) 
kOH(obs.) = 83 . 10–12 cm3 molecule–1 s–1; kOH(calc) = 34.7 . 10–12 cm3 molecule–1 s–1 at room temp. in air 
(Atkinson 1985; Atkinson et al. 1985) 
kOH(calc) = 54 . 10–12 cm3 molecule–1 s–1; kOH(obs.) = 83 . 10–12 cm3 molecule–1 s–1 at room temp. (SAR, 
Atkinson 1987) 
kOH = (83 to ~44) . 10–12 cm3 molecule–1 s–1 at 295–296 K (Atkinson 1989) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 42.9 h–1 (zebrafish, Zok et al. 1991) 
k2 = 0.16 h–1 (carp, Tsuda et al. 1993) 
k1 = 17.74 h, k2 = 0.0465 h (algae Chlorella fusca, Wang et al. 1996) 
Half-Lives in the Environment: 
Air: t. = 4.6 h, based on estimated reaction rate with photochemically produced hydroxyl radical of 5 . 105 
radicals/cm3 in atmosphere (Wahner & Zetzsch 1983; quoted, Howard 1989). 
Surface water: estimated t. = 0.3–3.0 d in river waters in case of a first order reduction process (Zoeteman 
et al. 1980); 
72.1 mg/L total organic carbon (TOC) degraded to 92% TOC after 5 h illumination with a 250 watt tungsten 
lamp by photo-Fenton reaction in distilled water (Ruppert et al. 1993). 
Groundwater: estimated t. = 30–300 d in Rhine River (Zoeteman et al. 1980). 
Sediment: 
Soil: 
Biota: t. = 4.3 h in carp with excretion rate k = 0.16 h–1 (Tsuda et al. 1993). 
© 2006 by Taylor & Francis Group, LLC

3260 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.3.4.1 
Reported vapor pressures of 4-chloroaniline at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Swan & Mack 1925 Stull 1947 Piacente et al. 1985 
Knudsen effusion summary of literature data torsion-weighing effusion 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
Run 58 average Run 66 average 
10 0.513 59.3 133.3 26 3.0 52 56 
20 1.707 87.9 666.6 31 6.0 56.5 75 
30 6.493 102.1 1333 34 8.0 61 128 
117.8 2666 39 13 63 136 
135.0 5333 40 17 65 152 
145.8 7999 43 20 68 238 
eq. 4 P/mmHg 159.9 13332 48 31 71 275 
A 415.007 182.3 26664 49.5 35 72 316 
B 22322 206.6 53329 53 48 
C 138.475 230.5 101325 59 87 
60.5 100 overall vapor pressure eq. 
.HV/(kJ mol–1) = 90.37 mp/°C 70.5 63.5 127 eq. 1 P/kPa 
at 20°C 67 170 A 11.20 ± 0.20 
69.5 224 B 4170 ± 60 
82.5 549 
88.5 832 .HV/(kJ mol–1) = 70.9 ± 5 
at 25°C 
FIGURE 16.1.3.4.1 Logarithm of vapor pressure versus reciprocal temperature for 4-chloroaniline. 
4-Chloraniline: vapor pressure vs. 1/T 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 
1/(T/K) 
P 
( gol 
S 
) aP 
/ 
Swan & Mack 1925 
Piacente et al. 1985 
Stull 1947 
b.p. = 232 °C m.p. = -70.5 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3261 
16.1.3.5 3,4-Dichloroaniline 
Common Name: 3,4-Dichloroaniline 
Synonym: 
Chemical Name: 3,4-dichloroaniline 
CAS Registry No: 95-76-1 
Molecular Formula: C6H5Cl2N, C6H3NH2Cl2 
Molecular Weight: 162.017 
Melting Point (°C): 
72.0 (Weast 1982–83; Lide 2003) 
Boiling Point (°C): 
272.0 (Weast 1982–83; Lide 2003) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
111.7 (calculated-density, Jaworska & Schultz 1993) 
152.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
2.968, 3.0 (Perrin 1972) 
2.00 (estimated, Wolff & Crossland 1985) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.346 (mp at 72°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
92.03 (20°C, Wolff & Crossland 1985) 
93.2; 740 (quoted exptl.; calculated-group contribution method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
1.30 (20°C, Wolff & Crossland 1985) 
2.27 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.6189 – 3060.03/(T/K); temp range 420–545 K (Antoine eq., Stephenson & Malanowski 1987) 
log (P/mmHg) = –15.2685 – 3.3857 . 103/(T/K) + 11.926·log (T/K) –1.9227 . 10–2·(T/K) + 7.4179 . 10–6·(T/K)2; 
temp range 345–800 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
2.289 (calculated-P/C) 
Octanol/Water Partition Coefficient, log KOW: 
2.69 (unpublished result, Leo et al. 1971, Hansch & Leo 1979) 
2.12 (HPLC-k. correlation, Konemann et al. 1979) 
2.78 (20°C, shake flask-UV, Briggs 1981) 
2.69, 2.67 (HPLC-k. correlation, Hammers et al. 1982) 
2.62 (inter-laboratory studies, shake flask average, Eadsforth & Moser 1983) 
2.30 (inter-laboratory studies, HPLC-RT correlation average, Eadsforth & Moser 1983) 
2.14, 2.63 (HPLC-k. correlation, Eadsforth 1986) 
2.69 (shake flask, Log P Database, Hansch & Leo 1987) 
2.68 (recommended, Sangster 1993) 
2.69 (recommended, Hansch et al. 1995) 
2.69 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
NH2 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

3262 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.48 (zebrafish, Zok et al. 1991) 
1.48; 2.02, 1.88, 1.75 (fish: quoted; calculated values-KOW, Bintein et al. 1993) 
Sorption Partition Coefficient, log KOC: 
2.29 (20°C, sorption isotherm-GC, converted from KOM multiplied by 1.724, Briggs 1981) 
1.40 (calculated-KOW, wet sediment, Wolff & Crossland 1985) 
2.29 (Sabljic 1987) 
2.05 (soil, quoted, Sabljic 1987) 
2.29, 2.08 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
2.29 (calculated-MCI 1., Sabljic et al. 1995) 
2.26, 2.39 (RP-HPLC-k. correlation including MCI related to non-dispersive intermolecular interactions, 
hydrogen-bonding indicator variable, Hong et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: first order rate constant k(calc) = 5.0 . 10–3 d–1 (Wolff & Crossland 1985). 
Photolysis: phototransformation rate constant k = 0.12 to 0.20 d–1 (Wolff & Crossland 1985). 
Oxidation: 
Hydrolysis: not expected to occur (Wolff & Crossland 1985). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 78.5 h–1 (zebrafish, Zok et al. 1991) 
Half-Lives in the Environment: 
Surface water: overall rate of loss predicted from outdoor ponds was calculated based on direct phototransformation, 
and indirect phototransformation k = 0.13 to 0.22 d–1 corresponding to t. = 3.2 to 5.3 d; the observed 
rate of loss varied from 0.11 to 0.17 d–1 corresponding to t. = 4.1 – 6.3 d (Wolff & Crossland 1985). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3263 
16.1.3.6 o-Toluidine (2-Methylbenzeneamine) 
Common Name: o-Toluidine 
Synonym: 2-aminotoluene, o-aminotoluene, 2-methylaniline, 2-methylbenzeneamine 
Chemical Name: 2-aminotoluene, o-methylaniline, o-toluidine 
CAS Registry No: 95-53-4 
Molecular Formula: C7H9N, C6H4(CH3)NH2 
Molecular Weight: 107.153 
Melting Point (°C): 
–14.41 (Lide 2003) 
Boiling Point (°C): 
200.3 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9984, 0.99430 (10, 25°C, Dreisbach 1955, Riddick et al. 1986) 
0.9984 (20°C, Weast 1982–83) 
Molar ]Volume (cm3/mol): 
107.3 (20°C, calculated-density, Stephenson & Malanowski 1987) 
132.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
4.40, 4.447, 4.46 (Perrin 1972) 
4.44 (Weast 1982–83) 
4.45 (protonated cation + 1, Dean 1985) 
4.43 (Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
56.739, 44.597 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
7.535 (Dreisbach 1955) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
16330 (20°C, shake flask-GC, Chiou 1981; Chiou & Schmedding 1981; Chiou et al. 1982) 
15000 (quoted, Verschueren 1983) 
16300 (calculated-KOW, Muller & Klein 1992) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
133.3* (48.2°C, static method, measured range 48.2–199.7°C, Kahlbaum 1898) 
42.72* (extrapolated-regression of tabulated data, temp range 44–199.7°C, Stull 1947) 
log (P/mmHg) = 7.60681 – 2033.6/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 
7605* (118.46°C, ebulliometry, measured range 118.46–200.30°C, Dreisbach & Shrader 1949) 
42.26 (calculated by formula, Dreisbach 1955) 
log (P/mmHg) = 7.28896 – 1768.7/(201.0 + t/°C); temp range 103–320°C (Antoine eq. for liquid state, Dreisbach 
1955) 
log (P/atm) = [–0.2185 . 12663.4/(T/K)] + 8.440371; temp range 41–203.3°C (Antoine eq., Weast 1972–73) 
42.93 (extrapolated-Cox eq., Chao et al. 1983) 
log (P/mmHg) = [1 – 473.369/(T/K)] . 10^{0.907135 – 6.44774 . 10–4·(T/K) + 4.94693 . 10–7·(T/K)2}; temp 
range: 300.0–710.0 K (Cox eq., Chao et al. 1983) 
13.33, 40.0 (20°C, 30°C, quoted, Verschueren 1983) 
33.96 (extrapolated-Antoine eq., Boublik et al. 1984) 
NH2 
CH3 
© 2006 by Taylor & Francis Group, LLC

3264 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/kPa) = 6.20039 – 1623.158/(186.641 + t/°C); temp range 118.5–200.3°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
43.0 (selected lit., Riddick et al. 1986) 
log (P/mmHg) = 6.73171 – 2033.6/(230.0 + t/°C); temp range: not specified (Antoine eq., Riddick et al. 1986) 
34.18 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.08203 – 1627.72/(187.13 + t/°C); temp range 118–200°C (Antoine eq., Dean l985, 1992) 
36.46 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.26948 – 1672.87/(–81.47 + T/K); temp range 391–474 K, (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 96.5685 – 6.2643 . 103/(T/K) – 32.265·log (T/K) + 1.2361 . 10–2·(T/K) + 6.2915 . 10–13·(T/K)2; 
temp range 249–694 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.095 (calculated-P/C) 
0.201 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
1.29 (shake flask-UV, Leo et al. 1971) 
1.43 (HPLC-k. correlation, Carlson et al. 1975) 
1.63 (RP-HPLC-RT correlation, Veith et al. 1979a) 
1.42 (shake flask-UV at pH 7.5, Martin-Villodre et al. 1986) 
1.34 (HPLC-RT correlation, average, Ge et al. 1987) 
1.32 (shake flask, Log P Database, Hansch & Leo 1987) 
1.32 (recommended, Sangster 1989) 
1.44, 1.57 (shake flask, HP:C-RT correlation, Wang et al. 1989) 
1.43 (recommended, Sangster 1993) 
1.32 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
1.24 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
Oxidation: rate constant k = 1 . 104 M–1 s–1 for oxidation by RO2 radicals at 30°C in aquatic systems with 
t. = 0.8 d (Howard 1972; Hendry et al. 1974; quoted, Mill 1982); 
rate constant k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 
yr (Foote 1976; Mill 1979; quoted, Mill 1982); 
photooxidation t. = 62.4 – 3480 h in water, based on estimated rate constants for reactions of representative 
aromatic amines with OH and RO2 radicals (Mill & Mabey 1985; quoted, Howard et al. 1991); 
photooxidation t. = 0.394 – 3.94 h in air, based on estimated rate constant for the reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991). 
Biodegradation: decomposition by a soil microflora in > 64 d (Alexander & Lustigman 1966; quoted, Verschueren 
1983); 
aqueous aerobic t. = 24 – 168 h, based on aqueous aerobic screening test data (Baird et al. 1977; Sasaki 
1978; quoted, Howard et al. 1991); 
average biodegradation k = 15.1 mg COD g–1 h–1 for 97.7% removal (Scow 1982); 
aqueous anaerobic t. = 96 – 672 h, based on estimated unacclimated aqueous aerobic biodegradation halflife 
(Howard et al. 1991). 
Biotransformation: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3265 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 0.394 – 3.94 h, based on estimated rate constant for the reaction with hydroxyl radical 
in air (Atkinson 1987; quoted, Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: estimated t. = 1.0 d for methylaniline in Rhine River in case of a first order reduction process 
(Zoeteman et al. 1980) 
photooxidation t. = 62.4 – 3480 h, based on estimated rate constants for reactions of representative aromatic 
amines with OH and RO2 radicals (Mill & Mabey 1985; quoted, Howard et al. 1991). 
Groundwater: t. = 48 – 336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Sediment: 
Soil: t. = 24 – 168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
Biota: 
TABLE 16.1.3.6.1 
Reported vapor pressures of o-toluidine at various temperatures 
Kahlbaum 1898 Stull 1947 Dreisbach & Shrader 1949 
static method-manometer* summary of literature data ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
48.2 133.3 44.0 133.3 118.46 7605 
55.3 266.6 69.3 666.6 122.22 8851 
61.4 400.0 81.4 1333 125.99 10106 
65.7 533.3 95.1 2666 139.0 16500 
69.3 666.6 110.0 5333 168.06 42066 
81.4 1333.2 119.8 7999 184.80 67661 
94.9 2666.4 133.0 13332 200.30 101325 
103.6 3999.7 153.0 26664 
110.0 5332.9 170.2 53329 
115.1 6666.1 199.7 101325 
125.4 9999.2 
133.0 13332 mp/°C –16.3 
154.0 26664 
166.2 39997 
176.2 53329 
183.9 66661 
190.5 79993 
196.2 93326 
199.7 101325 
*complete list see ref. 
© 2006 by Taylor & Francis Group, LLC

3266 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.3.6.1 Logarithm of vapor pressure versus reciprocal temperature for o-toluidine. 
o -Toluidine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 
1/(T/K) 
P( gol 
S 
) aP/ 
Kahlbaum 1898 
Dreisbach & Shrader 1949 
Stull 1947 
b.p. = 200.3 °C m.p. = -14.41 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3267 
16.1.3.7 m-Toluidine (3-Methylbenzeneamine) 
Common Name: m-Toluidine 
Synonym: 3-aminotoluene, 3-methylbenzeneamine, 3-methylaniline 
Chemical Name: 3-aminotoluene, m-amino-methylbenzene, m-methylaniline, m-toluidine 
CAS Registry No: 108-44-1 
Molecular Formula: C6H4(CH3)NH2 
Molecular Weight: 107.153 
Melting Point (oC): 
–31.3 (Lide 2003) 
Boiling Point (°C): 
203.3 (Stull 1947; Weast 1982–83; Lide 2003) 
Density (g/cm3 at 20°C): 
0.9889 (Dreisbach 1955; Weast 1982–83) 
Molar Volume (cm3/mol): 
108.4 (20°C, Stephenson & Malanowski 1987) 
132.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
4.66, 4.712, 4.72 (Perrin 1972) 
4.73 (Weast 1982–83) 
4.71 (protonated cation + 1, Dean 1985) 
4.70 (Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
57.283, 44.848 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
7.08 (Dreisbach 1955) 
3.891 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
15031 (20°C, shake flask-GC, Chiou 1981; Chiou & Schmedding 1981; Chiou et al. 1982) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
133.3* (49.8°C, static method, measured range 49.8–203.3°C, Kahlbaum 1898) 
49.54* (extrapolated-regression of tabulated data, temp range 41–203.3°C, Stull 1947) 
log (P/mmHg) = 7.616512 – 2052.0/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 
7605* (121.77°C, ebulliometry, measured range 121.77-203.34°C, Dreisbach & Shrader 1949) 
36.64 (calculated by formula, Dreisbach 1955) 
log (P/mmHg) = 7.27435 – 1772.06/(200.0 + t/°C); temp range 105–320°C (Antoine eq. for liquid state, 
Dreisbach 1955) 
log (P/mmHg) = [–0.2185 . 12104.1/(T/K)] + 8.440371; temp range 41–203°C (Antoine eq., Weast 1972–73) 
33.49 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 476.329/(T/K)] . 10^{0.923479 – 6.91988 . 10–4·(T/K) + 5.41104 . 10–7·(T/K)2}; temp range: 
280.0–705.0 K (Cox eq., Chao et al. 1983) 
27.91 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.21454 – 1620.608/(203.346 + t/°C); temp range 121.9–203.4°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
25.66 (extrapolated-Antoine eq., Dean 1985, 1992) 
NH2 
CH3 
© 2006 by Taylor & Francis Group, LLC

3268 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/mmHg) = 7.09367 – 1631.43/(183.91 + t/°C); temp range 122–203°C (Antoine eq., Dean l985, 1992) 
36.0 (quoted lit., Riddick et al. 1986) 
log (P/kPa) = 17.6292 – 3200.9/(T/K) – 3.323·log (T/K), temp range not specified (vapor pressure eq., Riddick 
et al. 1986) 
26.86 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.27299 – 1669.26/(–85.339 + T/K); temp range 394–447 K (Antoine eq., Stephenson & 
Malanowski 1987) 
25.50 (calculated-Cox eq., Chao et al. 1990) 
log (P/mmHg) = 7.0317 – 3.2034 . 103/(T/K) + 2.3006·log (T/K) – 9.7791 . 10–3·(T/K) + 4.6824 . 10–6·(T/K)2; 
temp range 243–709 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.257 (calculated-P/C) 
0.169 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
1.40 (shake flask-UV, Fujita et al. 1964) 
1.43 (HPLC-k. correlation, Carlson et al. 1975) 
1.42 (20°C, shake flask-UV, Briggs 1981) 
1.43 (shake flask, Log P Database, Hansch & Leo 1987) 
1.40 (recommended, Sangster 1989) 
1.49, 1.37 (shake flask, HPLC-RT correlation, Wang et al. 1989) 
1.40 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
1.41 (soil, quoted obs. as log KOM, Sabljic 1987) 
1.65 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
Oxidation: rate constant k = 1 . 104 M–1 s–1 for oxidation by RO2 radical at 30°C in aquatic systems with t. = 0.8 d 
(Howard 1972; Hendry et al. 1974; quoted, Mill 1982); 
k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 yr (Foote 1976; 
Mill 1979; quoted, Mill 1982). 
Biodegradation: decomposition by a soil microflora in 8 d (Alexander & Lustigman 1966; quoted, Verschueren 
1983); 
average biodegradation rate of 30.0 mg COD g–1 h–1 for 97.7% removal (Scow 1982). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: estimated t. = 1.0 d for methylaniline in Rhine River in case of a first order reduction process 
(Zoeteman et al. 1980) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3269 
TABLE 16.1.3.7.1 
Reported vapor pressures of m-toluidine at various temperatures 
Kahlbaum 1898 Stull 1947 Dreisbach & Shrader 1949 
static method-manometer* summary of literature data ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
49.8 133.3 41.0 133.3 121.77 7605 
58.9 266.6 68.0 666.6 125.57 8851 
64.8 400.0 82.0 1333 129.03 10114 
69.3 533.3 96.7 2666 142.27 16500 
72.8 666.6 113.5 5333 171.18 42066 
85.3 1333.2 123.8 7999 187.87 67661 
98.5 2666.4 136.7 13332 203.34 101325 
107.1 3999.7 157.6 26664 
113.6 5332.9 180.6 53329 
118.7 6666.1 203.3 101325 
129.0 9999.2 
136.6 13332 mp/°C –31.5 
157.6 26664 
169.8 39997 
179.8 53329 
187.5 66661 
194.0 79993 
199.8 93326 
203.3 101325 
*complete list see ref. 
FIGURE 16.1.3.7.1 Logarithm of vapor pressure versus reciprocal temperature for m-toluidine. 
m-Toluidine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 
1/(T/K) P ( g o l S ) a P / 
Kahlbaum 1898 
Dreisbach & Shrader 1949 
Stull 1947 
b.p. = 203.3 °C m.p. = -31.3 °C 
© 2006 by Taylor & Francis Group, LLC

3270 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.3.8 p-Toluidine (4-Methylbenzeneamine) 
Common Name: p-Toluidine 
Synonym: 4-aminotoluene, 4-methylaniline, 4-methylbenzenamine 
Chemical Name: 4-aminotoluene, p-amino-methylbenzene, p-methylaniline, p-toluidine 
CAS Registry No: 106-49-0 
Molecular Formula: C6H4(CH3)NH2 
Molecular Weight: 107.153 
Melting Point (°C): 
43.6 (Lide 2003) 
Boiling Point (C): 
200.4 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9619 (20°C, Weast 1982–83) 
1.043 (Verschueren 1983) 
Molar Volume (cm3/mol): 
132.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
5.02, 5.08, 5.084 (Perrin 1972) 
5.08 (Weast 1982–83; Sangster 1989) 
5.08 (protonated cation + 1, Dean 1985) 
5.17 (shake flask-HPLC/UV, Johnson & Westall 1990) 
Enthalpy of Vaporization, .HV (kJ/mol): 
56.195, 44.271 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
17.32 (Tsonopoulos & Prausnitz 1971) 
18.91 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
54.81 (Tsonopoulos & Prausnitz 1971) 
57.61 (observed, Yalkowsky & Valvani 1980) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.657 (mp at 43.6°C) 
Water Solubility (g/m3 or mg/L at 25°C as indicated): 
65400 (20–25°C, shake flask-gravimetric, Dehn 1917) 
8965 (Seidell 1941, 1952) 
7400 (21°C, Verschueren 1983) 
6643, 5370 (20°C, shake flask-UV, calculated, Hashimoto et al. 1984) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
133.3* (46.9°C, static method, measured range 46.9–200.4°C, Kahlbaum 1898) 
log (P/mmHg) = –2597/(T/K) + 8.366 (isoteniscope method, temp range not specified, Kobe et al. 1941) 
46.27* (extrapolated-regression of tabulated data, temp range 42–200.4°C, Stull 1947) 
44.70 (calculated by formula, Dreisbach 1955) 
log (P/mmHg) = 7.25173 – 1755.0/(201.0 + t/°C); temp range 103–330°C (Antoine eq. for liquid state, Dreisbach 
1955) 
log (P/atm) = [–0.2185 . 12428.6/(T/K)] + 8.748585; temp range 42–200.4°C (Antoine eq., Weast 1972–73) 
38.13 (calculated-Cox eq., Chao et al. 1983) 
NH2 
CH3 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3271 
log (P/mmHg) = [1– 473.445/(T/K)] . 10^{0.915691 – 6.57014 . 10–4·(T/K) + 5.11261 . 10–7·(T/K)2}; temp 
range 290.0–700.0 K (Cox eq., Chao et al. 1983) 
40.17 (calculated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.26022 – 1758.55/(201.0 + t/°C); temp range not specified (Antoine eq., Dean 1985,1992) 
45.0 (quoted lit., Riddick et al. 1986) 
log (P/kPa) = 18.2818 – 3269.3/(T/K) – 3.877·log (T/K); temp range not specified (vapor pressure eq., Riddick 
et al. 1986) 
27.03 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.17451 – 1585.0/(–93.44 + T/K); temp range 393–474 K (Antoine eq., Stephenson & Malanowski 
1987) 
log (P/mmHg) = –13.9927 – 2.5795 . 103/(T/K) –10.823·log (T/K) –1.7705 . 10–2·(T/K) + 7.6741 . 10–6·(T/K)2; 
temp range 317–693 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.656 (calculated-P/C) 
0.0768 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
1.39 (shake flask-UV, Fujita et al. 1964) 
1.41 (HPLC-k. correlation, Carlson et al. 1975) 
1.56 (shake flask-UV, Ezumi & Kubota 1980) 
1.40 (20°C, shake flask-UV, Briggs 1981) 
1.44 ± 0.03 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
1.42 (HPLC-k. correlation, Haky & Young 1984) 
1.39 (shake flask-UV at pH 7.5, Martin-Villodre et al. 1986) 
1.41 (HPLC-RT correlation, average, Ge et al. 1987) 
1.39 (shake flask, Leahy et al. 1989) 
1.39 (recommended, Sangster 1989, 1993) 
1.38, 1.39 (shake flask, HPLC-RT correlation, Wang et al. 1989) 
1.40 (shake flask-HPLC/UV, Johnson & Westall 1990) 
1.40 (shake flask-UV, Roberts et al. 1991) 
1.40 (32°C, shake flask-UV, pH 7, Takahashi et al.1993) 
1.39 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
2.51, 2.70, 2.71 (Morocco soil, Oakville soil, Milford soil, Graveel et al. 1986) 
1.66 (soil, quoted obs. as log KOM, Sabljic 1987) 
2.74, 2.22, 2.20 (Podzol soil, Alfisol soil, sediment, von Oepen et al. 1991) 
1.24 (calculated-KOW, Kollig 1993) 
1.90 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.21; 1.86 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
3.28, 2.01, 2.30, 2.084 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, shake flask/batch equilibrium- 
HPLC/UV, Gawlik et al. 1998) 
2.138, 2.133, 2.212, 2.041 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, shake flask-batch equilibrium- 
HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
© 2006 by Taylor & Francis Group, LLC

3272 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Oxidation: rate constant k = 1 . 104 M–1 s–1 for oxidation by RO2 radical at 30°C in aquatic systems with t. = 0.8 d 
(Howard 1972; Hendry et al. 1974; quoted, Mill 1982); 
k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 yr (Foote 1976; 
Mill 1979; quoted, Mill 1982). 
Biodegradation: decomposition by a microflora in 4 d (Alexander & Lustigman 1966; quoted, Verschueren 1983); 
average biodegradation rate of 20 mg COD g–1 h–1 for 97.7% removal (Scow 1982). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: estimated t. = 1.0 d for methylaniline in Rhine River in case of a first order reduction process 
(Zoeteman et al. 1980)
TABLE 16.1.3.8.1 
Reported vapor pressures of p-toluidine at various 
temperatures 
Kahlbaum 1898 Stull 1947 
static method-manometer* summary of literature data 
t/°C P/Pa t/°C P/Pa 
46.9 133.3 42.0 133.3 
55.9 266.6 68.2 666.6 
62.0 400.0 81.8 1333 
66.4 533.3 95.8 2666 
70.1 666.6 111.5 5333 
82.2 1333.2 121.5 7999 
95.6 2666.4 133.7 13332 
104.3 3999.7 154.0 26664 
110.7 5332.9 176.9 53329 
115.8 6666.1 200.4 101325 
126.1 9999.2 
133.7 13332 mp/°C 44.5 
154.7 26664 
166.9 39997 
176.9 53329 
184.6 66661 
191.1 79993 
196.9 93326 
200.4 101325 
*complete list see ref. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3273 
FIGURE 16.1.3.8.1 Logarithm of vapor pressure versus reciprocal temperature for p-toluidine. 
p -Toluidine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 
1/(T/K) 
P( gol 
S 
) aP/ 
Kahlbaum 1898 
Stull 1947 
b.p. = 200.4 °C m.p. = 43.6 °C 
© 2006 by Taylor & Francis Group, LLC

3274 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.3.9 N,N’-Dimethylaniline 
Common Name: N,N.-Dimethylaniline 
Synonym: N,N.-dimethylbenzenamine 
Chemical Name: N,N.-dimethylaniline 
CAS Registry No: 121-69-7 
Molecular Formula: C8H11N, C6H5N(CH3)2 
Molecular Weight: 121.180 
Melting Point (°C): 
2.42 (Lide 2003) 
Boiling Point (°C): 
194.0 (Weast 1982–83) 
194.15 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9557 (Weast 1982–83) 
Molar Volume (cm3/mol): 
154.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pK: 
5.15 (pKBH 
+ , Riddick et al. 1986) 
5.10 (Sangster 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
11.42 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
41.46 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1105 (shake flask-GC, Chiou et al. 1982) 
1540, 1680 (20, 30°C, shake flask-GC/TC, measured range 0–90°C, Stephenson 1993c) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
106.3 (extrapolated-regression of tabulated data, temp range 20.0–193.1°C, Stull 1947) 
133.3 (29.5°C, Stull 1947) 
83.90 (calculated-Antoine eq., Boublik et al. 1973) 
log (P/atm) = [–0.2185 . 11320.4/(T/K)] + 8.197379; temp range: 29.5–193°C, (Antoine eq., Weast 1972–73) 
68.95 (calculated-Cox eq., Chao et al. 1983) 
log (P/mmHg) = [1– 466.445/(T/K)] . 10^{0.909397 – 7.07673 . 10–4 ± (T/K) + 5.69581 . 10–7 ± (T/K)2}; temp 
range 275.0–685.0 K (Cox eq., Chao et al. 1983) 
84.5 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.5031 – 1865.084/(211.171 + t/°C); temp range 71.02–196.8°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
83.91 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 6.91048 – 946.35/(246.68 + t/°C); temp range –87 to 7°C (Antoine eq., Dean 1985, 1992) 
670.0 (quoted from Stull 1947, Riddick et al. 1986) 
107.0 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.07329 – 2301.63/(–12.001 + T/K); temp range 302–467 K (liquid, Antoine eq.-I, Stephenson 
& Malanowski 1987) 
log (PL/kPa) = 6.55663 – 1864.075/(–55.854 + T/K); temp range 363–418 K (liquid, Antoine eq.-II, Stephenson 
& Malanowski 1987) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3275 
log (P/mmHg) = 2–.177 – 3.1095 . 103/(T/K) – 4.0127·log (T/K) + 5.8538 . 10–10·(T/K) + 3.5387 . 10–7·(T/K)2; 
temp range 276–687 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol): 
11.73 (calculated-P/C) 
Octanol/Water Partition Coefficient, log KOW: 
2.31 (shake flask-UV, Fujita et al. 1964) 
2.62 (shake flask-UV at pH 7.4, Rogers & Cammarata 1969) 
1.66 (shake flask-UV, Leo et al. 1971) 
2.29 (shake flask-UV, Yaguzhinskii et al. 1973) 
2.30 (shake flask at pH 7, Unger et al. 1978) 
2.43 (HPLC-RT correlation, Miyake et al. 1986) 
2.28 (RP-HPLC-RT correlation, ODS column with masking agent, Bechalany et al. 1989) 
2.32 (CPC correlation, El Tayar et al. 1991) 
2.31 (recommended, Sangster 1993) 
2.31 (recommended, Hansch et al. 1995) 
2.05 (microemulsion electrokinetic chromatography-retention factor correlation, Poole et al. 2000) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
1.99; 2.53; 2.06 (Alfisol soil; Podzol soil; sediment, von Oepen et al. 1991) 
2.26, 1.89 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
2.26 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k; for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
k = 1 . 104 M–1 s–1 for oxidation by RO2 radical at 30°C in aquatic systems with t. = 0.8 d (Howard 1972; 
Hendry et al. 1974; quoted, Mill 1982) 
k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 yr (Foote 1976; 
Mill 1979; quoted, Mill 1982) 
kOH*(exptl) = (1.48 ± 0.11) . 10–10 cm3 molecule–1 s–1, measured range 278–464 K; kO3 = (9.1 ± 1.0) . 10–18 
cm3 molecule–1 s–1 at 296 ± 2 K (relative rate method, Atkinson et al. 1987) 
kOH = 1.5 . 10–10 cm3 molecule–1 s–1 with atmospheric lifetimes of 1.9 h in clean troposphere and 1.0 h in 
moderately polluted atmosphere; kO3 = 9.1 . 10–18 cm3 molecule–1 s–1 with atmospheric lifetimes of 1.8 d 
in clean troposphere and 14 h in moderately polluted atmosphere at room temp. (Atkinson et al. 1987) 
kOH(calc) = 4.66 . 10–10 cm3 molecule–1 s–1, kOH(obs) = 1.48 . 10–10 cm3 molecule–1 s–1, (SAR structureactivity 
relationship, Atkinson 1987) 
kOH(calc) = 1.78 . 10–10 cm3 molecule–1 s–1 (molecular orbital calculations, Klamt 1993) 
Hydrolysis: 
Biodegradation: aerobic t. = 672–4320 h, based on unacclimated aqueous screening test data and anaerobic 
t. = 2880–17280 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: atmospheric lifetimes of 1.9 h in clean troposphere and 1.0 h in moderately polluted atmosphere, based on 
the gas-phase reaction with hydroxyl radical in air at room temp.; atmospheric lifetimes of 1.8 d in clean 
© 2006 by Taylor & Francis Group, LLC

3276 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
troposphere and 14 h in moderately polluted atmosphere, based on the gas-phase reaction with O3 in air at 
room temp. (Atkinson et al. 1987); 
t. = 2.7–21 h, based on photooxidation half-life in air (Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: estimated t. = 2.3 d in Rhine River in case of a first order reduction process (Zoeteman et al. 
1980) 
t. = 19.3–1925 h, based on reaction with singlet oxygen in aqueous solution (Howard et al. 1991) 
Groundwater: t. = 1344–8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991) 
Sediment: 
Soil: t. = 672–4320 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991) 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3277 
16.1.3.10 2,6-Xylidine (2,6-Dimethylbenzeneamine) 
Common Name: 2,6-Xylidine 
Synonym: 2,6-dimethylaniline, 2,6-dimethylbenzeneamine 
Chemical Name: 2,6-dimethylaniline 
CAS Registry No: 87-62-7 
Molecular Formula: C8H11N, 2,6-(CH3)2C6H3NH2 
Molecular Weight: 121.180 
Melting Point (°C): 
11.20 (Weast 1982–83; Riddick et al. 1986; Lide 2003) 
Boiling Point (°C): 
214.0 (at 739 mm Hg, Weast 1982–83; Verschueren 1983) 
215 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9842 (Weast 1982–83; Riddick et al. 1986) 
Molar Volume (cm3/mol): 
123.1 (20°C, calculated-density) 
154.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pK: 
3.95 (pKBH 
+ , Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
slightly soluble (Dean 1985; Budavari 1989) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
43.03 (extrapolated-regression of tabulated data, temp range 44–217.9°C, Stull 1947) 
log (P/atm) = [1– 490.795/(T/K)] . 10^{0.926009 – 6.89676 . 10–4·(T/K) + 5.31053 . 10–7·(T/K)2}; temp range: 
285.0–720.0 K (Cox eq., Chao et al. 1983) 
17.33 (Howard et al. 1986) 
670.0 (quoted from Stull 1947, Riddick et al. 1986) 
35.99 (calculated-solvatochromic parameters, Banerjee et al. 1990) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
17.28 (calculated-P/C from selected value) 
Octanol/Water Partition Coefficient, log KOW: 
1.96 (calculated, Verschueren 1983) 
1.91 (calculated-CLOGP, Jackel & Klein 1991) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
NH2 
© 2006 by Taylor & Francis Group, LLC

3278 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k = 1 . 104 M–1 s–1 for oxidation by RO2 radical at 30°C in aquatic systems with t. = 0.8 d 
(Howard 1972; Hendry et al. 1974; quoted, Mill 1982); 
k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 yr (Foote 1976; 
Mill 1979; quoted, Mill 1982); 
photooxidation t. = 0.33–3.3 h in air, based on estimated reaction rate constant with OH radical (Atkinson 
1987; selected, Howard et al. 1991) and photooxidation t. = 62.4–3480 h in water, based on reaction 
rate constants of amine class with RO2· and OH radicals in water (Guesten et al. 1981; Mill & Mabey 
1985; selected, Howard et al. 1991). 
Hydrolysis: no hydrolyzable group (Howard et al. 1991). 
Biodegradation: aqueous aerobic biodegradation t. = 672–4320 h, based on a biological screening study (Baird 
et al. 1977; selected Howard et al. 1991) and a soil degradation study (Bollag et al. 1978; selected, Howard 
et al. 1991); aqueous anaerobic biodegradation t. = 2688–17280 h, based on estimated aqueous biodegradation 
half-lives (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.33–3.3 h, based on estimated photooxidation half-lives in air from estimated reaction rate constant 
with OH radical in air (Atkinson 1987; selected, Howard et al. 1991). 
Surface water: estimated t. = 2.0 d for dimethylaniline in Rhine River in case of a first order reduction process 
(Zoeteman et al. 1980) 
t. = 62.4–3480 h, based on photooxidation half-life in water (Howard et al. 1991). 
Groundwater: t. = 1344–8640 h, based on estimated aqueous aerobic biodegradation half-lives (Howard et al. 
1991). 
Sediment: 
Soil: t. = 72–7584 h, based on soil persistence and soil biodegradation studies (Bollag et al. 1978; Medvedev 
& Davidov 1981; selected, Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3279 
16.1.3.11 Diphenylamine 
Common Name: Diphenylamine 
Synonym: N-diphenylamine, N-phenyl aniline, DPA 
Chemical Name: N-diphenylamine, diphenylamine 
CAS Registry No: 122-39-4 
Molecular Formula: C12H11N, C6H5NHC6H5 
Molecular Weight: 169.222 
Melting Point (°C): 
53.2 (Lide 2003) 
Boiling Point (°C): 
302.0 (Stull 1947; Weast 1982–83; Verschueren 1983; Dean 1985; Lide 2003) 
Density (g/cm3 at 20°C): 
1.160 (Weast 1982–83; Dean 1985) 
Molar Volume (cm3/mol): 
145.9 (20°C calculated-density) 
200.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
0.89 (Perrin 1972) 
0.90 (protonated cation + 1, Dean 1985) 
0.78 (Sangster 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
17.53 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
53.56 (Tsonopoulos & Prausnitz 1971) 
54.81; 56.5 (exptl., calculated, Yalkowsky & Valvani 1980) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.529 (mp at 53.2°C) 
Water Solubility (g/m3 or mg/L at 25°C as indicated): 
150 (20–25°C, shake flask-gravimetric method, Dehn 1917) 
308 (Briggs 1981) 
48 (20°C, shake flask and membrane filter-fluorophotometric, Hashimoto et al. 1982) 
52, 54 (20°C, shake flask and glass fiber filters-fluorophotometric, Hashimoto et al. 1982) 
300 (Verschueren 1983) 
53 (20°C, Yalkowsky et al. 1987) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
0.5682* (extrapolated-regression of tabulated data, temp range 108.3–302°C, Stull 1947) 
log (P/mmHg) = [–0.2185 . 14920.3/(T/K)] + 8.564067; temp range 108.3–302°C (Antoine eq., Weast 1972–73) 
log (P/atm) = [1 – 575.114/(T/K)] . 10^{0.936992 – 6.17195 . 10–4·(T/K) + 4.32696 . 10–7·(T/K)2}; temp range 
335.0–670.0 K (Cox eq., Chao et al. 1983) 
0.0612 (calculated-Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PS/kPa) = 12.704 – 5043.9/(T/K); temp range 298–323 K (solid, Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.15045 – 2778.28/(–35.102 + T/K); temp range 381–575 K (liquid, Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.5746 – 2430.7/(–41.15 + T/K); temp range 573–673 K (liquid, Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 9.7736 – 3.9008 . 103/(T/K) + 0.91207·log (T/K) – 5.898 . 10–3·(T/K) + 2.3012 . 10–6·(T/K)2; 
temp range 326–817 K (vapor pressure eq., Yaws 1994) 
HN 
© 2006 by Taylor & Francis Group, LLC

3280 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa m3/mol at 25°C): 
0.285 (calculated-P/C, Meylan & Howard 1991) 
0.106 (estimated-bond contribution, Meylan & Howard 1991) 
0.035 (calculated-P/C from selected values) 
Octanol/Water Partition Coefficient, log KOW: 
3.23 (shake flask-UV, pH 7.4, Rogers & Cammarata 1969) 
3.34 (unpublished result, Leo et al. 1971) 
3.34, 3.50, 3.72 (unpublished results, Rekker 1977) 
2.37 (RP-HPLC-RT correlation, Veith et al. 1979a) 
3.45 (Hansch & Leo 1979) 
3.42 (shake flask-UV, Briggs 1981) 
3.37 (inter-laboratory shake flask average, Eadsforth & Moser 1983) 
3.72 ± 0.03 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
2.69 (HPLC-RT correlation, average, Ge et al. 1987) 
3.42 (shake flask, Log P Database, Hansch & Leo 1987) 
3.50 (recommended, Sangster 1989, 1993) 
3.70, 3.68 (shake flask, HPLC-RT correlation, Wang et al. 1989) 
3.50 (recommended, Hansch et al. 1995) 
2.99, 3.13, 3.04, 3.18 (HPLC-k. correlation, different combinations of stationary and mobile phases under 
isocratic conditions, Makovskaya et al. 1995) 
3.35 (microemulsion electrokinetic chromatography-retention factor correlation, Poole et al. 2000) 
Octanol/Air Partition Coefficient, log KOA: 
7.64 (calculated-Soct and vapor pressure P, Abraham et al. 2001) 
Bioconcentration Factor, log BCF: 
1.48 (fathead minnow, Veith et al. 1979b) 
1.48, 2.10 (quoted, calculated-KOW, Mackay 1982) 
Sorption Partition Coefficient, log KOC: 
2.78 (sorption isotherm-GC, converted from KOM organic matter-water in various soils, Briggs 1981) 
2.78, 3.28 (soil, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
3.30 (calculated-KOW, Kollig 1993) 
2.70 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.80, 2.93 (RP-HPLC-k. correlation including MCI related to non-dispersive intermolecular interactions, 
hydrogen-bonding indicator variable, Hong et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k = 1 . 104 M–1 s–1 for oxidation by RO2 radical at 30°C in aquatic systems with t. = 0.8 d 
(Howard 1972; Hendry et al. 1974; quoted, Mill 1982); 
k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 yr (Foote 1976; 
Mill 1979; quoted, Mill 1982); 
photooxidation t. = 31–1740 h in water, based on photooxidation rate constants with OH and RO2 radicals 
for the amine class (Mill & Mabey 1985; Guesten et al. 1981; selected, Howard et al. 1991); 
photooxidation t. = 0.247–2.47 h, based on estimated rate data for the reaction with hydroxyl radicals in 
air (Atkinson 1987; selected, Howard et al. 1991). 
Hydrolysis: rate constant k = 1.2 . 1010 L mol–1 s–1 for reactions with hydroxyl radical in aqueous solution, 
(Buxton et al. 1986; quoted, Armbrust 2000); 
measured hydroxy radical rate constant k = 4.9 . 1013 M–1·h–1 (Armbrust 2000) 
Biodegradation: aqueous aerobic t. = 168–672 h, based on estimated aqueous aerobic biodegradation screening 
test data (Malaney 1960; quoted, Howard et al. 1991); 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3281 
aqueous anaerobic t. = 672–2688 h, based on estimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 0.247–2.47 h, based on estimated rate data for the reaction with hydroxyl radical in air 
(Atkinson 1987; selected, Howard et al. 1991). 
Surface water: photooxidation t. = 31–1740 h in water, based on photooxidation rate constants with OH and 
RO2 radicals for the amine class (Mill & Mabey 1985; Guesten et al. 1981; selected, Howard et al. 1991); 
t. = 31–672 h, based on estimated unacclimated aqueous aerobic degradation half-life and photooxidation 
half-life in water (Howard et al. 1991). 
Groundwater: t. = 336–1344 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Sediment: 
Soil: t. = 168–672 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biota: 
TABLE 16.1.3.11.1 
Reported vapor pressures of diphenylamine at 
various temperatures 
Stull 1947 
summary of literature data 
t/°C P/Pa 
108.3 133.3 
141.7 666.6 
157.0 1333 
175.2 2666 
194.3 5333 
206.9 7999 
222.9 13332 
247.5 26664 
274.1 53329 
302.0 101325 
mp/°C 52.9 
© 2006 by Taylor & Francis Group, LLC

3282 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.3.11.1 Logarithm of vapor pressure versus reciprocal temperature for diphenylamine. 
Diphenylamine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0016 0.0018 0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 
1/(T/K) 
P( gol 
S 
) aP/ 
Stull 1947 
b.p. = 302 °C m.p. = 53.2 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3283 
16.1.3.12 Benzidine 
Common Name: Benzidine 
Synonym: p,p.-bianiline, 4,4.-diaminobiphenyl, 4,4.-biphenyldiamine, (1,1.-biphenyl)-4,4.-diamine 
Chemical Name: p-benzidine 
CAS Registry No: 92-87-5 
Molecular Formula: C12H12N2, NH2C6H4C6H4NH2 
Molecular Weight: 184.236 
Melting Point (°C): 
128 (Weast 1982–83) 
120 (Lide 2003) 
Boiling Point (°C): 
400 (Weast 1982–83) 
401 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.250 (Verschueren 1983) 
Molar Volume (cm3/mol): 
213.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
4.66 (pK1), 3.57 (pK2) (30°C, Perrin 1965; quoted, Mabey et al. 1982; Howard 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.117 (mp at 120°C) 
Water Solubility (g/m3 or mg/L at 25°C as indicated): 
400 (12°C, Verschueren 1977, 1983) 
520 (Shriner et al. 1978) 
360 (24°C at pH 5.9, shake flask-LSC, Means et al. 1980) 
276 (20°C, Schmidt-Bleek et al. 1982) 
359 (Gerstl & Helling 1987) 
Vapor Pressure (Pa at 25°C): 
0.724 (calculated-Trouton’s rule, Mabey et al. 1982) 
1.0 . 10–6 (20°C, Schmidt-Bleek et al. 1982) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
3.93 . 10–6 (estimated, Hine & Mookerjee 1975) 
0.0394 (calculated-P/C at 12°C, Mabey et al. 1982) 
4.60 . 10–7 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.34 (shake flask, Korenman 1971) 
1.34 (recommended, Sangster 1993) 
1.34 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.74, 2.66, 2.81, 3.4 (fish, mosquitoes, snail, algae; Lu et al. 1977) 
1.60 (bluegills, USEPA 1980; quoted, Howard 1989) 
1.00 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
H2N NH2 
© 2006 by Taylor & Francis Group, LLC

3284 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
1.90, 2.93, 3.08 (golden ide, algae, activated sludge, Freitag et al. 1985) 
Sorption Partition Coefficient, log KOC: 
1.66 (soil/sediment, equilibrium sorption isotherm by shake flask-LSC at pH 5.9, Means et al. 1980) 
1.02 (sediment-water, calculated-KOW, Mabey et al. 1982) 
5.95; 5.68; 5.35; 5.91 (Russell soil; Chalmers soil; Kokomo soil; Milford soil, Graveel et al. 1986) 
3.00 (calculated-MCI ., Gerstl & Helling 1987) 
3.46, 3.44 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
1.26 (calculated-KOW, Kollig 1993) 
3.46 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
Oxidation: aqueous oxidation rate constants for singlet oxygen k < 4 . 107 M–1 h–1 and for peroxy radical of 
1.1 . 108 M–1 h–1 at 25°C (Mabey et al. 1982); 
photooxidation t. = 0.312–3.12 h, based on estimated rate constant for the reaction with hydroxyl radical 
in air (Atkinson 1987; quoted, Howard et al. 1991). 
Biodegradation: aqueous aerobic t. = 48–192 h, based on aerobic soil die-away test data (Lu et al. 1977; quoted, 
Howard et al. 1991); 
overall biodegradation t. = 76 d, when in sludge was applied to a sandy loam soil in a biological soil reactor 
and worked into the top 20 cm of soil (Kincannon & Lin 1985; quoted, Howard 1989); 
aqueous aerobic t. = 192–768 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Biotransformation: rate constant for bacterial transformation of 1 . 10–10 mL·cell–1·h–1 in water (Mabey et al. 
1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.312–3.12 h, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 
1987; quoted, Howard et al. 1991); 
estimated t. ~ 1 d for the reaction with hydroxyl radical and ozone (Howard 1989); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: estimated t. ~ 1 d for the reaction with radicals and redox reactions with naturally occurring 
cations, etc. and perhaps with photodegradation (Howard 1989); 
t. = 31.2–192 h, based on estimated photooxidation half-life in water and estimated unacclimated aqueous 
aerobic biodegradation half-life (Howard et al. 1991). 
Ground water: t. = 96–484 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Sediment: 
Soil: t. < 10 d in soil (USEPA 1979; quoted, Ryan et al. 1988); 
t. = 48–192 h, based on aerobic soil die-away test data (Lu et al. 1977; quoted, Howard et al. 1991); 
overall biodegradation t. = 76 d, when in sludge was applied to a sandy loam soil in a biological soil reactor 
and worked into the top 20 cm of soil (Kincannon & Lin 1985; quoted, Howard 1989). 
Biota: depuration t. ~ 7 d from bluegills (Lu et al. 1977; quoted, Howard 1989). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3285 
16.1.3.13 3,3’-Dichlorobenzidine 
Common Name: 3,3.-Dichlorobenzidine 
Synonym: 3,3.-dichloro-4,4.-diamino(1,1.-biphenyl), DCB 
Chemical Name: 3,3.-dichlorobenzidine 
CAS Registry No: 91-94-1 
Molecular Formula: C12H10Cl2N2, NH2C6H3(Cl)C6H3(Cl)NH2 
Molecular Weight: 253.126 
Melting Point (°C): 
132.5 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
254.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKb: 
11.7 (Kollig 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0882 (mp at 132.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
4.00 (22°C, as dihydrochloride, Banerjee et al. 1978) 
3.99 (22°C, at pH 6.9 as DCB.2HCl, quoted, Verschueren 1983) 
3.11 (shake flask-UV/LSC, Banerjee et al. 1980) 
Vapor Pressure (Pa at 25°C): 
0.00133 (estimated, Mabey et al. 1982) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0811 (calculated-P/C, Mabey et al. 1982) 
Octanol/Water Partition Coefficient, log KOW: 
3.02 (calculated as per Leo et al.1971) 
3.51 (23°C, shake flask, Banerjee et al. 1980) 
3.35 (calculated-activity coeff. . from UNIFAC, Banerjee & Howard 1988) 
3.51 (recommended, Sangster 1993) 
3.51 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.70 (bluegill sunfish, Appleton & Sikka 1980) 
2.97 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
2.79, 2.97, 3.49 (fish, algae, activated sludge, Freitag et al. 1985) 
Sorption Partition Coefficient, log KOC: 
3.19 (sediment-water, calculated-KOW, Mabey et al. 1982) 
4.35, 3.87 (soil: quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
3.30 (calculated-KOW, Kollig 1993) 
4.35 (soil, calculated-MCI 1., Sabljic et al. 1995) 
H2N NH2 
Cl Cl 
© 2006 by Taylor & Francis Group, LLC

3286 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
direct aqueous photolysis rate constant k = 2.1 . 10–6 h–1 in summer at 40°N latitude (Mabey et al. 1982); 
both aqueous and atmospheric photolysis t. = 0.025–0.075 h, based on direct photolysis in distilled water 
in midday summer sunlight (Banerjee et al. 1978; Sikka et al. 1978; quoted, Callahan et al. 1979; Howard 
et al. 1991) and approximate winter sunlight direct photolysis half-life (Banerjee et al. 1978; Sikka 
et al. 1978; Lyman et al. 1982; quoted, Howard et al. 1991). 
Hydrolysis: 
Oxidation: aqueous oxidation rate constants for singlet oxygen k < 4 . 107 M–1 h–1 and for peroxy radical 
k < 4 . 107 M–1 h–1 at 25°C (Mabey et al. 1982); 
photooxidation t. = 31.2 – 1740 h in water, based on estimated rate constants for reactions with OH and 
RO2 radicals in water (Mill & Mabey 1985; quoted, Howard et al. 1991); 
photooxidation t. = 0.905 – 9.05 h in air, based on estimated rate constant for the reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991) 
Biodegradation: aqueous aerobic t. = 672 – 4320 h, based on lake die-away study test data (Appleton et al. 
1978; quoted, Howard et al. 1991) and a soil die-away test (Boyd et al. 1984; quoted, Howard et al. 1991); 
aqueous anaerobic t. = 2688 – 17280 h, based on estimated unacclimated aqueous aerobic biodegradation 
half-life (Howard et al. 1991). 
Biotransformation: rate constant for bacterial transformation k = 3 . 10–12 mL·cell–1·h–1 in water (Mabey et al. 
1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.905 – 9.05 h, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 
1987; quoted, Howard et al. 1991); 
estimated t. ~ 1 d for the reaction with hydroxyl radical and ozone (Howard 1989); 
atmospheric transformation lifetime by photolysis was estimated to be < 1 d (Kelly et al 1994). 
Surface water: t. = 0.025 – 0.075 h, based on direct photolysis in distilled water in midday summer sunlight 
(Banerjee et al. 1978; Sikka et al. 1978; quoted, Howard et al. 1991) and approximate winter sunlight 
direct photolysis half-life (Banerjee et al. 1978; Sikka et al. 1978; Lyman et al. 1982; quoted, Howard 
et al. 1991). 
Ground water: t. = 1344 – 8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: t. = 30 min by suspended microcrystalline clays may be considered the most important fate process 
in the aquatic environment (Callahan et al. 1979). 
Soil: t. = 672 – 4320 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3287 
16.1.3.14 N,N’-Bianiline 
Common Name: N,N.-Bianiline 
Synonym: 1,2-diphenylhydrazine, hydrazobenzene 
Chemical Name: 1,2-diphenylhydrazine, hydrazobenzene 
CAS Registry No: 122-66-7 
Molecular Formula: C12H12N2, C6H5NHNHC6H5 
Molecular Weight: 184.236 
Melting Point (°C): 
131 (Weast 1982–83; Lide 2003) 
Boiling Point (°C): 
293 (as azobenzene, IARC 1975) 
Density (g/cm3 at 20°C): 
1.158 (16°C, Weast 1982–83) 
Molar Volume (cm3/mol): 
213.0 (calculated-Le Bas method at normal boiling point) 
Dissociation constant pKb: 
13.2 (Kollig 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0912 (mp at 131°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
0.252 (20°C, as azobenzene, Takagishi et al. 1968) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00347 (quoted, Mabey et al. 1982) 
log (P/mmHg) = 16.8982 – 5.0039 . 103/(T/K) –0.35846·log (T/K) –9.9629 . 10–3·(T/K) + 4.2938 . 10–6·(T/K)2; 
temp range 404–573 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
3.45 . 10–4 (calculated-P/C, Mabey et al. 1982) 
Octanol/Water Partition Coefficient, log KOW: 
3.82 (shake flask-UV as for azobenzene, Fujita et al. 1964) 
3.03 (calculated as per Leo et al. 1971, Callahan et al. 1979) 
2.94 (shake flask, Hansch & Leo 1979; 1987) 
2.94 (recommended, Sangster 1993) 
2.94 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.46 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
Sorption Partition Coefficient, log KOC: 
2.62 (sediment-water, calculated-KOW, Mabey et al. 1982) 
1.40 (calculated-KOW, Kollig 1993) 
HN
NH 
© 2006 by Taylor & Francis Group, LLC

3288 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
Oxidation: aqueous oxidation rate constants for singlet oxygen k < 4 . 107 M–1 h–1 and for peroxy radical, 
k < 1 . 109 M–1 h–1 at 25°C (Mabey et al. 1982); 
photooxidation t. = 31 – 1740 h, based on photooxidation rate constants with OH and RO2 radicals for the 
amine class (Guesten et al. 1981; Mill & Mabey 1985; quoted, Howard et al. 1991); 
photooxidation t. = 0.3 – 3.0 h in air, based on estimated rate data for the reaction with hydroxyl radical 
in air (Atkinson 1987; quoted, Howard et al. 1991). 
Biodegradation: aqueous aerobic t. = 672 – 4320 h, based on acclimated aerobic aqueous screening test data 
(Malaney 1960; quoted, Howard et al. 1991); aqueous anaerobic t. = 2880 – 17280 h, based on estimated 
unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biotransformation: bacterial transformation k = 1 . 10–10 mL·cell–1·h–1 in water (Mabey et al. 1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 0.3 – 3.0 h, based on estimated rate data for the reaction with hydroxyl radical in air 
(Atkinson 1987; quoted, Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: photooxidation t. = 31 – 1740 h, based on photooxidation rate constants with OH and RO2 radicals 
for the amine class (Guesten et al. 1981; Mill & Mabey 1985; quoted, Howard et al. 1991). 
Groundwater: t. = 1344 – 8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: 
Soil: t. = 672 – 4320 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3289 
16.1.3.15 .-Naphthylamine (1-Aminonaphthalene) 
Common Name: 1-Naphthylamine 
Synonym: 1-naphthalenamine, .-naphthylamine, 1-NA, 1-aminonaphthalene, naphthalidine 
Chemical Name: 1-naphthalenamine 
CAS Registry No: 134-32-7 
Molecular Formula: C10H7NH2 
Molecular Weight: 143.185 
Melting Point (°C): 
49.2 (Lide 2003) 
Boiling Point (°C): 
300.7 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.1229 (25°C, Weast 1982–8) 
1.123 (Dean 1985) 
Molar Volume (cm3/mol): 
161.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
3.92 (Sangster 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
14.23 ± 0.105 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
44.35 ± 3.35 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.579 (mp at 49.2°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
1700 (Verschueren 1983) 
590 parts in water (Budavari 1989) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
0.803 (extrapolated-regression of tabulated data, temp range 104.3–300.8°C, Stull 1947) 
log (P/mmHg) = [–0.2185 . 14529.5/(T/K)] + 8.29900; temp range 104.3–300.8°C (Antoine eq., Weast 1972–73) 
0.557 (extrapolated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 574.066/(T/K)] . 10^{0.822931 – 2.94554 . 10–4·(T/K) + 2.19845 . 10–7·(T/K)2}; temp range: 
325.0–645.0 K (Cox eq., Chao et al. 1983) 
0.446 (extrapolated, liquid, Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.88407 – 2570.55/(–46.989 + T/K); temp range 377–574 K (Antoine eq., Stephenson & 
Malanowski 1987) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
6.197 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
2.23 (Leo et al. 1969) 
2.25 (shake flask, Hansch & Leo 1979) 
2.27 (shake flask-UV at pH 7.5, Martin-Villodre et al. 1986) 
2.33 (HPLC-k. correlation, Minick et al. 1988) 
2.25 (recommended, Sangster 1993) 
2.25 (recommended, Hansch et al. 1995) 
2.34 (microemulsion electrokinetic chromatography-retention factor correlation, Poole et al. 2000) 
NH2 
© 2006 by Taylor & Francis Group, LLC

3290 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
3.58, 3.43, 3.50 (Milford soil, Morocco soil, Oakville soil, Graveel et al. 1986) 
2.63, 2.68, 3.15 (sediment, Alfisol soil, Podzol soil, von Oepen et al. 1991) 
3.51, 3.48 (soil, quoted exptl., calculated-MCI ., Meylan et al. 1992) 
3.51 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.0–2.65 (5 soils, pH 2.8–7.4, batch equilibrium-sorption isotherm, Li et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k = 1 . 104 M–1 s–1 for oxidation by RO2 radical at 30°C in aquatic systems with t. = 0.8 d 
(Howard 1972; Hendry et al. 1974; quoted, Mill 1982); 
rate constant k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 yr 
(Foote 1976; Mill 1979; quoted, Mill 1982); 
atmospheric t. = 0.292–2.92 h, based on estimated rate constants for the reaction with OH radical in air 
and aqueous photooxidation t. = 62.4–3480 h, based on estimated rate constants for reaction of representative 
aromatic amines with OH and RO2 radicals in aqueous solution (Howard et al. 1991); 
photooxidation t. = 0.08–0.13 h under sunlight and t. = 0.25–9.1 h under UV light when adsorbed on silica; 
t. = 0.10–0.15 h under sunlight and t. = 0.15–10.5 h under UV light when adsorbed on alumina on the 
TLC plates under simulated atmospheric conditions (Hasegawa et al. 1993). 
Hydrolysis: 
Biodegradation: aqueous aerobic biodegradation t. = 672–4320 h and aqueous anaerobic biodegradation 
t. = 2688–17280 h, based on slow biodegradation observed in aerobic soil die-away test study and aerobic 
activated sludge screening tests (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.292–2.92 h, based on estimated photooxidation half-life in air (Howard et al. 1991). 
Surface water: t. = 0.62.4–3840 h, based on estimated rate constants for reactions of aromatic amines with OH 
and RO2 radicals in aqueous solutions (Howard et al. 1991). 
Groundwater: t. = 1344–8640 h, based on slow biodegradation observed in an aerobic soil die-away test study 
and aerobic activated sludge screening tests (Howard et al. 1991). 
Sediment: 
Soil: t. = 672–4320 h, based on slow biodegradation observed in an aerobic soil die-away test study and aerobic 
activated sludge screening tests (Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3291 
16.1.3.16 .-Naphthylamine (2-Aminonaphthalene) 
Common Name: 2-Naphthylamine 
Synonym: 2-naphthalenamine, .-naphthylamine, 2-NA, 2-aminonaphthalene, naphthalidine 
Chemical Name: 2-naphthalenamine 
CAS Registry No: 91-59-8 
Molecular Formula: C10H7NH2 
Molecular Weight: 143.185 
Melting Point (°C): 
113 (Weast 1982–83; Lide 2003) 
Boiling Point (°C): 
306.2 (Lide 2003) 
Density (g/cm3): 
1.0614 (at 98°C, Weast 1982–83; Verschueren 1983; Dean 1985) 
Molar Volume (cm3/mol): 
161.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
4.15 (Sangster 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
21.97 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
57.32 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.137 (mp at 113°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
6.40 (18°C, Ciusa 1922; quoted, Tsonopoulos & Prausnitz 1971) 
0.19 (18–20°C, Neish 1948; quoted, Tsonopoulos & Prausnitz 1971) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
0.634 (extrapolated-regression of tabulated data, temp range 108–306.1°C, Stull 1947) 
log (P/atm) = [–0.2185 . 14679.6/(T/K)] + 8.435133; temp range 108–306.1°C (Antoine eq., Weast 1972–73) 
0.369 (extrapolated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1 – 579.422/(T/K)] . 10^{0.860256 – 4.44286 . 10–4·(T/K) + 3.71453 . 10–7·(T/K)2}; temp 
range: 385.0–645.0 K (Cox eq., Chao et al. 1983) 
0.035 (Howard et al. 1986) 
0.035 (interpolated, solid, Antoine eq., Stephenson & Malanowski 1987) 
0.362 (extrapolated, liquid, Antoine eq., Stephenson & Malanowski 1987) 
log (PS/kPa) = 8.4859 – 3859/(T/K), temp range: 283–323 K, (Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.88978 – 2604.31/(–46.068 + T/K), temp range 388–579 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
0.340 (calculated-solvatochromic parameters, Banerjee et al. 1990) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
2.28 (shake flask, Hansch & Leo 1979) 
2.26 (20°C, shake flask, Korenman & Polumestnaya, 1982) 
2.40 (calculated-UNIFAC activity coeff., Campbell & Luthy 1985) 
2.40 (shake flask-AS, pH 7.5, Martin-Villodre et al. 1986) 
2.34 (recommended, Sangster 1993) 
2.28 (recommended, Hansch et al. 1995) 
NH2 
© 2006 by Taylor & Francis Group, LLC

3292 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
1.77 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k = 1 . 104 M–1 s–1 for oxidation by RO2 radicals at 30°C in aquatic systems with 
t. = 0.8 d (Howard 1972; Hendry et al. 1974; quoted, Mill 1982); 
rate constant k < 2 . 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with t. > 100 
yr (Foote 1976; Mill 1979; quoted, Mill 1982); 
photooxidation t. = 0.30–2.90 h in air, based on estimated rate constant for the vapor-phase reaction with 
hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
aqueous photooxidation t. = 62–3480 h, based on estimated rate constants for reaction of representative 
aromatic amines with OH and RO2 radicals in aqueous solution (Guesten et al. 1981; Mill & Mabey 
1985; quoted, Howard et al. 1991); 
photooxidation t. = 0.05–0.14 h under sunlight and 0.20–10.0 h under UV light when adsorbed on silica 
and t. = 0.16–0.19 h under sunlight and t. = 0.22–10.8 h under UV light when adsorbed on alumina 
TLC plates under simulated atmospheric conditions (Hasegawa et al. 1993). 
Hydrolysis: 
Biodegradation: aqueous aerobic biodegradation t. = 672–4320 h, based on unacclimated aerobic screening test data 
(Fochtman & Eisenberg 1979; quoted, Howard et al. 1979) and unacclimated soil grab sample data (Medvedev 
& Davidov 1981; quoted, Howard et al. 1991); aqueous anaerobic biodegradation t. = 2880–17280 h, based on 
estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 0.30–2.90 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 62.0–3840 h, based on estimated rate constants for reactions of aromatic amines with OH 
and RO2 radicals in aqueous solutions (Guesten et al. 1981; Mill & Mabey 1985; quoted, Howard et al. 1991). 
Groundwater: t. = 1344–8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: 
Soil: t. = 672–4320 h, based on unacclimated aerobic screening test data (Fochtman & Eisenberg 1979; quoted, 
Howard et al. 1991) and unacclimated aerobic soil grab sample data (Medvedev & Davidov 1981; quoted, 
Howard et al. 1981). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3293 
16.1.3.17 2-Nitroaniline 
Common Name: 2-Nitroaniline 
Synonym: 1-amino-2-nitrobenzene, o-aminonitrobenzene, o-nitroaniline, 2-nitrophenylamine, 2-nitrobenzeneamine 
Chemical Name: 1-amino-2-nitrobenzene, o-nitroaniline, 2-nitroaniline 
CAS Registry No: 88-74-4 
Molecular Formula: C6H6N2O2, C6H4NH2NO2 
Molecular Weight: 138.124 
Melting Point (°C): 
71.0 (Lide 2003) 
Boiling Point (°C): 
284 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.442 (15°C, Weast 1982–83; Verschueren 1983; Dean 1985) 
Molar Volume (cm3/mol): 
138.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
16.11 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
46.86 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.354 (mp at 71.0°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicted): 
1212, 2423 (25, 40°C, synthetic method-shake flask-titration, Collet & Johnson 1926) 
1740 (calculated-KOW, Yalkowsky & Morozowich 1980) 
1260 (Verschueren 1983) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
log (P/mmHg) = 8.81842 – 3336.52/(T/K); measured range 150–215°C (isoteniscope, Berliner & May 1925) 
log (P/mmHg) = 9.55950 – 4037.7/(T/K); measured range 190–250°C (isoteniscope, Berliner & May 1925) 
0.620 (extrapolated-regression of tabulated data, temp range 104–284.5°C, Stull 1947) 
0.072 (Knudsen method, calculated-Antoine eq., Hoyer & Peperle 1958) 
log (P/mmHg) = 12.50 – 4701/(T/K), temp range 0–50°C (Knudsen effusion method, Hoyer & Peperle 1958) 
log (P/mmHg) = [–0.2185 . 15284.0/(T/K)] + 8.868383; temp range 104–284.5°C (Antoine eq., Weast 1972–73) 
< 13.3 (30°C, Verschueren 1983) 
0.650 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 8.8684 – 3336.5/(T/K); temp range 150–260°C (Antoine eq., Dean 1985, 1992) 
log (PS/kPa) = 11.625 – 4701/(T/K); temp range 273–323 K (Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 11.3629 – 7444.3/(240.83 + T/K); temp range 423–553 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = –112.5774 –1.5945 . 103/(T/K) + 54.577·log (T/K) –7.6775 . 10–2·(T/K) + 3.6152 . 10–5·(T/K)2; 
temp range 345–558 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
1.44 (shake flask-UV, Fujita et al. 1964) 
1.83 (shake flask-UV, Hansch & Anderson 1967) 
1.62 (HPLC-RT correlation, Carlson et al. 1975) 
1.81 (Hansch & Leo 1979) 
NH2 
NO2 
© 2006 by Taylor & Francis Group, LLC

3294 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
1.72 (shake flask, Eadsforth & Moser 1983) 
1.67 (calculated-HPLC-k. correlation, Deneer et al. 1987) 
1.50 (calculated-linear extrapolation exptl. log k at various solvent compositions, Deneer et al. 1987) 
1.93, 1.73 (25°C, 60°C, shake flask-UV, Kramer & Henze 1990) 
1.85 (recommended, Sangster 1993) 
1.80 ± 0.14, 1.35 ± 0.51 (solvent generated liquid-liquid chromatography SGLLC-correlation, RP-HPLC-k. 
correlation, Cichna et al. 1995) 
1.85 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
0.91; 1.49, 0.55, 0.83 (quoted exptl.; calculated values-KOW, Bintein et al. 1993) 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Surface water: estimated t. = 1.4 d in Rhine River in case of a first order reduction process (Zoeteman et al. 1980) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3295 
16.1.3.18 4-Nitroaniline 
Common Name: 4-Nitroaniline 
Synonym: 1-amino-4-nitrobenzene, p-aminonitrobenzene, p-nitroaniline, 4-nitrobenzenamine, 4-nitrophenylamine 
Chemical Name: 1-amino-4-nitrobenzene, p-nitroaniline, 4-nitroaniline 
CAS Registry No: 100-01-6 
Molecular Formula: C6H6N2O2, C6H4NH2NO2 
Molecular Weight: 138.124 
Melting Point (°C): 
147.5 (Lide 2003) 
Boiling Point (°C): 
332 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.424 (Weast 1982–83; Verschueren 1983) 
1.4370 (14°C, Dean 1985) 
Molar Volume (cm3/mol): 
138.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
21.09 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
50.21 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0628 (mp at 147.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
568, 1157 (25, 40°C, synthetic method-shake flask-titration, Collet & Johnson 1926) 
728 (30°C, shake flask-interferometry, Gross et al. 1931) 
603 (calculated-KOW, Yalkowsky & Morozowich 1980) 
380 (20°C, shake flask-membrane filter-fluorophotometry, Hashimoto et al. 1982) 
390, 400 (20°C, shake flask-glass fiber filters-fluorophotometry, Hashimoto et al. 1982) 
800; 22000 (19°C, 100°C, Verschueren 1983) 
800 (Dean 1985) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
log (P/mmHg) = 9.55950 – 4037.7/(T/K); measured range 190–250°C (isoteniscope, Berliner & May 1925) 
0.035 (extrapolated-regression of tabulated data, temp range 142.4–336°C, Stull 1947) 
log (P/mmHg) = 13.69 – 5707/(T/K), temp range 30–90°C, (Knudsen effusion method, Hoyer & Peperle 1958) 
log (P/mmHg) = [–0.2185 . 17220.2/(T/K)] + 9.041879; temp range 142.4–336°C (Antoine eq., Weast 1972–73) 
0.200, 0.933 (20°C, 30°C, Verschueren 1983) 
0.014 (extrapolated-Antoine eq., Dean 1985) 
log (P/mmHg) = 9.5595 – 4039.73/(T/K); temp range 190–260°C (Antoine eq., Dean 1985, 1992) 
log (PS/kPa) = 11.1109 – 5093/(T/K); temp range 346–366 K (solid, Antoine eq.-I, Stephenson & Malanowski 
1987) 
log (PL/kPa) = 8.7988 – 4071.3/(T/K); temp range 473–538 K (liquid, Antoine eq.-II., Stephenson & Malanowski 
1987) 
log (P/mmHg) = 56.1642 – 5.3655 . 103/(T/K) –17.958·log (T/K) + 9.092 . 10–3·(T/K) + 7.0305 . 10–10·(T/K)2; 
temp range 421–609 K (vapor pressure eq., Yaws 1994) 
NH2 
NO2 
© 2006 by Taylor & Francis Group, LLC

3296 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
1.39 (shake flask-UV, Fujita et al. 1964; Hansch & Leo 1979) 
0.59 (calculated-activity coeff. . from UNIFAC, Campbell & Luthy 1985) 
1.16 (HPLC-k. correlation, Deneer et al. 1987) 
1.10 (calculated-linear extrapolation exptl. values of log k at various solvent compositions, Deneer et al. 
1987) 
1.15 (HPLC-RT correlation, Wang et al. 1989) 
1.51, 1.36 (25°C, 60°C, shake flask-UV, Kramer & Henze 1990) 
1.30 (CPC-RV correlation, Tsai et al. 1991) 
1.30 (CPC-RV correlation, El Tayar et al. 1991) 
1.35 (recommended, Sangster 1993) 
1.39 ± 0.14, 0.75 ± 0.48 (solvent generated liquid-liquid chromatography SGLLC-correlation, RP-HPLC-k. correlation, 
Cichna et al. 1995) 
1.37 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
2.26; 2.66; 2.12 (Alfisol soil; Podzol soil; sediment, von Oepen et al. 1991) 
0.64; 1.25, –0.18, 0.41 (quoted exptl.; calculated values-KOW, Bintein et al. 1993) 
2.16, 2.22, 2.19 (RP-HPLC-k. correlation on 3 different stationary phases, Szabo et al. 1995) 
1.86, 1.84 (RP-HPLC-k. correlation including MCI related to non-dispersive intermolecular interactions, hydrogen-
bonding indicator variable, Hong et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Surface water: estimated t. = 2.3 d in Rhine River in case of a first order reduction process (Zoeteman et al. 1980) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3297 
16.1.4 NITROAROMATIC COMPOUNDS 
16.1.4.1 Nitrobenzene 
Common Name: Nitrobenzene 
Synonym: nitrobenzol, oil of mirbane 
Chemical Name: nitrobenzene 
CAS Registry No: 98-95-3 
Molecular Formula: C6H5NO2 
Molecular Weight: 123.110 
Melting Point (°C): 
5.7 (Stull 1947; Dreisbach 1955; Weast 1982–83; Howard 1989; Lide 2003) 
Boiling Point (°C): 
210.8 (Weast 1982–83; Lide 2003) 
Density (g/cm3 at 20°C): 
1.2032, 1.1982 (20°C, 25°C, Dreisbach 1955) 
1.2036 (20°C, Weast 1982–83) 
Molar Volume (cm3/mol): 
102.0 (calculated from density, Rohrschneider 1973; Chiou 1985) 
112.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
55.186, 43.421 (25°C, bp, Dreisbach 1961) 
55.013, 40.769 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
11.59 (Dreisbach 1955) 
12.13 (Tsonopoulos & Prausnitz 1971) 
11.63 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
43.51 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
1780, 2050 (15, 30°C, shake flask-interferometry, Gross et al. 1931) 
2060* (30°C, shake flask-interferometry and titration, measured range 0–60°C, Vermillion et al. 1941) 
1204 (shake flask-centrifuge, Booth & Everson 1948) 
1930 (Seidell 1941) 
2018 (shake flask-interferometry, Donahue & Bartell 1952) 
1950 (Deno & Berkheimer 1960) 
2259 (35°C, shake flask-UV spectrophotometry, Hine et al. 1963) 
2060 (Hansch et al. 1968) 
1900 (20°C, Verschueren 1977, 1983) 
2093 (shake flask-LSC, Banerjee et al. 1980) 
2090 (shake flask-radioactive analysis, Veith et al. 1980) 
2043 (20–27°C, shake flask-GC, Chiou 1985) 
1900 (20°C, Riddick et al. 1986; quoted, Howard 1989) 
1930* (20°C, shake flask-UV spectrophotometry, measured range 10–40°C, Benes & Dohnal 1999) 
NO2 
© 2006 by Taylor & Francis Group, LLC

3298 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
133.3* (53.1°C, static-manometer, measured range 53.1–208.3°C, Kahlbaum 1898) 
38.80 (saturated vapor density-gas saturation, Puck & Wise 1946) 
42.06* (extrapolated-regression of tabulated data, temp range 44.4–210.6°C, Stull 1947) 
10063* (134.1°C, ebulliometry, measured range 134.1–210.629°C, Brown 1952) 
37.86 (calculated by formula, Dreisbach 1955; quoted, Hine & Mookerjee 1975) 
log (P/mmHg) = 7.08283 – 1722.2/(199.0 + t/°C); temp range 108–300°C (Antoine eq. for liquid state, Dreisbach 1955) 
32.3* (23.14°C, gas saturation, measured range 6.09–23.14°C, Lynch & Wilke 1960) 
log (P/mmHg) = 7.545 – 2064/(t/°C + 230); temp range 6.09–23.14°C (gas saturation, Lynch & Wilke 1960) 
80.0 (35°C, gas saturation-gravitational or UV spectrophotometry, Hine et al. 1963) 
log (P/mmHg) = [–0.2185 . 12168.2/(T/K)] + 8.416268; temp range 44.4–210.6°C (Antoine eq., Weast 1972–73) 
34.60 (extrapolated-Antoine eq., Boublik et al. 1973) 
log (P/mmHg) = 7.11562 – 1746.585/(201.783 + t/°C), temp range 134–210.6°C (Antoine eq. from reported 
exptl. data, Boublik et al. 1973) 
20.00 (20°C, Verschueren 1977, 1983) 
28.37 (calculated-bp, Mackay et al. 1982) 
34.36 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.23424 – 1741.779/(201.257 + t/°C); temp range 134–210.6°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 

log (P/kPa) = 4.06596 – 323.457/(–58.276 + t/°C); temp range 239–291°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
34.63 (extrapolated-Antoine eq., Dean 1985; 1992) 
log (P/mmHg) = 6.91048 – 946.35/(246.68 + t/°C); temp range –87 to 7°C (Antoine eq., Dean 1985, 1992) 
37.0 (quoted lit., Riddick et al. 1986) 
log (P/kPa) = 6.670 – 2064.0/(230.0 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
37.65 (extrapolated-Antoine eq.-II, Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.22069 – 1732.222/(–72.886 + T/K); temp range 407–484 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.6699 – 2064/(–43.15 + T/K); temp range 279–296 K (Antoine eq.-II, Stephenson & Malanowski 1987) 
33.33 (Howard et al. 1986) 
log (P/mmHg) = –54.4937 –2.1123 . 103/(T/K) + 29.321·log (T/K) –4.4839 . 10–2·(T/K) + 2.0162 . 10–5·(T/K)2; 
temp range 279–719 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
2.367, 4.51, 4.723 (exptl., calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
1.327 (calculated-P/C, Mabey et al. 1982) 
2.472 (estimated, Lyman et al. 1982) 
5.06 (calculated-molecular structure, Russell et al. 1992) 
0.868 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
1.85 (shake flask-UV, Fujita et al. 1964; Hansch et al. 1968; Leo et al. 1969, 1971; Hansch & Leo 1979, 
1985;) 
1.74 (Neely et al. 1974) 
1.85, 1.84 (Hansch & Leo 1979) 
1.82 (HPLC-RT correlation, Veith et al. 1979a) 
1.83 (shake flask-LSC, Banerjee et al. 1980) 
1.98, 1.78 (HPLC-k. correlation, McDuffie 1981) 
1.85 (generator column-HPLC, Wasik et al. 1981; Tewari et al. 1982;) 
1.88 (shake flask-UV, Unger & Chiang 1981) 
1.99 (RP-HPLC-k. correlation, Miyake & Terada 1982) 
1.83, 1.84 (calculated-activity coeff. . from UNIFAC, octanol and water solubility considered; calculatedactivity 
coeff. . from UNIFAC, octanol and water solubility not considered, Arbuckle 1983) 
1.85, 1.88 (lit. values, Verschueren 1983) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3299 
1.83 ± 0.02 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
1.84 (calculated-activity coefficient . from UNIFAC, Campbell & Luthy 1985) 
1.87 (Lu et al. 1986) 
1.85 (RP-HPLC-k. correlation, Minick et al. 1988) 
1.89 (HPLC-k. correlation, Deneer et al. 1987) 
1.84 (calculated-activity coeff. . from UNIFAC, Banerjee & Howard 1988) 
1.70 (RP-HPLC-RT correlation, ODS column with masking agent, Bechalany et al. 1989) 
1.828 ± 0.001 (shake flask/slow-stirring-GC, De Bruijn et al. 1989) 
1.85 (recommended, Sangster 1989, 1993) 
1.836 ± 0.051; 1.828 ± 0.001 (average values, stir-flask method by BRE; by RITOX, Brooke et al. 1990) 
1.83, 1.85, 1.88 (CPC-retention volume correlation; Gluck & Martin 1990) 
1.94, 2.25 (25°C, 60°C, shake flask-UV, Kramer & Henze 1990) 
1.57 (shake flask-UV, Nakagawa et al. 1992) 
1.85 (shake flask-GC, Alcron et al. 1993) 
1.85 (recommended, Hansch et al. 1995) 
2.25, 2.12, 2.20, 2.23 (HPLC-k. correlation, different combinations of stationary and mobile phases under 
isocratic conditions, Makovskaya et al. 1995) 
1.88 (shake flask-dialysis tubing-HPLC/UV, both phases, Andersson & Schrader 1999) 
1.93 (microemulsion electrokinetic chromatography-retention factor correlation, Poole et al. 2000) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.18 (fathead minnows, Veith et al. 1979b) 
0.06 (calculated-KOW, Veith et al. 1980) 
< 1.0; 1.36 (golden orfe; green algae, Freitag et al. 1982) 
1.38; 1.42 (alga Chlorella fusca, wet wt. basis; calculated-KOW, Geyer et al. 1984) 
0.78 (P. reticulata, Canton et al. 1985; quoted, Howard 1989) 
< 1.0, 1.38, 1.60 (golden orfe, algae, activated sludge, Freitag et al. 1982) 
< 1.0, 1.30, 1.60 (golden ide, algae, activated sludge, Freitag et al. 1985) 
1.47 ± 0.12 (guppy-fat wt. basis, Deneer et al. 1987) 
Sorption Partition Coefficient, log KOC: 
1.94 (20°C, sorption isotherm-GC, converted from KOM multiplied by 1.724, Briggs 1981) 
2.30 (Lincoln fine sand, calculated exptl. value, Wilson et al. 1981) 
2.23, 2.57 (Danish subsoils, Loekke 1985) 
1.63, 1.84 (two Norwegian organic soils, Seip et al. 1986) 
1.70 (soil, quoted, Sabljic 1987) 
1.95 ± 0.84, 2.02 ± 1.18; 1.99 (Captina slit loam, McLaurin sandy loam; weighted mean, batch equilibriumsorption 
isotherm, Walton et al. 1992) 
1.43 (predicted-KOW, Walton et al. 1992) 
1.51 (calculated-KOW, Kollig 1993) 
2.20 (soil, calculated-QSAR MCI 1., Sabljic et al. 1995) 
2.05, 2.16, 2.15 (RP-HPLC-k. correlation on 3 different stationary phases, Szabo et al. 1995) 
1.99, 1.84 (RP-HPLC-k. correlation including MCI related to non-dispersive intermolecular interactions, 
hydrogen-bonding indicator variable, Hong et al. 1996) 
2.20; 2.28 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
2.51, 2.03, 2.26, 2.09, 1.90 (soil: calculated-KOW; HPLC-screening method using LC-columns of different 
stationary phases, Szabo et al. 1999) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t.(calc) . 200 h from water bodies (Mackay & Leinonen 1975; quoted, Callahan et al. 1979) 
t. = 45 d was estimated in a model river 1 m deep with a 1.0 m/s current and a 3 m/s wind (Lyman et al. 
1982; quoted, Howard 1989). 
© 2006 by Taylor & Francis Group, LLC

3300 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Photolysis: aqueous photolysis t. = 67–200 d, based on measured photolysis rate constant in distilled water 
under midday sun at 40°N latitude (Simmons & Zepp 1986; Howard 1989; Howard et al. 1991); 
atmospheric photolysis t. = 67–200 d, based on measured photolysis rate constant in distilled water under 
midday sun at 40°N latitude (Simmons & Zepp 1986; quoted, Howard 1989; Howard et al. 1991); 
rate constant k = 2.37 . 10–3 h–1 with H2O2 under photolysis at 25°C in F-113 solution and with HO- in the 
gas (Dilling et al. 1988). 
Hydrolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated *data at other temperatures see reference: 
photooxidation t. = 125 d to 22 yr in water, based on measured rate constant for reaction with hydroxyl 
radical in water (Dorfman & Adams 1973; Anbar & Neta 1967; quoted, Howard et al. 1991) 
k << 360 M–1 h–1 for singlet oxygen, k << 1.0 M–1 h–1 for peroxy radical at 25°C (Mabey et al. 1982) 
k = (0.09 ± 0.02) M–1 s–1 for 5–10 mM to react with ozone in water using 50–1000 mM of t-BuOH as 
scavenger at pH 2 and 20–23°C (Hoigne & Bader 1983) 
kOH(obs.) = 0.15 . 10–12 cm3 molecule–1 s–1 at 296 K (Becker et al. 1984; quoted, Carlier et al. 1986) 
kOH = 0.21 . 10–12 cm3 molecule–1 s–1 at room temp. (Zetzsch 1982) 
kOH(calc) = 0.30 . 10–12 cm3 molecule–1 s–1 and 0.27 . 10–12 cm3 molecule–1 s–1 at room temp. (Atkinson 
1985; Atkinson et al. 1985) 
kOH* = 0.137 . 10–12 cm3 molecule–1 s–1 at 299 K, measured range 259–362 K (flash photolysis-resonance 
fluorescence, Witte et al. 1986) 
kOH(calc) = 1.1 . 10–13 cm3 molecule–1 s–1, 1.7 . 10–13 cm3 molecule–1 s–1 (addition of OH for different 
positions of the electrophilic attack, Witte et al. 1986) 
kO3 < 7 . 10–21 cm3 molecule–1 s–1 at 296 ± 2 K (relative rate method, Atkinson et al. 1987) 
kOH = 1.3 . 10–13 cm3 molecule–1 s–1 with atmospheric lifetimes . = 180 d in clean troposphere and 90 d in 
moderately polluted atmosphere; kO3 < 7 . 10–21 cm3 molecule–1 s–1 with atmospheric lifetimes . > 6 yr 
in clean troposphere and . > 2 yr in moderately polluted atmosphere at room temp. (Atkinson et al. 1987) 
kOH(calc) = 2.5 . 10–13 cm3·molecule–1 s–1, kOH(obs.) = 1.4 . 10–13 cm3·molecule–1 s–1 (SAR structure-activity 
relationship, Atkinson 1987) 
kOH = (0.16 – < 0.90) . 10–12 cm3 molecule–1 s–1 at 296 K (review, Atkinson 1989) 
phototransformation decay rate constant of 0.17 min–1 on 0.20 g/L of TiO2, 8.8 min–1 on 0.20 g/L of ZnO 
and 3.1 min–1 on 1.0 g/L of Al2O3 (Minero et al. 1994) 
Abiotic Transformation: Degradation in reductive environment: 
k = 0.187 min–1 with solute concn of 50 µM in a 19 day-old 0.2g/L magnetite suspension at pH 7 and 
1.5 mM Fe(II) at 25°C (Klusen et al. 1995) 
k = (7.39 ± 1.28) . 10–2 M–1 s–1 in H2S with (mercapto)juglone (an abiotic reductant found in natural systems) 
solution at pH 6.65 (Wang & Arnold 2003) 
Biodegradation: 
decomposition by a soil microflora in more than 64 d (Alexander & Lustigman 1966; quoted, Verschueren 1983) 
t.(aq. anaerobic) = 48–300 h, based on anaerobic natural die-away test data for 2,4-dinitrotoluene (Spanggord 
et al. 1980; quoted, Howard et al. 1991) 
k = 14 mg COD g–1 h–1 average biodegradation rate for 98% removal (Scow 1982) 
t.(aq. aerobic) = 322–4728 h, based on aerobic soil column biodegradation study data (Kincannon & Lin 
1985; quoted, Howard et al. 1991) 
t.(aerobic) = 13 d, t.(anaerobic) = 2 d in natural waters (Capel & Larson 1995) 
Biotransformation: first-order rate constant of 0.7 d–1 corresponding to a half-life of 1 d in adopted activated 
sludge under aerobic conditions (Mills et al. 1982); rate constant for bacterial transformation of 3 . 10–9 
mL cell–1 h–1 in water (Mabey et al. 1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: atmospheric lifetimes: . = 180 d in clean troposphere and . = 90 d in moderately polluted atmosphere, based 
on gas-phase reaction with OH radical in atmosphere at room temp. and atmospheric lifetimes . > 6 yr in 
clean troposphere and . > 2 yr in moderately polluted atmosphere, based on gas-phase reaction with O3 
(estimated rate constant) in atmosphere at room temp. (Atkinson et al. 1987); 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3301 
photooxidation t. = 0.544 – 5.44 h, based on measured rate constant for reaction with hydroxyl radical in 
air (Atkinson et al. 1987; quoted, Howard 1989; Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be > 5 d (Kelly et al. 1994). 
Surface water: photooxidation t. = 125 d to 22 yr, based on measured rate constant for reaction with hydroxyl 
radical in water (Dorfman & Adams 1973; Anbar & Neta 1967; quoted, Howard et al. 1991); 
estimated t. = 0.3 – 3.0 d in rivers (Zoeteman et al. 1980); 
t. = 322 – 4728 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991) 
t.(aerobic) = 13 d, t.(anaerobic) = 2 d in natural waters (Capel & Larson 1995). 
Groundwater: estimated t. = 1.0 d in Rhine River in case of a first order reduction process (Zoeteman et al. 1980) 
t. = 48 – 9456 h, based on estimated unacclimated aqueous anaerobic biodegradation half-life for 2,4- 
dinitrotoluene and estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Sediment: 
Soil: estimated degradation t. = 625 d in activated sludge (Freitag et al. 1985; quoted, Anderson et al. 1991) 
t. = 322 – 4728 h, based on aerobic soil column biodegradation study data (Kincannon & Lin 1985; quoted, 
Howard et al. 1991); 
calculated t. = 9.1 d from first-order kinetic of degradation rate in sterilized soils (Anderson et al. 1991). 
Biota: 
TABLE 16.1.4.1.1 
Reported aqueous solubilities of nitrobenzene at various temperatures 
Gross et al. 1931 Vermillion et al. 1941 Benes & Dohnal 1999 
shake flask-interferometry interferometry shake flask-UV 
t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 
15 1780 0 1660 10 1770 
30 2050 6 1700 20 1930 
30 2060 30 2060 
60 3120 40 2200 
titration .Hsol/(kJ mol–1) =5.4 ± 0.2 
30 2060 at 25°C. 
50 2640 
FIGURE 16.1.4.1.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for nitrobenzene. 
Nitrobenzene: solubility vs. 1/T 
-9.0 
-8.5 
-8.0 
-7.5 
-7.0 
0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x 
nl 
Gross et al. 1931 
Vermillion et al. 1941 
Benes & Dohnal 1999 
© 2006 by Taylor & Francis Group, LLC

3302 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.4.1.2 
Reported vapor pressures of nitrobenzene at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Kahlbaum 1898* Stull 1947 Lynch & Wilke 1960 Brown 1952 
static-manometer summary of literature data gas saturation ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
53.1 133.3 44.4 133.3 6.09 8.799 134.1 10063 
59.8 266.6 71.6 666.6 12.57 14.80 139.75 13372 
64.9 400.0 84.9 1333 12.67 13.33 143.17 16084 
69.2 533.3 99.3 2666 14.67 16.93 149.73 18692 
72.9 666.6 115.4 5333 14.72 17.73 154.61 21866 
85.4 1333.2 125.8 7999 21.37 29.06 159.77 25704 
99.1 2666.4 139.9 13332 21.54 29.33 164.45 29641 
108.2 3999.7 161.2 26664 23.12 32.26 168.72 33649 
114.9 5332.9 185.8 53329 23.14 32.26 172.96 38002 
120.0 6666.1 210.6 101325 176.48 44455 
131.1 9999.2 bp/°C 210.8 182.07 49014 
139.9 13332 mp/°C 5.7 185.70 54019 
160.5 26664 eq. 2 P/mmHg 188.90 58839 
174.5 39997 A 7.545 196.63 65426 
184.5 53329 B 2064 200.41 71843 
192.5 66661 C 230 203.88 78997 
199.5 79993 206.62 86075 
205.0 93326 209.49 92023 
208.3 101325 210.626 101322 
210.629 101330 
*complete list see ref. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3303 
FIGURE 16.1.4.1.2 Logarithm of vapor pressure versus reciprocal temperature for nitrobenzene. 
Nitrobenzene: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 
1/(T/K) 
P( gol 
S 
) aP/ 
Kahlbaum 1898 
Brown 1952 
Lynch & Wilke 1960 
Stull 1947 
b.p. = 210.8 °C m.p. = 5.7 °C 
© 2006 by Taylor & Francis Group, LLC

3304 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.4.2 2-Nitrotoluene 
Common Name: 2-Nitrotoluene 
Synonym: 1-methyl-2-nitrobenzene, o-nitrotoluene, 2-methylnitrobenzene 
Chemical Name: 2-nitrotoluene, o-nitrotoluene 
CAS Registry No: 88-72-2 
Molecular Formula: C7H7NO2, CH3C6H4NO2 
Molecular Weight: 137.137 
Melting Point (°C): 
–10.4 (Lide 2003) 
Boiling Point (°C): 
222 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.15693, 1.15232 (20°C, 25°C, Dreisbach & Martin 1949) 
1.1629 (Weast 1982–83) 
Molar Volume (cm3/mol): 
117.9 (20°C, Stephenson & Malanowski 1987) 
153.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C. Additional data at other temperatures designated * are compiled at the end 
of this section): 
652 (30°C, shake flask-interferometer, Gross et al. 1933) 
656 (quoted, Deno & Berkheimer 1960) 
< 233 (shake flask-centrifuge, Booth & Everson 1948) 
324 (Hansch et al. 1968) 
656, 2076 (quoted, predicted-KOW, Valvani et al. 1981) 
652 (30°C, Verschueren 1983) 
656, 771 (quoted, calculated-fragment const., Wakita et al. 1986) 
641; 444 (quoted exptl.; calculated-group contribution method, Kuhne et al. 1995) 
609* (20°C, shake flask-UV spectrophotometry, measured range 10–40°C, Benes & Dohnal 1999) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
23.97* (extrapolated-regression of tabulated data, Kahlbaum 1898) 
27.69* (extrapolated-regression of tabulated data, temp range 50–222.3°C, Stull 1947) 
log (P/mmHg) = 7.49454 – 2086.1/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 
3640* (115.842°C, ebulliometry, measured range 115.842–174.744°C, Dreisbach & Shrader 1949) 
log (P/mmHg) = [–0.2185 . 12239.7/(T/K)] + 8.286642; temp range 50–222.3°C (Antoine eq., Weast 1972–73) 
13.33 (20°C, Verschueren 1983) 
1.670 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 5.01415 – 967.744/(99.208 + t/°C); temp range 129.31–222.2°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
1.440 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 5.851 – 946/(96 + t/°C), temp range 129–222°C (Antoine eq., Dean 1985, 1992) 
log (PL/kPa) = 6.32043 – 1827.66/(–71.63 + T/K); temp range 402–496 K (Antoine eq., Stephenson & 
Malanowski 1987)
NO2 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3305 
24.80* (ebulliometry, average from extrapolated-Antoine eq., Aim 1994) 
log (P/mmHg) = 7.8266 – 2.9906 . 103/(T/K) + 1.1064·log (T/K) – 4.9168 . 10–3·(T/K) + 2.2375 . 10–6·(T/K)2; 
temp range 270–720 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
5.811 (exptl., Hine & Mookerjee 1975) 
4.723, 4.616 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
Octanol/Water Partition Coefficient, log KOW: 
2.30 (Leo et al. 1971; Hansch & Leo 1985) 
2.30 (HPLC-k. correlation, Deneer et al. 1987) 
2.30 (unpublished data quoted from CLOGP Database and recommended, Sangster 1989) 
2.39, 2.43, 2.58 (CPC-RV correlation, Gluck & Martin 1990) 
2.46, 2.60; 2.30 (25°C, 60°C, shake flask-UV; quoted lit. value, Kramer & Henze 1990) 
2.13 (shake flask-UV, Nakagawa et al. 1992) 
2.30 (recommended, Sangster 1993) 
2.40 ± 0.15, 2.21 ± 0.53 (solvent generated liquid-liquid chromatography SGLLC-correlation, RP-HPLC-k. 
correlation, Cichna et al. 1995) 
2.30 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 2.0 (carprinus carpio, Sasaki 1978; Kawasaki 1980) 
1.52, 1.20 (calculated-KOW, S, Lyman et al. 1982; quoted, Howard 1989) 
2.28 ± 0.06 (guppy-fat basis, Deneer et al. 1987) 
Sorption Partition Coefficient, log KOC: 
2.63, 2.09 (soil, calculated-KOW, S, Lyman et al. 1982; quoted, Howard 1989) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 21 h using Henry’s law constant for a model river 1-m deep flowing 1 m/s with a 
wind speed of 3 m/s (Lyman et al. 1982; quoted, Howard 1989). 
Photolysis: 
Oxidation: rate constant k =3.0 . 10–11 cm3 molecules–1 s–1 for the reaction with 8 . 10–5 molecules/cm3 photochemically 
produced hydroxyl radical in air (GEMS 1986; quoted, Howard 1989); rate constant 
k = 7.0 . 10–11 cm3 molecule–1 s–1 for the gas-phase reactions with OH radical at 298 K (Atkinson 1989). 
Hydrolysis: 
Abiotic Transformation: Degradation in reductive environment: 
k = 0.141 min–1 with solute concn of 50 µM in a 19 day-old 0.2g/L magnetite suspension at pH 7 and 1.5 
mM Fe(II) at 25°C (Klusen et al. 1995) 
Biodegradation: average biodegradation rate of 32.5 mg COD g–1 h–1 for 98% removal (Scow 1982). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 8 h, based on a rate constant k = 3.0 . 10–11 cm3 molecules–1 s–1 for the reaction with 8 . 10–5 
molecules/cm3 photochemically produced hydroxyl radical in air (GEMS 1986; quoted, Howard 1989). 
Surface water: estimated t. = 3.2 d in Rhine River in case of a first order reduction process (Zoeteman et al. 1980) 
midday t.(calc) = 45 min in Aucilla River water due to indirect photolysis using an experimentally 
determined reaction rate constant k = 0.92 h–1 (Zepp et al. 1984; quoted, Howard 1989); 
estimated t. = 3.2 d for a river 4 to 5 m deep, based on monitoring data (Zoeteman et al. 1980; quoted, 
Howard 1989). 
Ground water: 
Sediment: 
Soil: 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3306 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.4.2.1 
Reported aqueous solubilities of 2-nitrotoluene at 
various temperatures 
Gross et al. 1931 Benes & Dohnal 1999 
shake flask-interferometry shake flask-UV 
t/°C S/g·m–3 t/°C S/g·m–3 
15 - 10 531 
30 652 20 609 
30 688 
40 773 
.Hsol/(kJ mol–1) = 9.4 ± 0.1 
25°C 
FIGURE 16.1.4.2.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2-nitrotoluene. 
TABLE 16.1.4.2.2 
Reported vapor pressures of 2-nitrotoluene at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Kahlbaum 1898 Stull 1947 Dreisbach & Shrader 1949 Aim 1994 
static method summary of literature data ebulliometry comparative ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
81.8 666.6 50.0 133.3 129.31 6287 115.842 3640 
94.8 1333.2 79.1 666.6 134.51 7605 115.847 3639 
109.6 2666.4 93.8 1333 138.75 8851 127.245 5773 
114.8 3333.1 109.6 2666 142.43 10114 127.268 5778 
2-Nitrotoluene: solubility vs. 1/T 
-10.0 
-9.5 
-9.0 
-8.5 
-8.0 
0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x nl 
Benes & Dohnal 1999 
Gross et al. 1931 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3307 
TABLE 16.1.4.2.2 (Continued) 
Kahlbaum 1898 Stull 1947 Dreisbach & Shrader 1949 Aim 1994 
static method summary of literature data ebulliometry comparative ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
119.2 3999.7 126.3 5333 156.61 16500 137.028 8376 
122.8 4666.3 137.6 7999 185.48 42077 137.052 8375 
126.1 5333 151.5 13332 205.48 67661 144.838 11104 
131.7 6666 173.7 26664 222.15 101325 151.379 13955 
150.6 13332 197.7 53329 151.415 13946 
172.4 26664 222.3 101325 bp/°C 222.15 157.004 16843 
186.1 39997 157.028 16827 
196.0 53329 mp/°C –4.1 162.792 20322 
204.2 66661 162.840 20311 
211.3 79993 168.856 24597 
217.5 93326 168.917 24587 
220.4 101325 174.744 29405 
mp/°C –2.90 
bp/°C 222.946 
eq. 3 P/kPa 
A 6.45342 
B 1906.532 
C 65.441 
for temp range: 115–175°C 
FIGURE 16.1.4.2.2 Logarithm of vapor pressure versus reciprocal temperature for 2-nitrotoluene. 
2-Nitrotoluene: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 
1/(T/K) 
P( gol 
S 
) aP/ 
Kahlbaum 1898 
Dreisbach & Shrader 1949 
Aim 1994 
Stull 1947 
b.p. = 222 °C m.p. = -10.4 °C 
© 2006 by Taylor & Francis Group, LLC

3308 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.4.3 4-Nitrotoluene 
Common Name: 4-Nitrotoluene 
Synonym: 1-methyl-4-nitrobenzene, p-nitrotoluene, 4-methylnitrobenzene 
Chemical Name: 4-nitrotoluene, p-nitrotoluene 
CAS Registry No: 99-99-0 
Molecular Formula: CH3C6H4NO2 
Molecular Weight: 137.137 
Melting Point (°C): 
51.63 (Lide 2003) 
Boiling Point (°C): 
238.3 (Stull 1947; Weast 1982–83; Dean 1985; Howard 1989) 
Density (g/cm3 at 20°C): 
1.16278, 1.15799 (20°C, 25°C, Dreisbach & Martin 1949) 
1.392 (Dean 1985) 
Molar Volume (cm3/mol): 
124.2 (75°C, Stephenson & Malanowski 1987) 
153.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
–11.27 (Perrin 1972) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
17.15 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
50.21 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.548 (mp at 51.63°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
442 (30°C, shake flask-interferometer, Gross et al. 1933) 
< 278 (shake flask-centrifuge, Booth & Everson 1948) 
302 (Tsonopoulos & Prausnitz 1971) 
442 (30°C, Verschueren 1983) 
288 (20°C, shake flask-UV spectrophotometry, Hashimoto et al. 1984) 
307 (calculated-group contribution method, Kuhne et al. 1995) 
242* (20°C, shake flask-UV spectrophotometry, measured range 10–40°C, Benes & Dohnal 1999) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
13.98* (extrapolated-regression of tabulated data, measured range 92–237°C, Kahlbaum 1898) 
log (P/mmHg) = –2630/(T/K) + 8.025 (isoteniscope method, temp range not specified, Kobe et al. 1941) 
22.81* (extrapolated-regression of tabulated data, temp range 53.7–238.2°C, Stull 1947) 
log (P/mmHg) = 7.52323 – 2150.6/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 
8851* (147.71°C, ebulliometry, measured range 147.71–233.25°C, Dreisbach & Shrader 1949) 
0.622* (23.886°C, Knudsen effusion, measured range 297.036–309.518 K, Lenchitz & Velicky 1970) 
log (P/mmHg) = 11.5424 – 4130.0708/(T/K); temp range 297–310 K (Knudsen effusion, Lenchitz & Velicky 
1970) 
log (P/mmHg) = [–0.2185 . 11915.0/(T/K)] + 7.965025; temp range 53.7–238.3°C (Antoine eq., Weast 1972–73) 
5.50* (ebulliometry, fitted to Antoine eq., measured range 144–239°C, Ambrose & Gundry 1980) 
9.50 (extrapolated-supercooled liq., Ambrose & Gundry 1980) 
NO2 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3309 
13.33 (20°C, Verschueren 1983; quoted, Howard 1989) 
8.347 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.11507 – 1716.897/(184.543 + t/°C); temp range 147.7–233.3°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
8.38 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 6.9948 – 1720.39/(184.9 + t/°C); temp range 148–233°C (Antoine eq., Dean l985, 1992) 
0.653 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PS/kPa) = 10.6673 – 4130.07/(T/K); temp range 296–310 K (solid, Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.40605 – 2889.12/(23.37 + T/K); temp range 423–512 K (liquid, Antoine eq.-II, Stephenson & 
Malanowski 1987) 
15.18* (ebulliometry, average of extrapolated-Antoine eq., Aim 1994) 
log (P/mmHg) = 9.9641 – 2.6549 . 103/(T/K) – 0.80182·log (T/K) + 5.3926 . 10–4·(T/K) – 4.109 . 10–14·(T/K)2; 
temp range 325–736 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
5.065 (calculated, Hine & Mookerjee 1975) 
Octanol/Water Partition Coefficient, log KOW: 
2.37 (shake flask-UV, Fujita et al. 1964) 
2.40 (unpublished result, Leo et al. 1971) 
2.34 (HPLC-k. correlation, Deneer et al. 1987) 
2.42 (recommended, Sangster 1989) 
2.10, 2.05 (25°C, 60°C, shake flask-UV, Kramer & Henze 1990) 
2.61 (shake flask-UV, Nakagawa et al. 1992) 
2.37 (recommended, Sangster 1993) 
2.37 ± 0.15 (solvent generated liquid-liquid chromatography SGLLC-correlation, Cichna et al. 1995) 
2.42 (recommended, Hansch et al. 1995) 
2.18 (microemulsion electrokinetic chromatography-retention factor correlation, Poole et al. 2000) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
< 2.0 (Carprinus carpio, Sasaki 1978; Kawasaki 1980) 
1.57, 1.30 (calculated-KOW, S, Lyman et al. 1982; quoted, Howard 1989) 
2.37 ± 0.05 (guppy-fat basis, Deneer et al. 1987) 
Sorption Partition Coefficient, log KOC: 
2.67, 2.18 (soil, calculated-KOW, S, Lyman et al. 1982; quoted, Howard 1989) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: based on Henry’s law constant an estimated t. = 25 h was obtained for a model river of 1- m 
deep with a current of 1 m/s and wind speed of 3 m/s (Lyman et al. 1982; quoted, Howard 1989). 
Photolysis: 
Oxidation: photooxidation t. = 8.0 h in air, based on measured rate constant k = 3 . 10–11 cm3 molecule–1 s–1 at 
25°C for the reaction with photochemically produced 8 . 105 molecules/cm3 hydroxyl radical (GEMS 1986; 
quoted, Howard 1989). 
Hydrolysis: 
Abiotic Transformation: Degradation in reductive environment: 
k = 0.101 min–1 with solute concn of 50 µM in a 19 d-old 0.2g/L magnetite suspension at pH 7 and 1.5 
mM Fe(II) at 25°C (Klusen et al. 1995) 
Biodegradation: average biodegradation rate of 32.5 mg COD g–1 h–1 for 98% removal (Scow 1982). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
© 2006 by Taylor & Francis Group, LLC

3310 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Half-Lives in the Environment: 
Air: photooxidation t. = 8.0 h, based on measured rate constant of 3 . 10–11 cm3 molecule–1 s–1 at 25°C for the 
reaction with photochemically produced 8 . 105 molecules/cm3 hydroxyl radical (GEMS 1986; quoted, 
Howard 1989). 
Surface water: estimated t. = 2.7 d in Rhine River in case of a first order reduction process (Zoeteman et al. 1980) 
estimated t. = 2.7 d, based on monitoring data for a river of 4 to 5-m deep (Zoeteman et al. 1980; quoted, 
Howard 1989). 
Groundwater: 
Sediment: 
Soil: 
Biota: 
TABLE 16.1.4.3.1 
Reported aqueous solubilities of 4-nitrotoluene at 
various temperatures 
Gross et al. 1931 Benes & Dohnal 1999 
shake flask-interferometry shake flask-UV 
t/°C S/g·m–3 t/°C S/g·m–3 
15 - 10 179 
30 442 20 242 
30 322 
40 418 
.Hsol/(kJ mol–1) = 21.1 ± 0.1 
25°C 
FIGURE 16.1.4.3.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 4-nitrotoluene. 
4-Nitrotoluene: solubility vs. 1/T 
-11.0 
-10.5 
-10.0 
-9.5 
-9.0 
0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x 
nl 
Benes & Dohnal 1999 
Gross et al. 1931 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3311 
TABLE 16.1.4.3.2 
Reported vapor pressures of 4-nitrotoluene at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
1. 
Kahlbaum 1898 Stull 1947 Dreisbach & Shrader 1949 Lenchitz & Velicky 1970 
static method-manometer summary of literature data ebulliometry Knudsen effusion 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
92.3 666.6 53.7 133.3 147.71 8851 23.886 0.6218 
105.6 1333.2 85.0 666.6 151.43 10114 23.888 0.6283 
120.3 2666.4 100.5 1333 165.98 16500 26.042 0.7311 
125.7 3333 117.7 2666 197.75 42077 26.06 0.7330 
130.4 3999.7 136.0 5333 216.17 67661 28.029 0.9426 
134.4 4666 147.9 7999 233.25 101325 28.065 0.8994 
137.9 5333 163.0 13332 30.205 1.0348 
143.8 6666 186.7 26664 bp/°C 233.25 30.207 1.0423 
164.0 13332 212.5 53329 32.012 1.3291 
186.5 26664 238.3 101325 32.033 1.2987 
201.2 39997 34.16 1.6681 
212.2 53329 mp/°C 51.9 34.165 1.6551 
220.8 66661 35.348 2.3313 
228.4 79993 35.358 2.2839 
234.8 93326 36.368 2.3087 
237.7 101325 
mp/°C 51.5 
enthalpy of sublimation: 
.Hsub = 43.095 kJ mol–1 
at 25°C 
eq. 1 P/mmHg 
A 11.5424 
B 4130.0828 
2. 
Ambrose & Gundry 1980 Aim 1994 
bubble-cap ebulliometer comparative ebulliometry 
t/°C P/Pa t/°C P/Pa 
143.498 5649 128.161 3639 
148.11 7742 128.167 3639 
153.159 9254 140.078 5776 
158.081 10956 140.132 5787 
163.205 12999 150.293 8378 
168.438 15403 150.369 8400 
173.494 18066 158.455 11107 
180.103 22110 158.487 11118 
185.757 26135 165.32 13946 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3312 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.4.3.2 (Continued) 
Ambrose & Gundry 1980 Aim 1994 
bubble-cap ebulliometer comparative ebulliometry 
t/°C P/Pa t/°C P/Pa 
192.227 31460 165.32 13967 
198.564 37505 171.181 16823 
205.643 44864 171.225 16845 
212.568 54256 171.236 16848 
218.948 63659 177.246 20306 
225.722 75033 177.30 20332 
233.058 89121 183.698 24639 
238.685 101268 
239.269 102565 mp/°C 51.5 
bp/°C 238.343 
tp/°C 51.64 
bp/°C 238.675 eq. 2 P/kPa 
.Hfus = 16.81 kJ mol–1 A 6.36793 
.HV = 46.60 kJ mol–1, at bp B 1931.718 
C 68.661 
eq. 3 P/kPa for temp range: 128–184°C 
A 6.27217 
B 1682,295 
C –75.321 
for temp range: 416 to 513 K 
vapor pressure eq. for solid: 
eq. 1 P/kPa 
A 32.2514 
B 9018.0 
at triple pt P = 67.72 Pa 
at 298.15 K P = 5.5Pa 
FIGURE 16.1.4.3.2 Logarithm of vapor pressure versus reciprocal temperature for 4-nitrotoluene. 
4-Nitrotoluene: vapor pressure vs. 1/T 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
experimental data 
Lenchitz & Velicky 1970 
Stull 1947 
b.p. = 238.3 °C m.p. = 51.63 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3313 
16.1.4.4 2,4-Dinitrotoluene (DNT) 
Common Name: 2,4-Dinitrotoluene 
Synonym: dinitrotoluol, 1-methyl-2,4-dinitrobenzene, DNT 
Chemical Name: 2,4-dinitrotoluene, 1-methyl-2,4-dinitrobenzene 
CAS Registry No: 121-14-2 
Molecular Formula: C7H6N2O4, CH3C6H3(NO2)2 
Molecular Weight: 182.134 
Melting Point (°C): 
70.5 (Lide 2003) 
Boiling Point (°C): 
300 dec. (Weast 1982–83; Lide 2003) 
Density (g/cm3 at 20°C): 
1.521 (15°C, Verschueren 1983) 
Molar Volume (cm3/mol): 
175.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
–13.53 (Perrin 1972) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
58.99 (Yalkowsky & Valvani 1980) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.358 (mp at 70.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional 
data at other temperatures designated * are compiled at the end of this section): 
270 (22°C, Verschueren 1977, 1983) 
300 (22°C, Dunlap 1981) 
276; 145 (quoted exptl.; calculated-group contribution method, Kuhne et al. 1995) 
199 (25.2°C, shake flask-HPLC/UV, Phelan & Barnett 2001) 
188* (22°C, shake flask-HPLC/UV, measured range 12.4–61.8°C, Phelan & Barnett 2001) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
0.133* (59°C, Knudsen effusion, measured range 59–69°C, Lenchitz & Velicky 1970) 
0.00321 (extrapolated-Antoine eq., Lenchitz & Velicky 1970) 
log (P/mmHg) = 12.6177 – 5139.058/(T/K); temp range 331.913–342.277 K (Knudsen effusion, Lenchitz & 
Velicky 1970) 
0.0177* (20°C, gas saturation-GC/ECD, measured range 277.5–344.15 K, Pella 1977) 
0.0290 (gas saturation-GC/ECD, interpolated-Antoine eq., measured range 277.5–344.15 K Pella 1977) 
log (P/mmHg) = (13.08 ± 0.19) – (4992 ± 59)/(T/K); temp range 277.5–344.15 K (gas saturation, Pella 1977) 
0.0147 (20°C, Spanggord et al. 1980) 
0.6800 (quoted, Mabey et al. 1982) 
log (P/kPa) = 5.06336 – 1216.523/(76.54 + t/°C); temp range 100–199°C (Antoine eq. from reported exptl. data, 
Boublik et al. 1984) 
0.0296, 0.0032 (extrapolated-Antoine eq.-I, eq.-II, Stephenson & Malanowski 1987) 
log (PS/kPa) = 12.27361 – 5009.432/(T/K); temp range 277–343 K (solid, Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PS/kPa) = 11.7426 – 5139.058/(T/K); temp range 331–342 K (solid, Antoine eq.-II, Stephenson & 
Malanowski 1987)
NO2 
NO2 
© 2006 by Taylor & Francis Group, LLC

3314 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (PL/kPa) = 7.1423 – 3039/(T/K); temp range 473–572 K (liquid, Antoine eq.-III, Stephenson & Malanowski 
1987) 
log (PL/kPa) = 6.04898 – 1956.095/(–108.183 + T/K); temp range 344–572 K (liquid, Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 5.798 – 1118/(61.8 + t/°C); temp range 200–299°C (Antoine eq., Dean 1992) 
log (P/mmHg) = 11.5966 – 3.0079 . 103/(T/K) –1.6468·log (T/K) + 1.5949 . 10–3·(T/K) – 1.8722 . 10–14·(T/K)2; 
temp range 343–814 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0160 (calculated-P/C, Smith et al. 1981) 
0.4560 (calculated-P/C, Mabey et al. 1982) 
0.0878 (Smith et al. 1983; quoted, Howard 1989) 
32.23 (quoted from WERL Treatability database, Ryan et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
1.98 (shake flask, Hansch & Leo 1985) 
2.04 (HPLC-k. correlation, Deneer et al. 1987) 
1.98 (recommended, Sangster 1993) 
1.98 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.59 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
1.11, 1.76 (daphnia magna, lumbriculus variegatus, Liu et al. 1983) 
> 3.30 (selanastrum capricornutum, Liu et al. 1983) 
1.89, 0.602 (bluegill sunfish in viscera, bluegill sunfish in muscle, Liu et al. 1983) 
2.31 ± 0.03 (guppy-fat basis, Deneer et al. 1987) 
Sorption Partition Coefficient, log KOC: 
1.65 (sediment-water, calculated-KOW, Mabey et al. 1982) 
1.68 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: half-life of approximately 100 d (Mills et al. 1982). 
Photolysis: direct photolysis rate constant k = 1.6 . 10–2 h–1 for summer at 40°N latitude in water (Mabey et al. 
1982); 
aqueous photolysis t. = 23–72 h, based on measured photolysis rates in water (Mill & Mabey 1985; 
Simmons & Zepp 1986; quoted, Howard et al. 1991); 
atmospheric transformation lifetime . ~ 1–5 d (Kelly et al. 1994). 
Hydrolysis: 
Oxidation: aqueous oxidation rate constants k << 360 M–1 h–1 for singlet oxygen and k = 144 M–1 h–1 for peroxy 
radical at 25°C (Mabey et al. 1982); 
photooxidation t. = 284 – 2840 h in air, based on estimated rate constant for the reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
photooxidation t. = 3–33 h, based on measured photooxidation rates in natural waters (Spanggord et al. 
1980; Simmons & Zepp 1986; quoted, Howard et al. 1991). 
Biodegradation: aqueous anaerobic t. = 48–240 h, based on anaerobic natural water die-away test data (Spanggord 
et al. 1980; quoted, Howard et al. 1991); aqueous aerobic t. = 672–4320 h, based on aerobic natural water 
die-away test data (Spanggord et al. 1981; quoted, Howard et al. 1991). 
Biotransformation: rate constant of 1 . 10–7 mL cell–1 h–1 for bacterial transformation in water (Mabey et al. 1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3315 
Half-Lives in the Environment: 
Air: photooxidation t. = 284–2840 h, based on estimated rate constant for the reaction with hydroxyl radical in 
air (Atkinson 1987; quoted, Howard et al. 1991); 
atmospheric transformation lifetime . ~ 1–5 d (Kelly et al. 1994). 
Surface water: photooxidation t. = 3–33 h, based on measured photooxidation rates in natural waters (Spanggord 
et al. 1980; Simmons & Zepp 1986; quoted, Howard et al. 1991); 
estimated t. = 1.7 d in Rhine River in case of a first order reduction process (Zoeteman et al. 1980) 
sunlight photolysis t. ~ 42 h in pure water but ranged from 3 h to 10 h in three natural waters (Mabey 
et al. 1982). 
Groundwater: t. = 48 – 8640 h, based on estimated unacclimated aqueous anaerobic and aerobic biodegradation 
half-life (Howard et al. 1991). 
Sediment: 
Soil: t. = 672 – 4320 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Biota: 
TABLE 16.1.4.4.1 
Reported aqueous solubilities and vapor pressures of 2,4-dinitrotoluene at various temperatures and the 
coefficients for the vapor pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Aqueous solubility Vapor pressure 
Phelan & Barnett 2001 Lenchitz & Velicky 1970 Pella 1977 
shake flask-HPLC/UV Knudsen effusion gas saturation-GC 
t/°C S/g·m–3 t/°C P/Pa t/°C P/Pa 
12.4 129 58.765 0.1731 4.0 0.00164 
22.0 188 59.927 0.2073 10.0 0.0038 
21.7 182 59.927 0.2138 20.0 0.0177 
32.0 269 60.883 0.2328 30.0 0.0453 
42.0 410 62.926 0.2568 40.0 0.171 
51.0 608 62.824 0.3192 50.0 0.695 
61.8 975 64.002 0.3450 60.0 1.663 
41.2 397 65.115 0.3836 71.0 5.295 
25.2 199 67.023 0.4380 
68.10 0.4952 mp/°C 69.75–70.95 
69.127 0.5202 
eq. 1 P/mmHg 
mp/°C 71.1 A 13.08 
B 4992 
enthalpy of sublimation: 
.Hsubl = 98.324 kJ mol–1 enthalpy of sublimation: 
(at 25°C) .Hsubl = 95.81 kJ mol–1 
eq. 1 P/mmHg 
A 12.6177 
B 5139.058 
© 2006 by Taylor & Francis Group, LLC

3316 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.4.4.1 Logarithm of vapor pressure versus reciprocal temperature for 2,4-dinitrotoluene. 
2,4-Dinitrotoluene: vapor pressure vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Lenchitz & Velicky 1970 
Pella 1977 
m.p. = 70.5 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3317 
16.1.4.5 2,6-Dinitrotoluene 
Common Name: 2,6-Dinitrotoluene 
Synonym: dinitrotoluol, 1-methyl-2,6-dinitrobenzene, 2-methyl-1,3-dinitrobenzene 
Chemical Name: 2,6-dinitrotoluene, 1-methyl-2,6-dinitrobenzene 
CAS Registry No: 606-20-2 
Molecular Formula: C7H6N2O4, CH3C6H3(NO2)2 
Molecular Weight: 182.134 
Melting Point (°C): 
66.0 (Weast 1982–83; Howard 1989; Lide 2003) 
Boiling Point (°C): 
285 (Verschueren 1977; Callahan et al. 1979; Howard 1989; Lide 2003) 
Density (g/cm3 at 20°C): 
1.2833 (111°C, Weast 1982–83; Dean 1985) 
Molar Volume (cm3/mol): 
141.9 (111°C, Stephenson & Malanowski 1987) 
175.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.396 (mp at 66.0°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated.): 
180 (20°C, estimated, Mabey et al. 1982) 
300 (selected, Mills et al. 1982) 
182; 155 (quoted exptl.; calculated-group contribution method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
2.40 (29°C, Mabey et al. 1982) 
0.0756* (gas saturation-GC/ECD, fitted to Antoine eq., temp range 277.5–323.15 K, Pella 1977) 
log (P/mmHg) = (13.99 ± 0.18) – (5139 ± 52)/(T/K), temp range 277.5–323.15 K (gas saturation, Pella 1977) 
0.0756 (Howard et al. 1986; quoted, Banerjee et al. 1990) 
0.0767 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PS/kPa) = 11.9436 – 4446.22/(–21.279 + T/K); temp range 277–323 K (solid, Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.329 – 2971/(T/K); temp range 423–523 K (liquid, Antoine eq.-II, Stephenson & Malanowski 
1987) 
log (PL/kPa) = 6.70024 – 2160.968/(–93.282 + T/K); temp range 330–533 K (liquid, Antoine eq.-III, 
Stephenson & Malanowski 1987) 
0.0756, 1.008 (quoted, calculated-solvatochromic parameters, Banerjee et al. 1990) 
log (P/mmHg) = 4.372 – 380/(–43.6 + t/°C); temp range 150–260°C (Antoine eq., Dean 1992) 
log (P/mmHg) = –14.5673 – 4.2746 . 103/(T/K) + 12.904·log (T/K) – 2.380 . 10–2·(T/K) + 9.4513 . 10–6·(T/K)2; 
temp range 339–770 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C) 
0.800 (calculated-P/C, Mabey et al. 1982) 
32.23 (quoted from WERL Treatability database, Ryan et al. 1988) 
0.022 (SOGC 1987; quoted, Howard 1989) 
NO2 O2N 
© 2006 by Taylor & Francis Group, LLC

3318 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
1.72 (shake flask, Hansch & Leo 1985) 
2.02 (HPLC-k. correlation, Deneer et al. 1987) 
2.02 (shake flask-HPLC, Leggett et al. 1992) 
2.07 (shake flask-UV, Nakagawa et al. 1992) 
2.06 (recommended, Sangster 1993) 
2.10 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
3.72 (algal biomass, Davis et al. 1981) 
1.71 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
1.08 (calculated-KOW, Lyman et al. 1982; quoted, Howard 1989) 
2.44 ± 0.04 (guppy-fat basis, Deneer et al. 1987) 
Sorption Partition Coefficient, log KOC: 
1.96 (sediment-water, calculated-KOW, Mabey et al. 1982) 
2.31 (soil, calculated-KOW, Lyman et al. 1982; quoted, Howard 1989) 
1.40 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. ~ 100 d (Mills et al. 1982). 
Photolysis: aqueous photolysis t. = 17–25 h, based on measured photolysis rates in water (Simmons & Zepp 
1986; Mill & Mabey 1985; quoted, Howard et al. 1991) 
89% was photo-transformed in 24 h and none left after 72 h from seawater solution under UV light (Nipper 
et al. 2004). 
Hydrolysis: 
Oxidation: aqueous oxidation rate constants k << 360 M–1 ± h 1 for singlet oxygen and k = 144 M–1 h–1 for peroxy 
radical at 25°C (Mabey et al. 1982); 
photooxidation t. = 2–17 h in water, based on measured photooxidation rates in natural waters (Simmons 
& Zepp 1986; quoted, Howard et al. 1991); 
photooxidation t. = 284–2840 h, based on estimated rate constant for the reaction with hydroxyl radical in 
air (Atkinson 1987; quoted, Howard et al. 1991). 
Biodegradation: aqueous anaerobic t. = 48–300 h, based on anaerobic natural water die-away test data for 
2,4-dinitrotoluene; aqueous aerobic t. = 672–4320 h, based on aerobic natural water die-away test data 
(Spanggord et al. 1981; quoted, Howard et al. 1991). 
Biotransformation: k = 1 . 10–10 mL cell–1 h–1 for bacterial transformation in water (Mabey et al. 1982) 
Biotransformation in marine sediments: all broken down in 28 d when incubated at 10°C, and in 7 d when 
incubated at 20°C in the sandy sediment; degraded by days 7 and 3 for incubation at 10 and 20°C, 
respectively, in fine-grained sediment (Nipper et al. 2004). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: estimated atmospheric t. = 8 h, based on the vapor phase reaction with hydroxyl radical in air (GEMS 
1985; quoted, Howard 1989); photooxidation t. = 284 – 2840 h, based on estimated rate constant for the 
reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: midday t. ~ 12 min in Aucilla river due to indirect photolysis using experimentally determined 
rate constant k = 3.6 h–1 (Zepp et al. 1984); 
photooxidation t. = 2 – 17 h in water, based on measured photooxidation rates in natural waters (Simmons 
& Zepp 1986; quoted, Howard et al. 1991) 
89% was photo-transformed in 24 h and none left after 72 h from seawater solution under UV light (Nipper 
et al. 2004). 
Ground water: t. = 48 – 8640 h, based on estimated unacclimated aqueous anaerobic biodegradation half-life 
2,4-dinitrotoluene and estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3319 
Sediment: degraded by days 28 and 7 for incubation at 10 and 20°C, respectively, in sandy marine sediment; 
degraded by days 7 and 3 for incubation at 10 and 20°C, respectively, in fine-grain sediment (Nipper et al. 
2004) 
Soil: t. = 672 – 4320 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
TABLE 16.1.4.5.1 
Reported vapor pressures of 2,6-dinitrotoluene at 
various temperatures 
Pella 1977 
gas saturation-GC 
t/°C P/Pa 
4.0 0.00342 
10.0 0.0107 
20.0 0.0383 
30.0 0.147 
40.0 0.483 
50.0 1.718 
mp/°C 57.25–57.75 
eq. 1 P/mmHg 
log P = A – B/(T/K) 
A 13.99 
B 5139 
enthalpy of sublimation: 
.Hsubl = 98.324 kJ mol–1 
FIGURE 16.1.4.5.1 Logarithm of vapor pressure versus reciprocal temperature for 2,6-dinitrotoluene. 
2,6-Dinitrotoluene: vapor pressure vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Pella 1977 
m.p. = 66 °C 
© 2006 by Taylor & Francis Group, LLC

3320 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.4.6 2,4,6-Trinitrotoluene (TNT) 
Common Name: 2,4,6-Trinitrotoluene 
Synonym: TNT 
Chemical Name: 2,4,6-trinitrotoluene 
CAS Registry No: 118-96-7 
Molecular Formula: C7H5N3O6, (NO2)3C6H2CH3 
Molecular Weight: 227.131 
Melting Point (°C): 
80.5 (Lide 2003) 
Boiling Point (°C): 
240 explodes (Weast 1982–83; Dean 1992; Lide 2003) 
Density (g/cm3): 
1.654 (20°C, Weast 1982–83; Dean 1992) 
Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
137.3 (20°C, calculated-density) 
187.1 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.285 (mp at 80.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional 
data at other temperatures designated * are compiled at the end of this section): 
120* (20°C, shake flask, measured range 0.30–99.5°C, Taylor & Rinkenbach 1923) 
85.8 (21°C, Hale et al. 1979) 
104* (20°C, temp range 10–30°C, Spanggord et al. 1983) 
200 (15°C, Verschueren 1983) 
100 (Dean 1992) 
101.5* (average value at pH < 9.1, shake flask-HPLC/UV, measured range 6–42°C, Ro et al. 1996) 
101.6, 100.5, 110.5 (pH 3.5, pH 6.8, pH 9.1, shake flask-HPLC/UV spectrophotometry, Ro et al. 1996) 
ln [S/(mg L–1)] = 16.12 – 3413/(T/K), temp range 6–42°C, (pH < 8, shake flask-HPLC/spec., Ro et al. 1996) 
115* (23.02°C, shake flask-HPLC/UV, measured range 13.6–61°C, Phelan & Barnett 2001) 
99.85* 97.7* 99.9* (20°C, pH 4.2, 5.7, 6.2, shake flask-HPLC/UV, measured range 2.3–38°C, Lynch et al. 2001) 
ln [S/(mg L–1)] = 16.981 – 3607.5/(T/K); temp range 2.3–38°C (composite solubility prediction correlation, shake 
flask-HPLC/UV measurements, Lynch et al. 2001) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
0.352* (53°C, Knudsen effusion, measured range 50–143°C, Edwards 1950) 
log (PS/cmHg) = 14.34 – 6180/(T/K); range 50–81°C (solid, Knudsen effusion, Edwards 1950) 
log (PL/cmHg) = 10.90 – 4960/(T/K); range 81–143°C (liquid, Knudsen effusion, Edwards 1950) 
0.0568* (54.756°C, Knudsen effusion, measured range 55–76°C, Lenchitz & Velicky 1970) 
log (P/mmHg) = 13.0776 – 5400.536/(T/K); temp range 55–76°C (Knudsen effusion, Lenchitz & Velicky 1970) 
0.00107* (gas saturation-GC/ECD, measured range 287.15–329.65 K, Pella 1977) 
log (P/mmHg) = (12.31 ± 0.34) – (5175 ± 105)/(T/K), temp range 287.15–329.65 K (gas saturation, Pella 1977) 
log (P/kPa) = 7.36331 – 3199.923/(248.004 + t/°C); temp range 230–250°C (liquid, Antoine eq. from reported 
exptl. data, Boublik et al. 1984) 
0.00078 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987) 
NO2 
NO2 
O2N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3321 
log (PS/kPa) = 13.596 – 5874.238/(T/K); temp range 293–353 K (solid, Antoine eq.-I, Stephenson & Malanowski 
1987) 
log (PS/kPa) = 12.2025 – 5400.536/(T/K); temp range 337–350 K (solid, Antoine eq-II., Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.40336 – 2191.85/(–121.43 + T/K); temp range 353–523 K (liquid, Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 7.67152 – 2669.4/(205.6 + t/°C); temp range 230–250°C (Antoine eq., Dean 1992) 
log (P/mmHg) = 6.3156 – 2.6756 . 103/(T/K) – 4.6215·log (T/K) + 6.1747 . 10–9·(T/K) – 2.3743 . 10–12·(T/K)2; 
temp range 354–518 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
1.60 (shake flask, Log P Database, Hansch & Leo 1987) 
1.8 (shake flask-HPLC, Leggett et al. 1992) 
1.73 (recommended, Sangster 1993) 
2.05 (estimated-SPARC, Elovitz & Weber 1999) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.09 (aquatic oligochaete Tubifex tubifex, Conder et al. 2004) 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 14 h in summer, t. = 22–84 h in winter in pure water and photolyzed very rapidly in natural 
waters (Mabey et al. 1983) 
photocatalytic degradation rates of TNT in a circular photocatalytic reactor using a UV lamp as a light source 
and TiO2 as a photocatalyst: 1) at different initial TNT concns: k = 0.0989 min–1 with t. = 7.07 min at initial 
concn of 10 mg/L; k = 0.0644 min–1 with t. = 10.76 min at initial concn of 20 mg/L; k = 0.0405 min–1 with 
t. = 17.11 min at initial concn of 30 mg/L; k = 0.0269 min–1 with t. = 25.77 min at initial concn of 50 
mg/L; and k = 0.0165 min–1 with t. = 42.01 min at initial concn of 100 mg/L. 2) at different pH: k = 0.0173 
min–1 with t. = 27.6 min at pH 3.0; k = 0.0422 min–1 with t. = 20.1 min at pH 7.0 and k = 0.0451 min–1 
with t. = 21.5 min at pH 11.0 (Son et al. 2004) 
Photooxidation: 
Hydrolysis: 
Biodegradation: 95% disappearance within 2 h under aerobic conditions, and complete loss within 10 min under 
anaerobic conditions in sediment-water systems (Elovitz & Weber 1999) 
Biotransformation: 100 % biotransformed when incubated at both 10 and 20°C in 7 d in fine-grain sediment; 
in sandy sediment although some picric acid could still be measured after 28 d of incubation at 10°C, none 
left after 56 d of incubation at 20°C (Nipper 2004) 
Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 
Half-Lives in the Environment: 
Air: 
Surface water: photolysis t. = 14 h in summer, t. = 22–84 h in water in pure water, less than 1/2 h in some 
natural waters (Mabey et al. 1983) 
photocatalytic degradation t. = 7.07 min to 42.1 min for different initial concn of TNT from 10- 100 mg/L, and 
t. = 27.1 – 21.5 min at pH 3.0–7.0 in a circular reactor, using a UV lamp as a light source and TiO2 as a 
photocatalyst (Son et al. 2004) 
Ground water: 
Sediment: rapid disappearance 95% within 2 h, of TNT in an aerobic sediment-water system; under anaerobic 
conditions, TNT loss was complete within 10 min (Elovitz & Weber 1999) 
© 2006 by Taylor & Francis Group, LLC

3322 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
100 % biotransformed when incubated at both 10 and 20°C in 7 d in fine-grain sediment; in sandy sediment 
although some picric acid could still be measured after 28 d of incubation at 10°C, none left after 56 d 
of incubation at 20°C (Nipper 2004) 
Soil: 
Biota: steady-state concn reached within 1-h in uptake experiments, and TNT depuration after a 24-h exposure 
occurred completely by 3 h (aquatic oligochaete, Conder et al. 2004) 
TABLE 16.1.4.6.1 
Reported aqueous solubilities of 2,4,6-trinitrotoluene (TNT) at various temperatures 
ln S = A – B/(T/K) (1) 
1. 
Taylor & Rinkenbach ‘23 Spanggord et al. 1983 Ro et al. 1996 Phelan & Barnett 2001 
shake flask shake flask-HPLC/UV shake flask-HPLC/UV 
t/°C S/g·m–3 t/°C S/g·m–3 t/°C pH S/g·m–3 t/°C S/g·m–3 
average* 
0.30 110 10 67 6 3.7 52.5 13.9 86 
5.9 113 20 104 6 6.9 51.3 23.02 115 
20.0 120 30 165 12 6.9 64.0 33.3 191 
33.1 203 13 3.7 72.2 42.6 266 
44.2 340 13 6.9 64.4 51.8 427 
45.0 370 20 4.2 86.2 61.0 641 
53.0 534 20 7.3 88.5 33.2 191 
57.15 614 20 9.2 96.8 13.6 90 
73.25 963 20 9.4 95.7 13.6 92 
94.4 1375 20 10.1 91.2 
99.5 1467 21 3.5 74.5 
21 6.8 82.5 
average of 3 sets of data 21 9.1 88.2 
25 3.5 101.6 
25 6.8 100.5 
25 9 110.5 
42 4.0 204.9 
42 6.8 204.5 
42 9.3 167.6 
ln [S/(mg/L)] = 16.12 – 3413/(T/K) 
for pH < 8 
2. 
Lynch et al. 2001 
shake flask-HPLC/UV 
t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 
pH 4.2 pH 5.7 pH 6.2 
2.3 49.5 2.3 54.5 2.4 55.0 
2.3 50.5 2.2 54.2 2.4 56.4 
2.6 54.9 2.3 47.5 2.4 54.9 
2.6 55.7 2.3 47.3 2.4 55.4 
4.2 57.6 4.1 47.9 4.7 56.7 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3323 
TABLE 16.1.4.6.1 (Continued) 
Lynch et al. 2001 
shake flask-HPLC/UV 
t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 
4.2 57.7 4.1 48.2 4.7 57.4 
4.2 45.7 4.6 58.1 5.2 56.7 
4.2 48.4 4.6 59.1 5.2 56.1 
20 100.7 20 96.7 20 99.6 
20 99.0 20 98.7 20 100.2 
20 99.2 20.1 98.9 20.1 99.5 
20 101.7 20.1 100.6 20.1 96.3 
20.1 96.3 20.2 98.8 20.1 99.5 
20.1 95.9 20.2 99.8 20.1 99.8 
20.1 96.0 20.2 97.5 20.2 94.6 
20.1 97.8 20.2 100.4 20.2 97.2 
36 211.7 35.7 208.5 35.9 216.5 
36 213.1 35.7 213.5 35.9 213.9 
36 208.5 36 215.2 36 212.2 
36 211.6 36 214.3 36 215.3 
37.7 219.6 37.7 229.7 37.6 229.4 
37.7 219.4 37.7 230.6 37.6 231.4 
37.8 218.2 37.7 226.2 38 234.4 
37.8 214.8 37.7 228.3 38 235 
eq. 1 S/(mg L–1) eq. 1 S/(mg L–1) eq. 1 S/(mg L–1) 
A 22.741 A 22.399 A 23.244 
B 6332 B 6230 B 6506.8 
composite correlation eq. : ln [S/(mg L–1) = 16981 – 3607.5/(T/K); temp range 2.3–38°C 
FIGURE 16.1.4.6.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2,4,6-trinitrotoluene. 
2,4,6-Trinitrotoluene (TNT): solubility vs. 1/T 
-12.5 
-12.0 
-11.5 
-11.0 
-10.5 
-10.0 
-9.5 
0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x nl 
Taylor & Rinkenbach 1923 
Spanggord et al. 1983 
Phelan & Barnett 2001 
© 2006 by Taylor & Francis Group, LLC

3324 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.4.6.2 
Reported vapor pressures of 2,4,6-trinitrotoluene (2,4,6-TNT) at various temperatures and the coefficients 
for the vapor pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Edwards 1950 Lenchitz & Velicky 1970 Pella 1977 
Knudsen method Knudsen effusion gas saturation-GC 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
53.0 0.0352 54.756 0.0568 14.0 0.000302 
60.1 0.0724 59.704 0.0935 19.0 0.000412 
60.8 0.0843 64.853 0.1613 25.0 0.00107 
61.5 0.0915 70.02 0.3118 25.3 0.00128 
61.0 0.0829 72.469 0.3665 26.5 0.00170 
72.1 0.4146 72.493 0.3409 35.0 0.00676 
72.1 0.4186 75.065 0.5142 40.0 0.00887 
78.5 0.8586 65.91 0.1811 45.0 0.0143 
78.5 0.7839 68.933 0.2342 50.0 0.0243 
78.3 0.8293 73.981 0.4453 55.0 0.0446 
79.8 0.8733 76.057 0.5796 56.5 0.05406 
80.2 0.9546 
82.4 1.0612 mp/°C 81.1 mp/°C 80.15–81.25 
86.9 1.5865 
99.5 5.2529 enthalpy of sublimation: eq. 2 P/mmHg 
99.5 5.4262 .Hsubl = 120.92 kJ mol–1 A 12.31 
110.6 11.012 (at 25°C) B 5175 
110.5 10.612 
131.5 46.396 eq. 1 P/mmHg enthalpy of sublimation: 
141.4 82.793 A 13.0776 .Hsubl = 99.161 kJ mol–1 
142.0 87.728 B 5400.536 
142.5 82.260 
For solid: 
eq. 1 P/cmHg 
A 14.34 
B 6180 
.Hsubl = 118.41 kJ mol–1 
For liquid: 
eq. 1 P/cmHg 
A 10.90 
B 4960 
.Hsubl = 94.98.34 kJ mol–1 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3325 
FIGURE 16.1.4.6.2 Logarithm of vapor pressure versus reciprocal temperature for 2,4,6-trinitrotoluene. 
2,4,6-Trinitrotoluene: vapor pressure vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Edwards 1950 
Lenchitz & Velicky 1970 
Pella 1977 
b.p. =240 °C explodes b.p. = 80.5 °C 
© 2006 by Taylor & Francis Group, LLC

3326 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.4.7 1-Nitronaphthalene (.-Nitronaphthalene) 
Common Name: 1-Nitronaphthalene 
Synonym: .-nitronaphthalene 
Chemical Name: 1-nitronaphthalene, .-nitronaphthalene 
CAS Registry No: 86-57-7 
Molecular Formula: C10H7NO2 
Molecular Weight: 173.169 
Melting Point (°C): 
61 (Lide 2003) 
Boiling Point (°C): 
304.0 (Weast 1982–83; Dean 1985; Stephenson & Malanowski 1987) 
Density (g/cm3 at 20°C): 
1.3320 (Weast 1982–83) 
1.2230 (Dean 1985) 
Molar Volume (cm3/mol): 
176.1 (calculated-Le Bas method at normal boiling point) 
135.8 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
17.99 (Tsonopoulos & Prausnitz 1971) 
Entropy of Fusion, .Sfus (J/mol K): 
54.39 (Tsonopoulos & Prausnitz 1971) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.443 (mp at 61°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
50.0 (Aqueous Solubility Database, Yalkowsky et al. 1987) 
9.82 (generator column-HPLC/UV, Yu & Xu 1992) 
9.83 (calculated-molar concentration, Yu & Xu 1992) 
50; 34.6 (quoted exptl.; calculated-group contribution method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
0.202 (effusion method-fitted to Antoine eq., Radchenko & Kitiagorodskii 1974) 
0.202 (solid, extrapolated-Antoine eq.-I, Stephenson & Malanowski 1987) 
0.184 (liquid, extrapolated-Antoine eq.-III, Stephenson & Malanowski 1987) 
log (PS/kPa) = 8.31261 – 3579.698/(T/K); temp range 309–326 K (solid, Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PS/kPa) = 13.223 – 5584/(T/K); temp range 325–332 K (solid, Antoine eq.-II, Stephenson & Malanowski 
1987) 
log (PL/kPa) = 7.8959 – 3468.4/(T/K); temp range 332–580 K (liquid, Antoine eq.-III, Stephenson & Malanowski 
1987) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
3.463 (calculated-P/C with selected values) 
0.178 (gas stripping-GC, Altschuh et al. 1999) 
Octanol/Water Partition Coefficient, log KOW: 
3.19 (Hansch & Leo 1979) 
3.19 (shake flask, Hansch & Leo 1987) 
NO2 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3327 
3.19 (shake flask-UV, Debnath & Hansch 1992) 
3.19 (recommended, Sangster 1993) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: measured photolysis rate constant are: 15.9 . 10–4 s–1 in a 6400-L indoor all-Teflon chamber under 
blacklamp irradiation and 1.37 . 10–4 s–1 outdoor in a 1000-L all-Teflon chamber under natural solar 
irradiation (Atkinson et al. 1989); 
photolysis rate kphot = 1.5 . 10–4 s–1 with a half-life of 1.7 h (Arey et al. 1990) 
Hydrolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = (5.4 ± 1.8) . 10–12 cm3 molecule–1 s–1; kNO3 . 7.2 . 10–15 cm3 molecule–1 s–1, kO3 < 6.0 . 10–19 cm3 
molecule–1 s–1 and kN2O5 = 1.3 . 10–18 cm3 molecule–1 s–1 with N2O5 and at 298 ± 2 K in the atmosphere 
(Atkinson et al. 1989) 
kOH = 5.4 . 10–12 cm3 molecule–1 s–1 with calculated lifetime of 2.9 d; kNO3 . 7.2 . 10–15 cm3 molecule–1 s–1 
with calculated lifetime of –13 d, kO3 < 6.0 . 10–19 cm3 molecule–1 s–1 with a lifetime of > 28 d and 
kN2O5 = 1.3 . 10–18 cm3 molecule–1 s–1 with N2O5 a calculated lifetime of 2.4 yr at 298 ± 2 K in the 
atmosphere (Arey et al. 1990) 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: calculated lifetime of ~2 h based on measured outdoor photolysis rate and rate constants the gas-phase 
reactions (Atkinson et al. 1989); 
photolysis t. = 1.7 h using an average 12-h daytime NO2 photolysis rate k = 5.2 . 10–3 s–1 – a dominant 
atmospheric loss process; calculated lifetimes of 2.9 d, –13 d, > 28 d and 2.4 yr due to reactions with 
OH radial, NO3 radical, O3 and N2O5 (Arey et al. 1990) 
© 2006 by Taylor & Francis Group, LLC

3328 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.5 AMIDES AND UREAS 
16.1.5.1 Acetamide 
Common Name: Acetamide 
Synonym: ethanamide 
Chemical Name: acetamide, acetic acid amine 
CAS Registry No: 60-35-5 
Molecular Formula: C2H5NO, CH3CONH2 
Molecular Weight: 59.067 
Melting Point (°C): 
80.16 (Lide 2003) 
Boiling Point (°C): 
221 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9986 (78°C, Weast 1982–83) 
1.159 (Verschueren, 1983) 
Molar Volume (cm3/mol): 
59.2 (calculated-density, Stephenson & Malanowski 1987) 
66.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 7.62 
Enthalpy of Vaporization, .HV (kJ/mol): 
56.1 (at bp, Riddick et al. 1986) 
Enthalpy of Sublimation, .Hsubl (kJ/mol): 
78.66 (25°C, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
17.707 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.288 (mp at 80.16°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
975000 (20°C, Verschueren 1983) 
408000 (20°C, Riddick et al. 1986) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
8.61 (extrapolated-regression of tabulated data, temp range 65–222°C, Stull 1947) 
log (P/mmHg) = [–0.2185 . 14025.3/(T/K)] + 9.088352; temp range 65.0–222°C (Antoine eq., Weast 1972–73) 
100 (Riddick et al. 1986) 
log (P/kPa) = 8.24516 – 3282.80/(T/K); temp range 65–150°C (Antoine eq., Riddick et al. 1986) 
log (P/kPa) = 7.93409 – 2936.07/(T/K); temp range 65–bp (Antoine eq., Riddick et al. 1986) 
2.44 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PS/kPa) = 10.9717 – 4050.1/(T/K); temp range 298–349 K (solid, Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.97079 – 1998.3/(–89.32 + T/K); temp range 381–492 K (liquid, Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = –413.1683 + 8.1328 . 103/(T/K) + 172.9·log (T/K) – 0.16059·(T/K) + 5.3892 . 10–5·(T/K)2; 
temp range 354–761 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
3.53 . 10–4 (calculated-P/C with selected values) 
Octanol/Water Partition Coefficient, log KOW: 
–1.09 (shake flask-radiochemical method, Cornford 1982) 
O 
NH2 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3329 
–1.26 (shake flask, Log P Database, Hansch & Leo 1987) 
–1.26 (shake flask-GC, Sotomatsu et al. 1987) 
–1.26 (recommended Sangster 1989, 1993) 
–1.23 (calculated-QSAR, Kollig 1993) 
–1.26 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
–1.55 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: photooxidation t. = 3.2–32 h in air, based on estimated rate constant for the vapor-phase reaction 
with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Hydrolysis: overall rate constant kh = 5.5 . 10–12 s–1 with t. = 3950 yr; acid rate constant kA = 8.36 . 10–6 s–1 
and base rate constant kB = 5.5 . 10–5 s–1 at 25°C and pH 7 (Mabey & Mill 1978) 
acid rate constant k = 0.03 [M ± (H+) ± h]–1 at pH 5 and base rate constant k = 0.17 [M ± (OH–) ± h]–1 at 
pH 9 with first-order hydrolysis t. = 3950 yr at pH 7 and 25°C, (Mabey & Mill 1978; quoted, Howard 
et al. 1991). 
Biodegradation: aqueous aerobic biodegradation t. = 24–168 h, based on aerobic aqueous screening test data 
(Malaney & Gerhold 1962, 1969; Urano & Kato 1986; quoted, Howard et al. 1991); aqueous anaerobic 
biodegradation t. = 96–672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 3.2–32 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl 
radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 
Surface water: t. = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Groundwater: t. = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Sediment: 
Soil: t. = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3330 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.5.2 Acrylamide 
Common Name: Acrylamide 
Synonym: 2-propenamide 
Chemical Name: acrylamide 
CAS Registry No: 79-06-1 
Molecular Formula: C3H5NO, CH2=CHCONH2 
Molecular Weight: 71.078 
Melting Point (°C): 
84.5 (Lie 2003) 
Boiling Point (°C): 
192.5 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.122 (30°C, Dean 1985) 
Molar Volume (cm3/mol): 
80.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.261 (mp at 84.5°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
2050000 (quoted, Verschueren 1983) 
2150000 (30°C, Dean 1985) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
0.616 (average, extrapolated-Antoine eq.-I and II, Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.395 – 3213/(/K), temp range 357–413K (Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 10.31055 – 3994.667/(T/K), temp range 373–413 K (Antoine eq.-II, Stephenson & Malanowski 1987) 
log (P/mmHg) = 17.0034 – 4.4434 . 103/(T/K) –1.7158·log (T/K) + 2.0063 . 10–6·(T/K) – 8.0394 . 10–10·(T/K)2; 
temp range 358–477 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pam3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
–0.90 (shake flask, Fujisawa & Masuhara 1980, 1981) 
–1.24 (calculated-HPLC-RT correlation, Fujisawa & Masuhara 1981) 
–0.67 (shake flask, Log P Database, Hansch & Leo 1987) 
–0.78 (recommended, Sangster 1989) 
–0.67 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
–0.969 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Surface water: measured rate constant k = (1.0 ± 0.1) . 105 M–1 s–1 for direct reaction with ozone in water at pH 
5.4–5.8 and 22 ± 1°C, with t. = 0.3 s at pH 7 (Yao & Haag 1991). 
O 
NH2 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3331 
16.1.5.3 Benzamide 
Common Name: Benzamide 
Synonym: benzoylamide 
Chemical Name: benzamide 
CAS Registry No: 55-21-0 
Molecular Formula: C7H7NO, C6H5CONH2 
Molecular Weight: 121.137 
Melting Point (°C): 
127.3 (Lide 2003) 
Boiling Point (°C): 
290 (Lide 2003) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
112.2 (130°C, Stephenson & Malanowski 1987) 
132.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0992 (mp at 127.3°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
13500 (20–25°C, shake flask-gravimetric method, Dehn 1917) 
13499 (Tsonopoulos & Prausnitz 1971) 
13490 (Windholz 1983) 
13515 (1 g in 74 mL, Budavari 1989) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
0.00522 (extrapolated, Antoine eq., Stephenson & Malanowski 1987) 
log (PS/kPa) = 11.69847 – 5062.899/(T/K), temp range 325–342 K (solid, Antoine eq., Stephenson & Malanowski 
1987) 
Henry’s Law Constant (Pam3/mol at 25°C): 
4.52 . 10–5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
0.64 (shake flask-UV, Fujita et al. 1964) 
0.65 (shake flask, Leo et al. 1971; Hansch & Leo 1979; Hansch & Leo 1987) 
0.66 (shake flask-UV, Yaguzhinskii et al.1973) 
0.84 (HPLC-k. correlation, Hammers et al. 1982) 
0.64 (shake flask-UV, Sotomatsu et al. 1987) 
0.50 (centrifugal partition chromatography CPC, Berthod et al. 1988) 
0.81 (RP-HPLC-RT correlation, ODS column with masking agent, Bechalany et al. 1989) 
0.64 (recommended, Sangster 1989, 1993) 
0.65 (counter-current chromatography, Vallat et al. 1990) 
0.65 (CPC-RV correlation, El Tayar et al. 1991) 
0.64 (shake flask-GC, Alcorn et al. 1993) 
0.64 (recommended, Hansch et al. 1995) 
NH2 
O 
© 2006 by Taylor & Francis Group, LLC

3332 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
0.954; 1.301; 1.756 (sediment; Alfisol soil; Podzol soil, von Oepen et al. 1991) 
1.46 (soil, quoted exptl., Meylan et al. 1992) 
1.71 (soil, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
1.46 (soil, mean value, Kordel et al. 1993) 
1.46 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.46; 1.71 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
1.87, 2.17, 1.12, 1.36, 1.645 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1998) 
1.46, 1.22; 2.18, 1.75, 1.88, 1.83, 1.31 (soil: quoted lit., calculated-KOW; HPLC-screening method using LCcolumns 
of different stationary phases, Szabo et al. 1999) 
1.747, 1.358, 1.236 (second generation of European reference soil set, Eurosoils ES-1, ES-3, ES-5, shake 
flask/batch equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: aqueous photooxidation t. = 960–7.4 . 104 h, based on measured rates for reaction with OH radical 
in water (Anbar et al. 1966; Dorfman and Adams 1973; selected, Howard et al. 1991); 
photooxidation t. = 3.1 – 31 h in air, based on estimated rate constant for the vapor-phase reaction with 
hydroxyl radicals in air (Atkinson et al. 1987; selected, Howard et al. 1991). 
Hydrolysis: not expected to be significant based on estimated half-lives for hydrolysis of acetamide of 261, 3950, 
and 46 yr at pH 5,7,9, respectively, which were calculated using experimental acid and base hydrolysis rate 
constants for acetamide (Mabey & Mill 1978; selected, Howard et al. 1991). 
Biodegradation: aqueous aerobic biodegradation t. = 48 – 360 h, and aqueous anaerobic biodegradation 
t. = 192 – 1400 h, both based on grab sample aerobic soil column test data (Fournier & Salle 1974; selected, 
Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 3.1 – 31 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl 
radical in air (Atkinson et al. 1987; selected, Howard et al. 1991). 
Surface water: t. = 48 – 360 h, based on grab sample aerobic soil column test data (Fournier & Salle 1974; 
selected, Howard et al. 1991). 
Ground water: t. = 96 – 720 h, based on grab sample aerobic soil column test data (Fournier & Salle 1974; 
selected, Howard et al. 1991). 
Sediment: 
Soil: t. = 48 – 360 h, based on grab sample aerobic soil column test data (Fournier & Salle 1974; selected, 
Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3333 
16.1.5.4 Urea 
Common Name: Urea 
Synonym: carbamide, carbonyldiamide, Aquacare, Aqiadrate, Basodexam, Keratinamin, Nutraplus, Onychomal, 
Pastaron, Ureaphil, Ureophil, Ureapearl 
Chemical Name: urea, carbamide, carbonyldiamide 
CAS Registry No: 57-13-6 
Molecular Formula: CH4N2O, H2NCONH2 
Molecular Weight: 60.055 
Melting Point (°C): 
133 (Lide 2003) 
Boiling Point (°C): 
decompose (Weast 1982–83; Lide 2003) 
Density (g/cm3): 
1.323 (Weast 1982–83) 
Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
58.0 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol ± K), F: 0.0872 (mp at 133°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
975000* (shake flask, measured range 0–69.5°C, Speyers 1902) 
790000 (20–25°C, shake flask-gravimetric method, Dehn 1917) 
1047000* (20°C, shake flask, measured range 0–70°C, Pinck & Kelly 1925) 
53.97 wt %* (23.85°C, synthetic method, measured range 18.72–73.11°C, Shnidman & Sunier 1932) 
log x = – 609.8/(T/K) + 1.468; temp range 20–70°C (synthetic method, Shnidman & Sunier 1932) 
0.4388* (60°C, mole fraction solubility, synthetic method, measured range 60–100°C, Kakinuma 1941) 
997400 (W indholz 1983) 
1000000 (Dean 1985; Budavari 1989) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
1.61 . 10–3 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PS/kPa) = 9.565 – 4579/(T/K); temp range 345–368 K (solid, Antoine eq., Stephenson & Malanowski 1987) 
Henry’s Law Constant (Pam3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
–1.09 (Hansch & Leo 1979) 
–3.00 (Kenaga & Goring 1980) 
–1.21, –1.79 to –0.62 (shake flask method: mean, range of mean values, OECD 1981) 
–1.54 (shake flask-radiochemical method, Cornford 1982) 
–1.57 (HPLC-RT correlation, Harnish et al. 1983) 
–1.56 (shake flask, OECD 1981 Guidelines, Geyer et al. 1984) 
–1.66, –2.11 (shake flask, Log P Database, Hansch & Leo 1987) 
–1.60 (shake flask-UV, pH 7.4, Huang 1990) 
–2.11 (from Medchem software value, Chessells et al. 1992) 
–2.11 (recommended, Sangster 1993) 
–1.66 (Hansch et al. 1995) 
O 
H2N NH2 
© 2006 by Taylor & Francis Group, LLC

3334 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
4.068 (alga chlorella fusca, wet wt. basis, Geyer et al. 1984) 
–0.10 (alga chlorella fusca, calculated-KOW, Geyer et al. 1984) 
Sorption Partition Coefficient, log KOC: 
0.50, 0.62 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
0.90 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Half-Lives in the Environment: 
TABLE 16.1.5.4.1 
Reported aqueous solubilities of urea at various temperatures 
Speyers 1902 Shnidman & Sunier 1932 Kakinuma 1941 
re-calcd by Pinck & Kelly synthetic method-heating -shake flask synthetic method 
t/°C S/g·m–3 t/°C wt % x t/°C wt % x t/°C x 
urea 1# urea 2# 
0 674000 18.72 51.10 0.2387 21.59 52.80 0.2513 60 0.4388 
11.0 875000 26.80 55.37 0.2712 23.85 53.97 0.2602 65 0.4610 
19.8 975000 27.31 55.83 0.2740 30.38 57.51 0.2888 70 0.4903 
31.7 1310000 35.42 59.94 0.3099 35.15 59.97 0.3102 75 0.5204 
51.4 1930000 37.36 60.87 0.3183 41.11 62.95 0.3377 80 0.6617 
69.5 2530000 43.94 64.19 0.3489 43.85 64.31 0.3510 85 0.5843 
46.56 65.39 0.3618 54.97 69.53 0.4065 90 0.6190 
54.77 69.33 0.4041 55.88 70.10 0.4131 95 0.6542 
67.02 70.38 0.4163 69.13 71.49 0.4294 100 0.6910 
.Hsol/(kJ mol–1) 61.76 72.59 0.4428 63.79 73.64 0.4561 
25°C 73.11 77.57 0.5093 70.49 76.60 0.4956 log x = A –B/(T/K) 
A 1.5314 
mp/°C 132.7 mp/°C 132.6 B 631.86 
Pinck & Kelly 1925 mole fraction solubility expressed as: 
shake flask log x = – 609.8/(T/K) + 1.468; temp range 20–70°C 
t/°C S/g·m–3 
0 670000 
10.0 840000 
20.0 1047000 
30.0 1360000 
39.7 1654000 
50.0 2050000 
50.6 2064000 
60.0 2460000 
68.5 2950000 
70.0 3146000 
urea 1# – urea made by synthetic NH2 + CO2 process—re-crystallized from water 
urea 2# – urea made from calcium-cyanamid — re-crystallized from water and methanol 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3335 
FIGURE 16.1.5.4.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for urea. 
Urea: solubility vs. 1/T 
-2.5 
-2.0 
-1.5 
-1.0 
-0.5 
0.0 
0.5 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x nl 
Speyers 1902 
Pinck & Kelly 1925 
Shnidman & Sunier 1932 
Kakinuma 1941 
© 2006 by Taylor & Francis Group, LLC

3336 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.6 NITROSAMINES 
16.1.6.1 N-Nitrosodimethylamine 
Common Name: Dimethylnitrosoamine 
Synonym: N-nitrosodimethylamine, N-methyl-N-nitrosomethanamine, nitrous dimethylamine 
Chemical Name: dimethylnitrosoamine, N-nitrosodimethylamine 
CAS Registry No: 62-75-9 
Molecular Formula: C2H6N2O, CH3N(NO)CH3 
Molecular Weight: 74.081 
Melting Point (°C): 
Boiling Point (°C): 
152 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.005 (18°C, Verschueren 1983) 
Molar Volume (cm3/mol): 
73.7 (10°C, Stephenson & Malanowski 1987) 
87.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
< 1.0 (Kollig 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Mirvish et al. 1976) 
Vapor Pressure (Pa at 25°C and the reported temperature dependence equations): 
1080 (Mabey et al. 1982) 
730 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.10632 – 2159.476/(T/K), temp range 309–423 K (Antoine eq., Stephenson & Malanowski 1987) 
Henry’s Law Constant (Pam3/mol at 25°C): 
3.344 (calculated, Mabey et al. 1982) 
Octanol/Water Partition Coefficient, log KOW: 
0.06 (Radding et al. 1977) 
–0.57 (shake flask-UV, Singer et al. 1977) 
–0.68 (calculated-f const., Mabey et al. 1982) 
0.46 (30.5°C, shake flask-HPLC, Vera et al. 1992) 
0.76 (calculated, Kollig 1993) 
–0.57 (recommended, Sangster 1993) 
–0.57 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
–0.96 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
Sorption Partition Coefficient, log KOC: 
–1.00 (sediment-water, calculated-KOW, Mabey et al. 1982) 
0.448 (calculated-KOW, Kollig 1993) 
NO 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3337 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: both aqueous and atmospheric photolysis t. = 0.5–1.0 h, based on measured rate of photolysis in 
the vapor phase under sunlight (Hanst et al. 1977; quoted, Howard et al. 1991). 
Hydrolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
rate constants k < 3600 M–1 h–1 for singlet oxygen, and k < 3600 M–1 h–1 for peroxy radical at 25°C (Mabey 
et al. 1982); 
kOH = 3.0 . 10–12 cm3 molecule–1 s–1 and kO3 . 1 . 10–20 cm3 molecule–1 s–1 at 298 K (Tuazon et al. 1984); 
photooxidation t. = 25.4–254 h in air, based on measured rate constant for the reaction with OH radical in 
air (Howard et al. 1991); 
kOH = (2.53 – 3.6) . 10–12 cm3 molecule–1 s–1 for the gas-phase reactions with OH radical at 296–298 K 
(Atkinson 1989). 
Biodegradation: aqueous aerobic t. = 504–4320 h, based on aerobic soil die-away test data; and aqueous anaerobic 
t. = 2016–17280 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (derived from 
results of Tate & Alexander 1975; and Oliver et al. 1979; Howard et al. 1991). 
Biotransformation: rate constant for bacterial transformation k = 3 . 10–12 mL ± cell–1 ± h–1 in water (Mabey 
et al. 1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.5–1.0 h, based on measured rate of photolysis in the vapor phase under sunlight (Hanst et al. 1977; 
quoted, Howard et al. 1991); 
estimated photolysis t. ~ 5 min, t. = 3 d for reaction with OH radical and t. > 2 yr for reaction with O3 
(Tuazon et al. 1984); 
photooxidation t. = 25.4–254 h, based on measured rate constant for the reaction with OH radical in air 
(Atkinson 1985; quoted, Howard et al. 1991). 
Surface water: t. = 0.5–1.0 h, based on measured rate of photolysis in the vapor phase under sunlight (Hanst 
et al. 1977; quoted, Howard et al. 1991). 
Groundwater: t. = 1008–8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: 
Soil: degradation t. ~ 3 wk in 4 aerobic soils (shake flask-GC, Oliver et al. 1979) 
t. = 504–4320 h, based on aerobic soil die-away test data (derived from data of Tate & Alexander 1975 
and Oliver et al. 1979, Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3338 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.6.2 N-Nitrosodipropylamine 
Common Name: Di-n-Propylnitrosoamine 
Synonym: N-nitrosodi-n-propylamine, N-nitroso-N-propyl-1-propanamine 
Chemical Name: di-n-propylnitrosoamine, N-nitrosodi-n-propylamine 
CAS Registry No: 621-64-7 
Molecular Formula: C6H14N2O, CH3CH2CH2N(NO)CH2CH2CH3 
Molecular Weight: 130.187 
Melting Point (°C): 
Boiling Point (°C): 
206 (Lide 2003) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
176.5 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C): 
9900 (Mirvish et al. 1976) 
Vapor Pressure (Pa at 25°C): 
53.33 (37°C, calculated-Troutin’s rule, Mabey et al. 1982) 
Henry’s Law Constant (Pam3/mol at 25°C): 
0.638 (calculated-P/C, Mabey et al. 1982) 
0.355 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.31 (calculated as per Leo et al. 1971 from Mirvish et al. 1976 data, Callahan et al. 1979) 
1.36 (shake flask-UV, Singer et al. 1977) 
1.49 (calculated-f const., Mabey et al. 1982) 
2.35 (30.5°C, shake flask-HPLC, Vera et al. 1992) 
2.45 (recommended, Sangster 1993) 
1.35 (Kollig 1993) 
1.36 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
0.99 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
Sorption Partition Coefficient, log KOC: 
1.18 (sediment-water, calculated-KOW, Mabey et al. 1982) 
1.09 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: both aqueous and atmospheric photolysis t. = 0.17–1.0 h, based on measured rate of photolysis in 
the vapor phase under sunlight (Oliver 1981; quoted, Howard et al. 1991). 
Hydrolysis: 
NO 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3339 
Oxidation: rate constants in water for singlet oxygen k < 3600 M–1 h–1 and for peroxy radical k < 3600 M–1 h–1 
at 25°C (Mabey et al. 1982); 
photooxidation t. = 2.66–26.6 h in air, based on estimated rate constant for the reaction with hydroxyl 
radicals in air (Howard et al. 1991). 
Biodegradation: aqueous aerobic t. = 504–4320 h, based on aerobic soil die-away test data, and aqueous anaerobic 
t. = 2016–17280 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (derived rom 
results of Tate & Alexander 1975 and Oliver et al. 1979, Howard et al. 1991). 
Biotransformation: rate constant for bacterial biotransformation k ~ 3 . 10–12 mL ± cell–1 ± h–1 in water (Mabey 
et al. 1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 2.66–26.6 h, based on estimated rate constant for the reaction with hydroxyl radicals 
in air (Howard et al. 1991). 
Surface water: t. = 0.17–1.0 h, based on measured rate of photolysis in the vapor phase under sunlight (Oliver 
1981; quoted, Howard et al. 1991). 
Groundwater: t. = 1008–8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: 
Soil: degradation t. ~ 3 wk in 4 aerobic soils (shake flask-GC, Oliver et al. 1979) 
t. = 504 – 4320 h, based on aerobic soil die-away test data (derived from results of Tate & Alexander 1975 
and Oliver et al. 1979, Howard et al. 1991). 
Biota 
© 2006 by Taylor & Francis Group, LLC

3340 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.6.3 Diphenylnitrosoamine 
Common Name: Diphenylnitrosoamine 
Synonym: N-nitrosodiphenylamine, N-nitroso-N-phenylbenzamine 
Chemical Name: diphenylnitrosoamine, N-nitrosodiphenylamine 
CAS Registry No: 86-30-6 
Molecular Formula: C12H10N2O, C6H5N(NO)C6H5 
Molecular Weight: 198.219 
Melting Point (°C): 
66.5 (Weast 1982–83; Lide 2003) 
Boiling Point (°C): 
151–153 (Windholz 1976; Callahan et al. 1979) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
220.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.392 (mp at 66.5°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
35.1 (shake flask-LSC, Banerjee et al. 1980) 
40.0 (calculated-S, Mabey et al. 1982) 
Vapor Pressure (Pa at 25°C): 
13.33 (estimated, Mabey et al. 1982) 
Henry’s Law Constant (Pam3/mol at 25°C): 
66.87 (calculated-P/C, Mabey et al. 1982) 
Octanol/Water Partition Coefficient, log KOW: 
3.13 (shake flask-LSC, Banerjee et al. 1980;) 
3.13 (recommended, Sangster 1993) 
3.13 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.63 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 
2.34 (quoted, Isnard & Lambert 1988) 
Sorption Partition Coefficient, log KOC: 
2.81 (sediment-water, calculated-KOW, Mabey et al. 1982) 
2.84 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Hydrolysis: 
NO 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3341 
Oxidation: rate constants in water for singlet oxygen k < 3600 M–1 h–1 and for peroxy radical k < 3600 M–1 ± h–1 
at 25°C (Mabey et al. 1982); 
photooxidation t. = 0.70 – 7.0 h in air, based on measured rate constant for the reaction with hydroxyl 
radicals in air (Howard et al. 1991). 
Biodegradation: aqueous aerobic t. = 240 – 816 h, based on data from one soil-die-away test; a range was 
bracketed around the reported t. = 22 d (Mallik & Tesfai 1981; quoted, Howard et al. 1991); aqueous 
anaerobic t. = 960 – 3264 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Biotransformation: rate constant for bacterial transformation k = 1 . 10–10 mL ± cell–1 ± h–1 in water (Mabey 
et al. 1982). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: photooxidation t. = 0.70 – 7.0 h, based on estimated rate constant for the reaction with hydroxyl radicals 
in air (quoted, Howard et al. 1991). 
Surface water: t. = 240 – 816 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Groundwater: t. = 480 – 1632 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: 
Soil: t. = 240 – 816 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3342 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7 HETEROCYCLIC COMPOUNDS 
16.1.7.1 Pyrrole 
Common Name: Pyrrole 
Synonym: 1H-pyrrole 
Chemical Name: pyrrole, 1H-pyrrole 
CAS Registry No: 109-97-7 
Molecular Formula: C4H4NH 
Molecular Weight: 67.090 
Melting Point (°C): 
–23.39 (Lide 2003) 
Boiling Point (°C): 
129.79 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9691 (Weast 1982–83; Dean 1985) 
0.96985, 0.96565 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
69.2 (20°C, calculated-density, Stephenson & Malanowski 1987) 
78.2 (calculated-Le Bas method at normal boiling point 
Dissociation Constant, pKa: 
–4.40 (Perrin 1972) 
–3.80 (Riddick et al. 1986) 
–4.10 (Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
45.15, 38.75 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
7.908 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
47000 (Dean 1985) 
45000 (Riddick et al. 1986) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
358285* (176.67°C, static-Bourdon gauge, measured range 176.67–271.11°C, Kobe et al. 1956) 
1102* (ebulliometry, extrapolated-Antoine eq., measured range 65.67–166°C, Scott et al. 1967; Osborn & 
Douslin 1968) 
log (P/mmHg) = 7.30295 – 1507.015/(t/°C + 211.010); temp range 65.67–166°C (Antoine eq., ebulliometry, 
Scott et al. 1967) 
log [(P/atm) = [1 – 402.914 ± (T/K)] . 10^{0.870073 – 5.43768 . 10–4 ± (T/K) + 4.16086 . 10–7 ± (T/K)2}, 
temp range: 65.67–166°C (ebulliometric method, Cox eq., Scott et al. 1967) 
log (P/mmHg) = 7.30275 – 1506.877/(t/°C + 210.995), temp range 65.57–166°C (ebulliometric method, Antoine 
eq., Scott et al. 1967; Osborn & Douslin 1968) 
log [(P/atm) = [1 – 402.915 ± (T/K)] . 10^{0.872196 – 5.54923 . 10–4 ± (T/K) + 4.30369 . 10–7 ± (T/K)2}, 
temp range: 65.57–166°C (ebulliometric method, Cox eq., Osborn & Douslin 1968) 
8386* (60.3°C, isoteniscope method, measured range 60.3–100.3°C, Eon et al. 1971) 
1136 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 402.916/(T/K)] . 10^{0.880256 – 6.05913 . 10–4 ± (T/K) + 5.02726 . 10–7 ± (T/K)2}; temp 
range: 250.0–635.0 K (Cox eq., Chao et al. 1983) 
NH 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3343 
1100 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.42113 – 1502.586/(129.775 + t/°C); temp range 65.67–166°C (Antoine eq. from exptl. data of 
Scott et al. 1967, Boublik et al. 1984) 
1100 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.29470 – 1501.56/(210.42 + t/°C); temp range 66–166°C (Antoine eq., Dean l985, 1992) 
1100 (quoted lit., Riddick et al. 1986) 
log (P/kPa) = 6.42765 – 1506.877/(210.995 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
1103 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.42263 – 1504.171/(–62.39 + T/K); temp range 338–440 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 54.1597 – 4.2745 . 103/(T/K) –15.873·log (T/K) – 4.5171 . 10–10·(T/K) + 4.2338 . 10–6·(T/K)2; 
temp range 250–640 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
1.640 (calculated-P/C with selected values) 
Octanol/Water Partition Coefficient, log KOW at 25°C or as indicated 
0.75 (shake flask-AS, Hansch & Anderson 1967; Leo et al. 1971; Hansch & Leo 1979) 
0.62 (HPLC-RV correlation, Garst 1984) 
0.82 (23°C, shake flask-HPLC, De Voogt et al. 1988) 
0.80 (23°C, TLC-RT correlation, De Voogt et al. 1990) 
0.75 (recommended, Sangster 1989, 1993) 
0.75 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression 
see reference: 
kOH = (1.22 ± 0.04) . 10–10 cm3 molecule–1 s–1 at 295 K (relative rate method, Atkinson et al. 1984) 
kO3 = 1.6 . 10–17 cm3 ± molecule–1 s–1 with loss rate of 1.0 d–1, kOH = 1.2 . 10–10 cm3 molecule–1 s–1 with 
loss rate of 10 d–1 and kNO3 = 4.9 . 10–11 cm3 molecule–1 s–1 with loss rate of 1000 d–1 (review, Atkinson 
& Carter 1984) 
kO3 = 1.6 . 10–17 cm3 ± molecule–1 s–1 with loss rate of 1.0 d–1, kOH = 1.2 . 10–10 cm3 molecule–1 s–1 with 
loss rate of 5.2 d–1 and kNO3 = 4.9 . 10–11 cm3 molecule–1 s–1 with loss rate k = 1000 d–1 (review, Atkinson 
1985) 
kNO3 = (4.9 ± 1.1) . 10–11 cm3 molecule–1 s–1 at 295 ± 1 K (relative rate method, Atkinson et al. 1985) 
kO3 = 1.6 . 10–17 cm3 ± molecule–1 s–1 with calculated tropospheric lifetime . = 24 h, kOH = 1.2 . 10–10 cm3 
molecule–1 s–1 with .(calc) = 2.3 h during daylight hours, kNO3 = 4.9 . 10–11 cm3 molecule–1 s–1 with 
.(calc) = 1.4 min during nighttime hours at room temp. (Atkinson et al. 1985) 
kOH = 1.2 . 10–10 cm3 molecule–1 s–1 with a loss rate of 5.2 d–1 at room temp. (Atkinson 1985) 
kOH* = (1.03 ± 0.06) . 10–10 cm3 molecule–1 s–1 at 298 K, measured range 298–442 K (flash photolysisresonance 
fluorescence, Wallington et al. 1988) 
kOH* = 9.31 . 10–10 cm3 molecule–1 s–1 at 298 K, measured range 298–442 K (flash photolysis-resonance 
fluorescence, Atkinson 1989) 
kOH = 1.10 . 10–12 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1989) 
kOH(calc) = 287.45 . 10–12 cm3 molecule–1 s–1 (molecular orbital calculations, Klamt 1993) 
Hydrolysis: 
© 2006 by Taylor & Francis Group, LLC

3344 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: calculated lifetimes of 2.3 h, 1.4 min and 24 h due to gas-phase reactions with OH radical (concn of 
1 . 106 cm–3 during daylight hours), No3 radical (conc of 2.4 . 106 cm–3 during nighttime hours) and O3 
(clean tropospheric conc of 7.2 . 1011 molecule cm–3), respectively, at room temp. (Atkinson et al. 
1985) 
TABLE 16.1.7.1.1 
Reported vapor pressures of pyrrole at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Kobe et al. 1956 Scott et al. 1967 Eon et al. 1971 
static-Bourdon gauge ebulliometry isoteniscope/manometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
176.67 358285 65.671 9582 60.3 8386 
182.22 399626 68.522 10884 70.3 13025 
187.78 454747 71.374 12335 80.3 19732 
193.33 509867 77.098 15740 90.3 29198 
198.89 571878 79.970 17725 100.3 42263 
204.44 647669 82.847 19920 
210.00 730351 88.622 25007 .HV/(kJ mol–1) = 41.84 
215.56 806142 94.422 31160 
221.11 895713 100.244 38547 
226.67 992174 106.096 47359 
232.22 1081746 111.972 57803 
237.78 1185097 117.875 70109 
243.33 1309119 123.806 84525 
248.89 1440031 129.764 101325 
254.44 1564053 135.753 120798 
260.00 1715635 141.768 143268 
265.56 1867217 147.812 169052 
271.11 2032580 153.884 198530 
159.984 232087 
166.109 270110 
eq. 2 P/mmHg 
A 7.30295 
B 1507.015 
C 210.010 
bp/°C 129.764 
.HV/(kJ mol–1) = 45.10 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3345 
FIGURE 16.1.7.1.1 Logarithm of vapor pressure versus reciprocal temperature for pyrrole. 
Pyrrole: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 
1/(T/K) 
P( gol 
S 
) aP/ 
Kobe et al. 1956 
Scott et al. 1967 
Eon et al. 1971 
b.p. =129.79 °C 
© 2006 by Taylor & Francis Group, LLC

3346 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.2 Indole 
Common Name: Indole 
Synonym: benzo[b]pyrrole, 1-benzo[b]pyrrole, 1H-indole 
Chemical Name: indole 
CAS Registry No: 120-72-9 
Molecular Formula: C8H7N 
Molecular Weight: 117.149 
Melting Point (°C): 
52.5 (Weast 1982–83; Lide 2003) 
Boiling Point (°C): 
254.0 (Weast 1982–83; Stephenson & Malanowski 1987) 
253.6 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.2200 (Weast 1982–83) 
1.0643 (Dean 1985) 
Molar Volume (cm3/mol): 
133.4 (calculated-Le Bas method at boiling point) 
Dissociation Constant, pKa: 
–3.5, –3.62 (Perrin 1972) 
–3.17 (Sangster 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus J/mol K: 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.537 (mp at 52.5°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
3558 (shake flask-GC, Price 1976) 
1874 (Pearlman et al. 1984) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
2.24 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.369 – 1933.005/(254.707 + t/°C); temp range 193.3–254.7°C (Antoine eq., Boublik et al. 1984) 
1.565 (calculated-Antoine eq., Stephenson & Malanowski 1987) 
log (PS/kPa) = 10.3289 – 3916/(T/K); temp range 291–319 K, (solid, Antoine eq., Stephenson & Malanowski 
1987) 
log (P/mmHg) = 94.1625 – 6.9431 . 103/(T/K) – 30.613·log (T/K) + 9.928 . 10–3·(T/K) + 1.7461 . 10–13·(T/K)2; 
temp range 274–790 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pam3/mol at 25°C): 
0.14 (calculated-P/C with selected values) 
Octanol/Water Partition Coefficient, log KOW: 
1.14 ± 0.01 (shake flask-UV, Iwasa et al. 1965) 
2.14 (shake flask-UV, Hansch & Anderson 1967) 
2.25 (shake flask-UV at pH 7.4, Rogers & Cammarata 1969) 
2.00 (unpublished result, Leo et al. 1971) 
2.00, 2.25, 2.13 ( Hansch & Leo 1979) 
1.66 (RP-HPLC-RT correlation, Veith et al. 1979a) 
2.17 (RP-HPLC-RT correlation, Hanai & Hubert 1982) 
2.14 (inter-laboratory studies, shake flask average, Eadsforth & Moser 1983) 
NH 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3347 
1.92 (inter-laboratory studies, HPLC average, Eadsforth & Moser 1983) 
2.16 ± 0.03 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
1.81 (HPLC-k. correlation, Eadsforth 1986) 
2.16 (HPLC-RT correlation, Minick et al. 1988) 
2.14 (recommended, Sangster 1989; 1993) 
2.27 (23°C, shake flask-HPLC, De Voogt et al. 1988, 1990) 
2.07 (HPLC-RT correlation, De Voogt et al. 1990) 
2.19 (HPLC-RT correlation, Ritter et al. 1994) 
2.14 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants or Half-Lives: 
Half-Lives in the Environment: 
© 2006 by Taylor & Francis Group, LLC

3348 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.3 Pyridine 
Common Name: Pyridine 
Synonym: 
Chemical Name: pyridine 
CAS Registry No: 110-86-1 
Molecular Formula: C5H5N 
Molecular Weight: 79.101 
Melting Point (°C): 
–41.7 (Lide 2003) 
Boiling Point (°C): 
115.23 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9819 (Weast 1982–83) 
Molar Volume (cm3/mol): 
80.6 (calculated-density, Rohrschneider 1973) 
93.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
5.23 (pKa, Leo et al. 1971; Jori et al. 1983; Zachara et al. 1987) 
5.198, 5.21, 5.22, 5.229 (Perrin 1972) 
5.54 (UV, Yeh & Higuchi 1976) 
5.23, 5.16 (quoted, shake flask-TN, Clarke 1984) 
5.17 (pKBH 
+ , Dean 1985; Riddick et al. 1986) 
5.21 (pKa, Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
40.41, 36.39 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
7.414 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Andon & Cox 1952; Andon et al. 1954; Jori et al. 1983; Riddick et al. 1986) 
miscible (Dean 1985; Zachara et al. 1987; Stephenson 1993a) 
miscible (Yaws et al. 1990) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
2666* (24.8°C, summary of literature data, temp range –18.9 to 115.4°C, Stull 1947) 
2520 (interpolated-regression of tabulated data, Stull 1947) 
620, 2109 (0, 20°C, static method-tensimeter, Brown & Barbaras 1947) 
2775* (ebulliometry, measured range 47.3–115.5°C, extrapolated-Antoine eq., Herington & Martin 1953) 
log (P/mmHg) = 7.05811 – 1384.991/(216.296 + t/°C); temp range 47.3–115.5°C (Antoine eq., ebulliometric 
measurements, Herington & Martin 1953) 
2774* (gas saturation, measured range 20–40°C, Andon et al. 1954) 
461637* (176.67°C, static-Bourdon gauge, measured range 176.67–343.33°C, Kobe et al. 1956) 
19920* (67.299°C, comparative ebulliometry, measured range 67.299–152.886°C, McCullough et al. 1957) 
log (P/mmHg) = 7.04162 – 1374.103/(215.014 + t/°C); temp range 67.3–152.9°C (Antoine eq. ebulliometry, 
McCullough et al. 1957) 
2763* (ebulliometry, calculated-Antoine eq., Osborn & Douslin 1968) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3349 
log (P/mmHg) = 7.04144 – 1373.990/(t/°C + 215.001); temp range 67.3–152.9°C (ebulliometric method, Antoine 
eq., Osborn & Douslin 1968) 
log [(P/atm) = [1 – 399.384 ± (T/K)] . 10^{0.856586 – 6.60597 . 10–4 ± (T/K) + 5.93625 . 10–7 ± (T/K)2}, 
temp range: 67.3–152.9°C (ebulliometric method, Cox eq., Osborn & Douslin 1968) 
2789 (calculated-Antoine eq., Cabani et al. 1971) 
log (P/mmHg) = [–0.2185 . 9649.4/(T/K)] + 8.347670; temp range –18.9 to 115.4°C (Antoine eq., Weast 
1972–73) 
2767 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 388.399/(T/K)] . 10^{0.848882 – 6.09810 . 10–4 ± (T/K) + 5.15399 . 10–7 ± (T/K)2}; temp 
range: 235.0–620.0 K (Cox eq., Chao et al. 1983) 
2775, 2763 (extrapolated-Antoine equations, Boublik et al. 1984) 
log (P/kPa) = 6.18358 – 1385.39/(115.256 + t/°C); temp range 47.3–115.47°C (Antoine eq. from reported exptl. 
data of Herington & Martin 1953, Boublik et al. 1984) 
log (P/kPa) = 6.16609 – 1373.826/(115.235 + t/°C); temp range 67.3–152.9°C (Antoine eq. from reported exptl. 
data of McCullough et al. 1957, Boublik et al. 1984) 
2763 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.04115 – 1373.80/(214.98 + t/°C); temp range 67–153°C (Antoine eq., Dean l985, 1992) 
2773 (Howard et al. 1986; quoted, Banerjee et al. 1990) 
2700 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.18595 – 1386.683/(216.469 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
2770 (interpolated-Antoine eq. II, Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.17372 – 1379.953/(–57.436 + T/K); temp range 323–426 K (Antoine eq. I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.30308 – 1448.781/(–50.948 + T/K); temp range 296–353 K (Antoine eq. II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.16446 – 1373.263/(–58.18 + T/K); temp range 348–434 K (Antoine eq. III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.284 – 1455.584/(–48.272 + T/K); temp range 431–558 K (Antoine eq. IV, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.25663 – 2578.625/(115.604 + T/K); temp range 552–620 K (Antoine eq. V, Stephenson & 
Malanowski 1987) 
2773, 1653 (measured, calculated-solvatochromic parameters, Banerjee et al. 1990) 
2573* (24.82°C, ebulliometry, measured range 23.55–116.23°C, Lencka 1990) 
ln (P/kPa) = 14.1480 – 3132.3/[(T/K) – 59.179); temp range 295.7–388.4 K (ebulliometric measurements, 
Antoine eq., Lencka 1990) 
log (P/mmHg) = 33.5541 – 3.1318 . 103/(T/K) –8.8646·log (T/K) + 7.1293 . 10–12·(T/K) + 2.2813 . 10–6·(T/K)2; 
temp range 232–620 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.895 (volatility ratio-transpiration method, Andon et al. 1954) 
0.900 (exptl., Hine & Mookerjee 1975) 
0.595, 0.766 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
1.114 (modified gas-stripping, Hawthorne et al. 1985) 
1.120 (computed, Yaws et al. 1991) 
0.305 (calculated-molecular structure, Russell et al. 1992) 
27.78 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = –1.508 – 128/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
0.65 (shake flask-UV, Iwasa et al. 1965) 
0.64 (Gehring et al. 1967) 
0.65, 0.64 (Leo et al. 1971; Hansch & Leo 1979) 
0.66 (HPLC-RT correlation, Mirrlees et al. 1976) 
0.63 ± 0.02 (shake flask at pH 7, Unger et al. 1978) 
0.63 (shake flask-titration, Clarke 1984; Clarke & Cahoon 1987) 
© 2006 by Taylor & Francis Group, LLC

3350 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.63 ± 0.06 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
0.62 (shake flask-UV at pH 7.4, El Tayar et al. 1984) 
0.63 (shake flask-potentiometric titration, Clarke 1984) 
0.54 (calculated- activity coeff. . from UNIFAC, Campbell & Luthy 1985) 
1.28 (HPLC-k. correlation, Eadsforth 1986) 
0.79 (calculated-. from UNIFAC, Banerjee & Howard 1988) 
0.70 (shake flask-CPC, Berthod et al. 1988) 
0.63 (shake flask-HPLC at pH 7, De Voogt et al. 1988, 1990) 
0.65 (recommended, Sangster 1989, 1993) 
0.70 (RP-TLC-RT correlation, De Voogt et al. 1990) 
0.65 (shake flask-UV, Yamagami et al. 1990) 
0.60 (pH 7.2, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
–1.805 (estimated of Anvil Points subsurface materials, Zachara et al. 1987) 
–2.541 (estimated of Loring subsurface materials, Zachara et al. 1987) 
0.340 (calculated-KOW, Kollig 1993) 
Environmental Fate Rate Constants, k, Half-Lives, t. 
Volatilization: 
Photolysis: 
Oxidation: rate constant k; for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated *data at other temperatures see reference: 
photooxidation t. = 14.7–24.4 yr in water, based on measured rate data for the reaction with hydroxyl radical 
in aqueous solution (Dorfman & Adams 1973; selected, Howard et al. 1991) 
kOH = (4.9 ± 0.4) . 10–13 cm3 molecule–1 s–1 with atmospheric lifetimes of 46 d in clean troposphere and 
23 d in moderately polluted atmosphere; kO3 < 1.1 . 10–20 cm3 molecule–1 s–1 with atmospheric lifetimes 
of > 4 yr in clean troposphere and > 1.3 yr in moderately polluted atmosphere at room temp. (relative 
rate method, Atkinson et al. 1987) 
kOH = (0.494 - 0.256) . 10–12 cm3 molecule–1 s–1 at 296–297 K (review, Atkinson 1989) 
kOH(calc) = 0.45 . 10–12 cm3 molecule–1 s–1 at room temp. (molecular orbital calculations, Klamt 1993) 
Hydrolysis: 
Biodegradation: aqueous aerobic t. = 24–168 h, based on unacclimated grab sample of aerobic soil (Sims & 
Sommers 1985; quoted, Howard et al. 1991); aqueous anaerobic t. = 168–672 h, based on anaerobic 
acclimated screening test data (Naik et al. 1972; selected, Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: atmospheric lifetimes of 46 d in clean troposphere and 23 d in moderately polluted atmosphere, based on 
the gas-phase reaction with hydroxyl radical in air at room temp. and > 4 yr in clean troposphere and > 1.3 yr 
in moderately polluted atmosphere, based on the gas-phase reaction with O3 (calculated rate constant) in 
air at room temp. (Atkinson et al. 1987); 
photooxidation t. = 128–1284 h, based on measured rate data for the reaction with hydroxyl radical in air 
(selected, Howard et al. 1991). 
Surface water: photooxidation t. = 14.7–24.4 yr, based on measured rate data for the reaction with hydroxyl 
radical in aqueous solution (Dorfman & Adams 1973; selected, Howard et al. 1991); 
t. = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Groundwater: t. = 48–336 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Sediment: 
Soil: disappears in less than 7 d in soil suspensions (Sims & O’Loughlin 1989); 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3351 
t. = 24–168 h, based on unacclimated grab sample of aerobic soil (Sims & Sommers 1985; selected, Howard 
et al. 1991). 
Biota: 
TABLE 16.1.7.3.1 
Reported vapor pressures of pyridine at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
log P = A[1 – B/(T/K)] (5) where log A = a – b(T/K) + c(T/K)2 
1. 
Stull 1947 Herington & Martin 1953 Andon et al. 1954 Kobe et al. 1956 
summary of literature data ebulliometry gas saturation static-Bourdon gauge 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–18.9 133.3 47.327 8506 20 2109 176.67 461637 
2.50 666.6 52.71 10820 25 2774 182.22 502988 
13.2 1333 58.349 13806 40 6013 187.78 564988 
24.8 2666 68.403 20805 193.33 633889 
38.0 5333 75.77 27592 198.89 702790 
46.8 7999 82.43 35246 204.44 778581 
57.8 13332 82.728 35597 210.00 868153 
75.0 26664 88.459 43472 215.56 950834 
95.6 53329 92.749 50279 221.11 1047295 
115.4 101325 100.994 65759 226.67 1157537 
105.356 75351 232.22 1267778 
mp/°C –42 107.169 79679 237.78 1378020 
110.028 86860 243.33 1495152 
113.222 95488 248.89 1632954 
113.232 95536 254.44 1763866 
113.374 95905 260.00 1908558 
114.015 97713 265.56 2067030 
114.699 99692 271.11 2232392 
115.112 100914 276.67 2397755 
115.287 101402 282.22 2590678 
115.407 101758 287.78 2790491 
115.473 101977 293.33 2997194 
298.89 3183226 
bp/°C 115.256 304.44 3438160 
.HV/(kJ mol–1) = 36.39 310.00 3672423 
Antoine eq. 315.56 3941137 
eq. 2 P/mmHg 321.11 4216741 
A 7.05811 326.67 4478565 
B 1384.991 332.22 4774839 
C 216.296 337.78 5084894 
343.33 5429399 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3352 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.7.3.1 (Continued) 
2.
McCullough et al. 1957 Osborn & Douslin 1968 Lencka 1990 
comparative ebulliometry ebulliometry ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
67.299 19920 67.299 19920 23.55 2394 
75.154 25007 73.154 25007 24.82 2573 
79.045 31160 79.054 31160 27.0 2902 
84.847 38547 84.974 38547 29.26 3290 
90.946 47359 90.946 47359 31.63 3720 
96.958 57803 96.958 57803 35.86 4626 
103.008 70109 103.008 70109 41.0 6035 
109.101 84525 109.101 84525 48.51 8525 
115.234 101325 115.234 101325 54.17 10999 
121.408 120789 121.408 120798 60.65 14321 
127.622 143268 127.622 143268 69.25 20650 
133.878 169052 133.878 169053 76.97 27794 
140.174 198530 140.174 198517 83.45 35213 
146.509 232067 146.509 232088 88.70 42359 
152.886 270110 152.886 270111 91.76 47951 
96.68 55423 
mp/°C 115.23 Antoine eq 100.01 61720 
Antoine eq eq. 2 P/mmHg 102.18 66148 
eq. 2 P/mmHg A 7.04144 106.03 74603 
A 7.04162 B 1373.990 112.70 91299 
B 1374.103 C 215.001 116.23 101277 
C 215.014 
data also fitted to Cox eq. eq. 3 cP/kPa 
data also fitted to Cox eq. A 14.1480 
eq. 5 P/atm B 3132.30 
A C 59.719 
a 0.858631 
10–4b 6.7114 
10–7c 6.0722 
B 388.394 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3353 
FIGURE 16.1.7.3.1 Logarithm of vapor pressure versus reciprocal temperature for pyridine. 
Pyridine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0016 0.002 0.0024 0.0028 0.0032 0.0036 0.004 
1/(T/K) 
P( gol 
S 
) aP/ 
experimental data 
Stull 1947 
b.p. =115.23 °C 
© 2006 by Taylor & Francis Group, LLC

3354 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.4 2-Methylpyridine 
Common Name: 2-Methylpyridine 
Synonym: .-picoline, 2-picoline 
Chemical Name: 2-methylpyridine, .-picoline 
CAS Registry No: 109-06-8 
Molecular Formula: C5H4NCH3 
Molecular Weight: 93.127 
Melting Point (°C): 
–66.68 (Lide 2003) 
Boiling Point (°C): 
129.38 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9443 (Weast 1982–83) 
0.9444, 0.93981 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
98.6 (20°C, calculated-density) 
115.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
5.957, 6.06 (Perrin 1972) 
5.97 (pKa, 20°C, Weast 1982–83) 
6.00 (pKBH 
+ , Riddick et al. 1986; quoted, Howard 1990) 
Enthalpy of Vaporization, .HV (kJ/mol): 
42.919, 36.271 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
9.724 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Andon & Cox 1952) 
miscible (Riddick et al. 1986; Yaws et al. 1990) 
miscible (Stephenson 1993a) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
1370* (interpolated-regression of tabulated data, temp range –11.0 to 128.8°C, Stull 1947) 
308, 1140 (0, 20.3°C, static method-tensimeter, Brown & Barbaras 1947) 
1277 (manometry, calculated-Antoine eq., Hopke & Sears 1951) 
1496* (ebulliometry, extrapolated-Antoine eq., measured range 64.3–130°C, Herington & Martin 1953) 
log (P/mmHg) = 7.03450 – 1417.578/(211.874 + t/°C); temp range 64.3–130°C (ebulliometric measurements, 
Antoine eq., Herington & Martin 1953) 
1496 (calculated-Antoine eq., Andon et al. 1954) 
19920* (79.794°C, comparative ebulliometry, measured range 79.8–168°C. Scott et al. 1963a) 
log (P/mmHg) = 7.03202 – 1415.494/(t/°C + 211.589); temp range 79.8–168°C (ebulliometric measurements, 
Antoine eq., Scott et al. 1963a) 
1493 (ebulliometry, calculated-Antoine eq., Osborn & Douslin 1968) 
log (P/mmHg) = 7.03192 – 1415.424/(t/°C + 211.589); temp range 79.8–168°C (ebulliometric measurements, 
Antoine eq., Osborn & Douslin 1968) 
log [(P/atm) = [1 – 402.536 ± (T/K)] . 10^{0.866637 – 6.80114 . 10–4 ± (T/K) + 6.00534 . 10–7 ± (T/K)2}, 
temp range: 79.8–168°C (ebulliometric method, Cox eq., Osborn & Douslin 1968) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3355 
log (P/mmHg) = [–0.2185 . 9933.2/(T/K)] + 8.290910; temp range –11.0 to 128.8°C (Antoine eq., Weast 
1972–73) 
1500 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 402.320/(T/K)] . 10^{0.887914 – 7.70705 . 10–4 ± (T/K) + 6.85261 . 10–7 ± (T/K)2}; temp 
range: 215.0–620.0 K (Cox eq., Chao et al. 1983) 
1067 (20°C, Verschueren 1983) 
1494, 1498 (extrapolated-Antoine equations, Boublik et al. 1984) 
log (P/kPa) = 6.16509 – 1421.237/(212.286 + t/°C); temp range 64.363–130.04°C (Antoine eq. from reported 
exptl. data of Herington & Martin 1953, Boublik et al. 1984) 
log (P/kPa) = 6.15718 – 1415.663/(211.617 + t/°C); temp range 79.79–168.36°C (Antoine eq. from reported 
exptl. data of Scott et al. 1963, Boublik et al. 1984) 
1494 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.0324 – 1415.73/(211.63 + t/°C), temp range: 80–168°C (Antoine eq., Dean 1985, 1992) 
1333 (Riddick et al. 1986) 
log (P/kPa) = 6.15940 – 1417.578/(211.874 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
1386 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 5.2309 – 1164.1/(–71.0 + T/K); temp range 209–245 K (Antoine eq.-I, Stephenson & Malanowski 
1987) 
log (PL/kPa) = 6.1558 – 1415.29/(–61.521 + T/K); temp range 352–442 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.15522 – 1414.906/(–61.566 + T/K); temp range 352–442 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.32356 – 1546.248/(–44.271 + T/K), temp range: 429–537 K (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.32144 – 2667.496/(107.978 + T/K); temp range 521–621 K (Antoine eq.-V, Stephenson & 
Malanowski 1987) 
1500* (ebulliometry, interpolated-Antoine eq., measured range 295.7–388.4 K, Lencka 1990) 
ln (P/kPa) = 14.1560 – 3249.15/[(T/K) – 61.863); temp range 295.7–388.4 K (ebulliometric measurements, 
Antoine eq., Lencka 1990) 
log (P/mmHg) = 34.3728 – 3.2825 . 103/(T/K) –9.0927·log (T/K) – 3.6324 . 10–10·(T/K) + 2.1425 . 10–6·(T/K)2; 
temp range 206–621 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 
1.010 (measured volatility ratio-transpiration method, Andon et al. 1954) 
1.010 (exptl., Hine & Mookerjee 1975) 
0.821, 0.749 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
2.90 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 
30.22 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = –0.700 – 354/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
0.52 (HPLC-RT correlation, Schultz & Moulton 1985) 
1.11 (shake flask, Log P Database, Hansch & Leo 1987) 
1.11 (shake flask-UV, Yamagami et al. 1990) 
1.11 (recommended, Sangster 1989; 1993) 
1.11 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
0.602 (calculated-KOW, Lyman et al. 1982) 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
© 2006 by Taylor & Francis Group, LLC

3356 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Volatilization: using Henry’s law constant, t. = 88 h for a model river 1 m deep flowing at 1 m/s with a wind 
velocity of 3 m/s (estimated, Howard 1990). 
Photolysis: 
Oxidation: photooxidation t. = 11.2 d in air, based on the gas-phase reaction with photochemically produced 
hydroxyl radicals in air (Atkinson 1987; quoted, Howard 1990). 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 11.2 d, based on the gas-phase reaction with photochemically produced hydroxyl radicals in air (Atkinson 
1987; quoted, Howard 1990). 
Surface water: estimated t. = 1.0 d for methylpyridine in Rhine River in case of a first order reduction process 
(Zoeteman et al. 1980) 
Groundwater: 
Sediment: 
Soil: 
Biota: 
TABLE 16.1.7.4.1 
Reported vapor pressures of 2-methylpryridine at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 Herington & Martin 1953 Scott et al. 1963(a) Lencka 1990 
summary of literature data ebulliometry comparative ebulliometry ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–11.1 133.3 64.363 10660 79.794 19920 18.49 1015 
12.6 666.6 69.916 13459 85.853 25007 22.09 1264 
24.4 1333 76.836 17758 91.942 31160 24.58 1463 
37.4 2666 82.362 21954 98.074 38547 26.74 1657 
51.2 5333 88.566 27600 104.252 47359 30.60 2062 
59.9 7999 93.617 33044 110.472 57803 33.71 2446 
71.4 13332 101.283 42906 116.736 70109 40.03 3414 
89.0 26664 108.594 54434 123.038 84525 48.69 5258 
108.4 53329 114.552 65581 129.387 101325 57.60 7942 
128.8 101325 117.647 72020 135.773 120798 71.51 14375 
122.132 82297 142.207 143268 80.35 20380 
mp/°C –70.0 126.992 91140 148.683 169052 87.31 26426 
125.664 94663 155.201 198530 94.31 33920 
127.828 96885 161.761 232087 101.18 42854 
128.591 99021 168.356 270110 104.03 47076 
129.290 100985 109.24 55653 
129.608 101879 bp/°C 129.39 113.01 62604 
130.037 103095 Antoine eq. 115.31 67182 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3357 
TABLE 16.1.7.4.1 (Continued) 
Stull 1947 Herington & Martin 1953 Scott et al. 1963(a) Lencka 1990 
summary of literature data ebulliometry comparative ebulliometry ebulliometry 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
eq. 2 P/mmHg 119.20 75535 
bp/°C 129.408 A 7.03202 122.93 84296 
.HV/(kJ mol–1) = 37.76 B 1415.494 125.77 92024 
eq. 2 P/mmHg C 211.598 129.88 102813 
A 7.03450 
B 1417.578 Antoine eq. 
C 211.874 eq. 3 P/kPa 
A 14.1560 
B 3249.15 
C 61.383 
FIGURE 16.1.7.4.1 Logarithm of vapor pressure versus reciprocal temperature for 2-methylpyridine. 
2-Methylpyridine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 
1/(T/K) 
P( gol 
S 
) aP 
/ 
Herington & Martin 1953 
Scott et al. 1963a 
Lencka 1990 
Stull 1947 
b.p. = 129.38 °C 
© 2006 by Taylor & Francis Group, LLC

3358 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.5 3-Methylpyridine 
Common Name: 3-Methylpyridine 
Synonym: .-picoline, 3-picoline 
Chemical Name: 3-methylpyridine, .-picoline 
CAS Registry No: 108-99-6 
Molecular Formula: C5H4NCH3 
Molecular Weight: 93.127 
Melting Point (°C): 
–18.14 (Lide 2003) 
Boiling Point (°C): 
144.14 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9443 (Weast 1982–83) 
0.9566 (Riddick et al. 1986) 
Molar Volume (cm3/mol): 
97.35 (20°C, calculated-density) 
115.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
5.67, 5.703 (Perrin 1972) 
5.68 (pKa, 20°C, Weast 1982–83; pKa, protonated cation + 1, Dean 1985) 
5.75 (pKBH 
+ , Riddick et al. 1986) 
5.65 (pKa, Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
45.233, 37.323 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
14.18 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
miscible (Andon & Cox 1952; Andon et al. 1954; Yaws et al. 1990) 
miscible (Riddick et al. 1986; Howard 1993) 
miscible (Stephenson 1993a) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
150.7, 594.6 (0, 20°C, static method-tensimeter, Brown & Barbaras 1947) 
794* (ebulliometry, extrapolated-Antoine eq., Herington & Martin 1953) 
log (P/mmHg) = 7.03247 – 1469.894/(209.907 + t/°C); temp range 81.2–145.1°C (ebulliometric measurements, 
Antoine eq., Herington & Martin 1953) 
794 (calculated-Antoine eq., Andon et al. 1954) 
9582* (74.036.C, comparative ebulliometry, measured range 74.036–184.568.C, Scott et al. 1963b) 
log (P/mmHg) = 7.05375 – 1484.208/(t/°C + 211.532), temp range 79.8–168°C (ebulliometric measurements, 
Antoine eq., Scott et al. 1963b) 
811 (ebulliometry, calculated-Antoine eq., Osborn & Douslin 1968) 
log (P/mmHg) = 7.30275 – 1506.877/(t/°C + 210.995), temp range: 74–185°C, (ebulliometric measurements, 
Antoine eq., Osborn & Douslin 1968) 
log [(P/atm) = [1 – 417.287 ± (T/K)] . 10^{0.854256 – 6.02835 . 10–4 ± (T/K) + 5.00169 . 10–7 ± (T/K)2}, 
temp range: 74–185°C (ebulliometric method, Cox eq., Osborn & Douslin 1968) 
806 (calculated-Cox eq., Chao et al. 1983) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3359 
log (P/atm) = [1– 417.217/(T/K)] . 10^{0.865977 – 6.48542 . 10–4 ± (T/K) + 5.41256 . 10–7 ± (T/K)2}; temp 
range: 255.0–645.0 K (Cox eq., Chao et al. 1983) 
796, 800 (extrapolated-Antoine equations, Boublik et al. 1984) 
log (P/kPa) = 6.16152 – 1472.639/(210.214 + t/°C); temp range 81.3–145.1°C (Antoine eq. from reported exptl. 
data of Herington & Martin 1953, Boublik et al. 1984) 
log (P/kPa) = 6.17577 – 1482.229/(211.305 + t/°C); temp range 74.03–184.6°C (Antoine eq. from reported exptl. 
data of Scott et al. 1963, Boublik et al. 1984) 
800 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.05021 – 1481.78/(211.25 + t/°C); temp range 74–185°C (Antoine eq., Dean l985, 1992) 
1333 (Riddick et al. 1986) 
log (P/kPa) = 6.15737 – 1469.894/(209.907 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
802 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PS/kPa) = 11.245 – 3246.9/(T/K); temp range 225–255 K (Antoine eq.-I, Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.17593 – 1482.943/(–61.705 + T/K); temp range 347–458 K (Antoine eq.-II, Stephenson & Malanowski 
1987) 
log (PL/kPa) = 6.17791 – 1484.285/(–61.554 + T/K); temp range 347–458 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.18988 – 1491.897/(–60.745 + T/K); temp range 347–381 K (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.16648 – 1476.25/(–62.502 + T/K); temp range 374–458 K (Antoine eq.-V, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.38586 – 1659.184/(–38.176 + T/K); temp range 450–570 K (Antoine eq.-VI, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.57549 – 3151.52/(161.352 + T/K); temp range 561–645 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 35.2679 – 3.4364 . 103/(T/K) – 9.3555·log (T/K) – 1.3286 . 10–10·(T/K) + 2.0461 . 10–6·(T/K)2; 
temp range 255–645 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.788 (volatility ratio-transpiration method, Andon et al. 1954) 
0.784; 0.637; 0.749 (exptl.; calculated-group contribution; calculated-bond contribution, Hine & Mookerjee 1975) 
1.836 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 
12.69 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = –0.826 – 348/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
1.20 (HPLC-RT correlation, Mirrlees et al. 1976) 
1.20 ± 0.02 (shake flask at pH 7, Unger et al. 1978) 
1.19 (HPLC-RT correlation, Lewis et al. 1983) 
1.18 ± 0.01 (HPLC-RV correlation-ALPM, Garst 1984; Garst & Wilson 1984) 
1.20 (shake flask, Log P Database, Hansch & Leo 1985, 1987) 
1.20 (recommended, Sangster 1989, 1993) 
1.20 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
0.699 (calculated-KOW, Lyman et al. 1982; quoted, Howard 1993) 
Sorption Partition Coefficient, log KOC: 
2.029 (soil, calculated-KOW, Lyman et al. 1982; quoted, Howard 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: estimated photooxidation rate constant k = 1.43 . 10–12 cm3 molecule–1 s–1 for the vapor-phase reaction 
with 5 . 105 hydroxyl radicals/cm3 in air at 25°C which corresponds to an atmospheric half-life of 11 d 
(Atkinson 1987; quoted, Howard 1993). 
© 2006 by Taylor & Francis Group, LLC

3360 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: atmospheric t. = 11 d from estimated photooxidation rate constant k = 1.43 . 10–12 cm3 ± molecule–1 s–1 for the 
vapor-phase reaction with 5 . 105 hydroxyl radicals/cm3 in air at 25°C (Atkinson 1987; quoted, Howard 1993). 
Surface water: estimated t. = 1.0 d for methylpyridine in Rhine River in case of a first order reduction process 
(Zoeteman et al. 1980) 
TABLE 16.1.7.5.1 
Reported vapor pressures of 3-methylpyridine at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Herington & Martin 1953 Scott et al. 1963(b) 
ebulliometry comparative ebulliometry 
t/°C P/Pa t/°C P/Pa 
81.282 12871 74.036 9582 
85.275 15061 77.115 10884 
92.059 19478 80.202 12335 
97.519 23773 85.303 13949 
103.922 29747 86.403 15740 
109.006 35349 89.524 17725 
115.583 43796 92.658 19920 
121.932 53445 98.946 25007 
129.368 66822 105.270 31160 
132.163 72471 111.640 38547 
137.714 84938 118.052 47359 
140.871 92693 124.508 57803 
142.132 95948 131.008 70109 
142.639 97265 137.551 84525 
143.293 99017 144.135 101325 
143.577 99782 150.767 120798 
143.993 100927 157.441 143268 
144.320 101791 164.156 169052 
144.659 102725 170.918 198530 
145.101 103988 177.821 232087 
184.568 270110 
bp/°C 144.143 
.HV/(kJ mol–1) = 37.76 bp/°C 144.14 
eq. 2 P/mmHg 
A 7.03247 Antoine 
B 1469.894 eq. 2 P/mmHg 
C 209.907 A 7.05375 
B 1484.208 
C 211.532 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3361 
FIGURE 16.1.7.5.1 Logarithm of vapor pressure versus reciprocal temperature for 3-methylpyridine. 
3-Methylpyridine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 
1/(T/K) 
P( gol 
S 
) aP/ 
Herington & Martin 1953 
Scott et al. 1963b 
b.p. = 144.14 °C 
© 2006 by Taylor & Francis Group, LLC

3362 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.6 2,3-Dimethylpyridine 
Common Name: 2,3-Dimethylpyridine 
Synonym: 2,3-lutidine 
Chemical Name: 2,3-dimethylpyridine, 2,3-lutidine 
CAS Registry No: 583-61-9 
Molecular Formula: C7H9N, C5H3N(CH3)2 
Molecular Weight: 107.153 
Melting Point (°C): 
–15.5 (Stephenson & Malanowski 1987) 
Boiling Point (°C): 
161.12 (Lide 2003) 
Density (g/cm3 at 20°C): 
0.9461, 0.9421 (20°C, 25°C, Coulson et al. 1959) 
0.9319 (25°C, Weast 1982–83) 
Molar Volume (cm3/mol): 
115.0 (calculated-density, Stephenson & Malanowski 1987) 
135.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
6.70 (20°C, Perrin 1972) 
6.57 (pKa, Weast 1982–83) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
104000* (20°C, shake flask-GC, measured range 16–90°C, Stephenson 1993a) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
366.6, 922.6, 7119 (25, 40, 81.2°C, calculated-empirical method with bp and Antoine eq., Andon et al. 1954) 
346.4* (ebulliometry, extrapolated-Antoine eq., measured range 99.5–162.4°C, Coulson et al. 1959) 
log (P/mmHg) = 7.05075 – 1528.935/(205.499 + t/°C); temp range 99.5–162.4°C (Antoine eq., ebulliometry, 
Coulson et al. 1959) 
359.0 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 434.216/(T/K)] . 10^{0.881714 – 6.74484 . 10–4 ± (T/K) + 5.55055 . 10–7 ± (T/K)2}; temp 
range: 260.0–655.0 K (Cox eq., Chao et al. 1983) 
425.5 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.45509 – 1739.902/(229.887 + t/°C); temp range 155.3–162.4°C (Antoine eq. from reported exptl. 
data of Coulson et al. 1959, Boublik et al. 1984) 
352.2 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.18881 – 1538.772/(–66.477 + T/K); temp range; 372–476 K (Antoine eq., Stephenson & 
Malanowski 1987) 
457 (extrapolated-Antoine eq., Dean 1992) 
log (P/mmHg) = 7.447 – 1832.6/(240.1 + t/°C); temp range 155–162°C (Antoine eq., Dean. 1992) 
2000* (54.556°C, comparative ebulliometry, measured range 327.706–475.952 K, data fitted to Wagner 
eq., Steele et al. 1995) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 
0.725 (volatility ratio-transpiration method, Andon et al. 1954) 
0.732 (exptl., Hine & Mookerjee 1975) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3363 
0.859, 0.732 (calculated.-group contribution, bond contribution, Hine & Mookerjee 1975) 
21.01 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 0.039 – 617/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Surface water: estimated t. = 13.0 d for dimethylpyridine in Rhine River in case of a first order reduction process 
(Zoeteman et al. 1980) 
TABLE 16.1.7.6.1 
Reported aqueous solubilities and vapor pressures of 2,3-dimethylpyridine at 
various temperatures 
Aqueous solubility Vapor pressure 
Stephenson 1993a Coulson et al. 1959 Steele et al. 1995 
shake flask-GC/TC ebulliometry comparative ebulliometry 
t/°C S/g·m–3 t/°C P/Pa T/K P/Pa 
16.0 171500 99.543 14583 327.706 2000 
18.0 121500 107.822 19765 333.396 2666 
20.0 104000 116.337 26607 341.852 3999.9 
25.0 86000 122.909 33113 348.166 5333 
30.0 69100 128.606 39759 357.560 7998.9 
35.0 59900 133.429 46191 364.611 10666 
40.0 53700 137.704 52572 370.315 13332 
50.0 48200 141.757 59255 376.239 16665 
60.0 43700 145.829 66652 381.163 19933 
70.0 43000 148.764 72421 387.649 25023 
80.0 43300 152.203 79677 387.646 25023 
90.0 43500 155.326 86769 394.176 31177 
157.94 93067 400.749 38565 
158.603 94703 407.364 47375 
159.141 96085 414.025 57817 
160.125 98614 420.729 70120 
160.668 100030 427.477 84533 
161.199 101438 434.270 101325 
161.682 102701 441.106 120790 
162.077 103788 447.989 143250 
162.412 104696 454.913 169020 
461.885 198490 
mp/°C –15.22 468.897 232020 
bp/°C 161.157 475.982 270020 
.HV = 41.07 kJ/mol 
Antoine eq. Data fitted to Wagner eq. 
log P = A – B/(C + t/°C) 
P/mmHg 
A 7.05075 
B 1528.935 
C 205.499 
© 2006 by Taylor & Francis Group, LLC

3364 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.7.6.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 
2,3-dimethylpyridine. 
FIGURE 16.1.7.6.2 Logarithm of vapor pressure versus reciprocal temperature for 2,3-dimethylpyridine. 
2,3-Dimethylpyridine: solubility vs. 1/T 
-5.5 
-5.0 
-4.5 
-4.0 
-3.5 
-3.0 
-2.5 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 
1/(T/K) 
x 
nl 
Stephenson 1993 
2,3-Dimethylpyridine: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 
1/(T/K) 
P 
( gol 
S 
) aP 
/ 
Coulson et al. 1959 
Steele et al. 1995 
b.p. = 161.12 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3365 
16.1.7.7 Quinoline 
Common Name: Quinoline 
Synonym: benzo[b]-pyridine, 1-benzazine 
Chemical Name: quinoline 
CAS Registry No: 91-22-5 
Molecular Formula: C9H7N 
Molecular Weight: 129.159 
Melting Point (C): 
–14.78 (Lide 2003) 
Boiling Point (°C): 
237.16 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.0929 (Weast 1982–83) 
1.09771, 1.08579 (15, 30°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
118.1 (calculated-density, Rohrschneider 1973) 
144.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
4.90 (pKa, 20°C, Weast 1982–83; Zachara et al. 1987; Matzner et al. 1991) 
4.80 (pKa, protonated cation + 1, Dean 1985) 
4.94 (pKBH 
+ , Riddick et al. 1986) 
4.87 (pKa, Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
49.71 (at bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
10.79 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
6110 (Albersmeyer 1958) 
6840 (shake flask-HPLC/UV, Fu & Luthy 1985, 1986) 
6386* (20.35°C, equilibrium cell-GC, measured range 20.35–225°C, Leet et al. 1987) 
5426 (centrifuge-HPLC at pH 7 and pH 8, Matzner et al. 1991) 
8400, 6600 (20°C, 30°C, shake flask-GC, Stephenson 1993a) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated *, are compiled at the end of this section): 
15.51* (extrapolated-regression of tabulated data, temp range 59.7–237.7°C, Stull 1947) 
1.213 (extrapolated, Maczynski & Maczynska 1965) 
11.20* (25.16°C, gas saturation-IR, measured range 12.62–35.9°C, Van De Rostyne & Prausnitz 1980) 
ln (P/mmHg) = 20.96 – 6993.2/(T/K); temp range 12.62–35.9°C (gas saturation-IR, Van De Rostyne & Prausnitz 
1980) 
11.14 (calculated-bp, Mackay et al. 1982) 
12.83 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 510.552/(T/K)] . 10^{0.897177 – 6.73559 . 10–4 ± (T/K) + 4.69070 . 10–7 ± (T/K)2}; temp 
range: 290.0–780.0 K (Cox eq., Chao et al. 1983) 
11.04 (extrapolated-Antoine eq., Boublik et al. 1984) 
N 
© 2006 by Taylor & Francis Group, LLC

3366 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log (P/kPa) = 5.94201 – 1668.355/(186.212 + t/°C), temp range 164.7–237.9°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
11.05 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 6.81759 – 1668.73/(186.26 + t/°C), temp range 164–238°C (Antoine eq., Dean 1985, 1992) 
1.216 (recommended, Neely & Blau 1985) 
12.8 (Howard et al. 1986) 
11.2 (Riddick et al. 1986) 
log (P/kPa) = 5.92679 – 1656.30/(184.78 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
42120* (472.85 K, vapor-liquid equilibrium, measured range 472.85–548.05 K, Klara et al. 1987) 
log (P/kPa) = 14.4961 – 4390.0/(65.19 + T/K); temp range 472.85–548.05 K (vapor-liquid equilibrium, Klara 
et al. 1987) 
log (PL/kPa) = 5.92679 – 1656.3/(–88.37 + T/K); temp range 433–511 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.15102 – 2846.253/(41.795 + T/K); temp range 463–794 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
6.145 (calculated-solvatochromic parameters, Banerjee et al. 1990) 
log (P/mmHg) = 76.5432 – 5.7748 . 103/(T/K) –24.619·log (T/K) + 8.4666 . 10–3·(T/K) + 3.5586 . 10–13·(T/K)2; 
temp range 258–782 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
0.0253 (calculated-P/C, Smith & Bomberger 1980) 
0.026 (calculated-P/C, Mackay 1985) 
0.168 (calculated-P/C, Meylan & Howard 1991) 
0.0697 (estimated-bond contribution, Meylan & Howard 1991) 
Octanol/Water Partition Coefficient, log KOW: 
2.03 (shake flask-UV, Iwasa et al. 1965) 
2.06 (shake flask-UV at pH 7.4, Rogers & Cammarata 1969) 
2.03 (Schultz et al. 1970) 
2.04 (HPLC-RT correlation, Mirrlees et al. 1976) 
2.04 ± 0.02 (shake flask at pH 7, Unger et al. 1978) 
2.02 (Hansch & Leo 1979) 
2.01 ± 0.02 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
1.88 (HPLC-k. correlation, Haky & Young 1984) 
2.20 (calculated-activity coeff. . from UNIFAC, Banerjee & Howard 1988) 
2.10 (shake flask-HPLC, De Voogt et al. 1988, 1990) 
2.09 (28°C, shake flask-UV at pH 7.4, Go & Ngiam 1988) 
2.03 (recommended, Sangster 1989, 1993) 
2.10, 2.15 (HPLC-RT correlation, shake flask-electrometric titration, Slater et al. 1994) 
2.03 (recommended, Hansch et al. 1995) 
2.17 ± 0.66, 2.33 ± 0.56 (HPLC-k. correlation: ODS–65 column, Diol–35 column, Helweg et al. 1997) 
1.91 (microemulsion electrokinetic chromatography-retention factor correlation, Jia et al. 2003) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
1.04 (Coyote Creek sediment with organic content of 1.9%, Smith et al. 1978) 
1.96, 2.10, 1.67, 1.72 (estimated-KOW, Karickhoff 1985) 
1.42, 1.62 (estimated-S, Karickhoff 1985) 
2.20 (best estimate, Karickhoff 1985) 
0.251 (estimated Anvil Points subsurface materials, Zachara et al. 1987) 
–1.516 (estimated Loring subsurface materials, Zachara et al. 1987) 
2.89; 3.05 (humic acid, HPLC-k. correlation; quoted lit., Nielsen et al. 1997) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3367 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 7000 h in stream, t. = 35000 h in eutrophic pond and t. = 28000 h in eutrophic lake and 
oligotrophic lake, based on transformation and transport of quinoline predicted by the one-compartment 
model (Smith et al. 1978). 
Photolysis: 
k = 7.8 . 10–7 s–1, assuming exposed to 12-h sunlight per day in June, photolysis t. = 1200 h in stream, 
t. = 3000 h in eutrophic lake and pond and t. = 600 h in oligotrophic lake, based on transformation and 
transport of quinoline predicted by the one-compartment model (Smith et al. 1978) 
k(aq.) = 3.6 . 10–7 s–1 for summer with t. = 535 h and k = 5.0 . 10–8 s–1 for winter with t. = 3851 h both 
at pH 6.9 and under sunlight at 40°N (Mill et al. 1981; quoted, Howard et al. 1991) 
photolytic t. = 550 h in aquatics (Haque et al. 1980) 
t. = 5–12 d for disappearance via direct photolysis in aqueous media (Harris 1982) 
Oxidation: 
k = 2.8 M–1 s–1 for the reaction with RO2 radical with t. > 104 h in stream, eutrophic pond and lake and 
oligotrophic lake, based on RO2 concentration of 10–9 M on transformation and transport of quinoline 
predicted by the one-compartment model (Smith et al. 1978) 
k(aq.) = 3.5 . 10–7 s–1 with t. = 548 h under natural sunlight conditions for midday, midsummer at a latitude 
of 40°N; k(aq.) = 2.8 M–1 s–1 with t. = 8 yr for free-radical oxidation in air-saturated water (NRCC 1983) 
photooxidation t. = 10–99 h in air, based on an estimated rate constant for vapor phase reaction with 
hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991) 
first-order photodegradation k = 8.0 . 10–6 s–1 at 313 nm of in organic-free water with t. = 24.0 h and 
k = 8.4 . 10–6 s–1 in lake water with t. = 23 h both saturated with air (Kochany & Maguire 1994) 
Hydrolysis: no hydrolyzable groups (Howard et al. 1991). 
Biodegradation: 
t. = 0.5 h in stream, eutrophic lake and pond and t. = 10000 h in oligotrophic lake, based on transformation 
and transport of quinoline predicted by the one-compartment model (Smith et al. 1978); 
Biodegradation k = 7.4 . 10–5 mL cell–1 d–1 in enrichment culture (Klecka 1985); 
t.(aq. aerobic) = 72–240 h, based on an acclimated fresh water grab sample data (Rogers et al. 1984; quoted, 
Howard et al. 1991); 
t.(aq. anaerobic) = 288–960 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 
1991) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 10 – 99 h, based on an estimated rate constant for vapor phase reaction with hydroxyl radicals in air 
(Atkinson 1987; selected, Howard et al. 1991); 
atmospheric transformation lifetime was estimated to be 1 to 5 d (Kelly et al. 1994). 
Surface water: half-life for all processes, except for dilution: t. = 0.5 h in stream, eutrophic lake and pond and 
t. = 600 h in oligotrophic lake, based on transformation and transport of quinoline predicted by the onecompartment 
model (Smith et al. 1978); 
half-life for all processes, including for dilution: t. = 0.28 h in stream, t. = 0.5 h in eutrophic lake and pond 
and t. = 600 h in oligotrophic lake, based on transformation and transport of quinoline predicted by the 
one-compartment model (Smith et al. 1978); 
t. = 5 – 12 d for direct photolysis in aqueous media (Harris 1982); 
t. = 72 – 240 h, based on an acclimated fresh water grab sample data (Rogers et al. 1984; quoted, Howard 
et al. 1991); 
degrade readily in sunlight in near surface lake water at 40°N latitude in summer with a t. ~ 14 calendar-d 
while its t.(calc) ~ 123 calendar-d in winter (Kochany & Maguire 1994). 
Groundwater: t. = 144 – 480 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Sediment: 
Soil: t. = 72 – 240 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991) 
Complete mineralization within 7 – 10 d in batch experiments independent of pH (5.8 and 7.2) (Thomsen 
et al. 1999) 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3368 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.7.7.1 
Reported aqueous solubilities and vapor pressures of quinoline at various temperatures and the coefficients 
for the vapor pressure equations: 
Vapor pressure Aqueous solubility 
Stull 1947 Van De Rostyne & Prausnitz Klara et al. 1987 Leet et al. 1987 
summary of literate data gas saturation-IR (1980) vapor-liquid equilibrium equilibrium cell-GC 
t/°C P/Pa t/°C P/Pa T/K P/Pa t/°C S/g·m–3 
59.7 133.3 12.62 3.853 472.85 42120 20.35 6386 
89.6 666.6 16.71 5.963 504.95 90990 40.05 6458 
103.8 1333 21.35 8.159 514.35 112400 64.85 8252 
119.8 2666 22.42 9.56 534.35 170300 80.25 10620 
136.7 5333 25.16 11.20 548.05 222600 100.05 13920 
148.1 7999 28.25 14.80 120.65 20163 
163.2 13332 29.10 14.93 eq. 3 P/kPa 145.85 31285 
186.2 26664 35.90 24.26 log P = A – B/(C + T/K) 159.65 43555 
212.3 53329 A 14.4961 179.85 69602 
237.7 101325 eq. 1a P/mmHg B 4390.0 199.25 126288 
ln P = A – B/(T/K) C 65.19 209.05 171494 
mp/°C –15.0 A 20.96 220.25 324333 
B 6993.2 225.05 498697 
FIGURE 16.1.7.7.1 Logarithm of vapor pressure versus reciprocal temperature for quinoline. 
Quinoline: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Van De Rostyne & Prausnitz 1980 
Klara et al. 1987 
Stull 1947 
b.p. = 237.16 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3369 
16.1.7.8 Isoquinoline 
Common Name: Isoquinoline 
Synonym: leucoline 
Chemical Name: isoquinoline 
CAS Registry No: 119-65-3 
Molecular Formula: C9H7N 
Molecular Weight: 129.159 
Melting Point (°C): 
26.47 (Lide 2003) 
Boiling Point (°C): 
243.22 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.0986 (Weast 1982–83) 
1.0910 (Dean 1985) 
Molar Volume (cm3/mol): 
118.4 (30°C, Stephenson & Malanowski 1987) 
144.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
5.40 (pKa, Perrin 1972) 
5.42 (pKa, 20°C, Weast 1982–83) 
5.40 (pKa, protonated cation + 1, Dean 1985) 
5.38 (pKBH 
+ , Riddick et al. 1986) 
5.39 (pKa, Sangster 1989) 
Enthalpy of Vaporization, .HV (kJ/mol): 
48.96 (bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
7.448 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.967 (mp at 26.47°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
4520 (Pearlman et al. 1984) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
11.8* (extrapolated-regression of tabulated data, temp range 63.5–240.5°C, Stull 1947) 
7.80 (extrapolated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 516.182/(T/K)] . 10^{0.91210 – 6.33889 . 10–4 ± (T/K) + 4.267359 . 10–7 ± (T/K)2}; temp 
range: 300.0–800.0 K (Cox eq., Chao et al. 1983) 
6.33 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.03709 – 1723.459/(184.268 + t/°C); temp range 166–244°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
6.35 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 6.9122 – 1723.4/(184.3 + t/°C); temp range 167–244°C (Antoine eq., Dean 1992) 
6.70 (Riddick et al. 1986) 
log (PL/kPa) = 6.03203 – 1719.5/(–89.12 + T/K); temp range 439–517 K (Antoine eq., Stephenson & Malanowski 
1987) 
log (P/mmHg) = 45.5737 – 4.4715 . 103/(T/K) –13.308·log (T/K) + 4.0186 . 10–3·(T/K) – 6.4589 . 10–14·(T/K)2; 
temp range 299–803 K (vapor pressure eq., Yaws 1994) 
N 
© 2006 by Taylor & Francis Group, LLC

3370 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
19.14 (calculated-P/C with selected values) 
Octanol/Water Partition Coefficient, log KOW: 
2.08 (shake flask-UV, Hansch & Anderson 1967) 
2.09 (HPLC-RT correlation, Mirrlees et al. 1976) 
2.08 (recommended, Sangster 1989, 1993) 
2.30 ± 0.15, 2.17 ± 0.53 (solvent generated liquid-liquid chromatography SGLLC-correlation, RP-HPLC-k. 
correlation, Cichna et al. 1995) 
2.08 (recommended, Hansch et al. 1995) 
2.21 ± 0.66, 2.2 6 ± 0.56 (HPLC-k. correlation: ODS-65 column, Diol-35 column, Helweg et al. 1997) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
3.09 (humic acid, HPLC-k. correlation, Nielsen et al. 1997) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 82.0 h–1, k2 = 34.2 h–1 (daphnia pulex, 21°C, Southworth et al. 1978) 
Half-Lives in the Environment: 
Biota: elimination t. = 1 min (daphnia pulex, Southworth et al. 1978). 
TABLE 16.1.7.8.1 
Reported vapor pressures of isoquinoline at 
various temperatures 
Stull 1947 
summary of literature data 
t/°C P/Pa 
63.5 133.3 
92.7 666.6 
107.8 1333 
123.7 2666 
141.6 5333 
152.0 7999 
167.6 13332 
190.0 26664 
214.5 53329 
240.5 101325 
mp/°C 24.5 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3371 
FIGURE 16.1.7.8.1 Logarithm of vapor pressure versus reciprocal temperature for isoquinoline. 
Isoquinoline: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
Stull 1947 
b.p. = 243.22 °C m.p. = 26.47 °C 
© 2006 by Taylor & Francis Group, LLC

3372 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.9 Benzo[f]quinoline 
Common Name: Benzo[f]quinoline 
Synonym: 5,6-benzoquinoline, naphthopyridine 
Chemical Name: 5,6-benzoquinoline, benzo(f)quinoline 
CAS Registry No: 85-02-9 
Molecular Formula: C13H9N 
Molecular Weight: 179.217 
Melting Point (°C): 
94 (Lide 2003) 
Boiling Point (°C): 
352 (Lide 2003) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
196.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pK: 
5.15 (Sangster 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.210 (mp at 94°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
76.1 (shake flask-GC, Smith et al. 1978) 
77.1 (Mill et al. 1981) 
l76.0 (Steen & Karickhoff 1981) 
78.7 (average literature value, Pearlman et al. 1984) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
0.00747* (25.05°C, gas saturation, measured range 288.26–323.15 K, McEachern et al. 1975) 
log (P/mmHg) = 4339.977/(T/K) + 10.2555; temp range 288.26–323.15 K (Antoine eq., gas saturation, 
McEachern et al. 1975 
0.00670 (interpolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 9.37682 – 4338.411/(T/K); temp range 288–323 K (Antoine eq., Stephenson & Malanowski 1987) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0096 (calculated-P/C, Smith & Bomberger 1980) 
Octanol/Water Partition Coefficient, log KOW: 
3.20 (Steen & Karickhoff 1981) 
3.40 (TLC-RT correlation, De Voogt et al. 1988) 
3.25 (23°C, shake flask-HPLC, pH 7, De Voogt et al. 1990) 
3.25, 3.40 (lit. values; Sangster 1993) 
3.46 ± 0.64, 3.51 ± 0.53 (HPLC-k. correlation: ODS-65 column, Diol-35 column, Helweg et al. 1997) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.18 (mixed microbial populations, Steen & Karickhoff 1981) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3373 
Sorption Partition Coefficient, log KOC: 
3.11 (Coyote Creek sediment, Smith et al. 1978) 
4.64, 4.32 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
4.07 (humic acid, HPLC-k. correlation, Nielsen et al. 1997) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. > 10000 h in river, t. > 100000 h in eutrophic pond, eutrophic lake and oligotrophic 
lake by the one compartment model (Smith et al. 1978). 
Photolysis: 
k = (1.4 ± 0.7) . 10–4 s–1 for transformation and transport when exposed to 12 h sunlight in mid-June with 
estimated t. = 2.8 h in river, t. = 7.0 h in eutrophic pond and eutrophic lake and t. = 1.4 h in oligotrophic 
lake from average photolysis rates on a summer day at 40°N latitude by the one compartment model 
(Smith et al. 1978) 
photolytic t. = 0.52 h in aquatics (Haque et al. 1980) 
t. = 1 h for disappearance via direct photolysis in aqueous media (Harris 1982) 
Oxidation: 
laboratory studied k < 2.8 M–1 s–1 for the reaction with the RO2 radicals and estimated t. > 105 h in 
river, eutrophic pond, eutrophic lake and oligotrophic lake by the one compartment model (Smith 
et al. 1978) 
k(aq.) = 3.7 . 10–4 s–1 with t. = 0.5 h under natural sunlight conditions for midday, midsummer at a latitude of 
40°N; k(aq.) < 2.8 M–1 s–1 with t. > 8 yr for free-radical oxidation in air-saturated water (NRCC 1983) 
Hydrolysis: 
Biodegradation: estimated t. = 190 h in river, eutrophic pond, eutrophic lake and t. > 106 h in oligotrophic lake 
by the one compartment model (Smith et al. 1978). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: t. = 0.5 h in river water, t. = 6.9 h in pond water, t. = 7.0 h in eutrophic lake and t. = 1.4 h in 
oligotrophic lake predicted by one-compartment for all processes including dilution (Smith et al. 1978) 
t. = 1 h for disappearance via direct photolysis in aqueous media (Harris 1982). 
TABLE 16.1.7.9.1 
Reported vapor pressures of benzo[f]quinoline at 
various temperatures 
McEachern et al. 1975 
gas saturation 
T/K P/Pa 
288.26 0.00213 
293.10 0.00333 
298.20 0.00747 
303.13 0.0116 
308.23 0.0199 
313.17 0.0324 
318.24 0.0560 
323.15 0.0901 
P/mmHg 
log P = A – B/(T/K) 
A 10.2555 
B 4399.977 
.Hsubl/(kJ mol–1) = 83.094 
.Ssubl/(J mol–1 K–1) = 196.36 
© 2006 by Taylor & Francis Group, LLC

3374 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.7.9.1 Logarithm of vapor pressure versus reciprocal temperature for benzo[f]quinoline. 
Benzo[f ]quinoline: vapor pressure vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
McEachern et al. 1975 
m.p. = 94 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3375 
16.1.7.10 Carbazole 
Common Name: Carbazole 
Synonym: 9H-carbazole, dibenzopyrrole 
Chemical Name: carbazole 
CAS Registry No: 86-74-8 
Molecular Formula: C12H9N, C6H4NHC6H4 
Molecular Weight: 167.206 
Melting Point (°C): 
246.3 (Lide 2003) 
Boiling Point (°C): 
354.69 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.260 (25°C, Jimenez et al. 1990) 
Molar Volume (cm3/mol): 
192.9 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.00674 (mp at 246.3°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
1.03 ± 0.05 (20°C, shake flask-GC, Smith et al. 1978) 
1.037 (Mill et al. 1981) 
0.428 (20°C, shake flask-fluorophotometry, Hashimoto et al. 1982) 
1.67, 1.03, 0.908; 1.204 (quoted values; lit. average, Pearlman et al. 1984) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
7999* (248.2°C, summary of literature data, temp range: 248.2–354.8°C, Stull 1947) 
log (P/mmHg) = [–0.2185 . 15421.6/(T/K)] + 8.251923; temp range: 248.2–354.8°C (Antoine eq., Weast 
1972–73) 
0.0933 (20°C, Smith et al. 1978) 
log (P/atm) = [1 – 627.897/(T/K)] . 10^{0.924810 – 5.18974 . 10–4 ± (T/K) + 2.68415 . 10–7 ± (T/K)2}; temp 
range: 518.0–631.0 K (Cox eq., Chao et al. 1983) 
0.00424 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.20101 – 2169.73/(162.465 + t/°C); temp range 252.6–357.3°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
log (P/mmHg) = 7.0863 – 2179.4/(163.5 + t/°C); temp range 253–368°C (Antoine eq., Dean 1985, 1992) 
0.0012 (Antoine eq.-I, Stephenson & Malanowski 1987) 
0.0045 (liquid, extrapolated-Antoine eq.-II, Stephenson & Malanowski 1987) 
log (PS/kPa) = 10.1069 – 4780/(T/K); temp range not specified (solid, Antoine eq.-I, Stephenson & Malanowski 
1987) 
log (PL/kPa) = 6.21123 – 2179.424/(–109.636 + T/K); temp range 525–631 K (liquid, Antoine eq-II., Stephenson 
& Malanowski 1987) 
0.0002* (extrapolated-Antoine eq., Knudsen effusion, measured range 73.43–90.80°C, Jimenez et al. 1990) 
log (P/Pa) = 14.64– 5288.4/(T/K); temp range 73.43–90.80°C (Knudsen effusion, Jimenez et al. 1990) 
log (P/mmHg) = –119.857 – 3.2537 . 103/(T/K) + 52.568·log (T/K) – 4.6797 . 10–2·(T/K) + 1.4113 . 10–5·(T/K)2; 
temp range 518–899 K (vapor pressure eq., Yaws 1994) 
NH 
© 2006 by Taylor & Francis Group, LLC

3376 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
16.0 (calculated-P/C, Smith & Bomberger 1980) 
Octanol/Water Partition Coefficient, log KOW: 
3.29 (shake flask-UV at pH 7.4, Rogers 1969) 
3.01 (HPLC-k. correlation, Eadsforth 1986) 
3.50 (calculated, Eadsforth 1986) 
3.72 (recommended, Sangster 1989, 1993) 
3.59 (HPLC-RT correlation, Jenke et al. 1990) 
3.84 (shake flask-HPLC at pH 7, De Voogt et al. 1988) 
3.47 ± 0.63, 3.22 ± 0.53 (HPLC-k. correlation: ODS-65 column, Diol-35 column, Helweg et al. 1997) 
3.72 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
2.24 (Coyote Creek sediment, Smith et al. 1978) 
4.74 (humic acid, HPLC-k. correlation, Nielsen et al. 1997) 
3.80 (soil-pore water partition coeff., Askov soil - a Danish agricultural soil, Sverdrup et al. 2002) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. > 105 h in river, eutrophic pond, eutrophic lake and oligotrophic lake by the one 
compartment model (Smith et al. 1978). 
Photolysis: 
k = 6.6 . 10–5 s–1 for transformation and transport when exposed to midday sunlight in late January with 
estimated t. = 6.0 h in river, t. = 15.0 h in eutrophic pond and eutrophic lake and t. = 3.0 h in oligotrophic 
lake from average photolysis rates on a summer day at 40°N latitude by the one compartment model 
(Smith et al. 1978) 
photolytic t. = 1.0 h in aquatics (Haque et al. 1980) 
t. = 3 h for disappearance via direct photolysis in aquatic media (Harris 1982). 
Oxidation: 
laboratory investigated k = 29 M–1 s–1 for the reaction with RO2 radicals and estimated t. > 240 h in 
river, eutrophic pond, eutrophic lake and oligotrophic lake by the one compartment model (Smith 
et al. 1978) 
k(aq.) = 1.9 . 10–4 s–1 with t. = 1.0 h under natural sunlight conditions for midday, midsummer at a 
latitude of 40°N; k(aq.) = 29 M–1 s–1 with t. = 280 yr for free-radical oxidation in air-saturated water 
(NRCC 1983) 
Hydrolysis: 
Biodegradation: estimated half-lives of 14 h in river, eutrophic pond, eutrophic lake and > 103 h in oligotrophic 
lake by the one compartment model (Smith et al. 1978). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: estimated t. = 6.0 h in river, t. = 15.0 h in eutrophic pond and eutrophic lake and t. = 3.0 h in 
oligotrophic lake from average photolysis rates on a summer day at 40°N latitude by the one compartment 
model (Smith et al. 1978); 
photolytic t. = 1.0 h in aquatics (Haque et al. 1980); t. = 3 h for disappearance via direct photolysis in 
aquatic media (Harris 1982). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3377 
TABLE 16.1.7.10.1 
Reported vapor pressures of carbazole at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 Jimenez et al. 1990 
summary of literature data Knudsen effusion 
t/°C P/Pa t/°C P/Pa 
248.2 7999 73.43 0.0610 
265.0 13332 78.72 0.101 
292.5 26664 81.0 0.129 
323.0 53329 83.59 0.167 
354.8 101325 86.67 0.219 
87.13 0.227 
mp/°C 244.8 90.80 0.329 
. (at 25°C) 1.26 g/cm3 
eq. 1 P/Pa 
A 14.04 
B 5288.4 
enthalpy of sublimation: 
.Hsub/(kJ mol–1) = 103.3 
at 25°C 
FIGURE 16.1.7.10.1 Logarithm of vapor pressure versus reciprocal temperature for carbazole. 
Carbazole: vapor pressure vs. 1/T 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0
0.001 0.0014 0.0018 0.0022 0.0026 0.003 0.0034 
1/(T/K) 
log(PS 
/Pa) 
Jimenez et al. 1990 
Stull 1947 
m.p. = 246.3 °C b.p. = 354.7 °C 
© 2006 by Taylor & Francis Group, LLC

3378 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.11 Benzo[c,g]carbazole 
Common Name: Benzo[c,g]carbazole 
Synonym: 7H-dibenzo[c,g]carbazole 
Chemical Name: 7H-dibenzo[c,g]carbazole 
CAS Registry No: 194-59-2 
Molecular Formula: C20H13N, C10H6NHC10H6 
Molecular Weight: 267.324 
Melting Point (°C): 
158 (Lide 2003) 
Boiling Point (°C) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
296.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0496 (mp at 158°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
0.063 ± 0.003 (shake flask-GC, Smith et al. 1978) 
0.064 (Mill et al. 1981) 
0.064 (Pearlman et al. 1984) 
Vapor Pressure (Pa at 25°C): 
1.33 . 10–7 (estimated by comparison with benzo[a]pyrene, Smith et al. 1978) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.00048 (calculated-P/C, Smith & Bomberger 1980) 
Octanol/Water Partition Coefficient, log KOW: 
5.75 (calculated-S, Steen & Karickhoff 1981) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
4.93 (mixed microbial populations, Steen & Karickhoff 1981) 
Sorption Partition Coefficient, log KOC: 
4.31 (Coyote Creek sediment, Smith et al. 1978) 
6.03, 6.16 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 15000 h in river, t. = 37000 h in eutrophic pond, t. = 73000 h in eutrophic lake 
and oligotrophic lake by the one compartment model (Smith et al. 1978). 
Photolysis: rate constant 
k = 5.2 . 10–4 s–1 for transformation and transport when exposed to midday sunlight in mid-January with 
estimated t. = 1.0 h in river, t. = 1.5 h in eutrophic pond and eutrophic lake and t. = 0.5 h in oligotrophic 
lake assuming winter insulation by the one compartment model (Smith et al. 1978) 
photolytic t. = 0.35 h in aquatics (Haque et al. 1980). 
NH 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3379 
Oxidation: 
laboratory studied k = 830 M–1 s–1 for the reaction with the RO2 radicals and estimated t. > 700 h in river, 
eutrophic pond, eutrophic lake and oligotrophic lake by the one compartment model (Smith et al. 1978) 
k = 5.5 . 10–4 s–1 with t. = 0.4 d under natural sunlight conditions for midday, midsummer at a latitude of 
40°N; k = 830 M–1 s–1 with t. = 10 d for free-radical oxidation in air-saturated water (NRCC 1983) 
Hydrolysis: 
Biodegradation: estimated half-life to be very long in river, eutrophic pond, eutrophic lake and oligotrophic lake 
by the one compartment model with no acclimated cultures obtained during the screening studies (Smith 
et al. 1978). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: t. = 0.36 h in river water, t. = 1.5 h in pond water, t. = 1.5 h in eutrophic lake and t. = 0.5 h 
in oligotrophic lake for all processes predicted by one-compartment model (Smith et al. 1981); 
t. = 10 d for free-radical oxidation in air-saturation water (NRCC 1983). 
© 2006 by Taylor & Francis Group, LLC

3380 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.7.12 Acridine 
Common Name: Acridine 
Synonym: 2,3,5,6-dibenzopyridine 
Chemical Name: acridine, 2,3,5,6-dibenzopyridine 
CAS Registry No: 260-94-6 
Molecular Formula: C13H9N 
Molecular Weight: 179.217 
Melting Point (°C): 
110 (Lide 2003) 
Boiling Point (°C): 
344.86 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.005 (Weast 1982–83) 
Molar Volume (cm3/mol): 
196.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
5.60 (Albert 1966; Matzner et al. 1991; Matzner & Bales 1994) 
5.58 (20°C, Weast 1982–83) 
5.60 (protonated cation + 1, Dean 1985) 
10.65 (Sangster 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
18.58 ± 0.38 (McEachern et al. 1975) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.147 (mp at 110°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
57.4 (Albert 1966) 
38.4 (24°C, shake flask-LSC, Means et al. 1980) 
46.6 (literature average, Pearlman et al. 1984) 
54.8 (centrifuge-HPLC at pH 8, Matzner et al. 1991) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
133.3* (129.4°C, summary of literature data, temp range 129.4–346°C, Stull 1947) 
log (P/mmHg) = [–0.2185 . 15174.6/(T/K)] + 8.251980; temp range 129.4–346°C (Antoine eq., Weast 
1972–73) 
0.0065* (Langmuir free evaporation, measured range 7.96–50°C, McEachern et al. 1975) 
log (P/mmHg) = 27.076 – 11021.64/(T/K); measured range 281.2–323.3 K (Langmuir free evaporation, McEachern 
et al. 1975) 
0.0075 (extrapolated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1 – 618.827/(T/K)] . 10^{0.839996 – 4.19344 . 10–4 ± (T/K) + 3.63487 . 10–7 ± (T/K)2}; temp 
range: 402.6–619.2 K (Cox eq., Chao et al. 1983) 
0.2066 (static apparatus-extrapolated from Chebyshev polynomials, Sivaraman & Kobayashi 1983) 
0.0065 (Interpolated-Antoine eq.-I, Stephenson & Malanowski 1987; quoted, Ma et al. 1990) 
N 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3381 
log (PS/kPa) = 8.30838 – 3365.943/(–48.723 + T/K); temp range 293–367 K (solid, Antoine eq.-I, Stephenson 
& Malanowski 1987) 
log (PL/kPa) = 6.73664 – 2699.39/(–48.611 + T/K); temp range 402–619 K (liquid, Antoine eq.-II, Stephenson 
& Malanowski 1987) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.030 (calculated-P/C, Ma et al. 1990) 
Octanol/Water Partition Coefficient, log KOW: 
3.40 (shake flask-UV, Hansch & Fujita 1964) 
3.39 (HPLC-RT correlation, Mirrlees et al. 1976) 
3.39 (shake flask at pH 7.4, Unger et al. 1978) 
3.62 (shake flask-LSC, Means et al. 1980) 
3.29 (shake flask-AS at pH 7.4, Unger & Chiang 1981) 
3.31 ± 0.03 (HPLC-RV correlation-ALPM, Garst 1984) 
3.35 ± 0.02 (HPLC-RV correlation-ALPM, Garst & Wilson 1984) 
3.32 (shake flask-GC at pH 7.0, Haky & Leja 1986) 
3.40 (recommended, Sangster 1989, 1993) 
3.40 (recommended, Hansch et al. 1995) 
3.18 ± 0.64, 3.27 ± 0.53 (HPLC-k. correlation: ODS-65 column, Diol-35 column, Helweg et al. 1997) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.40 (selected, Ma et al. 1990) 
Sorption Partition Coefficient, log KOC: 
4.69 (average of sediments and soil samples, equilibrium sorption isotherm, Means et al. 1980) 
3.32 (calculated, Means et al. 1980) 
–0.157 (estimated of Loring subsurface material, Zachara et al. 1987) 
0.610 (estimated of Anvil Points subsurface material, Zachara et al. 1987) 
3.09–3.41 (soil, calculated-KOW, model of Karickhoff et al. 1979, Sabljic 1987) 
3.16–3.33 (soil, calculated-KOW, model of Kenaga & Goring 1980, Sabljic 1987) 
2.36–2.52 (soil, calculated-KOW, model of Briggs 1981, Sabljic 1987) 
2.98–3.30 (soil, calculated-KOW, model of Means et al. 1982, Sabljic 1987) 
2.19–2.48 (soil, calculated-KOW, model of Chiou et al. 1983, Sabljic 1987) 
4.22, 4.26 (soil, quoted, calculated-MCI ., Sabljic 1987) 
4.11, 3.32 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
4.11, 4.31 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
4.00 (HPLC-k. correlation, Nielsen et al. 1997) 
4.79 (soil-pore water partition coeff., Askov soil - a Danish agricultural soil, Sverdrup et al. 2002) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 109 h–1, k2 = 3.68 h–1 (daphnia pulex, 21°C, Southworth et al. 1978) 
Half-Lives in the Environment: 
Biota: elimination t. = 11.3 min (daphnia pulex, Southworth et al. 1978). 
© 2006 by Taylor & Francis Group, LLC

3382 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.7.12.1 
Reported vapor pressures of acridine at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 McEachern et al. 1975 
summary of literature data Langmuir free evaporation 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
129.4 133.3 7.96 0.000653 eq. 1a P/mmHg 
165.8 666.6 12.02 0.001027 A 27.076 
184.0 1333 16.08 0.002413 B 11021.64 
203.5 2666 19.95 0.00329 temp range: 281.2–323.2 K 
224.2 5333 25.05 0.00652 enthalpy of fusion: 
238.7 7999 25.05 0.00656 .Hfus/(kJ mol–1) = 18.58 
256.0 13332 29.98 0.01145 enthalpy of sublimation: 
284.0 26664 35.08 0.0213 .Hsub/(kJ mol–1) = 121.75 
314.3 53329 40.02 0.0380 temp range: 281.2–323.3 K 
345.0 101325 45.09 0.0640 enthalpy of vaporization: 
50.0 0.1074 .HV/(kJ mol–1) = 72.59 
mp/°C 110.5 
FIGURE 16.1.7.12.1 Logarithm of vapor pressure versus reciprocal temperature for acridine. 
Acridine: vapor pressure vs. 1/T 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
0.0014 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 
1/(T/K) 
P( gol 
S 
) aP/ 
McEachern et al. 1975 
Stull 1947 
b.p. = 344.86°C m.p. = 106 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3383 
16.1.8 SULFUR COMPOUNDS 
16.1.8.1 Carbon disulfide 
Common Name: Carbon disulfide 
Synonym: carbon disulphide 
Chemical Name: carbon disulfide 
CAS Registry No: 75-15-0 
Molecular Formula: CS2 
Molecular Weight: 76.141 
Melting Point (°C): 
–112.1 (Lide 2003) 
Boiling Point (°C): 
46 (Lide 2003) 
Density (g/cm3): 
1.2632 (20°C, Weast 19820–83) 
1.26311, 1.2555 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
66.0 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Vaporization, .HV (kJ/mol): 
27.522, 26.736 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Sublimation, .Hsubl (kJ/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
4.389 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
2100 (20°C, selected, Riddick et al. 1986) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
53329* (28°C, summary of literature data, temp range –73.8 to 46.5°C, Stull 1947) 
47359* (24.582°C, comparative ebulliometry, measured range 3.6–80°C, Waddington et al. 1962) 
log (P/mmHg) = 6.94194 – 1168.623/(241.534 + t/°C); temp range 3.6–80°C (Antoine eq., comparative ebulliometry, 
Waddington et al. 1962) 
49704* (25.931°C, temp range –17.76 to 45.142°C, Boublik & Aim 1972; quoted, Boublik et al 1984) 
log (P/kPa) = 6.86752 – 1169.022/(241.582 + t/°C), temp range 3.6–80°C (Antoine eq. derived from exptl. data 
of Waddington et al. 1949, Boublik et al. 1984) 
log (P/kPa) = 6.03385 – 1151.908/(239.748 + t/°C), temp range –17.76 to 45.14°C (Antoine eq. derived from 
exptl. data, Boublik et al. 1984) 
48210 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.06694 – 1168.623/(t/°C + 241.534) temp range not specified (Antoine eq., Riddick et al. 1986) 
log (PL/kPa) = 6.03694 – 1153.5/(–33.22 + T/K); temp range 256–319 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.07588 – 1174.112/(–30.896 + T/K); temp range 260–353 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6 19814– 1231.307/(–26.024 + T/K); temp range 338–408 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6 80466– 1278.903/(43.404 + T/K); temp range 388–497 K (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.58592 – 2639.181/(165.312 + T/K); temp range 490–533 K (Antoine eq.-V, Stephenson & 
Malanowski 1987) 
S S C 
© 2006 by Taylor & Francis Group, LLC

3384 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
39597 (20°C, Howard 1990) 
log (P/mmHg) = 25.1475 – 2.0349 . 103/(T/K) –6.7794·log (T/K) + 3.4828 . 10–3·(T/K) – 1.0105 . 10–14·(T/K)2; 
temp range 162–552 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 
142 (calculated-P/C, Howard 1990) 
1946 (calculated-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 
1577 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 3.485 – 1077/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
1.70–4.60 (Hansch & Leo 1985) 
2.14 (recommended, Sangster 1993) 
1.94 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
0.90 (calculated-solubility, Howard 1990) 
Sorption Partition Coefficient, log KOC: 
1.80 (calculated-solubility, Howard 1990) 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Volatilization: t. = 2.6 h in a model river (Howard 1990) 
Photolysis: 
Oxidation: 
Hydrolysis: t. = 1.1 yr at pH 9 in alkaline solution (Howard 1990) 
Biodegradation: 
Biotransformation: 
Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 
Half-Lives in the Environment: 
Air: t.: = 9 d degraded by reacting with atomic oxygen and photochemically produced OH radicals (Howard 
1990) 
TABLE 16.1.8.1.1 
Reported vapor pressures of carbon disulfide at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 

log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 Waddington et al. 1962 Boublik & Aim 1972 
summary of literature data comparative ebulliometry in Boublik et a. 1984 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–73.8 133.3 3.588 19920 –17.76 6967 
–54.3 666.6 8.772 25007 ~12.358 9306 
–44.7 1333 13.999 31168 ~7.204 12046 
–34.3 2666 19.269 38547 ~3.286 14549 
–22.5 5333 24.582 47359 1.223 17921 
–15.3 7999 29.927 57803 5.076 21314 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3385 
TABLE 16.1.8.1.1 (Continued) 
Stull 1947 Waddington et al. 1962 Boublik & Aim 1972 
summary of literature data comparative ebulliometry in Boublik et a. 1984 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–5.1 13332 35.318 70109 9.448 25780 
10.4 26664 40.751 84525 12.981 29923 
28.0 53329 46.225 101325 17.168 35493 
46.5 101325 51.744 120798 21.087 41470 
57.295 143268 25.931 49704 
mp/°C –110.8 62.885 169052 31.522 61295 
68.531 198530 38.041 77125 
74.218 232087 45.142 97853 
79.927 270110 
bp/°C 46.217 
bp/°C 46.22 
Antoine eq. eq. 2 P/kPa 
eq. 2 P/mmHg A 6.03385 
A 6.94194 B 1151.908 
B 1168.623 C 239.748 
C 241.534 
data also fitted to Cox eq. 
see ref. 
FIGURE 16.1.8.1.1 Logarithm of vapor pressure versus reciprocal temperature for carbon disulfide. 
Carbon disulfide: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0028 0.0032 0.0036 0.004 0.0044 0.0048 0.0052 
1/(T/K) 
P ( g o l S ) a P / 
Waddington et al. 1962 
Boublik & Aim 1972 
Stull 1947 
b.p. = 46 °C 
© 2006 by Taylor & Francis Group, LLC

3386 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.8.2 Dimethyl sulfide 
Common Name: Dimethyl sulfide 
Synonym: DMS, methyl sulfide, thiobismethane, 2-thiapropane 
Chemical Name: dimethyl sulfide 
CAS Registry No: 75-18-3 
Molecular Formula: C2H6S, (CH3)2S 
Molecular Weight: 62.134 
Melting Point (°C): 
–98.24 (Lide 2003) 
Boiling Point (C): 
37.33 (Riddick et al. 1986; Lide 2003) 
Density (g/cm3 at 25°C): 
0.84825, 0.84230 (20°C, 25°C, Dreisbach 1961) 
0.8423 (Riddick et al. 1986) 
Molar Volume (cm3/mol): 
73.2 (Kamlet et al. 1986) 
73.8 (20°C, calculated-density) 
77.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKBH + : 
–6.99 (Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
27.49, 26.82 (25°C, bp, Dreisbach 1961) 
27.65, 27.0 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
7.99 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
15606 (Hine & Mookerjee 1975) 
6300 (Verschueren 1983) 
22000 (estimated-activity coefficient by headspace-GC, Przyjazny et al. 1983) 
20000 (Riddick et al. 1986) 
19600 (selected, Yaws et al. 1990) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
53174* (20.087°C, static method, measured range –22.547 to 20.087°C, Osborn et al. 1942) 
log (P/mmHg) = 16.51798 – 1876.370/(T/K) – 3.04727 ± log (T/K); temp range –22.547 to 20.087°C (static 
method, Osborn et al. 1942) 
53329* (18.7°C, summary of literature data, temp range –75.6 to 36°C, Stull 1947) 
64650 (calculated from determined data, Dreisbach 1961) 
log (P/mmHg) = 6.93138 – 1081.587/(229.746 + t/°C), temp range –50 to 130°C (Antoine eq. for liquid state, 
Dreisbach 1961) 
64501* (interpolated-Antoine eq., temp range –47.4 to 58.319°C, Zwolinski & Wilhoit 1971) 
log (P/mmHg) = 6.94879 – 1090.755/(230.799 + t/°C); temp range –47.4 to 58.319°C (liquid, Antoine eq., 
Zwolinski & Wilhoit 1971) 
70300 (Hine & Mookerjee 1975) 
log (P/mmHg) =[–0.2185 . 6742.3/(T/K)] + 7.589204; temp range –75 to 224.5°C (Antoine eq., Weast 1972–73) 
56000 (20°C, Verschueren 1983) 
64443 (calculated-Antoine eq. of Boublik et al. 1973, Przyjazny et al. 1983) 
64460 (extrapolated-Antoine eq., Boublik et al. 1984) 
S 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3387 
log (P/kPa) = 6.27843 – 1196.875/(242.81 + t/°C), temp range –22.55 to 20.09°C (Antoine eq. from reported 
exptl. data, Boublik et al. 1984) 
64470 (extrapolated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 7.1509 – 1195.58/(242.68 + t/°C); temp range –22 to 20°C (Antoine eq., Dean 1985, 1992) 
64650 (quoted, Riddick et al. 1986) 
log (P/kPa) = 6.07369 – 1090.755/(230.799 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
64520 (interpolated, Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.07043 – 1088.851/(–42.594 + T/K); temp range 268–319 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.13042 – 1124.998/(–37.961 + T/K); temp range 307–379 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.42655 – 1344.329/(–7.456 + T/K); temp range 372–453 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.36327 – 2293.043/(130.243 + T/K); temp range 447–503 K (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 37.2604 – 2.4251 . 103/(T/K) –11.384·log (T/K) + 5.8122 . 10–3·(T/K) + 8.5893 . 10–14·(T/K)2; 
temp range 175–503 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence. Additional data at 
other temperatures designated * are compiled at the end of this section): 
278.1 (1/KAW, exptl., Hine & Mookerjee 1975) 
298, 366.6 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
165 (20°C, headspace-GC, Vitenberg et al. 1975) 
180.4, 184.7, 173.5 (headspace-GC, concn. of 10, 1.0, 0.1 ppm by weight, Przyjazny et al. 1983) 
180.4, 184.7, 173.5 (headspace-GC, concn. of 10, 1.0 and 0.1 ppm by weight, measured range 25–70°C, data 
presented in graph, Przyjazny et al. 1983) 
log (1/KAW) = 1637.3/(T/K) – 4.354; temp range 25–70°C (headspace-GC, concn of 10 ppm by weight, Przyjazny 
et al. 1983) 
log (1/KAW) = 1635.6/(T/K) – 4.358; temp range 25–70°C (headspace-GC, concn of 1.0 ppm by weight, Przyjazny 
et al. 1983) 
log (1/KAW) = 1598.2/(T/K) – 4.205; temp range 25–70°C (headspace-GC, concn of 0.1 ppm by weight, Przyjazny 
et al. 1983) 
163.4 (quoted, Gaffney et al. 1987) 
184, 1271 (quoted, calculated-molecular structure, Russell et al. 1992) 
138 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996) 
233.0* (equilibrium headspace-GC, in seawater, measured range 18–44°C, Wong & Wang 1997) 
61.97 (equilibrium headspace-GC, Marin et al. 1999) 
155 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 3.556 – 1394/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression 
see reference: 
© 2006 by Taylor & Francis Group, LLC

3388 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
kOH* = (9.80 ± 1.2) . 10–12 cm3 molecule–1 s–1 at 299.9 K, measured range 299.9–426.5 K (flash photolysisresonance 
fluorescence, Atkinson et al. 1978) 
kOH* = (8.28 ± 0.87) . 10–12 cm3 molecule–1 s–1 at 297 K, measured range 273–400 K by flash photolysisresonance 
fluorescence, Kurylo 1978) 
kO(3P)* = 57 . 10–12 cm3 molecule–1 s–1 for gas-phase reaction with O(3P) atom at 296 K, measured range 
252–493 K (Slagle et al. 1978) 
kOH* = (4.26 ± 0.56) . 10–11 cm3 molecule–1 s–1 at 298 K, measured range 248–363 K (flash photolysisresonance 
fluorescence, Wine et al. 1981) 
kOH = (1.0 ± 0.1) . 10–11 cm3 molecule–1 s–1 with an estimated lifetime . ~ 30 h in the daytime, 
kNO3 = (5.4 ± 0.7) . 10–13 cm3 molecule–1 s–1 with an estimated . ~ 3 h in the nighttime hours at 296 ± 2 K 
(Atkinson et al 1984) 
kO3 < 8 . 10–19 cm3 molecule–1 s–1 with a loss rate of < 0.05 d–1, kOH = 9.80 . 10–12 cm3 ± molecule–1 s–1 with 
a loss rate of 0.8 d–1, and kNO3 = 9.7 . 10–13 cm3 molecule–1 s–1 with a loss rate of 20 d–1 at room temp. 
(review, Atkinson & Carter 1984) 
kO3 < 8 . 10–20 cm3 molecule–1 s–1 with a loss rate of < 0.004 d–1, kOH = 6.3 . 10–12 cm3 molecule–1 s–1 with 
a loss rate of 0.27 d–1, and kNO3 = 9.7 . 10–13 cm3 molecule–1 s–1 with a loss rate of 20 d–1 at room temp. 
(review, Atkinson 1985) 
kOH* = (4.09, 4.44) . 10–12 cm3 molecule–1 s–1 at 298 K, measured range 267–397 K (flash photolysisresonance 
fluorescence, Hynes et al. 1986) 
kOH* = (3.60 ± 0.2) . 10–12 cm3 molecule–1 s–1 at 297 K, measured range 297–440 K by flash photolysisresonance 
fluorescence; kOH = 9.36 . 10–12 cm3 molecule–1 s–1 relative rate to n-hexane, kOH = 5.36 . 10–12 
cm3 molecule–1 s–1 relative rate to cyclohexane at 296 K (Wallington et al. 1986a) 
kNO3* = (8.1 ± 1.3) . 10–13 cm3 molecule–1 s–1 at 298 K, measured range 280–350 K (flash photolysis-visible 
absorption, Wallington et al. 1986b) 
kOH* = (5.50 ± 1.0) . 10–12 cm3 molecule–1 s–1 at 298 K, measured range 260–393 K (discharge flowresonance 
fluorescence, Hsu et al. 1987) 
kOH = (8.0 ± 0.5) . 10–12 cm3 molecule–1 s–1 at 298 K (Relative rate method, Barnes et al. 1989) 
kOH = 3.60 . 10–12 cm3 molecule–1 s–1; k(soln) = 3.2 . 10–11 cm3 molecule–1 s–1 for reaction with OH radical 
in aqueous solution (Wallington et al. 1988) 
kNO3* = (10.6 ± 1.3) . 10–13 cm3 molecule–1 s–1 at room temp., measured range 256–376 K (flow tube-laser 
induced fluorescence, Dlugokencky & Howard 1988) 
kOH* = 4.56 . 10–12 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1989) 
kOH = 4.57 . 10–12 cm3 molecule–1 s–1, kNO3 = 9.77 . 10–13 cm3 molecule–1 s–1 (Sabljic & Gusten 1990; Muller 
& Klein 1991) 
kNO3* = 1.07 . 10–12 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1991) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: atmospheric lifetime . ~ 30 h due to reaction with OH radical in the daytime and . ~3 h due to reaction at 
night with NO3 radical (Atkinson et al. 1984); 
calculated lifetimes, . > 20 d due to reaction with O3 in 24-h, . = 28 h with OH radical during daytime and 
. = 120 min with NO3 radical during nighttime in “clean” atmosphere; . > 3 d due to reaction with O3 
in 24-h, . = 420 min with OH radical in daytime and . = 13 min with NO3 in nighttime in “moderately 
polluted” atmosphere (Winer et al. 1984) 
estimated tropospheric chemical lifetimes, . = 2 d, 2 d and > 15 d for reactions with OH, NO3 and O3, 
respectively, under typical remote tropospheric conditions (Falbe-Hansen et al. 2000) 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3389 
TABLE 16.1.8.2.1 
Reported vapor pressures and Henry’s law constants of dimethyl sulfide at various temperatures 
Vapor pressure Henry’s law constant 
Osborn et al. 1942 Stull 1947 Zwolinski & Wilhoit 1971 Wong & Wang 1997 
static method-manometer summary of literature data selected values equilibrium headspace-GC 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C H/(Pa m3/mol) 
in seawater 
–22.547 6994 –75.6 –133.3 47.4 1333 18 164.6 
–10.028 13699 –58.0 666.6 –37.7 2666 25 233.0 
0.096 22437 –49.2 1333 –31.5 4000 35 381.7 
4.943 28042 –39.4 2666 –26.9 5333 44 556.4 
15.138 43512 –28.4 5333 –23.03 6666 
20.087 53174 –21.4 7999 –19.85 7999 log KAW = A – B/(T/K) 
–12.0 13332 –14.62 10666 KAW 
mp/K 174.855 2.60 26664 –10.39 13332 A 4.806 
bp/K 310.49 18.7 53329 –2.258 19998 B 1735 
36.0 101325 3.885 26664 
log P = A – B/(T/K) – C·log (T/K) 8.883 33331 
P/mmHg mp/°C –83.2 13.127 39997 
A 16.51798 20.138 53329 
B 1876.370 25.860 66661 
C 3.04727 30.733 79993 
35.000 93326 
.Hfus/(kJ mol–1) = 7.985 35.794 95992 
.HV/(kJ mol–1) = 27.98 36.572 98659 
at 291.06 K 37.333 101325 
25 64501 
Antoine eq. 
log P = A – B/(C + t/°C) 
P/mmHg 
A 6.94879 
B 1090.755 
C 230.799 
bp/°C 37.333 
.HV/(kJ mol–1) = 
at 25°C 27.65 
at bp 26.92 
© 2006 by Taylor & Francis Group, LLC

3390 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 16.1.8.2.1 Logarithm of vapor pressure versus reciprocal temperature for dimethyl sulfide. 
FIGURE 16.1.8.2.2 Logarithm of Henry’s law constant versus reciprocal temperature for dimethyl sulfide. 
Dimethyl sulfide: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0028 0.0032 0.0036 0.004 0.0044 0.0048 0.0052 
1/(T/K) 
P 
( gol 
S 
) aP/ 
Osborn et al. 1942 
Stull 1947 
Zwolinski & Wilhoit 1971 
b.p. = 37.33 °C 
Dimethyl sulfide: Henry's law constant vs. 1/T 
4.0 
5.0 
6.0 
7.0 
8.0
0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 
1/(T/K) 
m. aP( / H nl 
3 
) l om/ 
Wong & Wang 1997 (in seawater) 
Hine & Mookerjee 1975 
Vitenberg et al. 1975 
Marin et al. 1999 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3391 
16.1.8.3 Dimethyl disulfide 
Common Name: Dimethyl disulfide 
Synonym: 2,3-dithiabutane 
Chemical Name: dimethyl didisulfide 
CAS Registry No: 624-92-0 
Molecular Formula: C2H6S2, CH3SSCH3 
Molecular Weight: 94.199 
Melting Point (°C): 
–84.67 (Lide 2003) 
Boiling Point (°C): 
109.74 (Lide 2003) 
Density (g/cm3): 
1.6025 (20°C, Weast 1982–83) 
Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
103.0 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Vaporization, .HV (kJ/mol): 
38.37, 33.68 (25, bp, Zwolinski & Wilhoit 1971) 
Enthalpy of Sublimation, .Hsubl (kJ/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
3400 (estimated-activity coefficient by headspace-GC, Przyjazny et al. 1983) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
3825* (static method, measured range 0–60°C, Scott et al. 1950) 
3813* (interpolated-Antoine eq., temp range 5.356–109.745°C, Zwolinski & Wilhoit 1971) 
log (P/mmHg) = 6.97792 – 1396.342/(218.863 + t/°C); temp range 5.356 –109.745°C (Antoine eq., Zwolinski 
& Wilhoit 1971) 
3850 (calculated-Antoine eq. of Boublik et al. 1973, Przyjazny et al. 1983) 
log (P/kPa) = 6.18000 – 1389.151/(223.184 + t/°C), temp range 0–60°C (Antoine eq. derived from Scott et al. 
1950 data, Boublik et al. 1984) 
log (P/kPa) = 6.08703 – 1336.665/(217.767 + t/°C), temp range 61.4–128,6°C (Antoine eq. derived from Scott 
et al. 1950 data, Boublik et al. 1984) 
log (PL/kPa) = 6.10018 – 1349.006/(–54.389 + T/K), temp range 297–402 K, (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 36.232 – 3.1241 . 103/(T/K) – 9.9328·log (T/K) + 2.2831 . 10–11·(T/K) + 3.1730 . 10–6·(T/K)2; 
temp range 125–499 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 
121 (20°C, headspace-GC, Vitenberg et al. 1975) 
112, 101 (headspace-GC, concn. of 10 and 1.0 ppm by weight, measured range 25–70°C, data presented in 
graph, Przyjazny et al. 1983) 
log (1/KAW) = 1657.1/(T/K) – 4.211; temp range 25–70°C (headspace-GC, concn of 10 ppm by weight, Przyjazny 
et al. 1983) 
log (1/KAW) = 1854.4/(T/K) – 4.828; temp range 25–70°C (headspace-GC, concn of 1.0 ppm by weight, Przyjazny 
et al. 1983) 
77.5 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001) 
S 
S 
© 2006 by Taylor & Francis Group, LLC

3392 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
log KAW = 4.828 – 1384/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
1.77 (shake flask, Log P Database, Hansch & Leo 1987) 
1.77 (recommended, Sangster 1993) 
1.77 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, and Half-Lives, t., or Lifetimes, .: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = 2.40 . 10–10 cm3 molecule–1 s–1, at 297 K (relative rate method, Cox & Sheppard 1980) 
kOH* = (1.84 – 19.8) . 10–10 cm3 molecule–1 s–1, at 298 K, measured range 255–377 K (flask photolysisresonance 
fluorescence, Wine et al. 1984) 
kOH* = 2.05 . 10–10 cm3 molecule–1 s–1, at 298 K (tentative recommended, Atkinson 1985) 
kNO3* = 4.9 . 10–13 cm3 molecule–1 s–1 at 298 K, measured range 280–350 K (flash photolysis-optical 
absorption, Wallington et al. 1986) 
kNO3* = (7.3 ± 1.5) . 10–13 cm3 molecule–1 s–1 at room temp., measured range 334–382 K (flow tube-laser 
induced fluorescence, Dlugokencky & Howard 1988) 
kNO3 = 7.0 . 10–13 cm3 molecule–1 s–1, independent of temperature over the range ~300–380 K (recommended, 
Atkinson 1991) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 
Half-Lives in the Environment: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3393 
TABLE 16.1.8.3.1 
Reported vapor pressures of dimethyl disulfide at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Scott et al. 1950 Zwolinski & Wilhoit 1971 
static method-manometer ebulliometric method selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
0 904 61.411 19920 5.356 1333 106.905 93326 
15 2230 67.301 25007 18.299 2666 107.872 95992 
20 2936 73.234 31160 25.891 4000 108.819 98659 
25 3825 79.201 38547 31.579 5333 109.745 101325 
30 4930 85.218 47359 36.177 6666 25.0 3813 
35 6301 91.283 57803 40.060 7999 Antoine eq. 
40 7975 97.393 70109 46.435 10666 eq. 2 P/mmHg 
45 10007 103.54 84525 51.600 13332 A 6.97792 
50 12448 109.738 101325 61.518 19998 B 1396.342 
55 15359 115.984 120798 69.008 26664 C 218.863 
60 18813 122.273 143268 75.099 33331 bp/°C 109.745 
128.611 169052 80.271 39997 .HV/(kJ mol–1) = 
88.812 53329 at 25°C 38.37 
95.780 66661 at bp 33.68 
101.712 79993 
FIGURE 16.1.8.3.1 Logarithm of vapor pressure versus reciprocal temperature for dimethyl disulfide. 
Dimethyl disulfide: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 0.004 
1/(T/K) 
log 
(PS/Pa) 
Scott et al. 1950 
Zwolinski & Wilhoit 1971 
b.p. = 109.74 °C 
© 2006 by Taylor & Francis Group, LLC

3394 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.8.4 Dimethyl sulfoxide (DMSO) 
Common Name: Dimethyl sulfoxide 
Synonym: DMSO, sulfinylbismethane, methyl sulfoxide, methylsulfinylmethane, SQ 9453, DMS-70, DMS-90, Deltan, 
Demasorb, Demavet, Demeso, Dermasorb, Dolicur, Domoso, Dromisol, Gamasol 90, Hyadur, Rimso-50, Sclerosol, 
Somipront, Somtexan, Topsym 
Chemical Name: dimethyl sulfoxide 
CAS Registry No: 67-68-5 
Molecular Formula: C2H6OS, (CH3)2SO 
Molecular Weight: 78.133 
Melting Point (°C): 
17.89 (Lide 2003) 
Boiling Point (°C): 
189.0 (Stephenson & Malanowski 1987; Lide 2003) 
Density (g/cm3 at 25°C): 
1.1014 (Weast 1982–83) 
Molar Volume (cm3/mol): 
85.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
1.4 (Riddick et al. 1986) 
Enthalpy of Vaporization, .HV (kJ/mol): 
52.88, 43.14 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
14.368 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
253000 (Riddick et a. 1986) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
80.0* (gas saturation, measured range 20–50°C, Douglas 1948) 
log (P/mmHg) = 26.49588 – 3539.32/(T/K) – 6.000 ± ln (T/K); temp range 20–50°C (gas saturation, Douglas 
1948) 
460* (52.35°C, Hg manometer, measured range 325.5–442.1 K, Jakli & van Hook 1972) 
ln (P/mmHg) = 17.4922 – 4517.79/(T/K – 47.2583); temp range 291.7–463 K (Hg manometer, Antoine eq. with 
literature data, Jakli & van Hook 1972) 
56.0 (20°C, Verschueren 1983) 
80.9 (extrapolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.64816 – 1922.32/(223.353 + t/°C); temp range 52.4–168.95°C (Antoine eq. from reported exptl. 
data of Jakli & von Hook 1972, Boublik et al. 1984) 
80.0 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.72161 – 1962.06/(225.892 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 
79.5 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 6.72167 – 1962.05/(–47.258 + T/K); temp range 305–464 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 45.4653 – 4.0439 . 103/(T/K) – 13.21·log (T/K) + 1.0981 . 10–7·(T/K) + 6.4155 . 10–6·(T/K)2; 
temp range 292–465 K (vapor pressure eq., Yaws et al. 1994) 
Henry’s Law Constant (Pa·m3/mol): 
O
S 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3395 
Octanol/Water Partition Coefficient, log KOW: 
–1.35 (shake flask, Hansch & Leo 1979, 1987) 
–0.85 (calculated-UNIFAC activity coefficients, Banerjee & Howard 1988) 
–1.35 (recommended, Sangster 1989) 
–1.35 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
4.96 (head-space GC, Abraham et al. 2001) 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = (6.2 ± 2.2) . 10–11 cm3 molecule–1 s–1; kNO3 = (1.7 ± 0.3) . 10–13 cm3 molecule–1 s–1; kO3 < 5.0 . 10–19 
cm3 ± molecule–1 s–1 at room temp (Barnes et al. 1989) 
kOH = (62 ± 25) . 10–12 cm3 molecule–1 s–1 at 300 K (Atkinson 1989) 
kOH = (1.0 ± 0.3) . 10–12 cm3 molecule–1 s–1 at room temp (Hynes & Wine 1996) 
kOH = (8.7 ± 1.6) . 10–11 cm3 molecule–1 s–1 at room temp. (Urbanski et al. 1998) 
kOH = (5.9 ± 1.5) . 10–11 cm3 ± molecule–1 s–1 with tropospheric lifetime . = 5 h, kNO3 = (5.0 ± 3.8) . 10–13 
cm3 molecule–1 s–1 with tropospheric lifetime . = 3 d; kO3 < 1.0 . 10–19 cm3 ± molecule–1 s–1 with 
tropospheric lifetime . > 150 d and kCl = (7.4 ± 1.0) . 10–11 cm3 molecule–1 s–1 for reaction wit Cl atoms 
with tropospheric lifetime . = 62 d at room temp and 740 torr (Relative rate method, Falbe-Hansen et al. 
2000) 
Hydrolysis: k = 6.60 . 109 M–1 s–1 (Buxton et al. 1986) 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: estimated tropospheric chemical lifetimes, . = 5 h, 3 d and > 150 d for reactions with OH, NO3 and O3, 
respectively, under typical remote tropospheric conditions (Falbe-Hansen et al. 2000) 
© 2006 by Taylor & Francis Group, LLC

3396 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.8.4.1 
Reported vapor pressures of dimethyl sulfoxide at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) log P = A – B/(C + T/K) (3a) 
log P = A – B/(T/K) – C·log (T/K) (4) ln P = A – B/(T/K) – C·ln(T/K) (4a) 
Douglas 1948 Jakli & van Hook 1972 
gas saturation mercury manometer 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
20 55.6 52.35 460 140.15 22905 
25 80.0 56.25 573 148.05 29471 
30 113.7 61.45 767 162.15 47036 
35 159.3 66.15 993 168.95 56342 
40 220.8 74.85 1560 eq. 3 P/mmHg 
45 302.6 79.95 2000 A 17.4922 
50 409.3 85.65 2653 B 4517.79 
90.26 3293 C 47.2583 
eq. 4 P/mmHg 96.05 4226 
A 29.49558 100.45 5106 
B 3539.32 100.55 5133 
C 6.0000 104.95 6246 
111.95 8359 
bp/°C 192 117.95 10452 
.HV = 52.89 kJ/mol 127.45 14745 
FIGURE 16.1.8.4.1 Logarithm of vapor pressure versus reciprocal temperature for dimethyl sulfoxide. 
Dimethyl sulfoxide: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP 
/ 
Douglas 1948 
Jakli & van Hook 1972 
b.p. = 189 °C m.p. = 17.89 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3397 
16.1.8.5 Dimethyl sulfate 
Common Name: Dimethyl sulfate 
Synonym: sulfuric acid dimethyl ester, DMS 
Chemical Name: dimethyl sulfate 
CAS Registry No: 77-78-1 
Molecular Formula: C2H6O4S, CH3O-SO2-OCH3 
Molecular Weight: 126.132 
Melting Point (°C): 
–27 (Lide 2003) 
Boiling Point (°C): 
188 (decomposes, Lide 2003) 
Density (g/cm3 at 20°C): 
1.3322 (Dean 1985) 
Molar Volume (cm3/mol): 
95.0 (20°C, Stephenson & Malanowski 1987) 
109.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
28000 (hydrolyzes, Verschueren 1983; Dean 1985) 
28000 (18°C, Budavari 1989) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 
< 133 (20°C, Verschueren 1983) 
128 (extrapolated, Antoine eq., Stephenson & Malanowski 1987) 
log (PL/kPa) = 7.28235 – 2437.54/(T/K), temp range 340–470 K, (Antoine eq., Stephenson & Malanowski 1987) 
log (P/mmHg) = 33.9406 – 3.853 . 103/(T/K) – 8.5921·log (T/K) – 1.1705 . 10–10·(T/K) + 8.226 . 10–7·(T/K)2; 
temp range 241–758 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: atmospheric photooxidation t. = of 36.5–365 h, based on estimated rate constant for the vapor-phase 
reaction with OH radical in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: first order hydrolysis rate constant k = 1.6 . 10–4 s–1 at pH 7 and 25°C with t. = 1.2 h (Mabey & 
Mill 1978; quoted, Howard et al. 1991). 
O 
S 
O 
O O 
© 2006 by Taylor & Francis Group, LLC

3398 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Biodegradation: aqueous aerobic biodegradation t. ~ 168–672 h and aqueous anaerobic biodegradation 
t. ~ 672–2688 h (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 36.5–365 h, based on photooxidation half-life in air from estimated rate constant for the vapor phase 
reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
atmospheric transformation lifetime (reaction with liquid water) estimated to be < 1 d (Kelly et al. 1994). 
Surface water: t. = 1.2–12 h, based on overall hydrolysis rate constant for pH 7 at 25°C (Mabey & Mill 1978; 
quoted, Howard et al. 1991) and for complete hydrolysis in neutral, slightly basic, and acidic aqueous 
solutions (Lee et al. 1980; quoted, Howard et al. 1991). 
Groundwater: t. = 1.2–12 h, based on overall hydrolysis rate constant for pH 7 at 25°C (Mabey & Mill 1978; 
quoted, Howard et al. 1991) and for complete hydrolysis in neutral, slightly basic, and acidic aqueous 
solutions (Lee et al. 1980; quoted, Howard et al. 1991). 
Sediment: 
Soil: t. = 1.2–12 h, based on overall hydrolysis rate constant for pH 7 at 25°C and for complete hydrolysis in 
neutral, slightly basic, and acidic aqueous solutions (Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3399 
16.1.8.6 Methanethiol 
Common Name: Methanethiol 
Synonym: methyl mercaptan 
Chemical Name: methanethiol 
CAS Registry No: 74-93-1 
Molecular Formula: CH4S, CH3SH 
Molecular Weight: 48.108 
Melting Point (°C): 
–123 (Weast 1982–83; Lide 2003) 
Boiling Point (°C): 
5.9 (Lide 2003) 
Density (g/cm3): 
0.8665 (20°C, Weast 1982–83) 
Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
55.3 (20°C, Stephenson & Malanowski 1987) 
55.2 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Vaporization, .HV (kJ/mol): 
23.8, 24.57 (25, bp, Zwolinski & Wilhoit 1971) 
Enthalpy of Sublimation, .Hsubl (kJ/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
39000 (estimated-activity coefficient by headspace-GC/FID, Przyjazny et al. 1983) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
101410* (5.977°C, static method-Hg manometer, measured range –51.3 to 5.977°C, Russell et al. 1942) 
log (P/mmHg) = 18.27429 – 1769.05/(T/K) – 3.70248 ± log (T/K); temp range 221.88–279.137 K (static method, 
Russell, et al. 1942) 
101325* (8.7°C, summary of literature data, temp range –90.7 to 7.8°C, Stull 1947) 
202117* (extrapolated, summary of literature data, temp range –70.3 to 5.956°C, Zwolinski & Wilhoit 
1971) 
log (P/mmHg) = 7.03163 – 1015.547/(238.706 + t/°C); temp range –70.3 to 24.694°C (Antoine eq., Zwolinski 
& Wilhoit 1971) 
202346 (calculated-Antoine eq. of Boublik et al. 1973, Przyjazny et al. 1983) 
log (P/kPa) = 6.18991 – 1030.496/(248.330 + t/°C), temp range –51.28 to 5.977°C, (Antoine eq. derived from 
Russell et al. 1942 data, Boublik et al. 1984) 
log (PL/kPa) = 6.19283 – 1031.216/(–32.916 + T/K), temp range 221–283 K, (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.19219 – 1030.918/(–32.845 + T/K), temp range 222–279 K, (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.13699 – 1006.199/(–35.529 + T/K), temp range 267–359 K, (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.53487 – 1278.361/(5.318 + T/K), temp range 345–424 K, (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
H 
H 
H 
SH 
© 2006 by Taylor & Francis Group, LLC

3400 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 
247 (distilled water, headspace-GC/FID, measured range 25–70°C, data in graph, Przyjazny et al. 1983) 
Log (1/KAW) = 1347.1/(T/K) – 3.537; temp range 25–70°C (headspace-GC, Przyjazny et al. 1983) 
187 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996) 
300 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 3.249 – 1219/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH* = 3.39 . 10–11 cm3 molecule–1 s–1 at 299.8 K, measured range 300–423 K (flash photolysis-resonance 
fluorescence, Atkinson et al. 1977) 
kOH* = 3.37 . 10–11 cm3 molecule–1 s–1 at 298 K, measured range 244–366 K (flash photolysis-resonance 
fluorescence, Wine et al. 1981) 
kOH = 9.7 . 10–11 cm3 molecule–1 s–1 at 297 K (relative rate method, Cox & Sheppard 1980) 
kOH = 2.01 . 10–11 cm3 molecule–1 s–1 at 293 K (discharge flow-EPR, Mac Leod et al. 1983) 
kOH = 2.56 . 10–11 cm3 molecule–1 s–1 at 296 K (discharge flow-RF, Lee & Tang 1983) 
kOH* = (3.04 – 32.5) . 10–11 cm3 molecule–1 s–1 at 298 K, measured range 254–430 K ((flash photolysisresonance 
fluorescence, Wine et al. 1984) 
kOH* = 3.31 . 10–11 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1985) 
kNO3 = 9.2 . 10–13 cm3 ± molecule–1 s–1, independent of temperature over the range 250–370 K (IUPAC 
recommended, Atkinson et al. 1989) 
kNO3 = 9.3 . 10–13 cm3 ± molecule–1 s–1, independent of temperature over the range 254–367 K (Atkinson 
1991) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 
Half-Lives in the Environment: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3401 
TABLE 16.1.8.6.1 
Reported vapor pressures of methanethiol at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Russell et al. 1942 Stull 1947 Zwolinski & Wilhoit 1971 
static-Hg manometer summary of literature data selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–53.28 5484 –90.7 133.3 –70.3 1333 3.869 93326 
–23.872 26859 –75.3 666.6 –61.5 2666 4.580 95992 
–9.474 53235 –67.5 1333 –55.9 4000 5.275 98659 
0.029 79913 –58.8 2666 –51.7 5333 5.956 101325 
5.977 101410 –49.2 5333 –48.3 6666 25.0 202117 
–43.1 7999 –45.4 7999 eq. 2 P/mmHg 
bp/K 279.12 –34.8 13332 –40.7 10666 A 7.03163 
–22.1 26664 –36.87 13332 B 1015.547 
eq. 4 P/mmHg –7.80 53329 –29.55 19998 C 238.706 
A 18.27429 8.70 101325 –24.03 26664 bp/°C 5.956 
B 1769.05 –19.54 33331 .HV/(kJ mol–1) = 
C 3.70248 mp/°C – –15.73 39997 at 25°C 23.8 
–9.44 53329 at bp 24.57 
–4.31 66661 
0.051 79993 
FIGURE 16.1.8.6.1 Logarithm of vapor pressure versus reciprocal temperature for methanethiol. 
Methanethiol: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0
0.003 0.0034 0.0038 0.0042 0.0046 0.005 0.0054 
1/(T/K) 
P( gol 
S 
) aP/ 
Russell et al. 1942 
Osborn & Scott 1980 
Stull 1947 
Zwolinski & Wilhoit 1971 
b.p. = 5.9 °C 
© 2006 by Taylor & Francis Group, LLC

3402 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.8.7 Ethanethiol 
Common Name: Ethanethiol 
Synonym: ethyl mercaptan, thioethyl alcohol, ethylhydrosulfide 
Chemical Name: ethanethiol 
CAS Registry No: 75-08-1 
Molecular Formula: C2H6S, C2H5SH 
Molecular Weight: 62.134 
Melting Point (C): 
–147.88 (Lide 2003) 
Boiling Point (°C): 
35.0 (Stull 1947; Dreisbach 1961; Weast 1982–83; Boublik et al. 1984; Dean 1985; Lide 2003) 
Density (g/cm3 at 20°C): 
0.83914, 0.83316 (20°C, 25°C, Dreisbach 1961) 
0.8391 (Weast 1982–83) 
0.8315 (25°C, Dean 1985) 
Molar Volume (cm3/mol): 
74.0 (20°C, calculated-density) 
77.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
27.30, 26.78 (25°C, bp, Dreisbach 1961) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
15600 (Hine & Mookerjee 1975) 
12000 (estimated-activity coefficient by headspace-GC/FID, Przyjazny et al. 1983) 
15000 (Verschueren 1983) 
6800 (Dean 1985) 
6760 (20°C, Budavari 1989) 
14800 (selected, Yaws et al. 1990) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
74630* (interpolated-regression of tabulated data, temp range –76.7 to 35°C, Stull 1947) 
70110* (24.933°C, ebulliometric method, measured range 0.405–66.14°C, McCullough et al. 1952) 
log (P/mmHg) = 6.95206 – 1084.531/(231.385 + t/°C); temp range 0.405–66.14°C (Antoine eq., ebulliometric 
method, McCullough et al. 1952) 
70300 (calculated from determined data, Dreisbach 1961) 
log (P/mmHg) = 6.95206 – 1084.531/(231.385 + t/°C); temp range –40 to 100°C (Antoine eq. for liquid state, 
Dreisbach 1961) 
log (P/mmHg) = 6.95205 – 1084.531/(T/K + 231.385) (Antoine eq., Osborn & Douslin 1966) 
66660*, 70290 (23.613°C, interpolated-Antoine eq., Zwolinski & Wilhoit 1971) 
log (P/mmHg) = 6.95026 – 1084.531/(231.385 + t/°C); temp range –49.2 to 55.83°C (liquid, Antoine eq., 
Zwolinski & Wilhoit 1971) 
70320 (calculated-Antoine eq. of Boublik et al. 1973, Przyjazny et al. 1983) 
58660 (20°C, Verschueren 1983) 
70290 (interpolated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.0768 – 1084.455/(231.374 + t/°C), temp range 0.405–66.115°C (Antoine eq. from reported exptl. 
data of McCullough et al. 1952, Boublik et al. 1984) 
70300 (calculated-Antoine eq., Dean 1985, 1992) 
SH 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3403 
log (P/mmHg) = 6.95206 – 1084.531/(231.39 + t/°C); temp range –49 to 56°C (Antoine eq., Dean 1985, 1992) 
log (PL/kPa) = 6.07243 – 1081.984/(–42.085 + T/K), temp range 273–340 K (Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.08253 – 1086.982/(–41.517 + T/K), temp range 273–313 K (Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.10279 – 1099.374/(–39.807 + T/K), temp range 303–375 K (Antoine eq.-III, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.42565 – 1328.598/(–6.231 + T/K), temp range 365–448 K (Antoine eq.-IV, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 7.84948 – 2874.377/(200.657 + T/K), temp range 442–499 K (Antoine eq.-V, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 29.2763 – 2.2725 . 103/(T/K) – 7.7769·log (T/K) – 3.8954 . 10–11·(T/K) + 3.517 . 10–6·(T/K)2; 
temp range 125–499 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 
278.1 (exptl., Hine & Mookerjee 1975) 
298, 366.6 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 
451 (20°C, headspace-GC, Vitenberg et al. 1975) 
360.3 (distilled water, headspace-GC/FID, measured range 25–70°C, data in graph, Przyjazny et al. 1983) 
log (1/KAW) = 1486.1/(T/K) – 4.147; temp range 25–70°C (headspace-GC, Przyjazny et al. 1983) 
292.4 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 
278, 96.44 (quoted, calculated-molecular structure, Russell et al. 1992) 
292.5 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001) 
log KAW = 4.147 – 1486/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and the Arrhenius expression 
see reference: 
kO(3P)* = 3.0 . 10–12 cm3 ± molecule–1 s–1 for gas-phase reaction with O(3P) atom at 298 K, measured range 
257–495 K (Slagle et al. 1978) 
kOH = 3.67 . 10–11 cm3 molecule–1 s–1 at 296 K (discharge flow-RF, Lee & Tang 1983) 
kOH = 2.70 . 10–11 cm3 molecule–1 s–1 at 293 K (discharge flow-EPR, Mac Leod et al. 1984) 
kOH* = 4.26 . 10–11 cm3 molecule–1 s–1 at 298 K, measured range 252–425 K (flash photolysis-resonance 
fluorescence, Wine et al. 1984) 
kOH* = 4.65 . 10–11 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1985) 
kOH = 4.65 . 10–11 cm3 molecule–1 s–1 at 300 K (relative rate method, Barnes et al. 1986) 
kOH* = 4.68 . 10–11 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1989) 
kNO3 = (1.21 ± 0.28) . 10–12 cm3 molecule–1 s–1 at 298K (relative rate method, Mac Leod et al. 1986; quoted, 
Atkinson 1991) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
© 2006 by Taylor & Francis Group, LLC

3404 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.8.7.1 
Reported vapor pressures of ethanethiol at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 McCullough et al. 1952 Zwolinski & Wilhoit 1971 
summary of literature data ebulliometry selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–76.7 133.3 0.405 25007 –49.2 1333 eq. 2 P/mmHg 
–59.1 666.6 5.236 31160 –39.5 2666 A 6.95206 
–50.2 1333 10.111 38547 –33.3 4000 B 1084.531 
–40.7 2666 15.017 47359 –28.7 5333 C 231.385 
–29.8 5333 19.954 57803 –24.9 6666 bp/°C 35.003 
–22.4 7999 24.933 70109 –21.77 7999 .HV/(kJ mol–1) = 
–13.0 13332 29.944 84525 –16.58 10666 at 25°C 27.30 
1.50 26664 35.000 101325 –12.38 13332 at bp 26.78 
17.7 53329 40.092 120798 –4.304 19998 
35.0 101325 45.221 142368 1.796 26664 
50.390 169052 6.758 33331 
mp/°C –121 55.604 198530 10.972 39997 
60.838 232087 17.932 53329 
66.115 270110 23.613 66661 
28.451 79993 
Antoine eq. 32.686 93326 
eq. 2 P/mmHg 33.475 95992 
A 6.95206 34.247 98659 
B 1084.531 35.003 101325 
C 231.385 25.0 70288 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3405 
FIGURE 16.1.8.7.1 Logarithm of vapor pressure versus reciprocal temperature for ethanethiol. 
Ethanethiol: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0028 0.0032 0.0036 0.004 0.0044 0.0048 0.0052 
1/(T/K) 
P( gol 
S 
) aP 
/ 
McCullough et al. 1952 
Stull 1947 
Zwolinski & Wilhoit 1971 
b.p. = 35 °C 
© 2006 by Taylor & Francis Group, LLC

3406 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.8.8 1-Propanethiol 
Common Name: 1-Propanethiol 
Synonym: n-propyl mercaptan, 1-mercaptopropane 
Chemical Name: 1-propanethiol 
CAS Registry No: 107-03-9 
Molecular Formula: C3H8S, CH3CH2CH2SH 
Molecular Weight: 76.171 
Melting Point (°C): 
–113.13 (Lide 2003) 
Boiling Point (°C): 
67.8 (Lide 2003) 
Density (g/cm3): 
0.8411 (20°C, Weast 1982–83) 
Dissociation Constant, pKa: 
Molar Volume (cm3/mol): 
99.6 (calculated-density, Stephenson & Malanowski 1987) 
Enthalpy of Vaporization, .HV (kJ/mol): 
31.88, 29.53 (25°C, bp, Zwolinski & Wilhoit 1971) 
Enthalpy of Sublimation, .Hsubl (kJ/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
3800 (estimated-activity coefficient by headspace-GC/FID, Przyjazny et al. 1983) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
13332* (15.3°C, summary of literature data, temp range –56.0 to 67.4°C, Stull 1947) 
19920* (24.275°C, ebulliometry, measured range 24.3–102.088°C, Pennington et al. 1956) 
log (P/mmHg) = 6.92846 – 1183.307/(T/K + 224.624); temp range 24.3–102.088°C (Antoine eq., ebulliometry, 
Pennington et al. 1956; Osborn & Douslin 1966) 
20558* (interpolated-Antoine eq., temp range –25 to 90.73°C, Zwolinski & Wilhoit 1971) 
log (P/mmHg) = 6.92846 – 1183.307/(224.624 + t/°C); temp range –25 to 90.73°C (Antoine eq., Zwolinski & 
Wilhoit 1971) 
20569 (calculated-Antoine eq. of Boublik et al. 1973, Przyjazny et al. 1983) 
log (P/kPa) = 6.05331 – 1183.265/(224.618 + t/°C), temp range 24.27–102.088°C (Antoine eq. derived from 
Pennington et al. 1956 data, Boublik et al. 1984) 
log (PL/kPa) = 6.05019 – 1181.703/(–48.687 + T/K), temp range 296–376 K, (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 6.92846 – 1183.307/(224.62 + t/°C), temp range –25 to 91°C (Antoine eq., Dean 1992) 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 
414 (distilled water, headspace-GC/FID, measured range 25–70°C, data in graph, Przyjazny et al. 1983) 
log (1/KAW) = 1552.2/(T/K) – 4.428; temp range 25–70°C (headspace-GC, Przyjazny et al. 1983) 
331 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 4.428 – 1552/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
1.81 (shake flask, Log P Database, Hansch & Leo 1987) 
1.81 (recommended, Sangster 1993) 
1.81 (recommended, Hansch et al. 1995) 
SH 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3407 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH* = (4.18–4.56) . 10–11 cm3 molecule–1 s–1 at 298 K, measured range 257–419 K (flash photolysisresonance 
fluorescence, Wine et al. 1984) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 
Half-Lives in the Environment: 
TABLE 16.1.8.8.1 
Reported vapor pressures of 1-propanethiol at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 Pennington et al. 1956 Zwolinski & Wilhoit 1971 
summary of literature data ebulliometry selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
–56.0 133.3 24.275 18820 –25.0 1333 
–36.3 666.6 29.563 25007 –14.3 2666 
–26.3 1333 34.891 31160 –7.60 4000 
–15.4 2666 40.254 38547 –2.50 5333 
–3.20 5333 45.663 47359 1.65 6666 
4.60 7999 51.113 57803 5.13 7999 
15.3 13332 56.605 70109 10.84 10666 
31.5 26664 62.139 84525 15.47 13332 
49.2 53329 67.719 101325 24.369 19998 
67.4 101325 73.341 120798 31.092 26664 
79.004 143268 36.562 33331 
mp/°C –112 84.710 169052 41.208 39997 
90.464 198543 48.884 53329 
96.225 232087 55.151 66661 
102.088 270110 60.489 79993 
65.163 93326 
bp/°C 67.72 66.034 95992 
Antoine eq. 66.886 98659 
© 2006 by Taylor & Francis Group, LLC

3408 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.8.8.1 (Continued) 
Stull 1947 Pennington et al. 1956 Zwolinski & Wilhoit 1971 
summary of literature data ebulliometry selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
eq. 2 P/mmHg 67.720 101325 
A 6.92846 25.0 20558 
B 1183.307 
C 224.824 eq. 2 P/mmHg 
A 6.92846 
data also fitted to Cox eq. B 1193.307 
C 224.624 
bp/°C 67.72 
.HV/(kJ mol–1) = 
at 25°C 31.88 
at bp 29.53 
FIGURE 16.1.8.8.1 Logarithm of vapor pressure versus reciprocal temperature for 1-propanethiol. 
1-Propanethiol: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0026 0.003 0.0034 0.0038 0.0042 0.0046 
1/(T/K) 
P( gol 
S 
) aP/ 
Pennington et al. 1956 
Stull 1947 
Zwolinski & Wilhoit 1971 
b.p. = 76.8 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3409 
16.1.8.9 1-Butanethiol (Butyl mercaptan) 
Common Name: 1-Butanethiol 
Synonym: butyl mercaptan, n-butyl mercaptan 
Chemical Name: 1-butanethiol 
CAS Registry No: 109-79-5 
Molecular Formula: C4H10S, CH3(CH2)3SH 
Molecular Weight: 90.187 
Melting Point (°C): 
–115.7 (Weast 1982–83; Riddick et al. 1986; Stephenson & Malanowski 1987; Lide 2003) 
Boiling Point (°C): 
98.5 (Lide 2003) 
Density (g/cm3 at 25°C): 
0.8337 (20°C, Weast 1982–83) 
0.84159, 0.83674 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
107.8 (calculated-density, Stephenson & Malanowski 1987) 
121.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
36.53, 32.225 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
10.46 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
597 (Riddick et al. 1986) 
600 (selected, Yaws et al. 1990) 
Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures 
designated * are compiled at the end of this section): 
19920* (51.409°C, ebulliometry, measured range 51.4–135.7°C, Scott et al. 1957) 
log (P/mmHg) = 6.92754 – 1281.018/(T/K + 218.100) (Antoine eq., Osborn & Douslin 1966) 
5330*, 6070 (22.4°C, interpolated-Antoine eq., Zwolinski & Wilhoit 1971) 
log (P/mmHg) = 6.92754 – 1281.018/(218.10 + t/°C); temp range –2.0 to 123.37°C (liquid, Antoine eq., 
Zwolinski & Wilhoit 1971) 
log (P/kPa) = 6.05296 – 1281.344/(218.139 + t/°C), temp range 51.409–135.7°C (Antoine eq. derived from Scott 
et al. 1957 data, Boublik et al. 1984) 
6070 (Riddick et al. 1986) 
log (P/kPa) = 6.05244 – 1281.018/(218.10 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
log (PL/kPa) = 6.05011 – 1279.95/(–55.132 + T/K), temp range 323–409 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 6.92754 – 1281.018/(218.10 + t/°C), temp range –2 to 123°C (Antoine eq., Dean 1992) 
log (P/mmHg) = 36.2672 – 3.0452 . 103/(T/K) –9.9743·log (T/K) – 9.1432 . 10–11·(T/K) + 3.2087 . 10–6·(T/K)2; 
temp range 157–569 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations): 
460.7 (distilled water, headspace-GC/FID, measured range 25–70°C, data in graph, Przyjazny et al. 1983) 
log (1/KAW) = 1655.9/(T/K) – 4.823; temp range 25–70°C (headspace-GC, Przyjazny et al. 1983) 
911.4 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 
363 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001) 
log KAW = 4.823 – 1656/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
SH 
© 2006 by Taylor & Francis Group, LLC

3410 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
2.28 (shake flask, Log P Database, Hansch & Leo 1987) 
2.28 (recommended, Sangster 1989) 
2.28 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = 4.21 . 10–11 cm3 molecule–1 s–1 and kOH = 4.55 . 10–11 cm3 molecule–1 s–1 at 298 K (flash photolysisresonance 
fluorescence, Wine et al. 1984) 
kOH = 5.82 . 10–11 cm3 molecule–1 s–1 at 300 K (relative rate method, Barnes et al. 1986) 
kOH = 5.11 . 10–11 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1989) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
TABLE 16.1.8.9.1 
Reported vapor pressures of 1-butanethiol at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Scott et al. 1957 Zwolinski & Wilhoit 1971 
ebulliometry selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa 
51.409 19920 –2.0 1333 95.687 93326 
57.130 25007 9.60 2666 96.630 95992 
62.897 31169 16.9 4000 97.553 98659 
68.710 38547 22.4 5333 98.456 101325 
74.567 47359 26.9 6666 25.0 7399 
80.472 57803 30.67 7999 eq. 2 P/mmHg 
86.418 70109 36.86 10666 A 6.92854 
92.414 84525 41.87 13332 B 1281.018 
98.454 101325 51.506 19998 C 218.100 
104.544 120798 58.786 26664 bp/°C 98.456 
110.682 143268 64.170 33331 .HV/(kJ mol–1) = 
116.863 169052 69.742 39997 at 25°C 36.53 
123.088 198530 78.056 53329 at bp 32.23 
129.362 232087 84.844 66661 
135.678 170110 90.625 79993 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3411 
FIGURE 16.1.8.9.1 Logarithm of vapor pressure versus reciprocal temperature for 1-butanethiol. 
1-Butanethiol: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 0.004 
1/(T/K) 
P 
( gol 
S 
) aP/ 
Scott et al. 1957 
Zwolinski & Wilhoit 1971 
b.p. = 98.5 °C 
© 2006 by Taylor & Francis Group, LLC

3412 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.1.8.10 Benzenethiol 
Common Name: Benzenethiol 
Synonym: thiophenol, phenyl mercaptan, mercaptobenzene 
Chemical Name: benzenethiol 
CAS Registry No: 108-98-5 
Molecular Formula: C6H6S, C6H5SH 
Molecular Weight: 110.177 
Melting Point (°C): 
–14.93 (Lide 2003) 
Boiling Point (°C): 
169.1 (Lide 2003) 
Density (g/cm3): 
1.0766 (20°C, Weast 1982–83) 
Dissociation Constant, pKa: 
6.615 (Riddick et al. 1986) 
Molar Volume (cm3/mol): 
102.7 (calculated-density, Stephenson & Malanowski 1987) 
106.8 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Vaporization, .HV (kJ/mol): 
45.35, 36.97 (25°C, bp, Riddick et al 1986) 
Enthalpy of Sublimation, .Hsubl (kJ/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
11.45 (calorimetry at triple pt 258.27 K, Scott et al. 1956) 
11.447 (Riddcik et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
133* (18.6°C, summary of literature data, temp range 18.6–168°C, Stull 1947) 
1333* (51.5°C, ebulliometry, measured range 51.5–167.0°C, Vonterres et al. 1955) 
19920* (114.543°C, ebulliometry, measured range 114.543–7212.160°C, Scott et al. 1956) 
log (P/mmHg) = 6.99019 – 1529.454/(230.048 + t/°C); temp range 114.5–212°C (comparative ebulliometry, data 
fitted to Antoine eq., Scott et al. 1956) 
log (P/mmHg) = A ± [1 – 442.298/(T/K)], where log A = 0.87370 – 6.4975 . 10–4 ± (T/K) + 5.2309 . 10–7 ± 
(T/K)2; measured range 114.5–212°C (data fitted to Cox eq., comparative ebulliometry, Scott et al. 1956) 
1333* (52.28°C, derived from compiled data, temp range 52.3–198°C, Zwolinski & Wilhoit 1971) 
log (P/mmHg) = 6.99019 – 1529.454/(230.048 + t/°C); temp range 52.3–198°C (Antoine eq., Zwolinski & 
Wilhoit 1971) 
log (P/kPa) = 6.11539 – 1529.668/(203.074 + t/°C), temp range 114.54–212.16°C (Antoine eq. derived from 
Scott et al. 1956 data, Boublik et al. 1984) 
397 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.11509 – 1529.46/(t/°C + 258.21); temp range not specified (Antoine eq., Riddick et al. 1986) 
log (PL/kPa) = 6.11531 – 1530.286/(–69.948 + T/K); temp range 385–486 K (Antoine eq., Stephenson & 
Malanowski 1987) 
log (P/mmHg) = –5.4919 – 2.8549 . 103/(T/K) + 8.1770·log (T/K) – 1.9494 . 10–2·(T/K) + 9.2817 . 10–6·(T/K)2; 
temp range 258–69 K (vapor pressure eq., Yaws et al. 1994) 
SH 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3413 
Henry’s Law Constant (Pa m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
2.52 (shake flask, Log P Database, Hansch & Leo 1987) 
2.52 (recommended, Sangster 1989) 
2.52 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Half-Lives in the Environment: 
TABLE 16.1.8.10.1 
Reported vapor pressures of benzenethiol at various temperatures and the coefficients for the vapor 
pressure equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 Vonterres et al. 1955 Scott et al. 1956 Zwolinski & Wilhoit 1971 
summary of literature data ebulliometry comparative ebulliometry selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
18.6 133.3 51.5 1333 114.543 19920 52.28 1333 
43.7 666.6 71.5 5333 121.191 25007 65.79 2666 
56.0 1333 87.8 6666 127.897 31160 74.38 4000 
69.7 2666 97.4 9999 134.649 38547 80.81 5333 
84.2 5333 105.5 13332 141.447 47359 86.01 6666 
93.9 7999 116.3 19998 148.294 57803 90.40 7999 
106.6 13332 124.5 26664 155.194 70109 97.61 10666 
125.8 26664 131.3 33330 162.140 84525 103.444 13332 
146.7 53329 136.5 39997 176.188 120789 114.655 19998 
168.0 101325 141.5 46663 183.278 143268 123.120 26664 
146.0 53329 190.426 169052 130.003 33331 
mp/°C - 149.7 59995 197.623 198530 135.847 39997 
153.0 66661 204.867 232087 145.496 53329 
156.0 73327 212.160 270110 153.367 66661 
159.0 79993 160.067 79993 
162.0 86659 mp/K 258.27 165.932 93326 
165.0 93325 .Hfus/(kJ mol–1) = 11.447 167.024 95992 
167.0 101325 bp/K 416.9 168.092 98659 
169.138 101325 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3414 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.8.10.1 (Continued) 
Stull 1947 Vonterres et al. 1955 Scott et al. 1956 Zwolinski & Wilhoit 1971 
summary of literature data ebulliometry comparative ebulliometry selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
eq. 2 P/mmHg 169.653 102658 
A 6.99019 170.163 103991 
B 1529.454 171.167 106658 
C 203.048 
temp range 114–212°C eq. 2 P/mmHg 
A 6.99019 
B 1529.454 
C 203.048 
bp/°C 
.HV/(kJ mol–1) = 40.6 
at normal bp 
FIGURE 16.1.8.10.1 Logarithm of vapor pressure versus reciprocal temperature for benzenethiol. 
Benzenethiol: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 
1/(T/K) 
P 
( gol 
S 
) aP/ 
Vonterres et al. 1955 
Scott et al. 1956 
Stull 1947 
Zwolinski & Wilhoit 1971 
b.p. = 169.1 °C m.p. = -14.93 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3415 
16.1.8.11 Thiophene 
Common Name: Thiophene 
Synonym: thiofuran 
Chemical Name: thiophene, thiofuran 
CAS Registry No: 110-02-1 
Molecular Formula: C4H4S 
Molecular Weight: 84.140 
Melting Point (°C): 
–38.21 (Lide 2003) 
Boiling Point (°C): 
84.0 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.06485, 1.05887 (20°C, 25°C, Dreisbach 1955) 
1.0649 (Weast 1982–83) 
1.06482, 1.05884 (20°C, 25°C, Riddick et al. 1986) 
Molar Volume (cm3/mol): 
79.0 (20°C, calculated from density) 
88.10 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
34.6, 31.472 (25°C, bp, Riddick et al. 1986) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
5.088 (Riddick et al. 1986) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C): 
3015 (shake flask-GC, Price 1976) 
3900 (estimated-activity coefficient by headspace-GC, Przyjazny et al. 1983) 
3600 (18°C, Verschueren 1983) 
3020 (selected, Yaws et al. 1990) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
9670* (interpolated-regression of tabulated data, temp range –40.7 to 81.4°C, Stull 1947) 
7998 (20.1°C, Stull 1947) 
10622* (ebulliometry and manometry, measured range 0–84.155°C, Waddington et al. 1949) 
10620 (calculated from determined data, Dreisbach 1955) 
log (P/mmHg) = 6.95926 – 1246.038/(221.354 + t/°C), temp range 5–155°C (Antoine eq. for liquid state, 
Dreisbach 1955) 
482307* (148.89°C, static-Bourdon gauge, measured range 148.89–304.44°C, Kobe et al. 1956) 
44930* (60.3 °C, isoteniscope/manometry, measured range 60.3–100.3 °C, Eon et al. 1971) 
10670, 10660* (25.09°C, interpolated-Antoine eq., Zwolinski & Wilhoit 1971) 
log (P/mmHg) = 6.95926 – 1246.01/(221.35 + t/°C); temp range –12.3 to 108.1°C (Antoine eq., Zwolinski & 
Wilhoit 1971) 
log (P/mmHg) = [–0.2185 . 8748.3/(T/K)] + 8.273276; temp range –40.7 to 84.4°C (Antoine eq., Weast 
1972–73) 
2450 (calculated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1 – 394.395/(T/K)] . 10^{0.901276 – 10.3229 . 10–4 ± (T/K) + 21.9193 . 10–7 ± (T/K)2}; temp 
range: 278.35–443.60 K (Cox eq., Chao et al. 1983) 
S 
© 2006 by Taylor & Francis Group, LLC

3416 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
7998, 13330 (20°C, 30°C, quoted, Verschueren 1983) 
10622, 10620 (quoted exptl., calculated-Antoine eq., Boublik et al. 1984) 
log (P/kPa) = 6.1336 – 1260.606/(222.787 + t/°C), temp range 0–40°C (Antoine eq. from reported exptl. data, 
Boublik et al. 1984) 
log (P/kPa) = 6.0723 – 1138.803/(220.477 + t/°C), temp range 39.9–119.79°C (Antoine eq. from reported exptl. 
data, Boublik et al. 1984) 
10620 (calculated-Antoine eq., Dean 1985, 1992) 
log (P/mmHg) = 6.95926 – 1246.02/(221.35 + t/°C), temp range –12 to 108°C (Antoine eq., Dean l985, 1992) 
10620 (selected, Riddick et al. 1986) 
log (P/kPa) = 6.08416 – 1246.02/(221.35 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 
10600 (extrapolated-Antoine eq., Stephenson & Malanowski 1987) 
log (PS/kPa) = 9.84733 – 2447.236/(T/K), temp range 195–228 K (solid, Antoine eq.-I, Stephenson & 
Malanowski 1987) 
log (PL/kPa) = 6.06132 – 1232.35/(–53.438 + T/K), temp range 311–393 K (liquid, Antoine eq.-II, Stephenson & 
Malanowski 1987) 
log (P/mmHg) = 36.6016 – 2.9794 . 103/(T/K) – 10.104·log (T/K) + 1.1445 . 10–9·(T/K) + 3.2472 . 10–6·(T/K)2; 
temp range 235–579 K (vapor pressure eq., Yaws et al. 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 
224, 236, 230 (headspace-GC, concn. of 10, 1.0 and 0.1 ppm by weight, measured range 25–70°C, data presented 
in graph, Przyjazny et al. 1983) 
log (1/KAW) = 1563.6/(T/K) – 4.199; temp range 25–70°C (headspace-GC, concn of 10 ppm by weight, Przyjazny 
et al. 1983) 
log (1/KAW) = 1580.0/(T/K) – 4.277; temp range 25–70°C (headspace-GC, concn of 1.0 ppm by weight, Przyjazny 
et al. 1983) 
log (1/KAW) = 1661.9/(T/K) – 4.542; temp range 25–70°C (headspace-GC, concn of 0.1 ppm by weight, Przyjazny 
et al. 1983) 
223.3 (calculated-P/C with selected values) 
296 (computed-vapor-liquid equllibrium VLE data, Yaws et al. 1991) 
182 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001) 
log KAW = 4.542 – 1662/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
1.81 ± 0.01 (shake flask-UV, Iwasa et al. 1965) 
1.79 (calculated-f const., Rekker 1977) 
1.74 (HPLC-RV correlation, Garst 1984) 
1.82 (shake flask, Log P Database, Hansch & Leo 1987) 
1.81 (recommended, Sangster 1989, 1993) 
1.82 (shake flask-UV, Yamagami & Takao 1992) 
1.81 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and the Arrhenius expression 
see reference: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3417 
kOH = (9.58 ± 0.38) . 10–12 cm3 molecule–1 s–1 with calculated atmospheric lifetime . ~ 28 h; and 
kO3 < 6 . 10–20 cm3 molecule–1 s–1 at 298 ± 2 K and kO(3P) = 4.9 . 10–12 cm3 molecule–1 s–1 for reaction 
with O(3P) atom at room temp. (relative rate method, Atkinson et al 1983) 
kO3 < 6 . 10–20 cm3 molecule–1 s–1 with a loss rate of < 0.004 d–1, kOH = 9.6 . 10–12 cm3 molecule–1 s–1 with 
a loss rate of 0.8 d–1; kNO3 = 3.2 . 10–14 cm3 molecule–1 s–1 with a loss rate of 0.7 d–1 at room temp. 
(review, Atkinson & Carter 1984) 
kOH* = (9.37, 9.57) . 10–12 cm3 molecule–1 s–1 at 298 K, measured range 255–425 K (flash photolysisresonance 
fluorescence, Wine & Thompson 1984) 
kOH = 9.49 . 10–12 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1985) 
kO3 < 6 . 10–20 cm3 molecule–1 s–1 with a loss rate of < 0.004 d–1, kOH = 9.70 . 10–12 cm3 ± molecule–1 s–1 
with a loss rate of 0.4 d–1, and kNO3 = 3.2 . 10–14 cm3 molecule–1 s–1 with a loss rate of 0.7 d–1 at room 
temp. (review, Atkinson 1985) 
kNO3 = (3.2 ± 0.7) . 10–14 cm3 molecule–1 s–1 with a calculated lifetime of 36 h and a loss rate of 0.7 d–1 
assuming 2.4 . 108 NO3 radicals/cm3 in nighttime air at 295 ± 1 K in the atmosphere (relative rate 
technique, Atkinson et al. 1985) 
kO3 < 6 . 10–20 cm3 molecule–1 s–1 with a calculated tropospheric lifetime . > 270 d, kOH = 9.70 . 10–12 cm3 
molecule–1 s–1 with a calculated lifetime of 29 h during daytime hours, and kNO3 = 3.2 . 10–14 cm3 
molecule–1 s–1 with a calculated lifetime of 36 h at room temp. (review, Atkinson 1985) 
kOH* = 9.53 . 10–12 cm3 molecule–1 s–1 at 298 K (recommended, Atkinson 1989) 
kNO3 = 3.93 . 10–14 cm3 molecule–1 s–1, independent of temperature over the range 272–296 K (recommended, 
Atkinson 1991) 
kOH(calc) = 14.81 . 10–12 cm3 molecule–1 s–1 at room temp. (molecular orbital calculations, (Klamt 1993) 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: atmospheric lifetime of ~28 h due to reactions with OH radical (Atkinson et al. 1983); 
calculated gas-phase lifetime of 29 h for the reaction with OH radical during daytime hours, calculated 
lifetime of 36 h for reaction with NO3 radical and a calculated lifetime > 270 d for reaction with O3 at 
room temp. (Atkinson et al. 1985) 
TABLE 16.1.8.11.1 
Reported vapor pressures of thiophene at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Stull 1947 Waddington et al. 1949 Kobe et al. 1956 Zwolinski & Wilhoit 1971 
summary of literature data manometry and ebulliometry static-Bourdon gauge selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
static method 
–40.7 133 0 2858 148.89 482307 –12.3 1333 
–20.8 666.6 15 6497 154.44 585659 –1.10 2666 
–10.9 1333 20 8355 160.00 620109 5.94 4000 
0.0 2666 25 10627 165.56 730351 11.24 5333 
12.5 5333 30 13398 171.11 813032 15.52 6666 
20.1 7999 35 16733 176.67 895713 19.14 7999 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3418 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.1.8.11.1 (Continued) 
Stull 1947 Waddington et al. 1949 Kobe et al. 1956 Zwolinski & Wilhoit 1971 
summary of literature data manometry and ebulliometry static-Bourdon gauge selected values 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
30.5 13332 40 20736 182.22 992174 25.09 10666 
46.5 26664 ebulliometric method 187.78 1088636 29.90 13332 
64.7 53329 39.061 19920 193.33 1198877 39.15 19998 
81.4 101325 44.560 25007 198.89 1316009 46.14 26664 
50.094 31160 204.44 1440031 51.82 33331 
mp/°C –38.3 55.663 38547 210.00 1584723 56.65 39997 
61.276 47359 215.56 1722525 64.62 53329 
66.931 57903 221.11 1874107 71.12 66661 
Eon et al. 1971 72.629 70109 226.67 2039470 76.66 79993 
isoteniscope-manometer 78.370 84525 232.22 2211722 81.51 93326 
t/°C P/Pa 84.155 101325 237.78 2397755 82.41 95992 
243.33 2590678 83.30 98659 
60.3 44930 mp/°C –38.1 248.89 2797381 84.16 101325 
70.3 64795 bp/°C 84.16 254.44 3010974 
80.3 91459 260.00 3238347 bp/°C 84.16 
90.3 126790 eq. 2 P/mmHg 265.56 3472610 
100.3 172519 A 6.95926 271.11 3727544 eq. 2 P/mmHg 
B 1246.038 276.67 3996258 A 6.95926 
.HV/(kJ mol–1) =34.77 C 221.354 282.22 4251192 B 1246.02 
287.78 4540576 C 221.35 
.HV/(kJ mol–1) = 293.33 4836850 
at 45.36°C 33.61 298.89 5146905 .HV/(kJ mol–1) = 
at 63.08°C 32.67 304.44 5463849 at 25°C 34.60 
at bp 31.47 at bp 31.47 
FIGURE 16.1.8.11.1 Logarithm of vapor pressure versus reciprocal temperature for thiophene. 
Thiophene: vapor pressure vs. 1/T 
0.0 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
0.0016 0.002 0.0024 0.0028 0.0032 0.0036 0.004 0.0044 
1/(T/K) 
P( gol 
S 
) aP/ 
Waddington et al. 1949 
Kobe et al. 1956 
Eon et al. 1971 
Stull 1947 
Zwolinski & Wilhoit 1971 
m.p. = -38.21 °C b.p. = 84 °C 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3419 
16.1.8.12 Benzo[b]thiophene 
Common Name: Benzo[b]thiophene 
Synonym: thianaphthene, thionaphthene, 1-benzothiophene 
Chemical Name: 
CAS Registry No: 95-15-8 
Molecular Formula: C8H6S 
Molecular Weight: 134.199 
Melting Point (°C): 
32 (Lide 2003) 
Boiling Point (°C): 
221 (Lide 2003) 
Density (g/cm3 at 20°C): 
1.1500 (Verschueren 1983) 
Molar Volume (cm3/mol): 
139.7 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.854 (mp at 32°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
130.0 (20°C, shake flask, Smith et al. 1978) 
130.2 (Mill et al. 1981) 
216* (59.05°C, equilibrium cell-GC, measured range 332.2–490.5 K, Leet et al. 1987) 
Vapor Pressure (Pa at 25°C or as indicated): 
26.7 (20°C, estimated from naphthalene, Smith et al. 1978) 
14.80 (calculated-bp, Mackay et al. 1982) 
log (P/mmHg) = –9.5352 – 2.6947 . 103/(T/K) + 8.8858·log (T/K) – 1.5478 . 10–2·(T/K) + 6.5159 . 10–6·(T/K)2; 
temp range 305–754 K (vapor pressure eq., Yaws 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
28.0 (calculated-P/C, Smith & Bomberger 1980) 
24.1 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
3.09 (shake flask-UV, pH 7.4, Rogers & Cammarata 1969) 
3.05 (HPLC-RT correlation, De Voogt et al. 1988) 
3.12 (recommended, Sangster 1989, 1993) 
3.26 (shake flask-HPLC, De Voogt et al. 1990) 
3.18 (HPLC-RT correlation, Ritter et al. 1994) 
3.17 (shake flask-dialysis tubing-HPLC/UV, both phases, Andersson & Schrader 1999) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.08 (mixed microbial populations, Steen & Karickhoff 1981) 
Sorption Partition Coefficient, log KOC: 
1.77 (Coyote Creek sediment, Smith et al. 1978) 
2.30 (lab. mixture of microorganisms, Smith et al. 1978) 
3.49, 3.0 (soil, quoted, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
S 
© 2006 by Taylor & Francis Group, LLC

3420 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 45 h in river, t. = 230 h in eutrophic pond, t. = 180 hours in eutrophic lake and 
oligotrophic lake by the one compartment model (Smith et al. 1978). 
Photolysis: rate constant of transformation and transport of (6.9 ± 0.7) . 10–7 s–1 exposed to 12 h sunlight per 
day in late May with estimated t. = 1200 h in river, t. = 2900 h in eutrophic pond, t. = 3500 h in eutrophic 
lake and t. = 600 h in oligotrophic lake by the one compartment model (Smith et al. 1978). 
Oxidation: 
laboratory investigated k = 83 M–1 s–1 for the reaction with RO2 radical and estimated t. = 105 h in river, 
eutrophic pond, eutrophic lake and oligotrophic lake by the one compartment model (Smith et al. 1978) 
k = 5.7 . 10–6 s–1 with t. = 34 h under natural sunlight conditions, k = 83 M–1 s–1 with t. = 96 d for freeradical 
oxidation in air-saturated water (NRCC 1983) 
Hydrolysis: 
Biodegradation: estimated t. > 20 h in river, t. < 20 h in eutrophic pond, t. = 20 h in eutrophic lake and very 
long half-life in oligotrophic lake, based on the biodegradation rate in the presence of alternative carbon 
sources will be one-half the biodegradation rate of quinoline when quinoline is the only carbon source by 
the one compartment model (Smith et al. 1978). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: estimated volatilization t. = 45 h in river, t. = 230 h in eutrophic pond, t. = 180 h in eutrophic 
lake and oligotrophic lake by the one compartment model (Smith et al. 1978); 
photolysis rate constant of transformation and transport of (6.9 ± 0.7) . 10–7 s–1 exposed to 12 h sunlight 
per day in late May with estimated photolysis t. = 1200 h in river, t. = 2900 h in eutrophic pond, 
t. = 3500 h in eutrophic lake and t. = 600 h in oligotrophic lake by the one compartment model (Smith 
et al. 1978). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3421 
16.1.8.13 Dibenzothiophene 
Common Name: Dibenzothiophene 
Synonym: 
Chemical Name: dibenzothiophene 
CAS Registry No: 132-65-0 
Molecular Formula: C12H8S 
Molecular Weight: 184.257 
Melting Point (°C): 
98.2 (Lide 2003) 
Boiling Point (°C): 
332.5 (Lide 2003) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
191.3 (calculated-Le Bas method at normal boiling point) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.191 (mp at 98.2°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1.11 ± 0.09 (28°C, measured, Smith et al. 1978) 
1.470 (24°C, shake flask-LSC, Means et al. 1980) 
1.106 (Mill et al. 1981) 
1.500 (Steen & Karickhoff 1981) 
1.032 (literature average, Pearlman et al. 1984) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.267 (20°C, estimated, Aubry et al. 1975) 
log (P/mmHg) = 22.90 – 10910/(T/K), temp range 60–00°C (solid, gas saturation, Edward & Prausnitz 1981) 
log (P/mmHg) = 21.10 – 8353/(T/K), temp range 100–130°C (liquid, gas saturation, Edward & Prausnitz 1981) 
0.263, 0.0083 (20°C, quoted, calculated-bp, Mackay et al. 1982) 
0.893 (static apparatus-extrapolated from Chebyshev polynomials, Sivaraman & Kobayashi 1982) 
0.586 (extrapolated-Cox eq., Chao et al. 1983) 
log (P/atm) = [1– 605.160/(T/K)] . 10^{0.865373 – 5.51221 . 10–4 ± (T/K) + 6.05701 . 10–7 ± (T/K)2}; temp 
range: 424.81–607.53 K (Cox eq., Chao et al. 1983) 
log (PL/kPa) = 7.18577 – 3140.15/(T/K), temp range 385–574 K (Antoine eq., Stephenson & Malanowski 1987) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
44.3 (calculated-P/C, Smith & Bomberger 1980) 
Octanol/Water Partition Coefficient, log KOW: 
4.38 (shake flask-LSC, Means et al. 1980) 
4.33 (HPLC-RT correlation, De Voogt et al. 1988) 
4.38 (recommended, Sangster 1989, 1993) 
4.49 (shake flask-HPLC, De Voogt et al. 1990) 
4.38 (recommended, Hansch et al. 1995) 
4.41 ± 0.19, 4.43 ± 0.61 (HPLC-k. correlation: ODS-65 column, Diol-35 column, Helweg et al. 1997) 
4.36 (shake flask-dialysis tubing-HPLC/UV, both phases, Andersson & Schrader 1999) 
Octanol/Air Partition Coefficient, log KOA: 
S 
© 2006 by Taylor & Francis Group, LLC

3422 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioconcentration Factor, log BCF: 
3.20 (mixed microbial populations, Steen & Karickhoff 1981) 
Sorption Partition Coefficient, log KOC: 
3.14 (Coyote Creek sediment, Smith et al. 1978) 
4.05 (soil, Hassett et al. 1980) 
4.05 (average of 3 sediment/soil samples, equilibrium sorption isotherm, Means et al. 1980) 
4.00 (soil, calculated-MCI ., Sabljic 1987) 
4.00 (soil, calculated-MCI ., Sabljic 1987) 
4.17 (soil, calculated-KOW, model of Karickhoff et al. 1979, Sabljic 1987) 
3.75 (soil, calculated-KOW, model of Kenaga & Goring 1980, Sabljic 1987) 
2.92 (soil, calculated-KOW, model of Briggs 1981, Sabljic 1987) 
4.00 (soil, calculated-KOW, model of Means et al. 1982, Sabljic 1987) 
3.60 (soil, calculated-KOW, model of Chiou et al. 1983, Sabljic 1987) 
4.59 (humic acid, HPLC-k. correlation, Nielsen et al. 1997) 
3.87 (soil: organic carbon OC . 0.1%, average, Delle Site 2001) 
4.02, 4.04 (sediments: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
4.07 (Askov soil, a Danish agricultural soil, Sverdrup et al. 2002) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 140 h in river, t. = 720 h in eutrophic pond, t. = 580 h in eutrophic lake and 
oligotrophic lake by the one compartment model (Smith et al. 1978). 
Photolysis: solar photolysis k = 1.5 . 10–8 s–1 over 24-h day; rate constant of transformation and transport of 
(2.04 ± 0.08) . 10–6 s–1 exposed to 12 h sunlight per day in early March with estimated t. = 380 h in river, 
t. = 950 h in eutrophic pond and eutrophic lake and t. = 190 h in oligotrophic lake from average photolysis 
rates on a summer day at 40°N latitude by the one compartment model (Smith et al. 1978); t. = 4–8 h for 
disappearance via direct photolysis in aquatic media (Harris 1982). 
Oxidation: laboratory investigated k < 7.5 M–1 s–1 for the reaction with RO2 radical and estimated t. > 105 h in 
river, eutrophic pond, eutrophic lake and oligotrophic lake by the one compartment model (Smith et al. 1978). 
k = 1.5 . 10–6 s–1 with t. = 128 h under natural sunlight conditions, k < 7.5 M–1 s–1 with t. > 3.5 yr for 
free-radical oxidation in air-saturated water (NRCC 1983) 
Hydrolysis: 
Biodegradation: k = 5.3 . 10–7 mL cell–1 h–1 and the estimated t. = 13 h in river, eutrophic pond, and eutrophic 
lake and t. > 104 h in oligotrophic lake by the one compartment model (Smith et al. 1978) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Surface water: t. = 0.5 h from river water, t. = 13 h from pond water, t. = 13 h from eutrophic lake and t. = 140 h 
from oligotrophic lake predicted by one-compartment model for all processes; estimated volatilization 
t. = 140 h in river, t. = 720 h in eutrophic pond, t. = 580 h in eutrophic lake and oligotrophic lake; photolysis 
rate constant of transformation and transport k = (2.04 ± 0.08) . 10–6 s–1 exposed to 12 h sunlight per day 
in early March with estimated photolysis t. = 380 h in river, 950 h in eutrophic pond and eutrophic lake 
and t. = 190 h in oligotrophic lake; biodegradation t. = 13 h in river, eutrophic pond water and t. = 140 h 
in oligotrophic lake (Smith et al. 1978); 
t. = 4–8 h for disappearance via direct photolysis in aqueous media (Harris 1982). 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3423 
16.1.8.14 Thiourea 
Common Name: Thiourea 
Synonym: thiocarbamide 
Chemical Name: thiourea 
CAS Registry No: 62-56-6 
Molecular Formula: CH4N2S, H2NCSNH2 
Molecular Weight: 76.121 
Melting Point (°C): 
178 (Lide 2003) 
Boiling Point (°C): 
decomposes (Verschueren 1983) 
Density (g/cm3 at 20°C): 
1.045 (Weast 1982–83; Verschueren 1983, Dean 1992) 
Dissociation Constant, pK: 
2.03 (pK1, Dean 1985) 
Molar Volume (cm3/mol): 
76.2 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
14.42 (Donnelly et al. 1990) 
12.55 (Kim et al. 1994) 
15.64, 14.92, 15.17 (differential scanning calorimetry in three types of crucibles, Gatta et al. 2000) 
Entropy of Fusion, .Sfus (J/mol K): 
35.2, 33.7, 34.1 (Gatta et al. 2000) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0315 (mp at 178°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
91000 (20–25°C, shake flask-gravimetric, Dehn 1917) 
91800 (13°C, Verschueren 1983) 
89800 (Windholz 1983) 
110000 (Budavari 1989) 
90000 (Dean 1985) 
Vapor Pressure (Pa at 25°C): 
Henry’s Law Constant (Pa m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
–1.02 (Leo et al. 1971) 
–0.95 (shake flask, Cornford 1982) 
–2.38, –0.95 (calculated, Verschueren 1983) 
–1.17 (shake flask, OECD 1981 Guidelines, Geyer et al. 1984) 
–1.08, –1.03 (pH 6.5, pH 12, shake flask-HPLC, Govers et al. 1986) 
–1.14, –1.02 (shake flask, Log P Database, Hansch & Loe 1987) 
–0.99 (recommended, Sangster 1993) 
–1.02 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.73 (alga chlorella fusca, wet wt. basis, Geyer et al. 1984) 
–0.699 (alga chlorella fusca, calculated-KOW, Geyer et al. 1984) 
S 
H2N NH2 
© 2006 by Taylor & Francis Group, LLC

3424 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: photooxidation t. = 1.6–16 h in air, based on rate constant for the vapor-phase reaction with OH 
radical and photooxidation t. = 2048–81927 h in water, based on estimated rate data for reaction with OH 
radical in aqueous solution (Howard et al. 1991). 
Hydrolysis: 
Biodegradation: aqueous aerobic biodegradation t. = 24–168 h, based on aqueous aerobic screening test data 
and aqueous anaerobic biodegradation t. = 96–672 h, based on aqueous aerobic degradation half-life (Howard 
et al. 1991). 
Biotransformation: 
Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environmental Compartments: 
Air: t. = 1.6–16 h, based on estimated photooxidation half-life in air (Howard et al. 1991). 
Surface water: t. = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Ground water: t. = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Sediment: 
Soil: t. = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991) 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3425 
16.1.8.15 Thioacetamide 
Common Name: Thioacetamide 
Synonym: ethanethioamide, acetothioamide 
Chemical Name: thioacetamide 
CAS Registry No: 62-55-5 
Molecular Formula: C2H5NS, CH3CSNH2 
Molecular Weight: 75.133 
Melting Point (°C): 
115.5 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
84.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.129 (mp at 115.5°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
163000 (Dean 1985) 
163000 (Budavari 1989) 
Vapor Pressure (Pa at 25°C): 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
–0.46, 0 36 (Verschueren 1983) 
–0.26 (shake flask, Log P Database, Hansch & Leo 1987) 
–0.26 (recommended, Sangster 1993) 
–0.26 (recommended, Hansch & Leo 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
Sorption Partition Coefficient, log KOC: 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: atmospheric t. = 3.2–31.7 h, based on estimated rate data for OH radical in air (Howard et al. 1991). 
Hydrolysis: first-order rate constant k = 8.6 . 10–1 h–1 at pH 7 and 25°C (Ellington et al. 1987), corresponding 
to a t. = 8064 h (Howard et al. 1991); 
acid rate constant k = 6.0 . 10–2 M–1 ± h–1, corresponding to a t. = 333 d and base rate constant k = 1.4 
M–1 ± h–1, corresponding to a t. = 289 d (Howard et al. 1991). 
Biodegradation: aerobic biodegradation t. = 24–168 h, based on aqueous aerobic screening test data and anaerobic 
biodegradation t. = 96–672 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
S 
NH2 
© 2006 by Taylor & Francis Group, LLC

3426 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Half-Lives in the Environment: 
Air: t. = 3.2–31.7 h, based on estimated photooxidation half-life in air (Howard et al. 1991). 
Surface water: t. = 24–268 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Groundwater: t. = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Sediment: 
Soil: t. = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3427 
16.2 SUMMARY TABLES 
TABLE 16.2.1 
Summary of physical properties of nitrogen and sulfur containing compounds 
Compound CAS no. 
Molecular 
formula 
Molecular 
weight, MW 
g/mol 
m.p. 
°C 
b.p. 
°C 
Fugacity 
ratio, F 
at 25°C* 
Molar volume, VM 
cm3/mol 
pKa or 
pKb 
MW/ . 
at 20°C Le Bas 
Nitriles: 
Acetonitrile 75-05-8 CH3CN 41.052 –43.82 81.65 1 52.25 56.3 
Propionitrile 107-12-0 C2H5CN 55.079 –92.78 97.14 1 70.45 78.5 
Butyronitrile 109-74-0 C3H7CN 69.106 –111.9 117.6 1 87.35 100.7 
Acrylonitrile (2-Propenitrile) 107-13-1 C2H3CN 53.063 –83.48 77.3 1 65.83 71.1 
Benzonitrile 100-47-0 C6H5CN 103.122 –13.99 191.1 1 107.9 
Adiponitrile 111-69-3 CN(CH2)4CN 108.141 1 295 1 149.6 
Aliphatic amines: 
Methylamine 74-89-5 CH3NH2 31.058 –93.5 –6.32 1 43.8 
Dimethylamine 124-40-3 (CH3)2NH 45.084 –92.18 6.88 1 68.77 67.5 10.77 
Trimethylamine 75-50-3 (CH3)3N 59.110 –117.1 2.87 1 93.00 93.3 9.8 
Ethylamine 75-04-7 CH3CH2NH2 45.084 –80.5 16.5 1 66.02 66.0 10.63 
Diethylamine 109-89-7 (C2H5)2NH 73.137 –49.8 55.5 1 103.45 111.9 10.8 
Triethylamine 121-44-8 (C2H5)3N 101.910 –114.7 89 1 154.8 10.78 
n-Propylamine 107-10-8 C3H7NH2 59.110 –84.75 47.22 1 82.41 88.2 10.568 
Dipropylamine 142-84-7 (C3H7)2NH 101.190 –63 109.3 1 
Diisopropylamine 108-18-9 i(C3H7)2NH 101.190 –61 83.9 1 
Tripropylamine 102-69-2 (C3H7)3N 143.270 –93.5 156 1 10.66 
n-Butylamine 109-73-9 C4H9NH2 73.137 –49.1 77.0 1 98.94 110.4 10.64 
Isobutylamine 78-81-9 iC4H9NH2 73.137 –86.7 67.75 1 110.4 10.41 
tert-Butylamine 75-64-9 (CH3)3CNH2 73.137 –66.94 44.04 1 110.4 1.685 
Di-n-butylamine 111-92-2 (C4H9)2NH 129.244 –62 159.6 1 199.2 11.25 
Tributylamine 102-82-9 (C4H9)3N 185.349 –70 216.5 1 288 9.93 
Ethylenediamine 107-15-3 H2NCH2CH2NH2 60.098 11.14 117 1 
Ethanolamine 141-43-5 HOCH2CH2NH2 61.098 10.5 171 1 60.21 73.4 9.48 
Diethanolamine 111-42-2 (HOCH2CH2)2NH 105.136 28 268.8 0.934 95.87 126.7 8.88 
Triethanolamine 102-71-6 (HOCH2CH2)3N 149.188 20.5 335.4 1 132.71 182.1 7.76 
Cyclohexylamine 108-91-8 C6H12NH 99.174 –17.8 134 1 117.4 10.66 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3428 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.2.1 (Continued) 
Compound CAS no. 
Molecular 
formula 
Molecular 
weight, MW 
g/mol 
m.p. 
°C 
b.p. 
°C 
Fugacity 
ratio, F 
at 25°C* 
Molar volume, VM 
cm3/mol 
pKa or 
pKb 
MW/ . 
at 20°C Le Bas 
Aromatic amines: 
Aniline 62-53-3 C6H5NH2 93.127 –6.02 184.17 1 91.15 110.2 4.596 
2-Chloroaniline 95-51-2 Cl(C6H4)NH2 127.572 –1.9 208.8 1 105.21 131.1 2.661 
3-Chloroaniline 108-42-9 Cl(C6H4)NH2 127.572 –10.28 230.5 1 104.91 131.1 3.5 
4-Chloroaniline 106-47-8 Cl(C6H4)NH2 127.572 70.5 232 0.358 131.1 3.982 
3,4-Dichloroaniline 95-76-1 Cl2C6H3NH2 162.017 72 272 0.346 152.0 
2,4,6-Trichloroaniline 634-93-5 C6H4Cl3N 196.462 78.5 262 0.299 172.9 
o-Toluidine 95-53-4 CH3C6H4NH2 107.153 –14.41 200.3 1 107.32 132.4 4.45 
m-Toluidine 108-44-1 CH3C6H4NH2 107.153 –31.3 203.3 1 108.36 132.4 4.71 
p-Toluidine 106-49-0 CH3C6H4NH2 107.153 43.6 200.4 0.657 111.40 132.4 5.08 
N,N.-Dimethylaniline 121-69-7 C6H5N(CH3)2 121.180 2.42 194.15 1 126.80 154.6 5.15 
2,4-Xylidine 95-68-1 (CH3)2C6H3NH2 121.180 –14.3 214 1 154.6 4.89 
2,5-Xylidine 95-78-3 (CH3)2C6H3NH2 121.180 15.5 214 1 154.6 4.54 
2,6-Xylidine 87-62-7 (CH3)2C6H3NH2 121.180 11.2 215 1 123.12 154.6 3.95 
2-Ethylaniline 578-54-1 C2H5C6H4NH2 121.180 –43 209.5 1 139.6 4.42 
3-Ethylaniline 587-02-0 C2H5C6H4NH2 121.180 –64 214 1 139.6 4.70 
4-Ethylaniline 589-16-2 C2H5C6H4NH2 121.180 –2.4 217.5 1 139.6 5.00 
N,N.-Diethylaniline 91-66-7 C6H5N(C2H5)2 149.233 –38.8 216.3 1 199.0 6.56 
Diphenylamine 122-39-4 (C6H5)2NH 169.222 53.2 302 0.529 145.88 200.3 0.90 
4-Aminobiphenyl 92-67-1 C6H5C6H4NH2 169.222 53.5 302 0.525 168.8 4.27 
Benzidine 92-87-5 NH2(C6H4)2NH2 184.236 120 401 0.117 213.0 4.66 
3,3.-Dichlorobenzidine 91-94-1 C12H10Cl2N2 253.126 132.5 0.0882 254.8 11.7 
.-Naphthylamine 134-32-7 C10H7NH2 143.185 49.2 300.7 0.579 161.8 3.92 
.-Naphthylamine 91-59-8 C10H7NH2 143.185 113 306.2 0.137 161.8 4.15 
N,N.-Bianiline 122-66-7 (C6H5)2(NH)2 184.236 131 0.0912 213.0 13.2 
2-Nitroaniline 88-74-4 C6H6N2O2 138.124 71.0 284 0.354 138.7 –0.28 
3-Nitroaniline 99-09-2 C6H6N2O2 138.124 113.4 306 dec 0.136 138.7 2.46 
4-Nitroaniline 100-01-6 C6H6N2O2 138.124 147.5 332 0.0628 97.00 138.7 1.01 
2,4-Dinitroaniline 97-02-9 (O2N)2C6H3NH2 183.122 180.0 0.0301 167.2 –4.25 
2,6-Dinitroaniline 606-22-4 (O2N)2C6H3NH2 183.122 141 0.0728 167.2 –5.23 
3,5-Dinitroaniline 618-87-1 (O2N)2C6H3NH2 183.122 163 0.0443 167.2 0.229 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3429 
Nitroaromatic compounds: 
Nitrobenzene 98-95-3 C6H5NO2 123.110 5.7 210.8 1 102.28 112.0 
1,2-Dinitrobenzene 528-29-0 C6H4(NO2)2 168.107 116.5 318 0.127 149.4 
1,3-Dinitrobenzene 99-65-0 C6H4(NO2)2 168.107 90.3 291 0.229 149.4 
1,4-Dinitrobenzene 100-25-4 C6H4(NO2)2 168.107 173.5 297 0.0349 149.4 
2-Nitrotoluene 88-72-2 CH3C6H4NO2 137.137 –10.4 222 1 117.93 153.0 
3-Nitrotoluene 99-08-1 CH3C6H4NO2 137.137 15.5 232 1 153.0 
4-Nitrotoluene 99-99-0 CH3C6H4NO2 137.137 51.63 238.3 0.548 153.0 
2,4-Dinitrotoluene (DNT) 121-14-2 CH3C6H3(NO2)2 182.134 70.5 300 dec 0.358 175.2 
2,6-Dinitrotoluene 606-20-2 CH3C6H3(NO2)2 182.134 66.0 285 0.396 175.2 
2,4,6-Trinitrotoluene (TNT) 118-96-7 CH3C6H2(NO2)3 227.131 80.5 240 exp 0.285 137.32 203.7 
1-Nitronaphthalene 86-57-7 C10H7NO2 173.169 61 304 0.443 176.1 
2-Nitronaphthalene 581-89-5 C10H7NO2 173.169 79 314 0.295 176.1 
4-Nitrobiphenyl 92-93-3 C12H9NO2 199.205 114 340 0.134 211.3 
5-Nitro-acenaphthene 602-87-9 C12H9NO2 199.205 103 0.172 211.3 
Amide and ureas: 
Acetamide 60–35-5 CH3CONH2 59.067 80.16 222 0.288 66.9 7.62 
Acrylamide 79-06-1 H2C=CHCONH2 71.078 84.5 192.5 0.261 80.8 
Benzamide 55-21-0 C6H5CONH2 121.137 127.3 290 0.0992 132.4 
Urea 57-13-6 H2NCONH2 60.055 133 dec 0.0872 45.39 58.0 
Nitrosoamines: 
N-Nitrosodimethylamine 62-75-9 (CH3)2NNO 74.081 152 87.7 
N-Nitrosodiethylamine 55-18-5 (C2H5)2NNO 120.134 176.9 130.6 
Di-n-propyl nitrosamine 621-64-7 (C3H7)2NNO 130.187 206 176.5 
Diphenylnitrosamine 86-30-6 (C6H5)2NNO 198.219 66.5 152 0.392 220.5 
Heterocyclic compounds: 
1H-Pyrrole 109-97-7 C4H5N 67.090 –23.39 129.79 1 69.18 78.2 
1-Methylpyrrole 96-54-8 C5H7N 81.117 –56.32 112.81 1 104.0 
Pyrrolidine 123-75-1 C4H8NH 71.121 –57.79 86.56 1 96.6 4.453 
Imidazole 288-32-4 C3H4N2 68.077 89.5 257 0.233 78.9 11.305 
Indazole 271-44-3 C7H6N2 118.136 148 269 0.0621 130.5 
Indole 120-72-9 C8H7N 117.149 52.5 253.6 0.537 133.4 
Indoline 496-15-1 C8H9N 119.164 229 140.8 
Pyridine 110-86-1 C5H5N 79.101 –41.70 115.23 1 80.56 93.0 5.17 
2-Methylpyridine 109-06-8 C6H7N 93.127 –66.68 129.38 1 98.61 115.2 5.96 
3-Methylpyridine 108-99-6 C6H7N 93.127 –18.14 144.14 1 97.35 115.2 5.68 
4-Methylpyridine 108-89-4 C6H7N 93.127 3.67 145.36 1 115.2 6.00 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3430 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.2.1 (Continued) 
Compound CAS no. 
Molecular 
formula 
Molecular 
weight, MW 
g/mol 
m.p. 
°C 
b.p. 
°C 
Fugacity 
ratio, F 
at 25°C* 
Molar volume, 
VM cm3/mol 
pKa or 
pKb 
MW/ . 
at 20°C Le Bas 
2,3-Dimethylpyridine 583-61-9 C7H9N 107.153 –15.5 161.12 1 135.9 6.6 
2,4-Dimethylpyridine 108-47-4 C6H9N 107.153 –64 158.38 1 135.9 
2,6-Dimethylpyridine 108-48-5 C7H9N 107.153 –6.1 144.01 1 135.9 6.72 
2,4,6-Trimethylpyridine 108-75-8 C8H11N 121.180 -46 170.6 1 158.1 7.43 
Quinolines: 
Quinoline 91-22-5 C9H7N 129.159 –14.78 237.16 1 144.7 4.90 
Isoquinoline 119-65-3 C9H7N 129.159 26.47 243.22 0.967 144.7 5.4 
3-Methyl-isoquinoline 1125-80-0 C10H9N 143.185 68 249 0.379 166.9 
2,7-Dimethylquinoline 93-37-8 C11H11N 157.212 61 264.5 0.443 189.1 
Benzo[f]quinoline 85-02-9 C13H9N 179.217 94 352 0.210 196.3 
Benzo(h)quinoline 230-27-3 C13H9N 179.217 52 339 0.543 196.3 
9H-Carbazole 86-74-8 C6H4NHC6H4 167.206 246.3 354.69 0.00674 192.9 
7H-Dibenzo[c,g]carbazole 194-59-2 (C10H6)2NH 267.324 158 0.0496 296.1 
Acridine 260-94-6 C13H9N 179.217 110 344.86 0.147 196.3 5.60 
Benz[a]acridine 225-11-6 C17H11N 229.276 244.8 
Benz[c]acridine 225-51-4 C17H11N 229.276 132 0.0892 244.8 
Dibenz[a,h]acridine 53–70–3 C22H14 278.346 269.5 524 0.00399 300.0 
Sulfur compounds: 
Carbon disulfide 75-15-0 CS2 76.141 –112.1 46 1 60.28 66.0 
Dimethyl sulfate 77-78-1 (CH3O)2SO2 126.132 –27 188 dec 1 109.7 
Diethyl sulfate 64-67-5 (C2H5O)2SO2 154.185 –24 208 1 138.4 
Dimethyl sulfite 616-42-2 (CH3O)2SO 110.132 126 100.5 
Dimethyl sulfoxide (DMSO) 67-68-5 (CH3)2SO 78.133 17.89 189 1 85.7 
Dimethyl sulfone 67-71-0 (CH3)2SO2 94.133 108.9 238 0.150 94.0 
Dimethyl sulfide 75-18-3 (CH3)2S 62.134 –98.24 37.33 1 73.77 77.4 
Dimethyl disulfide 624-92-0 C2H6S2 94.199 –84.67 109.74 1 58.78 103.0 
Diethyl sulfide 352-93-2 C4H10S 90.187 –103.91 92.1 1 128.1 
Diethyl disulfide 110-81-6 C4H10S2 122.252 –101.5 154.0 1 147.4 
Thiols: 
Methanethiol 74-93-1 CH3SH 48.108 –123 5.9 1 55.52 55.2 10.7 
Ethanethiol 75-08-1 C2H5SH 62.134 –147.88 35.0 1 74.05 77.4 10.61 
Propanethiol 107-03-9 C3H7SH 76.161 –113.13 67.8 1 90.55 99.6 
1-Butanethiol (Butyl mercaptan) 109-79-5 CH3(CH2)3SH 90.187 –115.7 98.5 1 107.16 121.8 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3431 
2-Butanethiol 513-53-1 C4H7SH 90.187 –165 85.0 1 121.8 
Benzenethiol 108-98-5 C6H5SH 110.177 -14.93 169.1 1 102.34 106.8 6.5 
2-Methylbenzenethiol 137-06-4 C7H8S 124.204 15 195 1 129.0 
3-Methylbenzenethiol 108-40-7 C7H8S 124.204 –20 195 1 129.0 
4-Methylbenzenethiol 106-45-6 C7H8S 124.204 43 195 0.666 129.0 
Thiophenes: 
Thioazole 288-47-1 C3H3NS 85.128 –33.62 118 1 85.2 
Thiophene 110-02-1 C4H4S 84.140 –38.21 84.0 1 79.02 88.1 
2-Methylthiophene 554-14-3 C5H6S 98.167 –63.4 112.6 1 110.3 
3-Methylthiophene 616-44-4 C5H6S 98.167 –69 115.5 1 110.3 
Benzo[b]thiophene 95-15-8 C8H6S 134.199 32 221 0.854 139.7 
Dibenzothiophene 132-65-0 C12H8S 184.257 98.2 332.5 0.191 191.3 
Thianthrene 92-85-3 (C6H4)2S2 216.322 159.3 365 0.0481 210.9 
Thiobenzamide 2227-79-4 C6H5CSNH2 137.203 117 0.125 135.8 
Thiourea 62-56-6 H2NCSNH2 76.121 178 0.0315 72.84 76.2 2.03 
Thioacetamide 62-55-5 CH3CSNH2 75.133 115.5 0.129 84.2 
* Assuming .Sfus = 56 J/mol K 
© 2006 by Taylor & Francis Group, LLC

3432 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.2.2 
Summary of selected physical-chemical properties of nitrogen and sulfur containing compounds at 25°C. 
Compound 
Selected properties Henry’s law constant 
Vapor pressure Solubility H/(Pa·m3/mol) 
PS/Pa PL/Pa S/(g/m3) CS/(mol/m3) CL/(mol/m3) log KOW calcd P/C exptl 
Nitriles: 
Acetonitrile 11840 11840 miscible –0.34 2.75 
Propionitrile 5950 5950 103000 1870.0 1870.0 0.16 3.182 3.8 
Butyronitrile 2546 2546 33000 477.5 477.5 5.263 
Benzonitrile 100 100 2000 19.39 19.39 1.55 5.156 
Acrylonitrile (2-Propenitrile) 11000 11000 75500 1423 1423 0.25 7.731 11.14 
Adiponitrile 0.3066 0.3066 8000 73.96 73.96 –0.32 0.0041 
Aliphatic amines: 
Methylamine 357300 357300 miscible –0.57 1.125 
Dimethylamine 206200 206200 miscible –0.38 1.8 
Trimethylamine 219300 219300 miscible 0.27 6.67 
Ethylamine 141650 141650 miscible –0.13 1.012 
Diethylamine 31490 31490 miscible 0.43 2.60 
Triethylamine 7610 7610 55000 540 540 1.64 14.099 
n-Propylamine 40740 40740 miscible 0.48 1.274 
Dipropylamine 53000 520 520 
Diisopropylamine 12390 122 
Tripropylamine 220 1.536 1.54 2.79 
n-Butylamine 13650 13650 miscible 0.97 1.526 
Isobutylamine 18760 18760 miscible 0.73 
t-Butylamine 48260 48260 miscible 0.4 
Di-n-butylamine 304 304 4700 36.37 36.37 2.83 8.359 
Tributylamine 5330 5330 40 0.216 0.216 2.47 . 104 
Ethanolamine 34.66 34.66 miscible –1.31 
Diethanolamine 0.0373 0.0399 miscible –1.43 
Triethanolamine 4.79 . 10–4 4.79 . 10–4 miscible –1.59 
Cyclohexylamine 1173 1173 miscible 1.49 
Diphenylamine 0.0612 0.115 300 1.773 3.338 3.45 0.035 
.-Naphthylamine 0.254 0.45 2.23 
.-Naphthylamine 0.035 0.248 6.4 0.045 0.317 2.34 
4-Aminobiphenyl 2.83 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3433 
Aromatic amines: 
Aniline 65.19 65.19 36070 387.4 387.35 0.90 0.168 12.16 
2-Chloroaniline 22.66 22.66 3800 29.79 29.79 1.90 0.761 
3-Chloroaniline 9.53 9.530 5440 42.64 42.64 1.88 0.223 
4-Chloroaniline 2.33 6.873 3000 23.52 69.37 1.83 0.099 
3,4-Dichloroaniline 1.3 3.746 92.05 0.568 1.637 2.67 2.289 
2,4,6-Trichloroaniline 0.00626 0.021 3.694 
o-Toluidine 13.3 13.30 15000 139.98 139.98 0.095 
m-Toluidine 36 36.0 15030 140.26 140.26 1.44 0.257 
p-Toluidine 45 61.48 7350 68.59 93.70 1.4 0.656 
N,N.-Dimethylaniline 107 107.0 1105 9.119 9.119 2.31 11.734 
2,4-Xylidine 20.5 20.50 5900 48.69 48.69 0.421 
2,5-Xylidine 5000 41.26 41.26 
2,6-Xylidine 670 670.0 4700 38.79 38.79 1.94 17.275 
2-Ethylaniline 7500 61.89 61.89 1.93 
4-Ethylaniline 13.5 13.50 5100 42.09 42.09 1.96 0.321 
N,N.-Diethylaniline 9.7 9.70 670 4.49 4.49 2.161 
Benzidine 1.0 . 10–6 1.06 . 10–5 400 2.17 23.1 1.81 4.61 . 10–7 
3,3.-Dichlorobenzidine 5.6 . 10–5 6.41 . 10–4 3.1 0.0122 0.140 3.51 0.005 
N,N.-Bianiline 0.0035 0.252 0.0014 0.0154 3.82 3.45 . 10–4 
2-Nitroaniline 0.62 1.851 1200 8.687 25.93 1.78 
4-Nitroaniline 0.035 0.589 800 5.792 97.50 1.31 
2,4-Dinitroaniline 4.1 
Nitroaromatic compounds: 
Nitrobenzene 20 20.0 1900 15.43 15.43 1.85 1.296 
1,2-Dinitrobenzene 0.0052 0.0433 
1,3-Dinitrobenzene 0.0081 0.0348 546 3.25 13.94 1.49 0.002 
1,4-Dinitrobenzene 13.3 386.63 442 2.63 76.43 2.37 5.059 
2-Nitrotoluene 17.9 17.90 651.42 4.75 4.75 2.30 3.768 
3-Nitrotoluene 27.2 27.20 499.19 3.64 3.64 2.45 7.473 
4-Nitrotoluene 0.653 1.2004 254.4 1.86 3.41 2.37 0.352 
2,4-Dinitrotoluene (DNT) 0.133 0.3705 270 1.48 4.13 2.01 0.090 
2,6-Dinitrotoluene 0.0767 0.1952 200 1.72 0.070 
2,4,6-Trinitrotoluene (TNT) 0.00107 0.0038 210 0.925 3.29 
1-Nitronaphthalene 0.702 0.0312 0.072 9.82 0.057 0.132 3.19 3.50 
2-Nitronaphthalene 9.24 0.053 0.183 
4-Nitrobiphenyl 1.231 6.18 . 10–3 0.045 3.78 
5-Nitro-acenaphthene 0.91 4.57 . 10–3 0.026 
(Continued) 
© 2006 by Taylor & Francis Group, LLC

3434 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.2.2 (Continued) 
Compound 
Selected properties Henry’s law constant 
Vapor pressure Solubility H/(Pa·m3/mol) 
PS/Pa PL/Pa S/(g/m3) CS/(mol/m3) CL/(mol/m3) log KOW 
calcd P/C exptl 
Amides: RCONH2 
Acetamide (ethanamide) 2.44 8.3562 408000 6907.1 23650 –1.26 3.53 . 10–4 
Acrylamide 0.415 1.5900 2050000 2884 11050 –0.9 1.44 . 10–4 
Benzamide 0.00522 0.0544 14000 1692 17630 0.64 4.52 . 10–5 
Urea: (NH2)2C=O 
Urea 0.0016 0.0186 1000000 16650 1.93x105 –2.11 9.61 . 10–8 
Nitrosoamines: 
N-Nitrosodimethylamine miscible –0.57 3.343 
Di-n-propyl nitrosamine 27 9900 76.04 1.31 0.355 
Diphenyl nitrosamine 13.33 34.27 35.10 0.116 0.299 3.13 114.6 
Heterocyclic compounds: 
1H-Pyrrole 1100 1100 45000 670.7 670.7 0.75 1.640 
1-Methylpyrrole 3312 
Indazole 827 7.00 100.43 
Indole 2.24 4.187 1874 16.00 29.90 2 0.140 
Indoline 10800 90.63 
Pyridine 2775 2775 miscible 0.65 0.895 
2-Methylpyridine 1496 1496 miscible 1.11 1.01 
3-Picoline 1333 1333 miscible 1.2–1.24 0.788 
4-Picoline 757 757 miscible 1.22 0.601 
2,3-Dimethylpyridine 426 104000 970.6 0.725 
2,4-Dimethylpyridine 456 456 miscible 0.678 
2,6-Dimethylpyridine 746 746 miscible 1.06 
2,4,6-Trimethylpyridine 5170 5170 35700 294.6 294.6 17.549 
Quinolines: 
Quinoline 1.21 1.21 6110 47.31 47.31 2.06 0.026 
Isoquinoline 670 693 4521 35.00 36.20 2.08 19.141 
2,7-Dimethylquinoline 1795 11.42 24.77 
Benzo[f]quinoline 0.0067 76.1 0.42 2.02 3.20 0.0096 
Benzo[h]quinoline 0.03 0.0555 
9H-Carbazole 0.0933 14.976 1.03 0.006 0.989 3.80 15.146 
7H-Dibenzo[c,g]carbazole 1.3 . 10–7 2.5 . 10–6 0.063 0.236 4.532 5.75 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3435 
Acridine 0.0065 0.0451 38.5 0.215 1.492 3.4 0.030 
Benz[a]acridine 4.45 
Sulfur compounds: 
Carbon disulfide 48210 48210 2100 27.584 27.584 1747.75 
Dimethyl sulfate 128 128 
Diethyl sulfate 49.1 49.1 
Dimethyl sulfoxide (DMSO) 80.0 80.0 253000 354.8 354.8 –1.35 0.225 
Dimethyl sulfone 5.16 34.17 –1.41 200.83 
Dimethyl sulfide 64650 64650 20000 321.9 7.72 
Dimethyl disulfide 4000 4000 6300 66.88 66.88 59.81 
Diethyl sulfide 7782 7782 1.95 
Diethyl disulfide 689 689 
Thiols: 
Methanethiol 201980 201980 
Ethanethiol 70000 15000 289.94 
Propanethiol 20635 20635 1.81 
1-Butanethiol 6070 6070 597 6.62 6.62 2.28 916.94 
2-Butanethiol 10790 10790 
Benzenethiol 397 397 2.52 
2-Methylbenzenethiol 87.4 87.4 
3-Methylbenzenethiol 76.6 76.60 
4-Methylbenzenethiol 85.2 128.3 
Thiophenes: 
Thioazole 2287 
Thiophene 10620 8000 3015 35.833 35.833 1.81 223.3 224 
2-Methylthiophene 3318 
3-Methylthiophene 2953 
Benzo[b]thiophene 26.66 26.7 130 0.969 1.107 3.12 24.1 
Dibenzothiophene 0.267 1.11 0.006 4.38 44.3 
Thiourea 90000 1182 36833 –0.99 
Thioacetamide 163000 2170 15722 –0.26 
© 2006 by Taylor & Francis Group, LLC

3436 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
TABLE 16.2.3 
Suggested half-life classes for nitrogen and sulfur containing compounds in various 
environmental compartments at 25oC 
Compound 
Air 
class 
Water 
class 
Soil 
class 
Sediment 
class 
Acetonitrile 6 5 5 6 
Propionitrile 6 5 5 6 
Acrylonitrile (2-Propenitrile) 3 4 4 5 
Dimethylamine 1 3 4 5 
Ethylamine 2 3 4 5 
Eiethylamine 1 2 2 3 
n-Butylamine 2 3 3 4 
Ethanolamine 1 3 3 4 
Diethanolamine 1 4 4 5 
Cyclohexylamine 1 3 3 4 
Aniline 1 4 4 6 
2-Chloroaniline 3 4 5 6 
4-Chloroaniline 1 4 4 5 
o-Toluidine 1 3 3 4 
N,N'-Dimethylaniline 1 4 5 6 
2,6-Xylidine 1 4 5 6 
Diphenylamine 1 4 5 6 
Benzidine 1 4 4 5 
3,3'-Dichlorobenzidine 1 1 5 6 
N,N'-Bianiline 1 3 3 4 
.-Naphthylamine 1 4 4 6 
.-Naphthylamine 1 4 4 6 
Nitrobenzene 1 6 6 7 
2-Nitrotoluene 2 3 6 7 
4-Nitrotoluene 2 3 6 7 
2,4-Dinitrotoluene (DNT) 2 3 6 7 
2,4,6-Trinitrotoluene (TNT) 1 2 6 7 
Acetamide 2 4 4 5 
Benzamide 2 4 4 5 
n-Nitrosodimethylamine 1 2 6 7 
n-Nitrosodiethylamine 1 2 6 7 
Di-n-propyl nitrosoamine 1 2 6 7 
Diphenyl nitrosoamine 1 2 6 7 
Pyridine 5 5 6 7 
3-Methylpyridine 5 5 6 7 
4-Methylpyridine 5 5 6 7 
Quinoline 3 4 5 6 
Dimethyl sulfate 4 2 2 3 
Diethyl sulfate 2 2 3 4 
Thiophene 3 3 6 7 
Benzo[b]thiophene 4 5 6 7 
Thiourea 1 4 4 5 
Thioacetamide 2 4 4 5 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3437 
TABLE 16.2.3 (Continued) 
where, 
Class Mean half-life (hours) Range (hours) 
1 5 < 10 
2 17 (~ 1 day) 10–30 
3 55 (~ 2 days) 30–100 
4 170 (~ 1 week) 100–300 
5 550 (~ 3 weeks) 300–1,000 
6 1700 (~ 2 months) 1,000–3,000 
7 5500 (~ 8 months) 3,000–10,000 
8 17000 (~ 2 years) 10,000–30,000 
9 ~ 5 years > 30,000 
© 2006 by Taylor & Francis Group, LLC

3438 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
16.3 REFERENCES 
Abraham, M.H. (1984) Thermodynamics of solution of homologous series of solutes in water. J. Chem. Soc., Farad. Trans. 1 80, 
153–181. 
Abraham, M.H., Le J., Acree, Jr., W.E., Carr, P.W., Dallas, A.J. (2001) The solubility of gases and vapours in dry octan-1-ol at 298 
K. Chemosphere 44, 855–863. 
Aim, K. (1994) Saturated vapor pressure measurements on isomeric mononitrotoluenes at temperatures between 380 and 460 K. 
J. Chem. Eng. Data 39, 591–594. 
Albersmeyer, W. (1958) Quantitative determination of aromatic hydrocarbons in aqueous solutions. Gas-U. Wasserfach 99, 269. 
Albert, A. (1966) The Acridines. Edward Arnold, London. 
Alcorn, C.J., Simpson, R.J., Leahy, D.E., Peters, T.J. (1993) Partition and distribution coefficients of solutes and drugs in brush border 
membrane vesicles. Biochem. Pharm. 45, 1775–1782. 
Alexander, M., Lustigman, B.K. (1966) Effects of chemical structure on microbial degradation of substituted benzenes. J. Agric. 
Food Chem. 14, 410–413. 
Altschuh, J., Bruggemann, Santl, H., Eichinger, G., Piringer, O.G.(1999) Henry’s law constants for a diverse set of organic chemicals: 
Experimental determination and comparison of estimation methods. Chemosphere 39, 1871–1887. 
Ambrose, D. Gundry, H.A. (1980) The vapour pressure of p-nitrotoluene. J. Chem. Thermodyn. 12, 559–561. 
Anbar, M., Meyerstein, D., Neta, P. (1966) The reactivity of aromatic compounds toward hydroxyl radicals. J. Phys. Chem. 70, 
2661–2662. 
Anbar, M., Neta, P. (1967) A compilation of specific bimolecular rate and hydroxyl radical with inorganic and organic compounds 
in aqueous solution. Int. J. Appl. Radiation Isotopes 18, 493–523. 
Anderson, T.A., Beauchamp, J.J., Walton, B.T. (1991) Organic chemicals in the environment. J. Environ. Qual. 20, 420–424. 
Andersson, J.T., Schrader, W. (1999) A method for measuring 1-octanol-water partition coefficients. Anal. Chem. 71, 3610–3614. 
Andon, R.J.L., Cox, J.D. (1952) Phase relationships in pyridine series. Part I. The miscibility of some pyridine homologues with 
water. J. Chem. Soc. 4601–4606. 
Andon, R.J.L., Cox, J.D., Herington, E.F.G. (1954) Phase relationships in the pyridine series. Part V. The thermo-dynamic properties 
of dilute solutions of pyridine bases in water at 25°C and 40°C. J. Chem. Soc. 3188–3196. 
Appleton, H., Banerjee, S., Pack, E., Sikka, H. (1978) Fate of 3,3’-dichlorobenzidine in aquatic environment. In: Pergamon Series 
in Environmental Science 1, 473–474. 
Appleton, H., Sikka, H. (1980) Accumulation, elimination and metabolism of dichlorobenzidine in bluegill sunfish. Environ. Sci. 
Technol. 14, 50–54. 
Arbuckle, W.B. (1983) Estimating activity coefficients for use in calculating environmental parameters. Environ. Sci. Technol. 17, 
537–542. 
Arey, J., Atkinson, R., Aschmann, S.M., Schuetzle, D. (1990) Experimental investigation of the atmospheric chemistry of 2-methyl- 
1-nitronaphthalene and a comparison of predicted nitroarene concentrations with ambient air data. In: Polycyclic Aromatic 
Compounds. Vol. 1(1–2), pp. 33–50. Gordon and Breach Science Publishers, United Kingdom. 
Armbrust, K.L. (2000) Pesticide hydroxyl radical rate constants: measurements and estimates of their importance in aquatic environments. 
Environ. Toxicol. Chem. 19, 2175–2180. 
Ashton, J.G., Eidimoff,. M.L., Forster, W.S. (1939) The heat capacity and entropy, heats of fusion and vaporization and the vapor 
pressure of dimethylamine. J. Am. Chem. Soc. 61, 1539–1543. 
Aston, J.G., Sagenkahn, M.L., Szasz, G.J., Moessen, G.W., Zuhr, H.F. (1944) The heat capacity and entropy, heats of fusion and 
vaporization and the vapor pressure of trimethylamine. The entropy from spectroscopic and molecular data. J. Am. Chem. 
Soc. 66, 1171–1177. 
Atkinson, R. (1985) Kinetics and mechanisms of the gas-phase reactions of hydroxyl radicals with organic compounds under 
atmospheric conditions. Chem. Rev. 85, 69–201. 
Atkinson, R. (1987) A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals 
with organic compounds. Int. J. Chem. Kinetics 19, 799–828. 
Atkinson, R. (1989) Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. 
Chem. Ref. Data, Monograph No. 1, 1–246. 
Atkinson, R. (1991) Kinetics and mechanisms of the gas-phase reactions of NO3 radical with organic compounds. J. Phys. Chem. 
Ref. Data 20(3), 459–507. 
Atkinson, R., Aschmann, S.M., Arey, J., Zielinska, B. (1989) Gas-phase atmospheric chemistry of 1- and 2-nitronaphthalene and 
1,4-naphthoquinone. Atmos. Environ. 23(12), 2679–2690. 
Atkinson, R., Aschmann, S.M., Fitz, D.R., Winer, A.M., Pitts, Jr., J.N. (1982) Rate constants for the gas-phase reactions of O3 with 
selected organics at 296 K. Int. J. Chem. Kinet. 14, 13–18. 
Atkinson, R., Aschmann, S.M., Carter, W.P.L. (1983) Kinetics of the reactions of ozone and hydroxyl radicals with furan and thiophene 
at 298 ± 2 K. Int. J. Chem. Kinetics 15, 51–61. 
Atkinson, R., Aschmann, S.M., Winer, A.M., Carter, W.P.L. (1985) Rate constants for the gas-phase reactions of the NO3 radicals 
with furan, thiophene, and pyrrole at 295 ± 1 K and atmospheric pressure. Environ. Sci. Technol. 19, 87–90 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3439 
Atkinson, R., Baulch, D.L., Cox, R.A., Hampson Jr., R.F., Kerr, J.A., Troe, J. (1992) Evaluated kinetic and photochemical data for 
atmospheric chemistry supplement IV. J. Phys. Chem. Ref. Data 21, 1125–1568. 
Atkinson, R., Carter, W.P.L. (1984) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under 
atmospheric conditions. Chem. Rev. 84, 437–470. 
Atkinson, R., Perry, R.A., Pitts, J.N., Jr. (1977) Rate constants for the reaction of the OH radical with CH3SH and CH3NH2 over the 
temperature range 299–426 K. J. Chem. Phys. 66, 1578–1581. 
Atkinson, R., Perry, R.A., Pitts, J.N., Jr. (1978a) Rate constants for the reaction of OH radicals with COS, CS2, and CH3SCH3 over 
the temperature range 299–430 K. Chem. Phys. Lett. 54, 14–18. 
Atkinson, R., Perry, R.A., Pitts, J.N., Jr. (1978b) Rate constants for the reactions of hydroxyl radical with dimethylamine, trimethylamine, 
and ethylamine over the temperature range 298–426 K. J. Chem. Phys. 68, 1850–1853. 
Atkinson, R., Pitts, Jr., J.N., Aschmann, S.M. (1984) Tropospheric reactions of dimethyl sulfide with NO3 and OH radicals. J. Phys. 
Chem. 88, 1584–1587. 
Atkinson, R., Tuazon, E.C., Wallington, T.J., Aschmann, S.M., Arey, J., Winer, A.M., Pitts, J.N., Jr. (1987) Atmospheric chemistry 
of aniline, N,N-dimethylaniline, Pyridine, 1,3,5-triazine, and nitrobenzene. Environ. Sci. Technol. 21, 64–72. 
Aubry, M., Mayoral, M.N., Villardry, P. (1975) Determination of the vapor pressure of low volatility compounds by gas chromatography. 
Application to dibenzothiophene. Boll. Soc. Chim. Fr. 3–4 of Pt.1, 500–502. 
Bailey, G.W., White, J.L., Rothberg T. (1968) Adsorption of organic herbicides by montmorillonite: Role of pH and chemical character 
of adsorbate. Soil Sci. Am. Proc. 32, 222–234. 
Baird, R., Caroma, L., Jenkins, R.L. (1977) Behavior of benzidine and other aromatic amines in aerobic waste water treatment. 
J. Water Pollut. Control Fed. 49, 1606–1615. 
Banerjee, S., Howard, P.H. (1988) Improved estimation of solubility and partitioning through correction of UNIFAC-derived activity 
coefficients. Environ. Sci. Technol. 22, 839–841. 
Banerjee, S., Howard, P.H., Lande, S.S. (1990) General structure-vapor pressure relationships for organics. Chemosphere 21, 
1173–1180. 
Banerjee, S., Sikka, H.C., Gray, D.A., Kelly, C.M. (1978) Photodegradation of 3,3.-dichlorobenzidine. Environ. Sci. Technol. 12, 
1425–1427. 
Banerjee, S., Yalkowsky, S.H., Valvani, S.C. (1980) Water solubility and octanol/water partition coefficients of organics. Limitations 
of the solubility-partition coefficient correlations. Environ. Sci. Technol. 14, 1227–1229. 
Barnes, I., Bastian, V., Becker, K.H., Martin, D. (1989) Fourier transform IR studies of the reactions of dimethyl sulfoxide with OH, 
NO3 and Cl radicals. In: Biogenic Sulfur in the Environment. Salzmann, E.S., Cooper, W.J., Eds. ACS Symposium Series 
393, pp. 476–488 
Barrows, M.E. et al. (1978) Am. Chem. Soc. Div. Environ. Chem. 18, 345–346. 
Basu, D.K., Hsu, R.S., Neal, M.W., Santodonato, J., Sugatt, R.H., Bayard, S., Bayliss, D.L., Hiremath, C.B., Vaughn-Dellarco, V. 
(1983) Health Assessment Document for Acrylonitrile. Final Report. EPA-600/8–82–007F, U.S. E.P.A., Research Triangle 
Park, N.C., PB84–149152. U.S. Department of Commerce, NTIS. 
Bebahani, Gh.R.R., Hogan, P., Waghorne, W.E. (2002) Ostwald concentration coefficients of acetonitrile in aqueous mixed solvents: 
A new rapid method for measuring the solubility of volatile solutes. J. Chem. Eng. Data 47, 1290–1292. 
Bechalany, A., Rothlisberger, T., El Tayler, N., Testa, B. (1989) Comparison of various non-polar stationary phases used for assessing 
lipophilicity. J. Chromatog. 473, 115–124. 
Becker, K.H., Biehl, H.M., Bruckmann, P., Fink, E.H., Fuhr, F., Klopffer, W., Zellner, R., Zetzsch, C. (1984) Hydroxyl radical reaction 
rate constants and tropospheric lifetimes of selected environmental chemicals. Kernforschungsanlage. Julich, GmbH. November 
1984, ISSN 0343–7639. 
Benes M., Dohnal, V. (1999) Limiting activity coefficients of some aromatic and aliphatic nitro compounds in water. J. Chem. Eng. 
Data 44, 1097–1102. 
Benkelberg, H.-J., Hamm, S., Warneck, P. (1995) Henry’s law coefficients for aqueous solutions of acetone, acetaldehyde and 
acetonitrile, and equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite. J. Atmos. 
Chem. 20, 17–34. 
Berliner, J.F.T., May, O.E. (1925) Studies in vapor pressure. I. The nitro-anilines. J. Am. Chem. Soc. 47, 2350–2356. 
Berthod, A., Han, Y.I., Armstrong, D.W. (1988) Centrifugal partition chromatography. V. Octanol-water partition coefficients, direct 
and indirect determination. J. Liq. Chromatogr. 11(7), 1441–1456. 
Bintein, S., Devillers, J., Karcher, W. (1993) Nonlinear dependence of fish bioconcentration on n-octanol/water partition coefficient. 
SAR and QSAR in Environ. Res. 1, 29–39. 
Bittrich, H.J., et al. (1962) J. Prakt. Chem. 17, 250.-reference in Boublik et al. 1984. 
Bittrich, H.J., Kauer, E. (1962) Z. Phys. Chem. 219, 224.-reference in Boublik et al. 1984. 
Bocek, K. (1976) Relations among activity coefficients, partition coefficients and solubilities. Experientia Suppl. 23, 231–240. 
Boethling, R.S., Alexander, M. (1979) Microbial degradation of organic compounds at trace levels. Environ. Sci. Technol. 13, 989–991. 
Bollag, J.M., Blattmann, P., Lannio, T. (1978) Adsorption and transformation of four substituted anilines in soil. J. Agric. Food Chem. 
26, 1302–1306. 
Booth, H.S., Everson, H.E. (1948) Hydrotropic solubilities. Solubilities in 40 per cent sodium xylenesulfonate. Ind. Eng. Chem. 
40(8), 1491–1493. 
© 2006 by Taylor & Francis Group, LLC

3440 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bornick, H., Eppinger, P., Grischek, T., Worch, E. (2001) Simulation of biological degradation of aromatic amines in river bed 
sediments. Water Res. 35, 619–624. 
Boublik, T., Aim, K.I. (1972) Collection Czech. Chem. Comm. 37, 3513.—reference from Boublik et al. 1984. 
Boublik, T., Fried, V., Hala, E. (1973) The Vapour Pressures of Pure Substances. Elsevier, Amsterdam, The Netherlands. 
Boublik, T., Fried, V., Hala, E. (1984) The Vapour Pressures of Pure Substances. Second Edition, Elsevier, Amsterdam, The 
Netherlands. 
Boyd, S.A., Kao, C.W., Suflita, J. (1984) Fate of 3,3.-dichlorobenzidine in soil: Persistence and binding. Environ. Toxicol. Chem. 3, 
201–208. 
Bridie, A.L., Wolff, C.J.M., Winter, M. (1979) BOD and COD of some petrochemicals. Water Res. 13, 627–630. 
Briggs, G.G. (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water 
solubilities, bioconcentration factors and Parachor. J. Agric. Food Chem. 29, 1050–1059. 
Brooke, D.N., Nielsen, I., De Bruijn, Hermens, J. (1990) An interlaboratory evaluation of the stir-flask method for the determination 
of octanol-water partition coefficients (LOG POW). Chemosphere 21, 119–133. 
Brown, H.C., Barbaras, G.K. (1947) Dissociation of the compounds of trimethylboron with pyridine and the picolines; evidence for 
the steric nature of the ortho effect. J. Am. Chem. Soc. 69, 1137–1144. 
Brown, I. (1952) Liquid-vapour equilibria. III. The systems benzene-heptane, hexane-chlorobenzene, and cyclohexane-nitrobenzene. 
Austral. J. Sci. Res. 5A, 530–540.—reference from Boublik et al. 1984 
Budavari, S., Editor (1989) The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals. 11th Edition, Merck & Co. 
Rahway, NJ. 
Butler, J.A.V., Ramchandani, C.N. (1935) The solubility of non-electrolytes. Part II. The influence of the polar group on the free 
energy of hydration of aliphatic compounds. J. Chem. Soc. 952–955. 
Buttery, R.G., Ling, J.C., Guadagni, D.G. (1969) Food volatiles. Volatilities of aldehydes, ketones, and esters in dilute water solution. 
J. Agric. Food Chem. 17, 385–389. 
Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B. (1986) Critical review of rate constants for reactions of hydrated electrons, 
hydrogen atoms and hydroxyl radicals (-OH/-O–) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–817. 
Bysshe, S.E. (1982) Bioconcentration factor in aquatic organisms. In: Handbook of Chemical Property Estimation Methods: Environmental 
Behavior of Organic Compounds. Lyman et al. Editors, Chapter 5, pp. 5–1 to 5–30, McGraw-Hill Book Company, 
New York. 
Cabani, S., Conti, G., Lepori, L. (1971) Thermodynamic study on aqueous dilute solutions of organic compounds: Part 1. Cyclic 
amines. Trans. Farad. Soc. 67, 1933–1942. 
Calamari, D., Da Gasso, R., Galassi, S., Provine, A., Vighi, M. (1980) Biodegradation and toxicity of selected amines on aquatic 
organisms. Chemosphere 9, 753–762. 
Callahan, M.A., Slimak, M.W., Gabel, N.W., May, I.P., Fowler, C.F., Freed, J.R., Jennings, P., Durfee, R.L., Whitemore, F.C., Maestri, 
B., Mabey, W.R., Holt, B.R., Gould, C. (1979) Water Related Environmental Fate of 129 Priority Pollutants. EPA-440-4- 
79-029a,b. Versar, Inc., Springfield, VA. 
Campbell, J.R., Luthy, R.G. (1985) Prediction of aromatic solute partition coefficient using the UNIFAC group contribution model. 
Environ. Sci. Technol. 19, 980–985. 
Canton, J.H., Sloof, W., Kool, H.J., Struys, J., Pouw, T.J.M., Wegman, R.C.C., Piet, G.J. (1985) Toxicity, biodegradability and 
accumulation of a number of chlorine/nitrogen containing compounds for classification and establishing water quality criteria. 
Regulat. Toxicol. Pharmacol. 5, 123–131. 
Capel, P.D., Larson, S.J. (1995) A chemodynamic approach for estimating losses of target organic chemicals from water during 
sample holding time. Chemosphere 30, 1097–1107 
Carlier, P., Hannachi, H., Mouvier, G. (1986) The chemistry of carbonyl compounds in the atmosphere - A review. Atmos. Environ. 
20, 2079–2099. 
Carlson, R.M., Carlson, R., Kopperman, H.L. (1975) Determination of partition coefficients by liquid chromatography. J. Chromatogr. 
107, 219–223. 
Chao, J., Lin, C.T., Chung, T.H. (1983) Vapor pressure of coal chemicals. J. Phys. Chem. Ref. Data 12, 1033–1063. 
Chao, J., Gadalla, N.A.M., Gammon, B.E., Marsh, K.N., Rodgers, A.S., Somayajulu, G.R., Wilhoit, R.C. (1990) Thermodynamic 
and thermophysical properties of organic nitrogen compounds. Part I. Methanamine, ethanamine, 1-and 2-propanamine, 
benzenamine, 2-,3-, and 4-methylbenzenamine. J. Phys. Chem. Ref. Data 19(6), 1547–1615. 
Chessells, M., Hawker, D.W., Connell, D.W. (1992) Influence of solubility in lipid on bioconcentration of hydrophobic compounds. 
Ecotoxicol. Environ. Saf. 23, 260–273. 
Chiou, C.T. (1981) Partition coefficient and water solubility in environmental chemistry. In: Hazard Assessment of Chemicals, Current 
Developments. Volume I, pp. 117–153. Academic Press, New York. 
Chiou, C.T. (1985) Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration 
factors. Environ. Sci. Technol. 19, 57–62. 
Chiou, C.T., Schmedding, D.W. (1981) Measurement and interrelation of octanol-water partition coefficient and water solubility of 
organic chemicals. In: Test Protocols for Environmental Fate and Movement of Toxicants. J. Assoc. Anal. Chem., Arlington, VA. 
Chiou, C.T., Schmedding, D.W., Manes, M. (1982) Partitioning of organic compounds in octanol-water system. Environ. Sci. Technol. 
16, 4–10. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3441 
Cichna, M., Markl, P., Huber, J.F.K. (1995) Determination of true octanol-water partition coefficients by means of solvent generated 
liquid-liquid chromatography. J. Pharmaceu. Biomed. Anal. 11, 339–351. 
Ciusa, R. (1922) Doebner’s reaction. Gazz. Chim. Ital. 52(II), 43–48. 
Clarke, F.H. (1984) Ionization constants by curve-fitting: Application to the determination of partition coefficients. J. Pharm. Sci. 
73, 226–230. 
Clarke, F.H., Cahoon, N.M. (1987) Ionization constants by curve-fitting: Application to the determination of partition and distribution 
coefficients of acids and bases and their ions. J. Pharm. Sci. 76(8), 611–620. 
Collander, R. (1951) Partition of organic compounds between higher alcohols and water. Acta. Chem. Scand. 5, 774–780. 
Collet, A.R., Johnson, J. (1926) Solubility relations of isomeric organic compounds VI. Solubility of the nitroanilines in various 
liquids. J. Phys. Chem. 30, 70–82. 
Conder, J.M., La Point, T.W., Bowen, A.T. (2004) Preliminary kinetics and metabolism of 2,4,6-trinitrotoluene and its reduced 
metabolites in an aquatic oligochaete. Aqua. Toxicol. 69, 199–213. 
Cornford, E.M., (1982) Correlation between liquid partition coefficients and surface permeation in Schistosoma japonicum. J. Membr. 
Biol. 64, 217–224. 
Coulson, E.A., Cox, J.D., Herington, E.F.G., Martin, J.F. (1959) The preparation and physical properties of the pure lutidines. J. Chem. 
Soc. (London) 1934–1940. 
Cox, R.A., Sheppard, D. (1980) Nature 284, 330. 
D’Amboise, M., Hanai, T. (1982) Hydrophobicity and retention in reversed phase liquid chromatography. J. Liq. Chromatogr. 5(2), 
229–244. 
Darnall, K.R., Lloyd, A.C., Winer, A.M., Pitts, Jr., J.N. (1976) Reactivity scale for atmospheric hydrocarbons based on reaction with 
hydroxyl radical. Environ. Sci. Technol. 10, 692–696. 
Daubert, T.E., Danner, R.P. (1985) Data Compilation of Properties of Pure Compounds. pp. 450. American Institute of Chemical 
Engineers. 
Dauble, D.D., Carlile, D.W., Hanf, Jr., R.W. (1986) Bioaccumulation of fossil fuel components during single-compound and complexmixture 
exposures of daphnia magna. Bull. Environ. Contam. Toxicol. 37, 125–132. 
Davis, E.M., Murray, H.E., Leihr, J.G., Powers, E.L. (1981) Basic microbial degradation rates and chemical byproducts of selected 
organic compounds. Water Res. 15, 1125–1127. 
Dean, J.D., Editor (1985) Lange’s Handbook of Chemistry. 13th ed. McGraw-Hill, New York. 
Dean, J.D., Ed. (1992) Lange's Handbook of Chemistry. 14th ed. McGraw-Hill, Inc., New York. 
Debnath, A.K., Hansch, C. (1992) Structure-activity relationship of genotoxic polycyclic aromatic nitro compounds. Further 
evidence for the importance of hydrophobicity and molecular orbital energies in genetic toxicity. Environ. Mol. Mutagen. 
20, 140–144. 
De Bruijn, J., Busser, F., Seipnen, W., Hermens, J. (1989) Determination of octanol/water partition coefficients for hydrophobic 
organic chemicals with the “slow-stirring” method. Environ. Toxicol. Chem. 8, 499–512. 
Dehn, W.M. (1917) Comparative solubilities in water, in pyridine and in aqueous pyridine. J. Am. Chem. Soc. 29, 1399–1404. 
Delle Site, A. (1997) The vapor pressure of environmentally significant organic chemicals: A review of methods and data at ambient 
temperature. J. Phys. Chem. Ref. Data 26, 157–193. 
Delle Site, A. (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for 
selected pollutants. A review. J. Phys. Chem. Ref. Data 30, 187–439. 
DePablo, R.S. (1976) Determination of saturated vapor pressure in range 10–1–10–4 torr by effusion method. J. Chem. Eng. Data 21, 
141–143. 
De Voogt, P., Van Zijl, G.A., Govers, H., Brinkman, U.A.T. (1990) Reversed-phase TLC and structure-activity relationships of 
polycyclic (hetero) aromatic hydrocarbons. J. Planar Chromatogr. - Mod. TLC, 3(1–2), 24–33. 
De Voogt, P., Wegener, J.W.M., Klamer, J.C., Van Zijl, G.A., Govers, H. (1988) Prediction of environmental fate and effects of 
heteroatomic polycyclic aromatics by QSARs: The position of n-octanol/water partition coefficients. Biomed. Environ. Sci. 
1(2), 194–209. 
Deneer, J.W., Sinnige, T.L., Seinen, W., Hermens, J.L.M. (1987) Quantitative structure-activity relationships for the toxicity and 
bioconcentration factor of nitrobenzene derivatives towards guppy (Poecilia reticulata). Aqua. Toxicol. 10, 115–129. 
Deno, N.C., Berkheimer, H.E. (1960) Part I. Phase equilibria molecular transport thermodynamics. J. Chem. Eng. Data 5(1), 1–5. 
Digeronimo, M.J., Boethling, R.S., Alexander, M. (1979) Effect of chemical structure and concentration on microbial degradation 
in model ecosystems. In: Microbial Degradation of Pollutants in Marine Environments. EPA-600/9–79–012. U.S. Environmental 
Protection Agency, Gulf Breeze, FL. 
Dilling, W.L., Gonsior, S.J., Boggs, G.U., Mendoza, C.G. (1988) Organic photochemistry. 20. A method for estimating gasphase 
rate constants for reactions of hydroxyl radicals with organic compounds from their relative rates of reaction 
with hydrogen peroxide under photolysis in 1,1,2-trichlorotrifluoroethane solution. Environ. Sci. Technol. 22, 
1447–1453. 
Dlugokencky, E. J., Howard, C.J. (1988) Laboratory studies of NO3 radical reactions with some sulfur compounds. J. Phys. Chem. 
92, 1188–1193. 
Dojcanske, J., Heinrich, J. (1974) Chem. Zvesti 28, 157. - reference from Boublik et al. 1984 
© 2006 by Taylor & Francis Group, LLC

3442 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Dojlido, J.R. (1979) Investigation of Biodegradability and Toxicity of Organic Compounds. Final Report 1975–79. U.S. EPA 
600/2–79–163. Municipal Environmental Research Lab., Cincinnati, OH. 
Donahue, D.J., Bartell, F.E. (1952) The boundary tension at water-organic liquid interfaces. J. Phys. Chem. 56, 480–484. 
Donberg, P.A., Odelson, D.A., Klecka, G.M., Markham, D.A. (1992) Biodegradation of acrylonitrile in soil. Environ. Toxicol. Chem. 
11, 1583–1594. 
Dorfman, L.M., Adams, G.E. (1973) Reactivity of the Hydroxyl Radical in Aqueous Solution. NSRD-NDB-46. NTIS COM-73–50623. 
National Bureau of Standards, Washington, D.C. 
Douglas, T.B. (1948) Vapor pressure of methyl sulfoxide from 20 to 50°C. Calculation of the heat of vaporization. J. Am. Chem. 
Soc. 70, 2001–2002. 
Dreisbach, R.R. (1955) Physical Properties of Chemical Compounds. No. 15, Am. Chem. Soc. Adv. Chem. Series. American Chemical 
Society, Washington D.C. 
Dreisbach, R.R. (1961) Physical Properties of Chemical Compounds-III. No. 29 of the Adv. Chem. Series. American Chemical 
Society, Washington D.C. 
Dreisbach, R.R., Martin, R.A. (1949) Physical data on some organic compounds. Ind. Eng. Chem. 41, 2875–2878. 
Dreisbach, R.R., Shrader, S.A. (1949) Vapor pressure-temperature data on some organic compounds. Ind. Eng. Chem. 41, 2879–2880. 
Dunlap, K.L. (1981) In: Kirk-Othmer Encyclopedia of Chemical Technology. Vol.15, 3rd. Edition, John Wiley & Sons, New York. 
pp. 925–926, 930–931. 
Eadsforth, C.V. (1986) Application of reverse-phase HPLC for the determination of partition coefficients. Pestic. Sci. 17, 311–325. 
Eadsforth, C.V., Moser, P. (1983) Assessment of reverse-phase chromatographic methods for determining partition coefficients. 
Chemosphere 12, 1459–1475. 
Edney, E. et al. (1983) Atmospheric Chemistry of Several Toxic Compounds. US EPA-600/53–82–092. 
Edwards, G. (1950) The vapour pressure of 2:4:6-trinitrotoluene. Trans. Farad. Soc. 46, 423-427. 
Edwards, D.R., Prausnitz, J. M. (1981) Vapor pressures of some sulfur-containing, coal-related compounds. J. Chem. Eng. Data 26, 
121–124. 
Ellington, J.J., Stancil, F.E., Payne, W.D. (1987) Measurement of Hydrolysis Rate Constants for Evaluation of Hazardous Waste Land 
Disposal. Vol. 1, Data on 32 Chemicals. U.S. EPA-600/3–86–043. NTIS PB87–140 349/GAR. 
Elovitz, M.S., Weber, E.J. (1999) Sediment-mediated reduction of 2,4,6-trinitrotoluene and fate of the resulting aromatic (poly)amines. 
Environ. Sci. Technol. 33, 2617–2625. 
El Tayar, N., Tsai, R.-S., Vallat, P., Altomare, C., Testa, B. (1991) Measurement of partition coefficient by various centrifugal partition 
chromatographic techniques. A comprehensive evaluation. J. Chromatogr. 556, 181–194. 
El Tayar, N., van de Waterbeemd, H., Grylaki, M., Testa, B., Trager, W.F. (1984) The lipophilicity of deuterium atoms. A comparison 
of shake-flask and HPLC (high performance liquid chromatography) methods. Int. J. Pharm. 19, 271–281. 
Eon, C., Pommier, C., Guiochon, G. (1971) Vapor pressures and second virial coefficients of some five-membered heterocyclic 
derivatives. J. Chem. Eng. Data 16, 408–410. 
Ewing, M.B., Sanchez Ochoa, J.C. (2004) Vapor pressure of acetonitrile determined by comparative ebulliometry. J. Chem. Eng. 
Data 49, 486–491. 
Ezumi, K., Kubota, T. (1980) Simultaneous determination of acid dissociation constants and true partition coefficients by analyses 
of the apparent partition coefficient. Chem. Pharm. Bull. 28, 85–91. 
Falbe-Hansen, H., Sorenson, S., Jensen, N.R., Pedersen, T., Hjorth, J. (2000) Atmospheric gas-phase reactions of dimethylsulphoxide 
and dimethyl sulphone with OH and NO3 radicals, Cl atoms and ozone. Atmos, Environ. 1543–1451. 
Fochtman, E.G., Eisenberg, W. (1979) Treatability of Carcinogenic and Other Hazardous Organic Compounds. U.S. EPA- 
600/S2–79–097. U.S. Environmental Protection Agency, Cincinnati, OH. 
Foote, C.S. (1976) Free Radicals in Biology. Pryor, W.A., Editor, Academic Press, Inc., New York. 
Fournier, J.C., Salle, J. (1974) Microbial degradation of 2,6-dichlorobenzamide in laboratory models. I. Degradation of 2,6-dichlorobenzamide 
in soil, comparison with the evolution of other benzamides with different substituents. Research of metabolic 
products. Chemosphere 3, 77–82. 
Freitag, D., Geyer, H., Kraus, A., Viswanathan, R., Kotzias, D., Klein, W., Korte, F. (1982) Ecotoxicological profile analysis. VII. 
Screening chemicals for their environmental behavior by comparative evaluation. Ecotoxicol. Environ. Saf. 6, 60–81. 
Freitag, D., Scheunert, I., Klein, W., Korte, F. (1982) Long-term fate of 4-chloroaniline-14C in soil and plants under outdoor conditions. 
A contribution to terrestrial ecotoxicology of chemicals. Ecotoxicol. Environ. Saf. 6, 60–81. 
Freitag, D., Scheunert, I., Klein, W., Korte, F. (1984) Long-term fate of 4-chloroaniline 14C in soil and plants under outdoor conditions. 
A contribution to terrestrial ecotoxicology of chemicals. J. Agric. Food Chem. 32, 203–207. 
Freitag, D., Ballhorn, L., Geyer, H., Korte, F. (1985) Environmental hazard profile of organic chemicals. An experimental method 
for assessment of the behavior of organic chemicals in the ecosphere by means of simple laboratory tests with 14C labelled 
chemicals. Chemosphere 14, 1589–1616. 
Fu, J.-K., Luthy, R.G. (1985) Pollutant Sorption to Soils and Sediments in Organic/Aqueous Solvent Systems. EPA/600/3–85/050. 
Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA. 
Fu, J.-K., Luthy, R.G. (1986) Aromatic compound solubility in solvent/water mixtures. J. Chem. Eng. 112, 328–345. 
Fujita, T., Iwasa, J., Hansch, C. (1964) A new substituent constant derived from partition coefficients. J. Am. Chem. Soc. 86(23), 
5175–5180. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3443 
Fujisawa, S., Masuhara, E. (1980) Binding of methyl methacrylate to bovine albumin. J. Dent. Res. 59, 2056–2061. 
Fujisawa, S., Masuhara, E. (1981) Determination of partition coefficients of acrylates, methacrylates, and vinyl monomers using high 
performance liquid chromatography (HPLC). J. Biomed. Mat. Res. 15, 787–793. 
Gaffney, J.S., Streit, W.D., Hall, J.H. (1987) Beyond acid rain. Do soluble oxidants and organic toxins interact with SO2 and NO2 to 
increase ecosystem effects? Environ. Sci. Technol. 21(6), 519–524. 
Garst, J.E. (1984) Accurate, wide range, automated, high-performance liquid chromatographic method for the estimation of 
octanol/water partition coefficients. II: Equilibrium in partition coefficient measurements, additivity of substituent constants, 
and correlation of biological data. J. Pharm. Sci. 73, 1623–1629. 
Garst, J.E., Wilson, W.C. (1984) Accurate, wide range, automated, high-performance liquid chromatographic method for the estimation 
of octanol/water partition coefficients. I: Effect of chromatographic conditions and procedure variables on accuracy and 
reproducibility of the method. J. Pharm. Sci. 73, 1616–1623. 
Gatta, G.D., Jozwiak, M., Brunetti, B., Abate, L. (2000) Enthalpies and entropies of fusion and of sublimation at the temperature 
298.15 K of thiourea and seven N-alkylthioureas. J. Chem. Thermodyn. 32, 979–997. 
Gawlik, B.M., Feicht, E.A., Karcher, W., Kettrup, A., Muntau, H. (1998) Application of the European soil set (Eurosoils) to a HPLCscreening 
method for the estimation of soil adsorption coefficients of organic compounds. Chemosphere 36, 2903–2919. 
Gawlik, B.M., Kettrup, A., Muntau, H. (1999) Characterisation of a second generation of European reference soils for sorption studies 
in the framework of chemical testing - Part II: soil adsorption behaviour of organic chemicals. Sci. Total Environ. 229, 
109–120. 
Gawlik, B.M., Kettrup, A., Muntau, H. (2000) Estimation of soil adsorption coefficients of organic compounds by HPLC screening 
using the second generation of the European reference soil set. Chemosphere 41, 1337–1347. 
Ge, J., Liu, W., Dong, S. (1987) Determination of partition coefficient with chemically bonded omega-hydroxysilica as HPLC column 
packing. Sepu 5(3), 182–185. 
Gehring, P.J., Torkelson, T.R., Oyen, F. (1967) A comparison of the lethality of chlorinated pyridines and a study of the acute toxicity 
of 2-chloropyridine. Toxicol. Appl. Pharmacol. 11, 361–371. 
GEMS (1986) Graphical Exposure Modeling System. FAP. Fate of Atmospheric Pollutants. 
GEMS (1987) Graphical Exposure Modeling System. FAP. Fate of Atmospheric Pollutants. 
Gerike, P., Fischer, W.K. (1979) A correlation study of biodegradability determinations with various chemicals in various tests. 
Ecotoxicol. Environ. Safety 3, 159–73. 
Gerstl, Z., Helling, C.S. (1987) Evaluation of molecular connectivity as a predictive method for the adsorption of pesticides in soil. 
J. Environ. Sci. Health B22, 55–69. 
Geyer, H., Politzki, G., Freitag, D. (1984) Prediction of ecotoxicological behaviour of chemicals: Relationship between n-octanol/water 
partition coefficient and bioaccumulation of organic chemicals by Alga Chlorella. Chemosphere 13, 269–284. 
Gluck, S.J., Martin, E.J. (1990) Extended octanol-water partition coefficient determination by dual-mode centrifugal partition 
chromatography. J. Liq. Chromatogr. 13, 3559–3570. 
Go, M.L., Ngiam, T.L. (1988) Hydrophobicity change on N-oxidation of some 4-aminoquinolines. Chem. Pharm. Bull. 36(4), 
1393–1398. 
Going, J., Kuykendahl, P., Long, S., Onstol, J., Thomas, K. (1979) Environmental Monitoring Near Industrial Sites. Acrylonitrile. 
U.S. EPA 560/6–79–003. U.S. Environmental Protection Agency, Washington, DC. 
Govers, H., Ruepert, C., Stevens, T.J., van Leeuwen, C.J. (1986) Experimental determination and prediction of partition coefficients 
of thioureas and their toxicity to photobacterium phosphoreum. Chemosphere 15, 383–393. 
Graveel, J.G., Sommers, L.E., Nelson, D.W. (1986) Decomposition of benzidine, .-naphthalamine, and p-toluidine in soils. J. Environ. 
Qual. 15(1), 53–59. 
Greene, S., Alexander, M., Leggett, D. (1981) Formation of N-nitrosodimethylamine during treatment of municipal waste water by 
simulated land application. J. Environ. Qual. 10, 416–421. 
Gross, P. M., Saylor, J.H., Gorman, A. (1933) Solubilities studies. IV. The solubilities of certain slightly soluble organic compounds 
in water. J. Am. Chem. Soc. 55, 650. 
Gudkov, A.N., Fermor, N.A., Smirnov, N.I. (1964) Zh. Prikl. Kh. 37, 2204.- ref see Boublik et al. 1984. 
Guesten, H., Filby, W.G., Schoop, S. (1981) Prediction of hydroxyl radical reaction rates with organic compounds in the gas phase. 
Atmos. Environ. 15, 1763–1765. 
Gunther, F.A., Westlake, W.E., Jaglan, P.S. (1968) Reported solubilities of 738 pesticide chemicals in water. Residue Rev. 20, 1–148. 
Hakuta, T., Negishi, A., Goto, T., Ishizaka, S. (1977) Vapor-liquid equilibriums of some pollutants in aqueous and saline solutions. 
Part I. Experimental results. Desalination 21, 11–21. 
Haky, J.E., Leja, B. (1986) Evaluation of octanol-water partition coefficients using capillary gas chromatography with cold on-column 
injection. Anal. Lett. 19, 123–134. 
Haky, J.E., Young, A.M. (1984) Evaluation of a simple HPLC correlation method for the estimation of the octanol-water partition 
coefficients of organic compounds. J. Chromatogr. 7, 675–689. 
Hale, V.Q., Stanford, T.B., Taft, L.G. (1979) Evaluation of the environmental fate of munition compound in soil. Final Report ADA082874, 
US Army Medical Research and Development Command, Fort Detrick, Frederick, MD. 1979. 
Hammers, W.E., Meurs, G.J., De Ligny, C.L. (1982) Correlations between liquid chromatographic capacity ratio data on Lichrosorb 
RP-18 and partition coefficients in the octanol-water system. J. Chromatogr. 247, 1–13. 
© 2006 by Taylor & Francis Group, LLC

3444 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Hanai, T., Hubert, J. (1982) Hydrophobicity and chromatographic behaviour of aromatic acids found in urine. J. Chromatogr. 239, 
527–536. 
Hansch, C., Fujita, T. (1964) .-.- . Analysis: Method for the correlation of biological activity and chemical structure. J. Am. Chem. 
Soc. 86, 1616–1626. 
Hansch, C., Anderson, S. (1967) The effect of intermolecular hydrophobic bonding on partition coefficients. J. Org. Chem. 32, 2583. 
Hansch, C., Leo, A. (1979) Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley, New York. 
Hansch, C., Leo, A. (1983) Medchem Project. Pomona College, Claremont, CA. 
Hansch, C., Leo, A. (1985) Medchem Project. Pomona College, Claremont, CA. 
Hansch, C., Leo, A. (1987) Medchem Project. Pomona College, Claremont, CA. 
Hansch. C., Leo, A.J., Hoekman, D. (1995) Exploring QSAR, Hydrophobic, Electronic, and Steric Constants. ACS Professional 
Reference Book, American Chemical Society, Washington, DC. 
Hansch, C., Quinlan, J.E., Lawrence, G.L. (1968) The linear free-energy relationship between partition coefficients and the aqueous 
solubility of organic liquids. J. Org. Chem. 33, 347–350. 
Hanst, P.L., Spence, J.W., Miller, M. (1977) Atmospheric chemistry of N-nitrosodimethylamine. Environ. Sci. Technol. 11, 403–405. 
Haque, R., Falco, J., Cohen, S., Riordan, C. (1980) Role of transport and fate studies in the exposure, assessment and screening of 
toxic chemicals. pp. 47–67. In: Dynamics, Exposure and Hazard Assessment of Toxic Chemicals. Haque, R., Editor, Ann 
Arbor Science Publishers Inc., Ann Arbor, MI. 
Harnish, M., Mockel, H.J., Schulze, G. (1983) Relationship between log POW shake flask values and capacity factors derived from 
reversed phase HPLC for n-alkylbenzenes and some OECD reference substances. J. Chromatogr. 282, 315–332. 
Harris, J.C. (1982) Rate of aqueous photolysis. In: Handbook of Chemical Property Estimation Methods. Environmental Behavior 
of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Eds., Chapter 8, McGraw-Hill Book Co., New York. 
Harris, G.W., Kleindienst, T.E., Pitts, J.N., Jr. (1981) Rate constants for the reaction of OH radicals with CH3CN, C2H5CN and 
CH2=CH-CN in the temperature range 298–424 K. Chem. Phys. Lett. 80, 479–483. 
Hasegawa, K., Murase, M., Kuboshita, M., Saida, H., Shinoda, M., Miyamoto, M., Shimasaki, C., Yoshimura, T., Tsukurimichi, E., 
Takeuchi, S. (1993) Photooxidation of naphthaleneamines adsorbed on particles under simulated atmospheric conditions. 
Environ. Sci. Technol. 27, 1819–1825. 
Hashimoto, Y., Tokura, K., Kishi, H., Strachan, W.M.J. (1984) Prediction of seawater solubility of aromatic compounds. Chemosphere 
13, 881–888. 
Hashimoto, Y., Tokura, K., Ozaki, K., Strachan, W.M.J. (1982) A comparison of water solubilities by the flask and micro-column 
methods. Chemosphere 11, 991–1001. 
Hatton, W.E., Hildenbrand, D.L., Sinke, G.C., Stull, D.R. (1962) Chemical thermodynamic properties of aniline. J. Chem. Eng. Data 
7, 229–231. 
Hawthorne, S.B., Sievers, R.E., Barkley, R.M. (1985) Organic emissions from shale oil wastewaters and their implications for air 
quality. Environ. Sci. Technol. 19, 992–997. 
Helweg, C., Nielsen, T., Hansen, P.E. (1997) Determination of octanol-water partition coefficients of polar polycyclic aromatic 
compounds (N-PAC) by high performance liquid chromatography. Chemosphere 34, 1673–1684. 
Hendry, D.G., Mill, T., Piszkiewicz, L., Howard, J.A., Eigenmann, H. K. (1974) Critical review of hydrogen-atom transfer in the 
liquid phase. Chlorine atom, alkyltrichloromethyl, alkoxy, and alkyl peroxy radicals. J. Phys. Chem. Ref. Data 3, 937–978. 
Herington, E.F.G., Martin, J.F. (1953) Vapour pressures of pyridine and its homologues. Trans. Faraday Soc. 49, 154–162. 
Hill, A.E., Macy, R.J. (1924) Ternary system. II. Silver perchlorate, aniline and water. J. Am. Chem. Soc. 46, 1132. 
Hine, J., Haworth, H.W., Ramsay, O.B. (1963) Polar effects on rates and equilibria. VI. The effect of solvent on the transmission of 
polar effects, J. Am. Chem. Soc. 85, 1473–1476. 
Hine, J., Mookerjee, P.K. (1975) The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural 
contributions. J. Org. Chem. 40, 292–298. 
Hodson, J., Williams, N.A. (1988) The estimation of the adsorption coefficient (Koc) for soils by high performance liquid chromatography. 
Chemosphere 17, 67–77. 
Hoigne, J., Bader, H. (1983) Rate constants of reactions of ozone with organic compounds in water-I. Non-dissociating organic 
compounds. Water Res. 17, 173–183. 
Holmes, H.L., Lough, C.E. (1976) Effect of Intramolecular Hydrogen Bonding on Partition Coefficients. Suffield Tech. Note No. 
DRES-TN-365. Defence Res. Establishment Suffield/Information Canada. U.S. NTIS Report No. AD-A030683. 
Hong, H., Wang, L., Han, S. (1996) Prediction adsorption coefficients (KOC) for aromatic compounds by HPLC retention factors 
(K’). Chemosphere 32, 343–351. 
Hopke, E.R., Sears, G.W. (1951) Vapor pressures below 1 mm Hg of several aromatic compounds. J. Chem. Phys. 19(11), 1345–1351. 
Howard, J.A. (1972) Absolute rate constants for reactions of oxy radicals. Adv. Free Radical Chem. 4, 49–173. 
Howard, P.H., Editor (1989) Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. I, Large Production 
and Priority Pollutants. Lewis Publishers, Chelsea, MI. 
Howard, P.H., Editor (1990) Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. II, Solvents. Lewis 
Publishers, Chelsea, MI. 
Howard, P.H., Editor (1993) Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. IV, Solvents 2. Lewis 
Publishers, Chelsea, MI. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3445 
Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., Michalenko, E.M. (1991) Handbook of Environmental Degradation Rates. 
Lewis Publishers, Chelsea, MI. 
Howard, P.H., Hueber, A.E., Mulesky, B.C., Crisman, J.S., Meylan, W., Crosby, E., Gray, D.A., Sage, G.W., Howard, K.P., LaMacchia, 
A., Boethling, R.S., Troast, R. (1986) BIOLOG, BIODEG, and FATE/EXPOS: New files on microbial degradation and 
toxicity as well as environmental fate/exposure of chemicals. Environ. Toxicol. Chem. 5, 977–988. 
Hoy, K.L. (1970) New values of the solubility parameters from vapor pressure data. J. Paint Technol. 42(541), 76–118. 
Hoyer, Von H., Peperle, W. (1958) Dampfdruckmessungen an organischen substanzen und ihre sublimationswarmen. Zeit. fur 
Elcktrochemie 62(1), 61–66. 
Hsu, Y.-C., Chem., D.-S., Lee, Y.-P. (1987) Rate constant for the reaction of OH radicals with dimethyl sulfide. Int. J. Chem. Kinet. 
19, 1073–1082. 
Huang, J.-D. (1990) Comparative drug adsorption in the perfused rat intestine. J. Pharm. Pharmacol. 42, 167–170. 
Hwang, H.M., Hodson, R.E., Lee, R.F. (1987) Degradation of aniline and chloroanilines by sunlight and microbes in estuarine water. 
Water Res. 21, 309–316. 
Hynes, A.J. Wine, P.H., Semmes, D.H. (1986) Kinetics and mechanism of OH reactions with organic sulfides. J. Phys. Chem. 90, 
4148–4156. 
Hynes, A.J., Wine, P.H. (1996) The atmospheric chemistry of dimethylsulfoxide (DMSO) kinetics and mechanism of the OH + 
DMSO reaction. J. Atmos. Chem. 24, 23–37. 
IARC (1975) IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man. Vol. 8, Some Aromatic Azo Compounds. 
Internal Agency for Research on Cancer, Lyon, France. 357p. 
Ichikawa, Y., Yamano, T., Fujishima, H. (1969) Relationships between the interconversion of cytochrome P540 and its activities in 
hydroxylations and demethylations by P450 oxidase systems. Biochem. Biophys. Acta 171, 32–46. 
Ingerslev, F., Nyholm, N. (2000) Shake-flask test for determination of biodegradation rates of C-14-labeled chemicals at low 
concentrations in surface water systems. Ecotoxicol. Environ. Saf. 45, 274–283. 
Isnard, P., Lambert, S. (1988) Estimation bioconcentration factors from octanol-water partition coefficient and aqueous solubility. 
Chemosphere 17, 21–34. 
Isnard, P., Lambert, S. (1989) Aqueous solubility/n-octanol water partition coefficient correlations. Chemosphere 18, 1837–1853. 
Iwasa, J., Fujita, T., Hansch, C. (1965) Substituent constants for aliphatic functions obtained from partition coefficients. J. Med. 
Chem. 8, 150–153. 
Jackel, H., Klein, W. (1991) Prediction of mammalian toxicity by quantitative-structure-activity relationships: Aliphatic amines and 
anilines. Quant.-Strut.-Act. Relat. 10, 198–204. 
Jakli, G., Van Hook, W.A. (1972) The vapor pressures of dimethyl sulfoxide and hexadeuterodimethyl sulfoxide from about 313 to 
453 K. J. Chem. Thermodyn. 4, 857–864. 
Jaworska, J.S., Schultz, T.W. (1993) Quantitative relationships of structure-activity and volume fraction for selected nonpolar and 
polar narcotic chemicals. SAR and QSAR in Environ. Res. 1, 3–19. 
Jenke, D.R., Hayward, D.S., Kenley, R.A. (1990) Liquid chromatographic measurement of solute/solvent partition coefficients: 
Application to solute/container interactions. J. Chromatogr. Sci. 28(12), 609–612. 
Jia, Z., Mei, L., Lin, F., Huang, S., Killion, R.B. (2003) Screening of octanol-water partition coefficients for pharmaceuticals by 
pressure-assisted microemulsion electrokinetic chromatography. J. Chromatog. A, 1007, 203–208. 
Jimenez, P., Moux, M.V., Turrion, C. (1990) Thermochemical properties of N-heterocyclic compounds. III. Enthalpies of combustion, 
vapour pressures and enthalpies of sublimation, and enthalpies of formation of 9H-carbazole, 9-methylcarbazole, and 9- 
ethylcarbazole. J. Chem. Thermodyn. 22, 721–726. 
Johnson, C.A., Westall, J.C. (1990) Effect of pH and KCl concentration on octanol-water distribution of methylanilines. Environ. 
Sci. Technol. 24(12), 1869–1875. 
Jori, A., Calamari, D., Cattabeni, F., Domenico, A.D., Galli, C.L., Galli, E., Silano, V. (1983) Ecotoxicological profile of pyridine. 
Ecotoxicol. Environ. Saf. 7, 251–275. 
Kahlbaum, G.W.A. (1898) Studien uber dampfspannkraftmessungen. II. Z. Phys. Chem. 26, 577–658. 
Kakinuma, H. (1941) The solubility of urea in water. J. Phys. Chem. 45, 1045–1046. 
Kalsch, W., Nagel, R., Urich, K. (1991) Uptake, elimination, and bioconcentration of ten anilines in zebrafish (Brachydanio rerio). 
Chemosphere 22, 351–363. 
Kamlet, M.J., Doherty, R,M., Abboud, J.-L.M., Abraham, M.H., Taft, R.W. (1986) Linear solvation energy relationships: 36. Molecular 
properties governing solubilities of organic nonelectrolytes in water. J. Pharm. Sci. 75(4), 338–349. 
Kamlet, M.J., Doherty, R.M., Abraham, M.H., Carr, P.W., Doherty, R.F., Taft, R.W. (1987) Linear solvation energy relationships: 41. 
Important differences between aqueous solubility relationships for aliphatic and aromatic solutes. J. Phys. Chem. 91, 
1996–2004. 
Kamlet, M.J., Doherty, R.M., Taft, R.W., Abraham, M.H., Veith, G.D., Abraham, D.J. (1987) Solubility properties in polymers and 
biological media. 8. An analysis of the factors that influence toxicities of organic nonelectrolytes to the golden orfe fish 
(leuciscus idus melanotus). Environ. Sci. Technol. 21(2), 149–155. 
Karickhoff, S.W. (1985) Chapter 3, Pollutant sorption in environmental systems. In: Environmental Exposure from Chemicals. Vol. I, 
Neely, W.B., Blau, G.E., Editors, CRC Press, Boca Raton, FL. pp. 49–64. 
© 2006 by Taylor & Francis Group, LLC

3446 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Karickhoff, S.W., Brown, D.S., Scott, T.A. (1979) Sorption of hydrophilic organic pollutants on natural sediments. Water Res. 13, 
241–248. 
Kawasaki, M. (1980) Experiences with test scheme under the chemical control law of Japan: An approach to structure-activity 
correlations. Ecotoxicol. Environ. Saf. 4, 444–454. 
Kelly, T.J., Mukund, R., Spicer, C.W., Pollack, A.J. (1994) Concentrations and transformations of hazardous air pollutants. Environ. 
Sci. Technol. 28, 378A-387A. 
Kenaga, E.E. (1980) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol. 
Environ. Saf. 4, 26–38. 
Kenaga, E.E., Goring, C.A.I. (1980) In: Aquatic Toxicology. Eaton, J.G., Parrish, P.R., Hendricks, A.C., Editors, ASTM STP 707, 
pp. 78–115, Am. Soc. for Testing and Materials, Philadelphia, PA. 
Killian, H., Bittrich, H.J. (1965) Z. Phys. Chem. 230, 3831.-reference in Boublik et al. 1984. 
Kim, K.-J., Lee, C.-H., Ryu, S.-K. (1994) Solubility of thiourea in C1 to C6 1-alcohol. J. Chem. Eng. Data 39, 228–230. 
Kilzer, L., Scheunert, I., Geyer, H., Klein, W., Korte, F. (1979) Laboratory screening of the volatilization rates of organic chemicals 
from water and soil. Chemosphere 8, 751–761. 
Kincannon, D.F., Lin, Y.S. (1985) Microbial degradation of hazardous wastes by land treatment. Proc. Ind. Waste Conference 40, 607–619. 
Klamt, A. (1993) Estimation of gas-phase hydroxyl radical rate constants of organic compounds from molecular orbital calculations. 
Chemosphere 26(7), 1273–1289. 
Klara, C.M., Mohamed, R.S., Dempsey, D.M., Holder G.D. (1987) Vapor-liquid equilibria for the binary systems of benzene/toluene, 
diphenylmethane/toluene, m-cresol/1,2,3,4-tetrahydronaphthalene and quinoline/benzene. J. Chem. Eng. Data 32, 143–147. 
Klecka, G.M. (1985) Biodegradation. In: Environmental Exposure from Chemicals. Vol I. Neely, W.B., Blau, G.E., Eds., pp. 110–155, 
CRC Press Inc., Boca Raton, FL. 
Klein, E., Weaver, J.W., Weber, B.G. (1957) Solubility of acrylonitrile in aqueous bases and alkali salts. Chem. Eng. Data Ser. 2, 72–75. 
Klusen, J., Trober, S.P., Haderlein, S.B. Schwarzenbach, R.P. (1995) Reduction of substituted nitrobenzenes by Fe(II) in aqueous 
mineral suspensions. Environ. Sci. Technol. 29, 2396–2404. 
Kobe, K.A., Okabe, T.S., Ramstad, M.T., Huemmer, P.M. (1941) p-Cymene studies. VI. Vapor pressure of p-cymene, some of its 
derivatives and related compounds. J. Am. Chem. Soc. 63, 3251–3252. 
Kobe, K.A., Ravicz, A.E., Vohra, S.P. (1956) Critical properties and vapor pressures of some ethers and heterocyclic compounds. 
Ind. Eng. Chem. 1, 50–56. 
Kochany, J., Maguire, R.J. (1994) Photodegradation of quinoline in water. Chemosphere 28(6), 1097–1110. 
Kollig, H.P., Ed. (1993) Environmental Fate Constants for Organic Chemicals under Consideration of EPA’s Hazardous Waste 
Identification Projects. EPA Report EPA/600/R-93/132, U.S. Environmental Research Lab., Athens GA. 
Konemann, H., Zelle, R., Busser, F., Hammers, W.E. (1979) Determination of log POCT values of chloro-substituted benzenes, toluenes 
and anilines by high-performance liquid chromatography on ODS-silica. J. Chromatogr. 178, 559–565. 
Kordel, W., Stutte, J., Kotthoff, G. (1993) HPLC-screening method for the determination of the adsorption-coefficient on soilcomparison 
of different stationary phases. Chemosphere 27, 2341–2352. 
Korenman, I.M. (1971) Extraction of homologous compounds. Russ. J. Phys. Chem. 45(6), 795–797. 
Korenman, I.M., Gurevich, Yu. N., Kulagina, T.G. (1973) Extraction of some n-alkylamines from aqueous solutions. Zh. Prikl. Khim. 
(Leningrad) 46(3), 683–684. 
Korenman, Ya.I., Polumestnaya, E.I. (1982) Principles of interfacial distribution of certain substituted naphthalenes. J. Appl. Chem. 
USSR (English translation) 55(2), 364–367. 
Korte, F., Freitag, D., Geyer, H., Klein, W., Kraus, A.G., Lahaniatis, E. (1978) Ecotoxicologic profile analysis-a concept for establishing 
ecotoxicologic priority lists for chemicals. Chemosphere 1, 79–102. 
Kramer, C.R., Henze, U. (1990) Partitioning properties of benzene derivatives. I. Temperature dependence of the partitioning of 
monosubstituted benzenes and nitrobenzenes in the n-octanol/water system. Z. Phys. Chem. (Leipzig) 271(3), 503–513. 
Kuhne, R., Ebert, R.-U., Kleint, F., Schmidt, G., Schuurmann, G. (1995) Group contribution methods to estimate water solubility of 
organic chemicals. Chemosphere 30, 2061–2077. 
Kurylo, M.J. (1978) Flash photolysis resonance fluorescence investigation of the reaction of OH radicals with dimethyl radicals. 
Chem. Phys. Lett. 37, 323. 
Kurylo, M.J., Knable, G.L. (1984) A kinetic investigation of the gas-phase reactions of atomic chlorine (2P) and hydroxyl (X2) with 
acetonitrile: Atmospheric significance and evidence of decreased reactivity between strong electrophiles. J. Phys. Chem. 88, 
3305–3308. 
Leahy, D.E. (1986) Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationships: Octanolwater 
partition coefficients and aqueous solubilities. J. Pharm. Sci. 75(7), 629–636. 
Leahy, D.E., De Meere, A.L.J., Wait, A.R., Taylor, P.J., Tomenson, J.A. (1989) A general description of water -oil partitioning ratios 
using the rotating diffusion cell. Int. J. Pharm. 50, 117–132. 
Lee, B.I., Erbar, J.H., Edmister, W.C. (1972) Thermodynamic properties at low temperatures. Chem. Eng. Prog. 68(9), 83–84. 
Lee, J.H., Tang, I.N. (1983) Absolute rate constants for the hydroxyl radical reactions with CH3SH and C2H5SH at room temperature. 
J. Chem. Phys. 78, 6646–6649. 
Lee, M.L., Later, D.W., Rollins, D.K., Eatough, D.J., Hansen, L.D. (1980) Dimethyl and monomethyl sulfate: Presence in coal fly 
ash and airborne particulate matter. Science 207, 186–188. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3447 
Leet, W.A., Lin, H.-M., Chao, K.-C. (1987) Mutual solubilities in six binary mixtures of water + a heavy hydrocarbon or a derivative. 
J. Chem. Eng. Data 32, 37–40. 
Leggett, D.C., Jenkins, T.F., Miyares, P.H. (1990) Salting-put solvent extraction for preconcentration of neutral organic solutes form 
water. Anal. Chem. 62, 1355–1356. 
Leggett, D.C., Miyares, P.H., Jenkins, T.F. (1992) Apparent donor-acceptor interaction between nitroaromatics and acetonitrile. J. Sol. 
Chem. 21, 105–108. 
Lenchitz, C., Velicky, R.W. (1970) Vapor pressure and heat of sublimation of three nitrotoluenes. J. Chem. Eng. Data 15(3), 401–403. 
Lencka, M. (1990) Measurements of vapour pressures of pyridine, 2-methyl pyridine, 2,4-dimethylpyridine, 2,6-dimethylpyridine, 
and 2,4,6-trimethylpyridine from 0.1 kPa to atmospheric pressure using a modified -wietos-awski ebulliometer. J. Chem. 
Thermodyn. 22, 473–480. 
Leo, A., Hansch, C., Elkins, D. (1971) Partition coefficients and their uses. Chem. Rev. 71, 525–616. 
Leo, A., Hansch, C., Church, C. (1969) Comparison of parameters currently used in the study of structure-activity relationships. 
J. Med. Chem. 12, 766–771. 
Lewis, S.J., Mirrlees, M.S., Taylor, P.J. (1983) Rationalizations among heterocyclic partition coefficients. Part 2. The azines. Quant. 
Struct.-Act. Relat. Pharmacol. Chem. Biol. 2, 100–111. 
Li, H., Lee, L.S., Fabrega, J.R., Jafvert, C.T. (2001) Role of pH in partitioning and cation exchange of aromatic amines on water 
saturated soils. Chemosphere 44, 627-635. 
Lide, D.R., Editor (2003) Handbook of Chemistry and Physics. 84th Edition, CRC Press, LLC. Boca Raton, FL. 
Liu, D.H.W. et al. (1983) Aquatic Toxicology Hazard Assessment. ASTM Spec. Tech. Publication 802. pp. 135–150. 
Loekke, H. (1985) Degradation of 4-nitrophenol in two Danish Soils. Environ. Pollut. Ser. A. 38, 171–181. 
Lu, P.Y., Metcalf, R.L. (1975) Environmental fate and biodegradability of benzene derivatives as studies in a model aquatic ecosystem. 
Environ. Health Prospect. 10, 269–284. 
Lu, P.Y., Metcalf, R.L., Plummer, N., Mandel, D. (1977) The environmental fate of three carcinogens: benzo(a)pyrene, benzidine, 
and vinyl chloride evaluated in laboratory model ecosystems. Arch. Environ. Contam. Toxicol. 6, 129–142. 
Lu, P.Y., Walton, B.T., Lewis, E.B., Kine, B.W., Scott, J.H., Groover, G.E. (1986) Chemical Information Profile of Selected Resource 
Conservation and Recovery Act Chemicals. ORNL Internal Report to Robert S. Kerr Res. Lab., U.S. Environmental Protection 
Agency, Oak Ridge, TN. 
Ludzack, F.J., Schaffer, R.B., Bloomhuff, R.N., Ettinger, M.B. (1958) Biochemical oxidation of some commercially important organic 
cyanides. I. River oxidation. In: Proc. 13th Industrial Waste Conference Eng. Bull. Purdue Univ. Eng. Ext. Ser. pp. 297–312. 
Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors (1982) Handbook on Chemical Property Estimation Methods. Environmental 
Behavior of Organic Compounds. McGraw-Hill, New York. 
Lynch, E.J., Wilke, C.R. (1960) Vapor pressure of liquid nitrobenzene at low temperature. J. Chem. Eng. Data 5, 300. 
Lynch, J.C., Myer, K.F., Brannon, J.M., Delfino, J.J. (2001) Effects of pH and temperature on the aqueous solubility and dissolution 
rate of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7- 
tetrazocine (HMX). J. Chem. Eng. Data 46, 1549–1555. 
Lyons, C.D., Katz, S., Bartha, R. (1984) Mechanisms and pathways of aniline elimination from aquatic environments. Appl. Environ. 
Microbiol. 48(3), 491–496. 
Ma, K.C., Shiu, W.Y., Mackay, D. (1990) A Critically Reviewed Compilation of Physical and Chemical and Persistence Data for 
110 Selected EMPPL Substances. A report prepared for the Ontario Ministry of Environment, Water Resources Branch, 
Toronto, ON. 
Mabey, W.R., Mill, T. (1978) Critical review of hydrolysis of organic compounds in water under environmental conditions. J. Phys. 
Chem. Ref. Data 7, 383–415. 
Mabey, W.R., Smith, J.H., Podoll, R.T., Johnson, H.L., Mill, T., Chou, T.-W., Cates, J., Waight Partridge, I., Jaber, H., Vandenberg, 
D. (1982) Aquatic Fate Process Data for Organic Priority Pollutants. EPA Report No. 440/4–81–014, U.S. EPA, Office of 
Water Regulations and Standards, Washington D.C. 
Mabey, W.R., Tse, D., Baraze, A., Mill, T. (1983) Photolysis of nitroaromatics in aquatic systems. I. 2,4,6-Trinitrotoluene. Chemosphere 
12, 3–16. 
Mackay, D. (1982) Correlation of bioconcentration factors. Environ. Sci. Technol. 16, 274–278. 
Mackay, D. (1984) Air/water exchange coefficients. In: Environmental Exposure from Chemicals, Vol. 1, Neely, W.B., Blau, G.E., 
Eds., pp. 92–108. CRC Press, Boca Raton, FL. 
Mackay, D., Bobra, A., Chan, D.W., Shiu, W.Y. (1982) Vapor pressure correlations for low-volatility environmental chemicals. 
Environ. Sci. Technol. 16(10), 645–649. 
Mackay, D., Leinonen, P.J. (1975) Rate of evaporation of low-solubility contaminants from water to atmosphere. Environ. Sci. Technol. 
7, 1178–1180. 
Mac Leod, H., Jourdain, J.L., Poulet, G, Le Bras, G. (1983b) Absolute rate constant for the reaction of OH with thiophene between 
293 and 473 K. Chem. Phys. Lett. 98, 381–385. 
Mac Leod, H., Jourdain, J.L., Poulet, G., Le Bras, G. (1984) Kinetic study of reactions of some organic sulfur compounds with OH 
radicals. Atmos. Environ. 18, 2621–2626. 
Mac Leod, H., Poulet, G., Le Bras, G. (1983a) Etude cinetique des reactions du radical OH avec CH3SCH3, CH3SH et C2H5SH. 
J. Chim. Phys. 80, 287–292. 
© 2006 by Taylor & Francis Group, LLC

3448 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Maczynski, A., Maczynska, Z. (1965) Vapor-liquid equilibrium in binary system quinoline-water. Bull. Acad. Pol. Sci. 13, 299–302. 
Makovskaya, V., Dean, J.R., Tomlinson, W.R., Comber, M. (1995) Determination of octanol-water partition coefficients using gradient 
liquid chromatography. Anal. Chim. Acta 315, 183–192. 
Malaney, G.W. (1960) Oxidative abilities of aniline-acclimated activated sludge. J. Water Pollut. Control Fed. 32, 1300–1311. 
Malaney, G.W., Gerhold, R.W. (1962) Structural determinants in the oxidative breakdown of aliphatic compounds by domestic 
activated sludge. In: Proc. 17th Indust. Waste Conf. Purdue Univ. Ext. Ser. 112, 249–257. 
Malaney, G.W., Gerhold, R.W. (1969) Structural determinants in the oxidation of aliphatic compounds by activated sludge J. Water 
Pollut. Control Fed. 41, R18–R33. 
Mallik, M.A.B., Tesfai, K. (1981) Transformation of nitrosoamines in soil and in vitro by soil organisms. Bull. Environ. Contam. 
Toxicol. 27, 115–121. 
Marin, M., Baek, I., Taylor, A.J. (1999) Volatile release from aqueous solutions under dynamic headspace dilution conditions. 
J. Agric. Food Chem. 47, 4750–4755. 
Martin-Villodre, A., Pla-Delfina, J.M., Moreno, J., Perez-Buendia, M.D., Miralles, J., Collado, E.F., Sanchez-Moyano, E., Del Pozo, 
A. (1986) Studies on the reliability of a bihyperbolic functional absorption model. I. Ring-substituted anilines. J. Pharmacokinet. 
Biopharm. 14, 615–633. 
Matthews, J.B., Sumner, J.F., Moelwyn-Huges, E.A. (1950) The vapor pressure of certain liquid. Trans. Farad. Soc. 46, 797–803. 
Matzner, R.A., Bales, R.C. (1994) Transport of acridine in saturated porous media. Chemosphere 29, 1755–1773. 
Matzner, R.A., Hunter, D.R., Bales, R.C. (1991) The effects of pH and anions on the solubility and sorption behavior of acridine. 
In: Organic Substances and Sediments in Water. Vol. 2, Processes and Analytical Methods. Baker, R.A., Editor, Lewis 
Publishers, Chelsea, MI. 
McCall, J.M. (1975) Liquid-liquid partition coefficients by high-performance liquid chromatography. J. Med. Chem. 18(6), 549–552. 
McCullough, J.P., Douslin, D.R., Messerly, J.F., Hossenlopp, I.A., Kincheloe, T.C., Waddington, G. (1957) Pyridine: Experimental 
and calculated chemical thermodynamic properties between 0 and 1500 K; a revised vibrational assignment. J. Am. Chem. 
Soc. 79, 4289–4295. 
McCullough, J.P., Scott, D.W., Finke, H.L., Gross, M.E., Williamson, K.D., Pennington, R.E., Waddington, G., Huffman, H.M. (1952) 
Ethanethiol (ethyl mercaptan): Thermodynamic properties in the solid, liquid and vapor states. Thermodynamic functions 
to 1000 K. J. Am. Chem. Soc. 74, 2801–2804. 
McDonald, R.A., Shrader, S.A., Stull, D.R. (1959) Vapor pressures and freezing points of 30 organics. J. Chem. Eng. Data 4, 311–313. 
McDuffie, B. (1981) Estimation of octanol/water partition coefficients for organic pollutants using reversed-phase HPLC. Chemosphere 
10, 73–83. 
McEachern, D.M., Iniguez, J.C., Ornelas (1975) Enthalpies of combustion and sublimation and vapor pressures of three benzoquinolines. 
J. Chem. Eng. Data 20, 226–228. 
McEachern, D.M., Sandoval, O., Iniguez, J.C. (1975) The vapor pressures, derived enthalpies of sublimation, enthalpies of fusion, 
and resonance energies of acridine and phenazine. J. Chem. Thermodyn. 7, 299–306. 
McGowan, J.C., Atkinson, P.N., Ruddle, L.H. (1966) The physical toxicity of chemicals. V. Interaction terms for solubilities and 
partition coefficients. J. Appl. Chem. 16, 99–102. 
McLeese, D.W., Zitko, V., Peterson, M.R. (1979) Structure lethality relationships for phenols, anilines and other aromatic compounds 
in shrimp and clams. Chemosphere 2, 53–57. 
Means, J.C. (1983) Am. Chem. Soc. 186th Nat.l. Meeting Preprints Div. Environ. Chem. 23, 250–251. Washington, D.C. 
Means, J.C., Hassett, J.J., Wood, S.G., Banwart, W.L., Ali, S., Khan, A. (1980) Sorption properties of polynuclear aromatic 
hydrocarbons and sediments: Heterocyclic and substituted compounds. In: Polynuclear Hydrocarbons: Chemistry and 
Biological Effects. Bjorseth, A., Dennis, A.J., Editors, pp. 395–404, Ann Arbor Sci. Publishers, Ann Arbor, MI. 
Means, J.C., Wood, S.G., Hassett, J.J., Banwart, W.L. (1982) Sorption of amino- and carboxy-substituted polynuclear aromatic 
hydrocarbons by sediments and soils. Environ. Sci. Technol. 16, 93–98. 
Medvedev, V.A., Davidov, V.D. (1981) The transformation of various coke industry products in Chernozem soil. In: Decomposition of 
Toxic and Nontoxic Compounds in Soil. Overcash, M.R., Editor, pp. 245–254., Ann Arbor Science Publishers, Ann Arbor, MI. 
Meyer, E.F., Hotz, C.A. (1976) Cohesive energies in polar organic liquids. 3. Cyclic ketones. J. Chem. Eng. Data 21, 274–279. 
Meyer, E.F., Renner, T.A., Stee, K.S. (1971) Cohesive energies in polar organic liquids. II. The n-alkyl nitriles and the 1-chloroalkanes. 
J. Phys. Chem. 75, 642–649. 
Meylan, W.M., Howard, P.H. (1991) Bond contribution method for estimating Henry’s law constants. Environ. Toxicol. Chem. 10, 
1283–1291. 
Meylan, W.M., Howard, P.H., Boethling, R.S. (1992) Molecular topology/fragment contribution method for predicting soil sorption 
coefficients. Environ. Sci. Technol. 26(8), 1560–1567. 
Milazzo, G. (1956) Annali Di Chemica 46, 1105.—reference from Boublik et al. 1984 
Mill, T. (1979) Structure Reactivity Correlations for Environmental Reactions. EPA Final Report, EPA 560/11–79–012. 
Mill, T. (1982) Hydrolysis and oxidation processes in the environment. Environ. Toxicol. Chem. 1, 135–141. 
Mill, T., Mabey, W.R. (1985) Photochemical transformations. Environ. Exposure Chem. 1, 175–216. 
Mill, T., Hendry, D.G., Richardson, H. (1980) Free-radical oxidants in natural waters. Science 207, 886–887. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3449 
Mill, T., Mabey, W.R., Lan, B.Y., Baraze, A. (1981) Photolysis of polycyclic aromatic hydrocarbons in water. Chemosphere 10, 
1281–1290. 
Mills, W.B., Dean, J.D., Porcella, D.B., Gherini, S.A., Hudson, R.J.M., Frick, W.E., Rupp, G.L., Bowie, G.L. (1982) Water Quality 
Assessment: A Screening Procedure for Toxic and Conventional Pollutants. Part 1, EPA Report No. EPA-600/6–82–004a, 
Environmental Research Lab., US EPA, Athens, GA. 
Minero, C., Pelizzetti, E., Piccinini, P., Vincenti, M. (1994) Photocatalyzed transformation of nitrobenzene on TiO2 and ZnO. 
Chemosphere 28(6), 1229–1244. 
Minick, D.J., Frenz, J.H., Patrick, M.A., Brent, D.A. (1988) A comprehensive method for determining hydrophobicity constants by 
reversed-phase high-performance liquid chromatography. J. Med. Chem. 31, 1923–1933. 
Mirrlees, M.S., Moulton, J.J., Murphy, C.T., Taylor, P.J. (1976) Direct measurement of octanol-water partition coefficients by highpressure 
liquid chromatography. J. Med. Chem. 19, 615–619. 
Mirvish, S.S., Issenberg, P., Sornson, H.C. (1976) Air-water and ether-water distribution of N-nitroso compounds: Implications for 
laboratory safety, analytic methodology, and carcinogenicity for the rat esophagus, nose, and liver. J. Nat’l. Cancer Inst. 
56(6), 1125–1129. 
Miyake, K., Kitaura, F., Mizuno, N., Terada, H. (1987) Determination of partition coefficient and acid dissociation constant by highperformance 
liquid chromatography on porous polymer gel as stationary phase. Chem. Pharm. Bull. 35(1), 377–388. 
Miyake, K., Mizuno, N., Terada, H. (1986) Method for determination of partition coefficient by high-performance liquid chromatography 
on an octadecylsilane column. Examination of its applicability. Chem. Pharm. Bull. 34(11), 4787–4796. 
Miyake, K., Tereda, H. (1982) Determination of partition coefficients of very hydrophobic compounds by high-performance liquid 
chromatography on glyceryl-coated controlled-pore glass. J. Chromatogr. 240, 9–20. 
Moreale, A., Van Bladel, R. (1976) Influence of soil properties on adsorption of pesticide-derived aniline and p-chloroaniline. J. Soil 
Sci. 27, 48–57. 
Mousa, A.H.N. (1981) Vapour pressure and saturated-vapour volume of acetonitrile. J. Chem. Thermodyn. 13, 201–202. 
Muller, M., Klein, W. (1991) Estimating atmosphere degradation processes by SARs. Sci. Total Environ. 109/110, 261–273. 
Muller, M., Klein, W. (1992) Comparative evaluation of methods predicting water solubility for organic compounds. Chemosphere 
25, 769–782. 
Muller, M., Kordel, W. (1996) Comparison of screening methods for the estimation of adsorption coefficients on soil. Chemosphere 
32, 2493–2504. 
Nakagawa, Y., Izumi, K., Oikawa, N., Sotomatsu, T., Shigemura, M., Fujita, T. (1992) Analysis and prediction of hydrophobicity 
parameters of substituted acetanilides, benzamides, and related aromatic compounds. Environ. Toxicol. Chem. 11, 901–916. 
Naik, M.N., Jackson, R.B., Stokes, J., Swaby, R.J. (1972) Microbial degradation and phytotoxicity of picloram and other substituted 
pyridines. Soil Biol. Biochem. 4, 13–23. 
Neely, W.B., Blau, G.E. (1985) Chapter 1, Introduction to environmental exposure from chemicals. In: Environmental Exposure from 
Chemicals. Volume I., Neely, W.B., Blau, G.E., Editors, CRC Press Inc., Boca Raton, FL. pp. 1–11. 
Neely, W.B., Branson, D.R., Blau, G.E. (1974) Partition coefficient to measure bioconcentration potential of chemicals in fish. Environ. 
Sci. Technol. 8, 1113–1115. 
Neish, W.J.P. (1948) Solubilization of aromatic amines by purines. Rec. Trav. Chim. Pays-Bas 67, 361–373. 
Nielsen, T., Silgur, K., Helweg, C., Jorgensen, O., Hansen, P.E., Kirso, U. (1997) Sorption of polycyclic aromatic compounds to 
humic acid as studied by High-Performance Liquid Chromatography. Environ. Sci. Technol. 31, 1102–1108. 
Nipper, M., Qian, Y., Carr, R.S., Miller, K. (2004) Degradation of picric acid and 2,6-DNT in marine sediments and waters: the role 
of microbial activity and ultra-violet exposure. Chemosphere 56, 519–530. 
Norrington, F.E., Hyde, R.M., Williams, S.G., Wootton, R. (1975) Physicochemical-activity relations in practice. 1. A rational and 
self-consistent data bank. J. Med. Chem. 18, 604–607. 
NRCC (1983) Polycyclic aromatic hydrocarbons in the aquatic environment: Formation, sources, fate and effects on aquatic biota. 
NRCC/CNRC, Ottawa, Canada. 
OECD (1981) OECD Guidelines for Testing of Chemicals. Section 1: Physical-Chemical Properties. Organization for Economic 
Co-operation and Development. OECD, Paris. 
Oliver, J.E. (1981) Pesticide-derived nitrosoamines. Occurrence and environmental fate. Agric. Symp. Ser. 74, 349–362. 
Oliver, J.E., Kearney, P.C., Kontson, A. (1979) Degradation of herbicide-related nitrosoamines in aerobic soils. J. Agric. Food Chem. 
27, 887–891. 
Osborn, A.G, Douslin, D.R. (1966) Vapor pressure relations of 36 sulfur compounds present in petroleum. J. Chem. Eng. Data 11, 
502–509. 
Osborn, A.G., Douslin, D.R. (1968) Vapor pressure relations of 13 nitrogen compounds related to petroleum. J. Chem. Eng. Data 
13(4), 534–537. 
Osborn, A.G., Scott, D.W. (1980) Vapor pressures of 17 miscellaneous organic compounds. J. Chem. Thermodyn. 12, 429–438. 
Osborn, D.W., Doescher, R.N., Yost, D.M. (1942) The heat capacity, heats of fusion and vaporization, vapor pressure and entropy 
of dimethyl sulfide. J. Am. Chem. Soc. 64, 169–172. 
Paris, D.F., Wolfe, N.L. (1987) Relationship between properties of a series of anilines and their transformation by bacteria. Appl. 
Environ. Microbiol. 53, 911–916. 
© 2006 by Taylor & Francis Group, LLC

3450 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Pearlman, R.S., Yalkowsky, S.H., Banerjee, S. (1984) Water solubilities of polynuclear aromatic and heteroaromatic compounds. 
J. Phys. Chem. Ref. Data 13, 555–562. 
Peijnendburg, W.J.G.M., de Beer, K.G.M., den Hollander, H.A., Stegeman, M.H.L., Verboom, H. (1993) Kinetics, products, mechanisms 
and QSARs for the hydrolytic transformation of aromatic nitriles in anaerobic sediment slurries. Environ. Toxicol. 
Chem. 12, 1149–1161. 
Pella, P.A. (1977) Measurement of the vapor pressures of TNT, 2,4-DNT, 2,6-DNT, and EGDN. J. Chem. Thermodyn. 9, 301–305. 
Pennington, R.E., Scott, D.W., Finke, H.L., McCullough, J.P., Messerly, J.F., Hossen-Lopp, I.A., Waddington, G. (1956) The chemical 
thermodynamic properties and rotational tautomerism of 1-propanethiol. J. Am. Chem. Soc. 78, 3266–3272. 
Perrin, D.D. (1965) Dissociation Constants of Organic Bases in Aqueous Solutions. Butterworth, London. 
Perrin, D.D. (1972) Dissociation Constants of Organic Bases in Aqueous Solutions. IUPAC Chemical Data Series; Supplement. 
Butterworth, London. 
Phelan, J.M., Barnett, J.L. (2001) Solubility of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene in water. J. Chem. Eng. Data 46, 373–376. 
Philpot, J.P., Rhodes, E.C., Davies, C.W. (1940) The determination of mobilities and dissociation constants by means of conductivity 
titrations. J. Chem. Soc. 84–87. 
Piacente, V., Scardala, P., Gigli, R. (1985) Vaporization study of o-, m-, and p-chloroaniline by torsion-weighing effusion vapor 
pressure measurements. J. Chem. Eng. Data 30, 372–376. 
Pinck, L.A., Kelly, M.A. (1925) The solubility of urea in water. J. Am. Chem. Soc. 47, 2170–21772. 
Pillai, P., Helling, C.S., Dragun, J. (1982) Soil catalyzed oxidation of aniline. Chemosphere 11, 299, 317. 
Pinck, L.A., Kelly, M.A. (1925) The solubility of urea in water. J. Am. Chem. Soc. 47, 2170–2172. 
Poole, S.K., Durham, D., Kibbey, C. (2000) Rapid method for estimation the octanol-water partition coefficient (log POW) by 
microemulsion electrokinetic chromatography. J. Chromatog. B, 745, 117–126. 
Poulet, G., Laverdet, G., Jourdain, J.L., Le Bras, G. (1984) Kinetic study of the reactions of acetonitrile with Cl and OH radicals. 
J. Phys. Chem. 88, 6259–6263. 
Pratesi, P., Villa, L., Ferri, V., de Micheli, C., Grana, E., Grieco, C., Silipo, C., Victtoria, A. (1979) On the additive-constitutive 
properties of substituent hydrophobic parameters in a set of muscarinic agents. Il Farmaco Ed. Sci. 34(7), 579–587. 
Price, L.C. (1976) Aqueous solubility of petroleum as applied to its origin and primary migration. Am. Assoc. Petrol. Geol. Bull. 60, 
213–244. 
Przyjazny, A., Janicki, W., Chrzanowski, W., Staszewski, R. (1983) Headspace gas chromatographic determination of distribution 
coefficients of selected organosulphur compounds and their dependence on some parameters. J. Chromatogr. 280, 249–260. 
Puck, T.T., Wise, H. (1946) Studies in vapor-liquid equilibria. I. A new dynamic method for the determination of vapor pressures of 
liquids. J. Phys. Chem. 50, 329–339. 
Putnam, W.E., McEachern, Jr., D.M., Kilpatrick, J.E. (1965) Entropy and related thermodynamic properties of acetonitrile (methyl 
cyanide). J. Chem. Phys. 42, 740–755. 
Radchenko, L.G., Kitiagorodskii, A.I. (1974) The vapour pressures and heats of sublimation of naphthalene, biphenyl, octafluoronaphthalene, 
decafluorobiphenyl, acenaphthene and .-nitronaphthalene. Russian J. Phys. Chem. 48(11), 1595–1597. 
Radding, S.B., Liu, D.H., Johnson, H.L., Mill, T. (1977) Review of the Environmental Fate of Selected Chemicals. EPA 560/5–77–003. 
US. Environmental Protection Agency, Office of Toxic Substance, Washington, D.C. pp. 147. 
Rao, P.S.C., Davidson, J.M. (1982) Retention and Transformation of Selected Pesticides and Phosphorus in Soil-Water System. A 
Critical Review. EPA-600/S3–82–060. 
Rekker, R.F. (1977) The Hydrophobic Fragmental Constant. Its Derivation and Application. A Means of Characterizing Membrane 
Systems. Vol. 1, Pharmacochemistry Library, Nauta, W.T., Rekker, R.F., Editors. Elsevier Scientific Publishing Company, 
Oxford, U.K. 
Rekker, R.F., De Kort, H.M. (1979) The hydrophobic fragment constant: An extension to a 1000 data point set. Eur. J. Med. Chem. 
14, 479–488. 
Riddick, J.A., Bunger, W.B., Sakano, T.K. (1986) Organic Solvents. 4th Edition. John Wiley and Sons, New York. 
Rinke, M., Zetzsch, C. (1984) Rate constants for the reactions of hydroxyl radicals with aromatics: benzene, phenol, aniline, and 
1,2,4-trichlorobenzene. Ber. Bunsen-Ges. Phys. Chem. 88, 55–62. 
Ritter, S., Hauthal, W.H., Maurer, G. (1994) Partition coefficients of some environmentally important organic compounds between 
1-octanol and water from reversed-phase high-performance liquid chromatography. J. Chem. Eng. Data 39, 414–417. 
Ro., K.S., Venugopal, A., Adrian, D.D., Constant., D., Qaisi, K., Valsaraj, K., Thbodeaux, L.J., Roy, D. (1996) Solubility of 2,4,6- 
trinitrotoluene (TNT) in water. J. Chem. Eng. Data 41, 758–761. 
Roberts, M.S., Kowaluk, E.A., Polack, A.E. (1991) Prediction of solute sorption by polyvinylchloride plastic infusion bags. J. Pharm. 
Sci. 80, 449–455. 
Rogers, J.E., Li, S.W., Felice, L.J. (1984) Microbial Transformation Kinetics of Xenobiotics in Aquatic Environment. EPA- 
600/3–84–043. (NTIS-PB84–162866). Battelle Pacific West Labs., Richland, WA. 
Rogers, K.S. (1969) Rabbit erythrocyte hemolysis by lipophile aryl molecules. Proc. Soc. Exp. Biol. Med. 130(4), 1140–1142. 
Rogers, K.S., Cammarata, A. (1969) Superdelocalizability and charge density. A correlation with partition coefficients. J. Med. Chem. 
12, 692–693. 
Rohrschneider, L. (1973) Solvent characterization by gas-liquid partition coefficients of selected solutes. Anal. Chem. 45(7), 
1241–1247. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3451 
Rott, B., Viswanathan, R., Freitag, D., Korte, F. (1982) Vergleichende untersuchung der anwendbrakeit von umweltchemikalien. 
Chemosphere 11, 531–538. 
Ruppert, G., Bauer, R., Heisler, G., Novalic, S. (1993) Mineralization of cyclic organic water contaminants by the photo-Fenton 
reaction-Influence of structure and substituents. Chemosphere 27(8), 1339–1347. 
Russell, C.J., Dixon, S.L., Jurs, P.C. (1992) Computer-assisted study of the relationship between molecular structure and Henry’s 
law constant. Anal. Chem. 64, 1350–1355. 
Russell, Jr., H., Osborne, D.W., Yost, D.M. (1942) The heat capacity, entropy, heats of fusion, transition, and vaporization and vapor 
pressures of methyl mercaptan. J. Am. Chem. Soc. 64, 165–169. 
Ryan, J.A., Bell, R.M., Davidson, J.M., O’Connor, G.A. (1988) Plant uptake of non-ionic organic chemicals from soils. Chemosphere 
17(12), 2299–2323. 
Sabljic, A. (1987) On the prediction of soil sorption coefficients of organic pollutants from molecular structure: Application of 
molecular topology model. Environ. Sci. Technol. 21, 358–366. 
Sabljic, A., Gusten, H. (1990) Predicting the night-time NO3 radical reactivity in the troposphere. Atmos. Environ. 24A(1), 73–78. 
Sabjic, A., Gusten, H., Verhaar, H., Hermens, J. (1995) QSAR modelling of soil sorption. Improvements and systematics of log KOC 
vs. log KOW correlations. Chemosphere 31, 4489–4514. 
Sandell, K.B. (1962) Distribution of aliphatic amines between water and mixture of organic solvents. Naturwissenschaften 49, 12–13. 
Sangster, J. (1989) Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data 18(3), 1111–1230. 
Sangster, J. (1993) LOGKOW Database, Sangster Research Lab., Montreal, Canada. 
Sasaki, S. (1978) The scientific aspects of the chemical substance control law in Japan. In: Aquatic Pollutants: Transformation and 
Biological Effects. Hutzinger, O. et al., Editors, Pergamon Press, Oxford, U.K. pp. 283–298. 
Schauerte, W., Lay, J.P., Klein, W., Korte, F. (1982) Long-term fate xenobiotics in aquatic ecosystems. Ecotoxicol. Environ. Safety 
6, 560–569. 
Schmidt-Bleek, F., Haberland, W., Klein, A.W., Caroli, S. (1982) Steps towards environmental hazard assessment of new chemicals. 
Chemosphere 11(4), 383–415. 
Schnell, S., Bak, F., Pfennig, N. (1989) Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing 
bacteria and description of Desulfobacterium anilini. Arch. Microbiol. 152, 556–563. 
Schultz, Q.E., Jung, C., Moller, K.E. (1970) Schatzung des verteilungkoeffizienten mit hilfe quantenchemischer molekulgro.en. Z. 
Naturforsch. 25B, 1024–1026. 
Schultz, T.W., Moulton, B.A. (1985) Structure-activity relationships for nitrogen-containing aromatic molecules. Environ. Toxicol. 
Chem. 4, 353–359. 
Scott, D.W., Berg. W.T., Hossenlopp, I.A., Hubbard, W.N., Messerly, J.F., Todd, S.S., Douslin, D.R., McCullough, J.P., Waddington, 
G. (1967) Pyrrole: Chemical thermodynamic properties. J. Phys. Chem. 71, 2263–2270. 
Scott, D.W., Finke, H.L., Gross, M.E., Guthrie, G.B., Huffman, H.M. (1950) 2,3-Dithiabutane: low temperature heat capacity, heat 
of fusion, heat of vaporization, vapor pressure, entropy and thermodynamic functions. J. Am. Chem. Soc. 72, 2424–2430. 
Scott, D.W., Finke, H.L., McCullough, J.P., Messerly, J.F., Pennington, R.E., Hossenlopp, I.A., Waddington, G. (1957) 1-Butanethiol 
and 2-thiapentane. Experimental thermodynamic studies between 12 and 500 K: thermodynamic functions by a refine method 
of increments. J. Am. Chem. Soc. 79, 1062. 
Scott, D.W., McCullough, J.P., Hubbard, W.N., Messerly, J.F., Hossenlopp, I.A., Frow, F.R., Waddington, G. (1956) Benzenethiol: 
Thermodynamic properties in the solid, liquid, and vapor states; internal rotation of the thiol group. J. Am. Chem. Soc. 78, 
5457–5463. 
Scott, D.W., Hubbard, W.N., Messerly, J.F., Todd, S.S., Hossenlopp, I.A., Good, W.D., Douslin, D.R., McCullough, J.P. (1963a) 
Chemical thermodynamic properties and internal rotation of methylpyridines. I. 2-Methylpyridine. J. Phys. Chem. 67, 
680–685. 
Scott, D.W., Good, W.D., Gurthrie, G.B., Todd, S.S., Hossenlopp, IA., Douslin, D.R., McCullough, J.P. (1963b) Chemical thermodynamic 
properties and internal rotation of methylpyrines. II. 3-Methylpyridine. J. Phys. Chem. 67, 685–689. 
Scow, K.M. (1982) Chapter 9, Rate of biodegradation. In: Handbook of Chemical Property Estimation Methods. Environmental 
Behavior of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, pp. 9–1 to 9–85, McGraw-Hill Book 
Co., New York. 
Seidell, A. (1941) Solubilities of Organic Compounds. Van Nostrand Co., New York. 
Seidell, A. (1952) Solubilities of Organic Compounds. Van Nostrand Co., New York. 
Seip, H.M., Alstad, J., Carlberg, G.E., Martinsen, K., Skaane, P. (1986) Measurements of mobility of organic compounds in soils. 
Sci. Total Environ. 50, 87–101. 
Shnidman, L., Sunier, A.A. (1932) The solubility of urea in water. J. Phys. Chem. 35, 1232–1240 
Shriner, C.D. et al. (1978) Reviews of the Environmental Effects of Pollutants. II. Benzidine. U.S. EPA-600/1–78–024. 
Sikka, H.C., Appleton, H.T., Banerjee, S. (1978) Fate of 3,3.-Dichlorobenzidine in Aquatic Environment. EPA-600/3–78–068. Syracuse 
Research Corp., Syracuse, NY. 
Simmons, M.S., Zepp, R.G. (1986) Influence of humic substances on photolysis of nitroaromatic compounds in aquatic systems. 
Water Res. 20, 899–904. 
Sims, G.K., O’Loughlin, E.J. (1989) Degradation of pyridines in the environment. Critical Rev. Environ. Control. 19, 309–340. 
Sims, G.K., Sommers, L.E. (1985) Degradation of pyridine derivatives in soil. J. Environ. Qual. 14, 580–584. 
© 2006 by Taylor & Francis Group, LLC

3452 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Singer, G.M., Taylor, H.W., Lijinsky, W. (1977) Lipophilicity as an aspect of nitrosamine carcinogenicity: quantitative correlations 
and qualitative observation, Chem.-Biol. Interact. 19, 133–142. 
Sivaraman, A., Kobayashi, R. (1982) Investigation of vapor pressures and heats of vaporization of condensed aromatic compounds 
at elevated temperatures. J. Chem. Eng. Data 27, 264–269. 
Sivaraman, A., Kobayashi, R. (1983) Vapor pressures and enthalpies of vaporization of thianthrene, acridine, and 9-methylanthracene 
at elevated temperatures. J. Chem. Thermodyn. 15, 1127–1135. 
Slagle, I.R., Balocchi, F., Gutman, D. (1978) Study of the reactions of oxygen atoms with hydrogen sulfide, methanethiol, ethanethiol 
and methyl sulfide. J. Phys. Chem. 82(12), 1333–1336. 
Slater, B., McCormack, A., Avdeef, A., Comer, J.E.A. (1994) pH-metric log P. 4. Comparison of partition coefficients determined 
by HPLC and potentiometric methods to literature values. J. Pharm. Sci. 83, 1280–1283. 
Smith, J.H., Bomberger, D.C. (1980) Prediction of volatilization rate of chemicals in water. In: Hydrocarbons and Halogenated 
Hydrocarbons in the Environment, Afghan, B.K., Mackay, D., Eds., pp. 445–451, Plenum Press, New York. 
Smith, J.H., Bomberger, D.C., Jr., Haynes, D.L. (1981) Volatilization rates of intermediate and low volatility chemicals from water. 
Chemosphere 10(5), 281–289. 
Smith, J.H., Mabey, W.R., Bahonos, N. Holt, B.R., Lee, S.S., Chou, T.W., Venberger, D.C., Mill, T. (1978) Envirnmental Pathways 
of Selected Chemicals in Fresh Water Systems: Part II. Laboratory Studies. Interagency Energy-Environment Research 
Program Report. EPA-600/7–78–074. Environmental Research Laboratory Office of Research and Development. U.S. 
Environment Protection Agency, Athens, GA. 
Smith, J.H., Mackay, D., Ng, C.W.K. (1983) Volatilization of pesticides from water. Residue Rev. 85, 73–88. 
Snider, J.R., Dawson, G.A. (1985) Tropospheric light alcohols, carbonyls, and acetonitrile: concentrations in the southwestern United 
States and Henry’s law data. J. Geophys. Res. 90(D2), 3797–3805. 
SOGC (1987) Dinitrotoluenes: BUA Substance Report 12. The Advisory Board for Environmentally Significant Hazardous Waste 
(BUA) of the Society of German Chemists, Editors. Weinheim, Fed. Republic of Germany: VCH Verlagsgesellschaft p.2. 
Son, H.-S., Lee, S.-J., Cho, I.-H., Zoh, K.-D. (2004) Kinetics and mechanism of TNT degradation in TiO2 photocatalysis. Chemosphere 
57, 309–317. 
Sonnefeld, W.J., Zoller, W.H., May, W.E. (1983) Dynamic coupled-column liquid chromatographic determination of ambient temperature 
vapor pressures of polynuclear aromatic hydrocarbons. Anal. Chem. 55, 275–280. 
Sotomatsu, T., Nakagawa, N., Fujita, T. (1987) Quantitative structure-activity studies of benzoylphenylurea larvicides. IV. Benzoyl 
ortho substituent effects and molecular conformation. Pestic. Biochem. Physiol. 27, 156–164. 
Southworth, G.R., Beauchamp, J.J., Schmieder, P.K. (1978) Bioaccumulation potential and acute toxicity of synthetic fuels in 
freshwater biota: azarenes. Environ. Sci. Technol. 12, 1062–1066. 
Spanggord, R.J., Mabey, W.R., Mill, T., Chou, T.W., Smith, J.H. (1981) Environmental Fate Studies on Certain Munitions Wastewater 
Constituents. Part 1. Model Validation. NTIS AD-A129 373/7. SRI International, Menlo Park, CA. 79 pp. 
Spanggord, R.J., Mill, T., Chou, T.W., Mabey, W.R., Smith, J.H., Lee, S. (1980) Environmental Fate Studies on Certain Munitions 
Wastewater Constituents. Final Report. Phase I-Literature Review. SRI Project No. LSU-7934. Contract No. DAMD 17–78- 
C-8081. US. Army Medical Research and Development Command, Fort Detrick, MD. 
Spanggord, R.J., Mabey, W.R., Mill, T., Chou, T.W., Smith, J.H., Lee, S., Robert, D. (1983) Environmental Fate Studies on Certain 
Munitions Wastewater Constituents. LSU-7934, AD-A138550; SRI International: Menlo Park, CA. 
Speyers, (1902) Am. J. Sci. 14, 293. 
Staudinger, J., Roberts, P.V. (1996) A critical review of Henry’s law constant for environmental applications. Crit. Rev. Environ. Sci. 
Technol. 26, 205–297. 
Staudinger, J., Roberts, P.V. (2001) A critical compilation of Henry’s law constant temperature dependence relations for organic 
compounds in dilute aqueous solutions. Chemosphere 44, 561–576 
Steele, W.V., Chirico, R.D., Nguyen, A., Knipmeyer, S.E. (1995) Vapor pressure, high-temperature heat capacities, critical properties, 
derived thermodynamic functions, and barriers to methyl-group rotation, for the six dimethylpyridines. J. Chem. Thermodyn. 
27, 311–334. 
Steen, W.C. (1991) Microbial Transformation Rate Constants of Structurally Diverse Man-made Chemicals. EPA 600/3–91/016. 
PB91–181958. Environmental Research Lab., Office of Research and Development, US Environmental Protection Agency, 
Athens, GA. 
Steen, W.C., Karickhoff, S.W. (1981) Biosorption of hydrophobic organic pollutants by mixed microbial populations. Chemosphere 
10, 27–32. 
Stegeman, M.H.L., Peijnenburg, W.J.G.M., Verboom, H. (1993) A quantitative structure-activity relationship for the direct photohydrolysis 
of meta-substituted halobenzene directives in water. Chemosphere 26(5), 837–849. 
Stephen, H., Stephen, Y. (1963) Solubilities of Inorganic and Organic Compounds. Vol. 1 and 2, Pergamon Press, Oxford, U.K. 
Stephenson, R.M. (1993a) Mutual solubility of water and pyridine derivatives. J. Chem. Eng. Data 38, 428–431. 
Stephenson, R.M. (1993b) Mutual solubility of water and aliphatic amines. J. Chem. Eng. Data 38, 625–629. 
Stephenson, R.M. (1993c) Mutual solubilities: water + cyclic amines, water + alkanolamines, and water + polyamines. J. Chem. Eng. 
Data 38, 634–637. 
Stephenson, R.M. (1994) Mutual solubility of water and nitriles. J. Chem. Eng. Data 39, 255–227. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3453 
Stephenson, R.M., Malanowski, S. (1987) Handbook of Thermodynamics of Organic Compounds. Elsevier Science Publishing Co. 
Inc., New York. 
Stull, D.R. (1947) Vapor pressure of pure substances: Organic compounds. Ind. Eng. Chem. 39(4), 517–560. 
Subba-Rao, R.V., Rubbin, H.E., Alexander, M. (1982) Kinetics and extent of mineralization of organic chemicals in trace levels in 
freshwater and sewage. Appl. Environ. Microbiol. 43, 1139–1150. 
Sverdrup, L.E., Jensen, J., Kelley, A.E., Krogh, P.J., Stenersen, J. (2002) Effects of eight polycyclic aromatic compounds on the 
survival and reproduction on Enchytraeus crypticus (Oligochaeta, Clitellata). Environ. Toxicol. Chem. 21, 109–114. 
Swan, T.H., Mack, Jr., E. (1925) Vapor pressures of organic crystals by an effusion method. J. Am. Chem. Soc. 47, 2112–2116. 
Swift, Jr., E., Hochanadel, H.P. (1945) The vapor pressure of trimethylamine from 0 to 40°C. J. Am. Chem. Soc. 67, 880–881. 
Szabo, G., Guczi, J., Bulman, R.A. (1995) Examination of silica-salicylic acid and silica-8-hydroxyquinoline HPLC stationary phases 
for estimation of the adsorption coefficient of soil for some aromatic hydrocarbons. Chemosphere 30, 1717–1727. 
Szabo, G., Guczi, J., Kordel, W., Zsolnay, A., Major, V., Keresztes, P. (1999) Comparison of different HPLC stationary phases for 
determination of soil-water distribution coefficient, KOC values of organic chemicals in RP-HPLC system. Chemosphere 39, 
431–442. 
Tabak, H.H., Govind, R. (1993) Prediction of biodegradation kinetics using a nonlinear group contribution method. Environ. Toxicol. 
Chem. 12, 251–260. 
Taft, R.W., Abraham, M.H., Famini, G.R., Doherty, R.M., Abboud, J.-L.M., Kamlet, M.J. (1985) Solubility properties in polymers 
and biological media. 5: An analysis of the physicochemical properties which influence octanol-water partition coefficients 
of aliphatic and aromatic solutes. J. Pharm. Sci. 74(8), 807–814. 
Takagishi, T., Katayama, A., Konishi, K., Kuroki, N. (1968) The solubilities of azobenzene derivatives in water. Kolloid-Zeitschrift 
Zeit. Polym. 232(1), 693–699. 
Takahashi, K., Tamagawa, S., Katagi, T., Rytting, J.H., Mishibata, T., Mizuno, N. (1993) Percutaneous permeation of basic compounds 
through shed snakeskin as model membrane. J. Phar. Pharmacol. 45, 882–886. 
Takayama, C., Akamatsu, M., Fujita, T. (1985) Effects of structure on 1-octanol/water partitioning behaviour of aliphatic amines and 
ammonium ions. Quant. Struct.-Act. Relat. 4, 149–160. 
Tanii, H., Hashimoto, K. (1984) Studies on the mechanism of acute toxicity of nitriles in mice. Arch. Toxicol. 55, 47–54. 
Tate, R.L., III, Alexander, M. (1975) Stability of nitrosoamines in samples of lake water, soil and sewage. J. Nat.l Cancer Inst. 54(2), 
327–330. 
Tate, R.L., III, Alexander, M. (1976) Microbial formation and degradation of dimethylamine. Appl. Environ. Microbiol. 31, 399–403. 
Taylor, C.A., Rinkenbach, W.H. (1923) The solubility of trinitrotoluene in organic solvents. J. Am. Chem. Soc. 45, 44–49. 
Tewari, Y.B., Miller, M.M., Wasik, S.P., Martire, D.E. (1982) Aqueous solubility and octanol/water partition coefficient of organic 
compounds at 25°C. J. Chem. Eng. Data 27, 451–454. 
Thomsen, A.B., Henriksen, K., Gron, C., Moldrup, P. (1999) Sorption, transport, and degradation of quinoline in unsaturated soil. 
Environ. Sci. Technol. 33. 2891–2898. 
Torang, L., Reuschenbach, P., Muller, B., Nyholm, N. (2002) Laboratory shake flask batch test can predict field biodegradation of 
aniline in the Rhine. Chemosphere 49, 1257–1265. 
Tsai, R.S., El Tayar, N., Testa, B. (1991) Toroidal coil centrifugal partition chromatography, a method for measuring partition 
coefficients. J. Chromatogr. 538(1), 119–123. 
Tsonopoulos, C., Prausnitz, J.M. (1971) Activity coefficients of aromatic solutes in dilute aqueous solutions. Ind. Eng. Chem. Fundam. 
10, 593–600. Supplement Materials. 
Tsuda, T., Aoki, M., Kojima, M., Fujita, T. (1993) Accumulation and excretion of chloroanilines by carp. Chemosphere 26, 2301–2306. 
Tuazon, E.C., Winer, A.M., Pitts, J.N., Jr. (1978) Fourier transform infrared detection of nitroamines in irradiated amine-NOx systems. 
Environ. Sci. Technol. 12, 954–958. 
Tuazon, E.C., Carter, W.P.L., Atkinson, R., Winer, A.M., Pitts, Jr., J.N. (1984) Atmospheric reactions of N-nitrosodimethylamine and 
dimethylnitramine. Environ. Sci. Technol. 18, 49–54. 
Umeyama, H., Nagai, T., Nogami, H. (1971) Mechanism of adsorption of phenols by carbon black from aqueous solution. Chem. 
Pharm. Bull. 19(8), 1714–1721. 
Unger, S.H., Chiang, G.H. (1981) Octanol-physiological buffer distribution coefficients of lipophilic amines by reversed-phase highperformance 
liquid chromatography and their correlation with biological activity. J. Med. Chem. 24(3), 262–270. 
Unger, S.H., Cook, J.R., Hollenberg, J.S. (1978) Simple procedure for determining octanol-aqueous partition, distribution, and 
ionization coefficients by reversed-phase high-pressure liquid chromatography. J. Pharm. Sci. 67(10), 1664–1667. 
Urano, K., Kato, Z. (1986) Evaluation of biodegradation ranks of priority organic compounds. J. Haz. Mat. 13, 135–145. 
Urbanski, S.P., Stickel, R.E., Wine, P.H. (1998) Mechanistic and kinetic study of the gas-phase reaction of hydroxyl radical with 
dimethyl sulfoxide. J. Phys. Chem. A, 102, 10,522–10,529. 
USEPA (1979) Status Assessment of Toxic Chemicals: Benzidine. U.S. EPA-600/2–79–210. 
USEPA (1980) Ambient Water Quality Criteria for Benzidine. pp. B1 to B6. 
USEPA (1986) EXAMS II Computer Modeling System. 
USEPA (1987) EXAMS II Computer Modeling System. 
Vallat, P., El Tayar, N., Testa, B., Slacanin, I., Marston, A., Hostettmann., K. (1990) Centrifugal counter-current chromatography, a 
promising means of measuring partition coefficients. J. Chromatogr. 504, 411–419. 
© 2006 by Taylor & Francis Group, LLC

3454 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Valvani, S.C., Yalkowsky, S.H., Roseman, T.J. (1981) Solubility and partitioning. IV. Aqueous solubility and octanol-water partition 
coefficient of liquid nonelectrolytes. J. Pharm. Sci. 70, 502–507. 
Van Bladel, R., Moreale, A. (1977) Adsorption of herbicide-derived p-chloroaniline residues in soils: A predictive equation. J. Soil 
Sci. 28, 93–102. 
Van De Rostyne, C., Prausnitz, J.M. (1980) Vapor pressure of some nitrogen-containing, coal-derived liquids. J. Chem. Eng. Data 
25, 1–3. 
Veith, G.D., Austin, N.M., Morris, R.T. (1979a) A rapid method for estimating log p for organic chemicals. Water Res. 13, 43–47. 
Veith, G.D., DeFoe, D.L., Bergstedt, B.V. (1979b) Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish 
Res. Board Can. 36, 1040–1048. 
Veith, G.D., Macek, K.J., Petrocelli, S.R., Carroll, J. (1980) An evaluation of using partition coefficients and water solubility to 
estimate bioconcentration factors for organic chemicals in fish. In: Aquatic Toxicology. ASTM STP 707, American Society 
for Testing and Materials. Eaton, J.G., Parrish, P., Hendricks, A.C., Editors. pp. 116–129. 
Vera, A., Montes, M., Usero, J.L., Casado, J. (1992) Quantitative structure-activity relationship study of the biophysicochemical 
behavior of nitrosamine. J. Pharm. Sci. 61, 791–796. 
Vermillion, H.E., Werbel, B., Saylor, J.H., Gross, P.M. (1941) Solubility studies. VI. The solubility of nitrobenzene in deuterium 
water and in ordinary water. J. Am. Chem. Soc. 63, 1345–1347. 
Verschueren, K. (1977) Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold, New York, NY. 
Verschueren, K. (1983) Handbook of Environmental Data on Organic Chemicals. 2nd. Edition, Van Nostrand Reinhold, New York, NY. 
Vitenberg, A.G., Ioffe, B.V., St. Dimitrova, Z., Butaeva, I.L. (1975) Determination of gas-liquid partition coefficients by means of 
gas chromatographic analysis. J. Chromatogr. 112, 319–327. 
von Oepen, B., Kordel, W., Klein, W. (1991) Sorption of nonpolar and polar compounds in soils: Processes, measurements and 
experience with the applicability of the modified OECD-guideline 106. Chemosphere 22, 285–304. 
Vonterres, E., et al. (1955) Brennstoff. Chem. 36, 272.-reference in Boublik et al. 1984. 
Waddington, G., Smith, J.C., Williamson, K.D., Scott, D.W. (1962) Carbon disulfide as a reference substance for vapor-flow 
calorimetry; the chemical thermodynamic properties. J. Am. Chem. Soc. 66, 1074–1077. 
Wahner, A., Zetzsch, C. (1983) Rate constants for the addition of hydroxyl radicals to aromatics (benzene, p-chloroaniline, and 
o-, m- and p-dichlorobenzene) and the unimolecular decay of the adduct. Kinetics into a quasi-equilibrium. J. Phys. Chem. 
87, 4945–4951. 
Wakita, K., Yoshimoto, M., Miyamoto, S. (1986) A method for calculation of the aqueous solubility of organic compounds by using 
new fragment solubility constants. Chem. Pharm. Bull. 34, 4663–4681. 
Waddington, G., Knowlton, J.W., Scott, D.W., Oliver, G.D., Todd, S.S., Jubbar, W.M., Smith, J.C., Juffman, H.M. (1949) Thermodynamic 
properties of thiophene. J. Am. Chem. Soc. 71, 797–808. 
Wallington, T.J. (1986) Kinetics of the gas phase reaction of OH radicals with pyrrole and thiophene. Int. J. Chem. Kinet. 18, 487–496. 
Wallington, T.J., Atkinson, R., Tuazon, E.C., Aschmann, S.M. (1986a) The reaction of OH radicals with dimethyl sulfide. Int. 
J. Chem. Kinet. 18, 837–846. 
Wallington, T.J., Atkinson, R., Winer, A.M., Pitts, Jr., J.N. (1986b) Absolute rate constants for the gas-phase reactions of the NO3 
radical with CH3SH, CH3SCH3, CH3SSCH3, H2S, SO2 and CH3OCH3 over the temperature range 280–350 K. J. Phys. Chem. 
90, 5393–5396. 
Wallington, T.J., Dagaut, P., Kurylo, M.J. (1988) Correlation between gas-phase and solution-phase reactivities of hydroxyl radicals 
toward saturated organic compounds. J. Phys. Chem. 92, 5024–5028. 
Walton, B.T., Hendricks, M.S., Anderson, T.A., Griest, W.H., Merriweather, R., Beauchamp, J.J., Francis, C.W. (1992) Soil sorption 
of volatile and semivolatile organic compounds in a mixture. J. Environ. Quality 21, 552–558. 
Wang, L., Xu, L., Xu, O., Tian, L., Zhang, Z. (1989) Determination of partition coefficients of organic acids and bases and the 
correlation of partition coefficients in different systems. Huanjing Kexue Xuebao 9(4), 418–424. 
Wang, S., Arnold, W.A. (2003) Abiotic reduction of dinitroaniline herbicides. Water Res. 37, 4191–4201. 
Wang, X., Harada, S., Watanabe, M., Koshikawa, H., Geyer, P.R. (1996) Modelling the bioconcentration of hydrophobic organic 
organisms. Chemosphere 32, 1783–1793. 
Wasik, S.P., Tewari, Y.B., Miller, M.M., Martire, D.E. (1981) Octanol/Water Partition Coefficients and Water Solubilities of Organic 
Compounds. NBSIR No.81–2406. U.S. Dept. of Commerce, Washington, D.C. 
Weast, R.C., Ed. (1972–73) Handbook of Chemistry and Physics. 53rd Edition, CRC Press, Cleveland, OH. 
Weast, R.C., Editor (1982–83) Handbook of Chemistry and Physics. 63rd edition, CRC Press, Boca Raton, FL. 
Wilson, J.T., Enfield, C.G., Dunlap, W.J. (1981) Transport and fate of selected organic pollutants in a sandy soil. J. Environ. Qual. 
10, 501–506. 
Windholz, M., Editor (1976) The Merck Index. Volume 9, Merck & Co., Rahway, NJ. 
Windholz, M., Editor (1983) The Merck Index. Volume 10, Merck & Co., Rahway, NJ. 
Wine, P.H., Kreutter, N.M., Gump, C.A., Ravishankara, A.R. (1981) Kinetics of OH reactions with the atmospheric sulfur compounds 
H2S, CH3SH, CH3SCH3, and CH3SSCH3. J. Phys. Chem. 85, 2660–2665. 
Wine, P.H., Thompson, R.J. (1984) Kinetics of OH reactions with furan, thiophene, and tetrahydrothiophene. Int. J. Chem. Kinet. 
16, 867–878. 
© 2006 by Taylor & Francis Group, LLC

Nitrogen and Sulfur Compounds 3455 
Winer, A.M., Atkinson, R., Pitts, Jr., J.N. (1984) Gaseous nitrate radical: possible nighttime atmospheric sink for biogenic organic 
compounds. Science 224, 156–158. 
Witte, F., Urbanik, E., Zetzsch, C. (1986) Temperature dependence of the rate constants for the addition of hydroxyl radical to benzene 
and to some monosubstituted aromatics (aniline, bromobenzene, and nitrobenzene) and the unimolecular decay of the adducts. 
Part 2. Kinetics into a quasi-equilibrium. J. Phys. Chem. 90, 3251–3259. 
Wolfenden, R.V. (1978) Interaction of the peptide bond with solvent water: A vapor phase analysis. Biochemistry 17(1), 201–204. 
Wolff, C.J.M., Crossland, N.O. (1985) Fate and effects of 3,4-dichloroaniline in the laboratory and in outdoor ponds. 1. Fate. Environ. 
Toxicol. Chem. 4, 481–487. 
Wong, P.K., Wang, Y.H. (1997) Determination of the Henry’s law constant for dimethyl sulfide in seawater. Chemosphere 35, 535–544. 
Yaguzhinskii, L.S., Smirnova, E.G., Ratnikova, L.A., Kolesova, G.M., Krasinskaya, I.P. (1973) Hydrophobic sites of the mitochondrial 
electron transfer system. J. Bioenerg. 5(3), 163–174. 
Yalkowsky, S.H., Morozowich, W. (1980) Chapter 3, A physical chemical basis for the design of orally active prodrugs. In: Drug 
Design. Vol. IX. Academic Press, Inc., New York. 
Yalkowsky, S.H., Valvani, S.C. (1980) Solubility and partitioning I: Solubility of nonelectrolytes in water. J. Pharm. Sci. 69(8), 
912–922. 
Yalkowsky, S.H., Valvani, S.C., Kun, W.-Y., Dannenfelser, R.M., Editors (1987) Arizona Database of Aqueous Solubility for Organic 
Compounds. College of Pharmacy, University of Arizona, Tucson, AZ. 
Yamagami, C., Takao, N. (1992) Hydrophobicity parameters determined by reversed-phase liquid chromatography. V. Relationship 
between capacity factor and the octanol-water partition coefficient for simple heteroaromatic compounds and their ester 
derivatives. Chem. Pharm. Bull. 40(4), 925–929. 
Yamagami, C., Takao, N., Fujita, T. (1990) Hydrophobicity parameter of diazines. 1. Analysis and prediction of partition coefficients 
of monosubstituted diazines. Quant. Struct.-Act. Relat. 9(4), 313–320. 
Yaws, C.L. (1994) Handbook of Vapor Pressure, Vol. 1 C1 to C4 Compounds, Vol. 2. C5 to C7 Compounds, Vol. 3, C8 to C28 Compounds. 
Gulf Publishing Co., Houston, TX. 
Yao, C.C.D., Haag, W.R. (1991) Rate constants for direct reactions of ozone with several drinking water contaminants. Water Res. 
25, 761–773. 
Yaws, C.L., Yang, H.-C., Hopper, J.R., Hansen, K.C. (1990) Organic chemicals: water solubility data. Chem. Eng. July, 115–118. 
Yaws, C., Yang, H.C., Pan, X. (1991) Henry’s law constants for 362 organic compounds in water. Chem. Eng. 98(11), 179–185. 
Yeh, K.C., Higuchi, W.I. (1976) Oil-water distribution of p-alkylpyridines. J. Pharm. Sci. 65, 80–86. 
Yoshida, K., Shigeoka, T., Yamauchi, F. (1983) Non-steady state equilibrium model for the preliminary prediction of the fate of 
chemicals in the environment. Ecotoxicol. Environ. Saf. 7, 179–190. 
Yu, G., Xu, X. (1992) Investigation of aqueous solubilities of nitro-PAH by dynamic couple-column HPLC. Chemosphere 24(12), 
1699–1705. 
Zachara, J.M., Ainsworth, C.C., Cowan, C.E., Thomas, B.L. (1987) Sorption of binary mixtures of aromatic nitrogen heterocyclic 
compounds on subsurface materials. Environ. Sci. Technol. 21, 397–402. 
Zepp, R.G., Schlotzhauer, P.F., Simmons, M.F., Miller, G.C., Baughman, G.L., Wolfe, N.L. (1984) Dynamics of pollutant photoreactions 
in the hydrosphere. Fresenius Z. Anal. Chem. 319, 119–125. 
Zepp, R.G., Baughman, G.L., Schlotzhauer, P.F. (1981) Comparison of photochemical behavior of various humic substances in water: 
I. Sunlight induced reactions of aquatic pollutants photosensitized by humic substances. Chemosphere 109-118. 
Zetzsch, C. (1982) Predicting the rate of OH-addition to aromatics using .+-electrophilic substituent constants for mono- and 
polysubstituted benzene. 15th Informal Conference on Photochemistry, June 27-July 1, 1982, Stanford, CA. 
Zoeteman, B.C.F., Harmsen, K.M., Linders, J.B.H.J., Morra, C.F.H., Slooff, W. (1980) Persistent organic pollutants in river water 
and groundwater of the Netherlands. Chemosphere 9, 231–249. 
Zok, S., Gorge, G., Kalsch, W., Nagel, R. (1991) Bioconcentration, metabolism and toxicity of substituted anilines in the zebrafish 
(Brachydanio rerio). Sci. Total Environ. 109/110, 411–421. 
Zwolinski, B.J., Wilhoit, R.C. (1971) Handbook of Vapor Pressures and Heats of Vaporization of Hydrocarbons and Related 
Compounds. API 44, TRC Publication No. 101, Texas A & M University, College Station, TX. 
© 2006 by Taylor & Francis Group, LLC

3457 
17 Herbicides 
CONTENTS 
17.1 List of Chemicals and Data Compilations (in Alphabetical Order) . . . . . . . . . . . . . . . 3461 
17.1.1 Herbicides . 3461 
17.1.1.1 Alachlor . . . . . . . . . . . 3461 
17.1.1.2 Ametryn . . . . . . . . . . . 3466 
17.1.1.3 Amitrole . . . . . . . . . . . 3469 
17.1.1.4 Atrazine . . . . . . . . . . . 3471 
17.1.1.5 Barban . . . . . . . . . . . . 3480 
17.1.1.6 Benefin . . . . . . . . . . . . 3482 
17.1.1.7 Bifenox . . . . . . . . . . . . 3484 
17.1.1.8 Bromacil . . . . . . . . . . . 3486 
17.1.1.9 Bromoxynil . . . . . . . . 3489 
17.1.1.10 sec-Bumeton . . . . . . . . 3491 
17.1.1.11 Butachlor . . . . . . . . . . 3493 
17.1.1.12 Butralin . . . . . . . . . . . 3495 
17.1.1.13 Butylate . . . . . . . . . . . 3497 
17.1.1.14 Chloramben . . . . . . . . 3499 
17.1.1.15 Chlorazine . . . . . . . . . 3501 
17.1.1.16 Chlorbromuron . . . . . . 3502 
17.1.1.17 Chlorpropham . . . . . . 3504 
17.1.1.18 Chlorsulfuron . . . . . . . 3507 
17.1.1.19 Chlorotoluron . . . . . . . 3510 
17.1.1.20 Cyanazine . . . . . . . . . . 3513 
17.1.1.21 2,4-D . . . . . . . . . . . . . 3517 
17.1.1.22 Dalapon . . . . . . . . . . . 3522 
17.1.1.23 2,4-DB . . . . . . . . . . . . 3525 
17.1.1.24 Diallate . . . . . . . . . . . . 3527 
17.1.1.25 Dicamba . . . . . . . . . . . 3530 
17.1.1.26 Dichlobenil . . . . . . . . . 3534 
17.1.1.27 Dichlorprop . . . . . . . . 3537 
17.1.1.28 Diclofop-methyl . . . . . 3539 
17.1.1.29 Dinitramine . . . . . . . . 3542 
17.1.1.30 Dinoseb . . . . . . . . . . . 3544 
17.1.1.31 Diphenamid . . . . . . . . 3547 
17.1.1.32 Diquat . . . . . . . . . . . . . 3549 
17.1.1.33 Diuron . . . . . . . . . . . . 3551 
17.1.1.34 EPTC . . . . . . . . . . . . . 3555 
17.1.1.35 Ethalfluralin . . . . . . . . 3558 
17.1.1.36 Fenoprop . . . . . . . . . . 3560 
17.1.1.37 Fenuron . . . . . . . . . . . 3562 
17.1.1.38 Fluchloralin . . . . . . . . 3564 
17.1.1.39 Fluometuron . . . . . . . . 3566 
© 2006 by Taylor & Francis Group, LLC

3458 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.40 Fluorodifen . . . . . . . . . 3568 
17.1.1.41 Fluridone . . . . . . . . . . 3569 
17.1.1.42 Glyphosate . . . . . . . . . 3572 
17.1.1.43 Isopropalin . . . . . . . . . 3575 
17.1.1.44 Isoproturon . . . . . . . . . 3577 
17.1.1.45 Linuron . . . . . . . . . . . . 3580 
17.1.1.46 MCPA . . . . . . . . . . . . . 3584 
17.1.1.47 MCPB . . . . . . . . . . . . 3587 
17.1.1.48 Mecoprop . . . . . . . . . . 3589 
17.1.1.49 Metolachlor . . . . . . . . 3591 
17.1.1.50 Metribuzin . . . . . . . . . 3595 
17.1.1.51 Molinate . . . . . . . . . . . 3597 
17.1.1.52 Monolinuron . . . . . . . 3600 
17.1.1.53 Monuron . . . . . . . . . . . 3602 
17.1.1.54 Napropamide . . . . . . . 3606 
17.1.1.55 Neburon . . . . . . . . . . . 3608 
17.1.1.56 Nitralin . . . . . . . . . . . . 3610 
17.1.1.57 Nitrofen . . . . . . . . . . . 3612 
17.1.1.58 Norflurazon . . . . . . . . 3614 
17.1.1.59 Oryzalin . . . . . . . . . . . 3616 
17.1.1.60 Pebulate . . . . . . . . . . . 3618 
17.1.1.61 Pendimethalin . . . . . . 3620 
17.1.1.62 Picloram . . . . . . . . . . . 3622 
17.1.1.63 Profluralin . . . . . . . . . 3626 
17.1.1.64 Prometon . . . . . . . . . . 3628 
17.1.1.65 Prometryn . . . . . . . . . . 3631 
17.1.1.66 Pronamide . . . . . . . . . 3634 
17.1.1.67 Propachlor . . . . . . . . . 3636 
17.1.1.68 Propanil . . . . . . . . . . . 3639 
17.1.1.69 Propazine . . . . . . . . . . 3642 
17.1.1.70 Propham . . . . . . . . . . . 3645 
17.1.1.71 Pyrazon . . . . . . . . . . . . 3647 
17.1.1.72 Simazine . . . . . . . . . . . 3649 
17.1.1.73 2,4,5-T . . . . . . . . . . . . 3653 
17.1.1.74 Terbacil . . . . . . . . . . . . 3657 
17.1.1.75 Terbutryn . . . . . . . . . . 3659 
17.1.1.76 Thiobencarb . . . . . . . . 3662 
17.1.1.77 Triallate . . . . . . . . . . . 3664 
17.1.1.78 Triclopyr . . . . . . . . . . . 3668 
17.1.1.79 Trifluralin . . . . . . . . . . 3670 
17.1.1.80 Vernolate . . . . . . . . . . 3677 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3459 
17.1 List of Chemicals and Data Compilations (by Functional Group) . . . . . . . . . . . . . . . . 3461 
Aliphatic acids: 
Dalapon . . . . . . . 3522 
Aromatic Acids: 
Chloramben . . . 3499 
Dicamba . . . . . . 3530 
Picloram . . . . . . 3622 
Amides: 
Alachlor . . . . . . 3461 
Butachlor . . . . . 3493 
Diphenamid . . . 3547 
Metolachlor . . . . 3591 
Napropamide . . 3606 
Pronamide . . . . . 3634 
Propachlor . . . . . 3636 
Propanil . . . . . . . 3639 
Benzonitriles: 
Bromoxynil . . . . 3489 
Dichlobenil . . . 3534 
Carbamates: 
Barban . . . . . . . . 3480 
Chlorpropham . . 3504 
Propham . . . . . . 3645 
Dinitroanilines: 
Benefin . . . . . . . 3482 
Butralin . . . . . . 3495 
Dinitramine . . . . 3542 
Fluchloralin . . . . 3564 
Isopropalin . . . . 3575 
Nitralin . . . . . . . 3610 
Oryzalin . . . . . . 3616 
Pendimethalin . . 3620 
Profluralin . . . . . 3626 
Trifluralin . . . . 3670 
Diphenylethers: 
Bifenox . . . . . . . 3484 
Fluorodifen . . . . 3568 
Nitrofen . . . . . . . 3612 
Phenols: 
Dinoseb . . . . . . . 3544 
PCP (Pentachlorophenol) (See Chapter 14. Phenolic Compounds and Chapter 18. Insecticides) 
Phenoxyalkanoic acids: 
2,4-D . . . . . . . . . 3517 
2,4-DB . . . . . . . 3525 
Dichlorprop . . . . 3537 
Fenoprop . . . . . 3560 
MCPA . . . . . . . . 3584 
MCPB . . . . . . . . 3587 
Mecoprop . . . . . 3589 
2,4,5-T . . . . . . . 3653 
Thiocarbamates: 
Butylate . . . . . . . 3497 
Diallate . . . . . . . 3527 
EPTC . . . . . . . . 3555 
Molinate . . . . . . 3597 
© 2006 by Taylor & Francis Group, LLC

3460 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Pebulate . . . . . . 3618 
Thiobencarb . . . 3662 
Triallate . . . . . . . 3664 
Vernolate . . . . . 3677 
Triazines: 
Ametryn . . . . . . 3466 
Atrazine . . . . . . 3471 
sec-Bumeton . . 3491 
Chlorazine . . . . . 3501 
Cyanazine . . . . . 3513 
Metribuzin . . . . 3595 
Prometon . . . . . . 3628 
Prometryn . . . . 3631 
Propazine . . . . . 3642 
Simazine . . . . . 3649 
Terbutryn . . . . . 3659 
Uracils: 
Bromacil . . . . . . 3486 
Terbacil . . . . . . . 3657 
Ureas: 
Chlorbromuron 3502 
Chlorsulfuron . . 3507 
Chlorotoluron . . 3510 
Diuron . . . . . . . 3551 
Fenuron . . . . . . 3562 
Fluometuron . . . 3566 
Isoproturon . . . . 3577 
Linuron . . . . . . . 3580 
Monolinuron . . 3600 
Monuron . . . . . . 3602 
Neburon . . . . . . 3608 
Miscellaneous: 
Amitrole (Triazole) . . . . . . . . . . . . . . . 3469 
Diclofop-methyl (Chlorophenoxy acid ester) . . . . . . . . . . . 3539 
Diquat (Bipyridyl) . . . . . . . . . . . . . . . 3549 
Ethalfluralin (trifluoroorg-nitro compound) . . . . . . . . . . . . 3558 
Fluridone (Fluoro-phenyl pyridinone) 3569 
Glyphosate (Phosphate) . . . . . . . . . . . 3572 
Norflurazon . . . . 3614 
Pyrazon (Pyridazinone) . . . . . . . . . . . 3647 
Triclopyr (pyridine, organochlorine) . 3668 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3461 
17.1 LIST OF CHEMICALS AND DATA COMPILATIONS (By Functional Group) 
17.1.1 HERBICIDES 
17.1.1.1 Alachlor 
Common Name: Alachlor 
Synonym: alachlore, alochlor, Alanex, Bronco, Bullet, Cannon, Lasso, Lazo, metachlor, Pillarzo 
Chemical Name: 2-chloro-2,6-diethyl-N-methoxymethylacetanilide; 2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)
acetamide 
Uses: pre-emergence, early post-emergence or soil-incorporated herbicide to control most annual grasses and many 
annual broadleaf weeds in beans, corn, cotton, milo, peanuts, peas, soybeans, sunflower, and certain woody 
ornamentals. 
CAS Registry No: 15972-60-8 
Molecular Formula: C14H20ClNO2 
Molecular Weight: 269.768 
Melting Point (°C): 
40 (Lide 2003) 
Boiling Point (°C): 
100 (at 0.02 mmHg, Ashton & Crafts 1981; Herbicide Handbook 1989; Worthing & Hance 1991; 
Montgomery 1993; Tomlin 1994; Milne 1995) 
135 (at 0.30 mmHg, Herbicide Handbook 1989; Milne 1995) 
Density (g/cm3 at 20°C): 
1.133 (25°C, Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
240.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
29.288 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.713 (mp at 40°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
242 (20°C, Weber 1972; Weber et al. 1980) 
200 (Bailey & White 1965) 
242 (Herbicide Handbook 1974, 1978, 1983, 1989; Martin & Worthing 1977) 
240 (Hartley & Graham-Bryce 1980; Beste & Humburg 1983) 
148 (Khan 1980) 
242 (Ashton & Crafts 1981; Worthing & Walker 1987, Worthing & Hance 1991) 
242 (Hartley & Kidd 1983, 1987; Tomlin 1994) 
130 (20°C, selected, Suntio et al. 1988; quoted, Majewski & Capel 1995) 
148, 242 (literature data variability, Heller et al. 1989) 
140 (23°C, Budavari 1989) 
240 (Wauchope 1989) 
240 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
23.5 (calculated-group contribution fragmentation method, Kuhne et al. 1995) 
140 (23°C, Milne 1995) 
512 (predicted-AQUAFAC, Lee et al. 1996) 
532, 785 (supercooled liquid SL: literature derived value LDV, final adjust value FAV, Muir et al. 2004) 
N 
O 
Cl 
O 
© 2006 by Taylor & Francis Group, LLC

3462 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Vapor Pressure (Pa at 25°C or as indicated): 
0.00293 (20°C, Weber 1972; Worthing & Walker 1987, Worthing & Hance 1991) 
0.00293 (Herbicide Handbook 1974, 1983, 1989) 
0.00293 (20–25°C, Weber et al. 1980) 
0.00293 (Ashton & Crafts 1981; Schnoor & McAvoy 1981; Schnoor 1992) 
0.00290 (Beste & Humburg 1983) 
0.00290 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
0.00300 (20°C, selected, Suntio et al. 1988; quoted, Majewski & Capel 1995) 
0.00187 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.00413 (Montgomery 1993) 
0.0064. 0.0044 (supercooled liquid PL: literature derived value LDV, final adjust value FAV, Muir et al. 
2004) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated. Additional data at other temperatures designated * are 
compiled at the end of this section): 
6.20 . 10–3 (20°C, calculated-P/C, Suntio et al. 1988) 
8.43 . 10–4 (wetted-wall-GC/ECD, Fendinger & Glotfelty 1988) 
3.26 . 10–3 (calculated-P/C, Taylor & Glotfelty 1988) 
1.12 . 10–3 (fog chamber-GC/ECD, Fendinger et al. 1989) 
8.38 . 10–4 (23°C, known LWAPC of Fendinger et al. 1989, Meylan & Howard 1991) 
1.21 . 10–5 (bond-estimated LWAPC, Meylan & Howard 1991) 
3.26 . 10–3 (20°C, calculated-P/C, Muir 1991) 
6.20 . 10–3 (calculated-P/C, Montgomery 1993) 
3.22 . 10–3 (Gish et al. 1995) 
7.24 . 10–3* (Gas stripping-GC/MS, measured range 10–25°C, Gautier et al. 2003) 
ln [H./(M atm–1)] = –20.946 + 9200/(T/K); temp range 2830298 K (gas stripping-GC/MS, Gautier et al. 2003) 
0.00101. 1.49 (literature derived value LDV, final adjust value FAV, Muir et al. 2004) 
Octanol/Water Partition Coefficient, log KOW: 
2.92 (Leo et al. 1971) 
2.30 (Kenaga 1980) 
2.64 (Rao & Davidson 1980) 
3.087 (shake flask, Dubelman & Bremer 1983) 
3.52 (shake flask, Log P Database, Hansch & Leo 1987) 
3.27 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
3.52 (recommended, Sangster 1993) 
3.52 (recommended, Hansch et al. 1995) 
3.27 (RP-HPLC-RT correlation, Finizio et al. 1997) 
3.09 (literature derived value LDV, Muir et al. 2004) 
Octanol/Air Partition Coefficient, log KOA: 
9.31 (final adjust value FAV, Muir et al. 2004) 
Bioconcentration Factor, log BCF: 
1.45 (calculated-solubility, Kenaga 1980) 
0.954 (calculated-KOC, Kenaga 1980) 
1.88 (Schnoor & McAvoy 1981, Schnoor 1992) 
0.778 (freshwater fish, Call et al. 1984) 
1.70 (Pait et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.28 (soil, Beestman & Demming 1976) 
2.32 (soil, calculated, Kenaga & Goring 1980) 
2.30 (soil, Kenaga 1980) 
1.70 (sediment/water, Schnoor & McAvoy 1981) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3463 
1.91 (soil, average for soils 2–7, Weber & Peter 1982) 
2.08 (soil, screening model calculations, Jury et al. 1987b) 
2.28 (Carsel 1989) 
2.18, 2.23, 2.28, 2.53 (soil, lit. values, Bottoni & Funari 1992) 
2.23 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.63–2.28 (quoted values, Montgomery 1993) 
2.21 (selected, Wienhold & Gish 1994) 
2.28 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.28; 2.53 (soil, quoted exptl.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
2.22, 2.22, 2.20 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: k(measured) = 9000 d–1 and k(estimated) = 49000 d–1 (Glotfelty et al. 1989); 
estimated t. = 2444 d from 1-m depth of water at 20°C (Muir 1991) 
Volatilization rate k = 4.4 . 10–4 d–1, 2.8 . 10–3 d–1, 4.3 . 10–3 d–1 at 15, 25, 35°C, respectively, for commercial 
formulation; k = 5.8 . 10–5 d–1, 8.7 . 10–3 d–1, 1.4 . 10–2 d–1 at 15, 25, 35°C, respectively, for starch 
encapsulated formulation after application (Weinhold et al. 1993) 
Photolysis: t. = 2.25 h in distilled water (Tanaka et al. 1981; quoted, Cessna & Muir 1991); 640 ppb contaminated 
water in the presence of TiO2 and H2O2 photodegraded to 3.5 ppb by 15 h solar irradiation with complete 
degradation after 75 h (Muszkat et al. 1992). 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
k(aq.) = (3.8 ± 0.4) M–1 s–1 for direct reaction with ozone in water at pH 2–6.0 and 21°C, with a half-life 
of 2.4 h at pH 7 (Yao & Haag 1991). 
k(calc) = 7 . 109 M–1 s–1 for the reaction with hydroxyl radical in aqueous solutions at 24 ± 1°C (Haag & Yao 
1992) kOH = 2.3 . 10–11 cm3·molecule–1 s–1 with calculated tropospheric lifetime about 0.5 d at 298 K 
assuming an average OH concn of 1 . 106 molecule/cm3 (Gautier et al. 2003) 
Hydrolysis: alkaline chemical hydrolysis t. > 365 d (Schnoor & McAvoy 1981; quoted, Schnoor 1992). 
Biodegradation: t. < 6 months for 0.07 µg/mL to biodegrade in ground water, t. > 15 months for 10.0 µg/mL 
to biodegrade in groundwater both at 25°C and t. < 12 wk for 3.2 µg/mL to biodegrade in soil-water 
suspension at 35°C (Weidner 1974; quoted, Muir 1991); 
t. = 23 d for 0.244 µg/mL to biodegrade in river water at 23°C with biodegradation rate k = 0.030 d–1 
(Schnoor et al. 1982; quoted, Muir 1991); 
t. = 18 d from screening model calculations (Jury et al. 1987b); 
t. > 6 wk for 0.01–1.0 µg/mL to biodegrade in sewage effluent lake water at 28°C (Novick & Alexander 
1985; quoted, Muir 1991); 
overall degradation rate constant k = 0.0403 h–1 with t. = 17.2 h in sewage sludge and rate constant 
k = 0.1601 d–1 with t. = 4.3 d in garden soil (Muller & Buser 1995). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: tropospheric lifetime of 0.5 d for gas phase reaction with OH radicals; wet deposition lifetime estimated to 
be 2.8 d in the atmosphere by rainfall (Gautier et al. 2003) 
Surface water: t. = 23 d for 0.244 µg/mL to biodegrade in river water at 23°C with biodegradation rate k = 0.030 d–1 
(Schnoor et al. 1982; quoted, Muir 1991); 
t. > 6 wk for 0.01–1.0 µg/ml to biodegrade in sewage effluent lake water at 28°C (Novick & Alexander 
1985; quoted, Muir 1991); 
k(measured) = (3.8 ± 0.4) M–1 s–1 for direct reaction with ozone in water at pH 2–6 and 21°C, with t. = 2.4 h 
at pH 7 (Yao & Haag 1991). 
Ground water: t. < 6 months for 0.07 µg/mL to biodegrade in groundwater, and t. > 15 months for 10.0 µg/mL 
to biodegrade in groundwater both at 25°C (Weidner 1974; quoted, Muir 1991) reported t. = 7, 4–21 and 
38 d (Bottoni & Funari 1992) 
Sediment: 
© 2006 by Taylor & Francis Group, LLC

3464 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Soil: dissipation t. = 7.8 d in soil (Beestman & Demming 1974); measured dissipation rate k = 0.077 d–1 (Zimdahl 
& Clark 1982); 
t. = 23 and 5.7 d in soil containing 6 and 15% moisture, respectively (Walker & Brown 1985); 
t. = 18 d from screening model calculations (Jury et al. 1987b); 
estimated dissipation rate k = 0.020 and 0.036 d–1 (Nash 1988); 
field t. < 1.5 wk by using field lysimeters (Bowman 1990); 
degradation rate constant k = (4.52 ± 0.192) . 10–2 d–1 with t. = 15.3 d in control soil and k = (7.27 ± 0.772 . 
10–2 d–1 with t. = 9.53 d in pretreated soil in the field; k = (2.77 ± 0.226) . 10–2 d–1 with t. = 25 d in 
control soil and k = (14.1 ± 1.75) . 10–2 d–1 with t. = 4.93 d in pretreated soil once only in the laboratory 
(Walker & Welch 1991); 
selected field t. = 15 d (Wauchope et al. 1992; Hornsby et al. 1996; quoted, Richards & Baker 1993); 
soil t. = 30 d (quoted, Pait et al. 1992); 
reported t. = 7, 4–21 and 38 d (Bottoni & Funari 1992); 
soil t. = 14–28 d (Di Guardo et al. 1994); 

dissipation t. = 42 d from soil surface (Gish et al. 1995); 
degradation t. = 4.3 d in garden soil (Muller & Buser 1995); 
t. = 15 d (selected, Halfon et al. 1996); 
dissipation t.(calc) = 5 and 5.3 d in soil in model ecosystem, t. = 3.3 and 3.4 d in water in model ecosystem 
(Ramesh & Maheswari 2004). 
Biota: biochemical t. = 18 d from screening model calculations (Jury et al. 1987b). 
TABLE 17.1.1.1.1 
Reported Henry’s law constants of alachlor at various temperatures 
Gautier et al. 2003 
gas stripping-GC/MS 
t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) 
10 1.097.10.3 23 3.46.10.3 
10 1.26.10.3 25 6.33.10.3 
10 1.30.10.3 25 8.44.10.3 
11 9.76.10.4 25.0 7.24.10.3 
12 2.115.10.3 
15 1.68.10.3 Arrhenius expression: 
17 2.58.10.3 ln H’/(M atm.1) = –A + B/(T/K) 
18 3.13.10.3 A 20.946 
20 4.24.10.3 B 9200 
23 3.07.10.3 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3465 
FIGURE 17.1.1.1.1 Logarithm of Henry’s law constant versus reciprocal temperature for alachlor. 
Alachlor: Henry's law constant vs. 1/T 
-8.0 
-7.0 
-6.0 
-5.0 
-4.0 
-3.0 
0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
m . a P ( / H n l 
3 
) l o m / 
Gautier et al. 2003 
Fendinger & Glotfelty 1988 
Fendinger et al. 1989 
© 2006 by Taylor & Francis Group, LLC

3466 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.2 Ametryn 
Common Name: Ametryn 
Synonym: Amephyt, Ametrex, Evik, Gesapax 
Chemical Name: 6-methylthio-2-(ethylamino)-4-(isopropylamino)-1,3,5-triazine; N-ethyl-N.-(1-methylethyl)- 
6-(methyl-thio)-1,3,5-triazine-2,4-diamine 
Uses: herbicide to control broadleaf and grass weeds in corn, sugarcane, some citrus fruits, and in noncropland; also 
used as pre-harvest and post-harvest dessicant in potatoes to control crop and weeds. 
CAS Registry No: 834-12-8 
Molecular Formula: C9H17N5S 
Molecular Weight: 227.330 
Melting Point (°C): 
88 (Lide 2003) 
Boiling Point (°C): 328.78 (Rordorf 1989) 
Density (g/cm3 at 20°C): 
1.19 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
277.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
4.00 (pKa, Weber 1970; quoted, Bintein & Devillers 1994) 
4.10 (pKa, Worthing & Hance 1991; Montgomery 1993) 
10.07 (pKb, Wauchope et al. 1992; Hornsby et al. 1996) 
9.90 (pKb, Tomlin 1994) 
Enthalpy of Vaporization, .HV (kJ/mol): 
91.96 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
19.8 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
55 (Rordorf 1989) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.241 (mp at 88°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
700 (Woodford & Evans 1963) 
405, 195, 192 (26°C, shake flask-UV at pH 3.0, 7.0, 10.0, Ward & Weber 1968) 
185 (Martin & Worthing 1977; Herbicide Handbook 1978) 
185 (20°C, Khan 1980; Ashton & Crafts 1981; Verschueren 1983) 
194 (Weber et al. 1980) 
185 (20°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & Hance 1991; Montgomery 
1993; Milne 1995) 
185 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
200 (Tomlin 1994) 
134 (calculated-group contribution fragmentation method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
1.12 . 10–4 (20°C, extrapolated-Antoine eq. from gas saturation-GC measurements, measured range 50–130°C, 
Friedrich & Stammbach 1964) (See figure at the end of this section.) 
log (P/mmHg) = 11.911 – 4933/(T/K), temp range 50–130°C (gas saturation-GC, data presented in Antoine eq., 
Friedrich & Stammbach 1964) (See figure at the end of this section.) 
N 
N 
N 
HN 
NH 
S 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3467 
1.12 . 10–4 (20°C, Khan 1980; Ashton & Crafts 1981; Verschueren 1983) 
1.12 . 10–4 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993) 
log (PS/kPa) = 11.036 – 5270/(T/K), temp range 323–403 K, (solid, Antoine eq., Stephenson & Malanowski 1987) 
1.00 . 10–4 (20°C, selected, Suntio et al. 1988) 
1.12 . 10–4, 4.40 . 10–4 (20°C, 30°C, Herbicide Handbook 1989) 
3.74 . 10–4, 1.40 . 10–2, 0.30, 4.40, 46 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 16.85 – 6048.6/(T/K); measured range 49.5–85°C (gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.396 – 4803.6/(T/K); measured range 49.5–140°C (gas saturation-GC, Rordorf 1989) 
3.65 . 10–4 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
3.65 . 10–4 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.20 . 10–4 (20°C, calculated, Suntio et al. 1988) 
1.38 . 10–4 (calculated-P/C, Montgomery 1993) 
1.23 . 10–4 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.69 (Kenaga & Goring 1980) 
2.58 (Gerstl & Helling 1987) 
2.98 (shake flask, Log P Database, Hansch & Leo 1987) 
2.82 (Worthing & Hance 1991) 
2.98 (shake flask, Biagi et al. 1991) 
3.07 (RP-HPLC-RT correlation, Finizio et al. 1991) 
2.88 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
2.98 (recommended, Sangster 1993) 
2.63 (Tomlin 1994) 
2.61 (shake flask-UV, Liu & Qian 1995) 
2.58 (calculated-RP-HPLC-k. correlation, Liu & Qian 1995) 
2.83 (Milne 1995) 
2.98 (recommended, Hansch et al. 1995) 
2.88 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.52 (calculated-S, Kenaga 1980) 
1.32 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.59 (soil, Hamaker & Thompson 1972;) 
2.40 (soil, calculated, Kenaga & Goring 1980) 
2.59 (soil, Kenaga & Goring 1980) 
2.59 (Rao & Davidson 1980) 
2.59, 2.86 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
2.59, 2.51 (reported as log KOM, estimated as log KOM, Magee 1991) 
2.40–2.59, 2.58 (soil, quoted values, Bottoni & Funari 1992) 
2.48 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.23–2.44 (Montgomery 1993) 
2.48 (Tomlin 1994) 
2.42 (calculated-KOW, Liu & Qian 1995) 
2.59 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.70, 2.59 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, Gramatica 
et al. 2000) 
2.52, 2.63, 2.60, 2.35 (soils with organic carbon OC . 0.5% at: pH 4.5–9.0, pH 4.5–5.4, pH 5.5–6.0, pH-6.1, 
average, Delle Site 2001) 
1.84, 2.23 (Kishon river sediments, sorption isotherm, Chefetz et al. 2004) 
© 2006 by Taylor & Francis Group, LLC

3468 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 10 h for 10 µg mL–1 to degrade in distilled water under > 290 nm light and t. = 3.3 h in 1% 
acetone solution (Burkhard & Guth 1976; quoted, Cessna & Muir 1991); 
t. = 2.25 h for 17% of 33 µg mL–1 to degrade in 0.2% aqueous solutions of the surfactant Triton X-100 
and for 8% of 33 µg/mL to degrade in distilled water both under 300 nm light (Tanaka et al. 1981; 
quoted, Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: t. = 32 d at pH 1 and t. > 200 d at pH 13 (Montgomery 1993). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: 
Groundwater: reported half-lives or persistence, t. = 7–120 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 6.0 months at 15°C and t. = 4.5 months at 30°C in soils (Freed & Haque 1973); 
t. = 70–120 d (Bottoni & Funari 1992); 
selected t. = 60 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 70–129 d in soil (Tomlin 1994). 
Biota: 
FIGURE 17.1.1.2.1 Logarithm of vapor pressure versus reciprocal temperature for ametryn. 
Ametryn: vapor pressure vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Friedrich & Stammbach 1964 (50 to 130 °C) 
Friedrich & Stammbach 1964 (extrapolated) 
m.p. = 88 °C 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3469 
17.1.1.3 Amitrole 
Common Name: Amitrole 
Synonym: Amazole, Amitrol, Amizole, aminotriazole, Azolan, Azole, cytrol, Diurol 
Chemical Name: 3-amino-1,2,4-triazole; 3-amino-s-triazole; 1H-1,2,4-triazol-3-amine 
Uses: nonselective, foliage-applied herbicide in uncropped land and orchards to control perennial weeds in certain 
grasses. 
CAS Registry No: 61-82-5 
Molecular Formula: C2H4N4 
Molecular Weight: 84.080 
Melting Point (°C): 
159 (Khan 1980; Herbicide Handbook 1989; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.138 (Hartley & Kidd 1987; Herbicide Handbook 1989; Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
85.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
9.83 (pKb, Wauchope et al. 1992; Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
24.69 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0484 (mp at 159°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
252000 (Freed & Burschel 1957) 
280000 (Martin 1961; Spencer 1981) 
280000 (Bailey & White 1965; Khan 1980; Weber et al. 1980; Ashton & Crafts 1981; Willis & McDowell 
1982) 
soluble (Wauchope 1978) 
280000 (Worthing 1983, Worthing & Hance 1991) 
280000 (Hartley & Kidd 1987; Herbicide Handbook 1989; Reinert 1989) 
360000 (20–25°C, selected, Wauchope et al. 1992; Lohninger 1994; Hornsby et al. 1996) 
280000 (20°C at pH 7, quoted, Montgomery 1993) 
280000 (23°C, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 0.001 (Agrochemicals Handbook 1983; quoted, Howard 1991) 
< 0.001 (Hartley & Kidd 1987) 
5.50 . 10–8 (20°C, Worthing & Hance 1991; Tomlin 1994) 
5.87 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
5.51 . 10–7 (20°C, quoted, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
< 3.04 . 10–7 (calculated-P/C, Howard 1991) 
1.650 . 10–10 (20°C, calculated-P/C, Montgomery 1993) 
1.650 . 10–10 (calculated-P/C, this work) 
N
NH 
N
NH2 
© 2006 by Taylor & Francis Group, LLC

3470 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
–0.85 (shake flask, pH 7, Lichtner 1983) 
0.52 (selected, Dao et al. 1983; Gerstl & Helling 1987) 
–0.15 (Reinert 1989; quoted, Howard 1991; Montgomery 1993) 
–0.87, –0.84 (pH 7) (Hansch et al. 1995) 
–0.87 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
–0.301 (estimated-S, Lyman et al. 1982; quoted, Howard 1991) 
–0.347 (estimated-log KOW, Lyman et al. 1982; quoted, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
2.04 (soil, estimated-molecular topology & QSAR, Sabljic 1984) 
0.23 (calculated-MCI ., Gerstl & & Helling 1987) 
1.26 (Reinert 1989) 
2.00 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.73–2.31 (quoted, Montgomery 1993) 
2.00 (estimated-chemical structure, Lohninger 1994) 
1.25 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: photooxidation t. = 3.2–32 h in air, based on estimated rate constant for the vapor-phase reaction 
with hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: 
Biodegradation: aqueous aerobic t. = 672–4032 h, based on reported half-lives in soil and water (Freed & Haque 
1973; Reinert & Rogers 1987; quoted, Howard et al. 1991); aqueous anaerobic t. = 2688–16128 h, based 
on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 3.8 d, based on a theoretical calculation for the vapor-phase reaction with hydroxyl radicals in the 
atmosphere at 25°C (GEMS 1986; quoted, Howard 1989); 
t. = 3.2–32 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl radicals in air 
(Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 672–4320 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
Groundwater: t. = 1344–8640 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 
1991).‘ 
Sediment: 
Soil: t. = 1.4, 1.6, 1.3, 92, 36, and 56 d with disappearance rates: k = 0.495, 0.433, 0.533, 0.0075, 0.0193, and 
0.124 d–1 at pH 6.0, 7.0, 8.0, 5.3, 6.5, and 7.5 (Hamaker 1972; quoted, Nash 1988); 
t. = 1.5 month at 15°C and t. = 1.0 month at 30°C in soils (Freed & Haque 1973); 
persistence of one month in soil (Wauchope 1978); 
persistence in soil for ca. 2–4 wk (Herbicide Handbook 1989; Tomlin 1994); 
t. = 672–4320 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991); 
selected field t. = 14 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3471 
17.1.1.4 Atrazine 
Common Name: Atrazine 
Synonym: Aatrex, Akikon, Aktikon, Aktinit, Atratol, Atred, Atrex, Candex, Fenamine, Gesaprim, Hungazin, Inakor, 
Primatol, Primaze, Radazine, Strazine, Triazine A, Vectal, Weedex A, Wonuk, Zeazine 
Chemical Name: 2-chloro-4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine; 6-chloro-N-ethyl-N.-(1-methylethyl)-1,3,5- 
triazine-diamine 
Uses: pre-emergence and post-emergence herbicide to control some annual grasses and broadleaf weeds in corn, fallow 
land, rangeland, sorghum, noncropland, certain tropical plantations, evergreen nurseries, fruit crops, and lawns. 
CAS Registry No: 1912-24-9 
Molecular Formula: C8H14ClN5 
Molecular Weight: 215.684 
Melting Point (°C): 
173 (Lide 2003) 
Boiling Point (C): 
Density (g/cm3 at 20°C): 
1.187 (Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
250.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
1.68 (pKa, Weber 1970; Somasundaram et al. 1991; Bintein & Devillers 1994) 
1.70 (pKa, Weber et al. 1980; Willis & McDowell 1982; Worthing & Hance 1991; Francioso et al. 1992; 
Montgomery 1993; Tomlin 1994) 
1.60 (pKa, Yao & Haag 1991; Haag & Yao 1992) 
12.32 (pKb, Wauchope et al. 1992; Hornsby et al. 1996) 
1.62 (pKa, 20°C, Montgomery 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
40.585 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 20°C (assuming .Sfus = 56 J/mol K), 
F: 0.0353 (mp at 173°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
70.0 (26°C, Bailey & White 1965) 
50.0 (Gunther et al. 1968) 
31.1, 34.9, 36.8 (26°C, shake flask-UV at pH 3.0, 7.0. 10.0, Ward & Weber 1968) 
98.0 (50°C, Getzen & Ward 1971) 
33.0 (shake flask-GC, Hormann & Eberle 1972) 
29.9 (shake flask-UV, Hurle & Freed 1972) 
30.0 (20°C, Weber 1972; Worthing & Walker 1987; Worthing & Hance 1991; Burkhard & Guth 1981) 
33.0 (27°C, Ashton & Crafts 1973, 1981; Khan 1980; Herbicide Handbook 1989; Pait et al. 1992) 
32.0 (Freed 1976; Beste & Humburg 1983; Jury et al. 1983) 
31.5 (Spencer 1976) 
33.0 (Wauchope 1978; Kenaga 1980; Kenaga & Goring 1980) 
35.0 (Weber et al. 1980) 
30.0 (shake flask-HPLC, Ellgehausen et al. 1981) 
24.0 (Thomas 1982) 
70.0 (Windholz 1983) 
N 
N 
N 
HN 
NH 
Cl 
© 2006 by Taylor & Francis Group, LLC

3472 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
28.0 (20°C, Hartley & Kidd 1987) 
29.9, 33, 70 (literature data variability, Heller et al. 1989) 
33.0 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
28.0, 33.0 (20°C, 27°C, Montgomery 1993) 
33.0 (20°C, Tomlin 1994) 
28.0 (Milne 1995) 
4012, 4012 (supercooled liquid SL: literature derived value LDV, final adjust value FAV, Muir et al. 2004) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
44.0 . 10–5* (20°C, extrapolated-Antoine eq. from gas saturation-GC measurements, measured range 50–130°C, 
Friedrich & Stammbach 1964) 
log (P/mmHg) = 13.766 – 5945/(T/K), temp range 50–130°C (gas saturation-GC, data presented in graph and 
Antoine eq., Friedrich & Stammbach 1964) 
4.00 . 10–5 (20°C, Weber 1972; Worthing 1979; Worthing & Walker 1987, Worthing & Hance 1991; quoted, 
Khan 1980; Dobbs et al. 1984; Muir 1991) 
3.99 . 10–5 (20°C, gas saturation, extrapolated from Friedrich & Stammbach 1964, Spencer 1976) 
4.00 . 10–5 (20°C, Hartley & Graham-Bryce 1980; Beste & Humburg 1983) 
4.00 . 10–5 (20–25°C, Weber et al. 1980) 
4.00 . 10–5 (20°C, Ashton & Crafts 1981) 
1.33 . 10–4 (selected, Schnoor & McAvoy 1981) 
3.70 . 10–5* (20°C, extrapolated from gas saturation measurement, Grayson & Fosbracey 1982) 
ln (P/Pa) = 36.8 – 13778/(T/K), for temp range 51–81.5°C, (Antoine eq., gas saturation, Grayson & Fosbracey 
1982) 
1.13 . 10–4 (Thomas 1982) 
4.00 . 10–5 (20°C, Hartley & Kidd 1987) 
log (PS/kPa) = 12.8909 – 5945/(/K), temp range 323–403 K, (solid, Antoine eq., Stephenson & Malanowski 1987) 
8.70 . 10–5 (selected, Nash 1989) 
3.99 . 10–5, 18.6 . 10–5 (20°C, 30°C, Herbicide Handbook 1989) 
3.90 . 10–5* (gas saturation-GC, measured range 40.5–125°C, Rordorf 1989) 
log (PS/Pa) = 13.27071 – 6558.5/(T/K); measured range 40.5–125°C (gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.396 – 4803.6/(T/K); measured range not specified (gas saturation-GC, Rordorf 1989) 
4.05 . 10–5 (Riederer 1990) 
3.85 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
4.00 . 10–5 (20°C, Montgomery 1993) 
2.00 . 10–5 (selected, Sieber et al. 1994) 
3.90 . 10–5 (Tomlin 1994; quoted, Halfon et al. 1996) 
6.70 . 10–4* (40°C, Knudsen effusion method, measured range 40–80°C, Goodman 1997) 
log (P/Pa) = 16.08 – 6040/(T/K); temp range 40–80°C, Goodman 1997) 
0.0096, 0.0096 (supercooled liquid PL: literature derived value LDV, final adjust value FAV, Muir et al. 
2004) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
6.20 . 10–4 (calculated-P/C, Jury et al. 1983, 1984, 1987a; Jury & Ghodrati 1989) 
2.90 . 10–4 (20°C, calculated-P/C, Suntio et al. 1988) 
6.19 . 10–4 (calculated-P/C, Taylor & Glotfelty 1988) 
5.70 . 10–4 (calculated-P/C, Nash 1989) 
3.04 . 10–4 (Riederer 1990) 
2.66 . 10–4 (calculated-P/C, Howard 1991) 
2.89 . 10–4 (20°C, calculated-P/C, Muir 1991) 
3.08 . 10–4 (20°C, calculated-P/C, Montgomery 1993) 
1.00 . 10–3 (calculated-P/C, Sieber et al. 1994) 
6.20 . 10–4 (Gish et al. 1995) 
2.88 . 10–4 (calculated-P/C, this work) 
0.518 (final adjust value FAV, Muir et al. 2004) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3473 
Octanol/Water Partition Coefficient, log KOW: 
2.75 (shake flask-GC, Erkell & Walum 1979) 
2.63 (HPLC-RT correlation, Veith et al. 1979, 1980; Veith & Kosian 1982) 
2.35 (Rao & Davidson 1980) 
2.71 (shake flask-both phases analyzed by GC and UV spec., Brown & Flagg 1981) 
2.40, 2.21 (HPLC-k. correlation, McDuffie 1981) 
2.75 (shake flask, Ellgehausen et al. 1981) 
2.80 (Elgar 1983) 
2.05 (RP-HPLC-k. correlation, Braumann et al. 1983) 
2.64 (shake flask-GC, Geyer et al. 1984) 
2.75 (Hansch & Leo 1985) 
2.64 (OECD method 1981, Kerler & Schonherr 1988) 
2.68 (Lopez-Avila et al. 1989) 
2.61, 2.61 (RP-HPLC-RT correlation, calculated, Finizio et al. 1991) 
2.34 (Worthing & Hance 1991; Milne 1995) 
2.10 (shake flask, pH 7, Baker et al. 1992) 
2.33–2.80 (quoted values, Montgomery 1993) 
2.75 (recommended, Sangster 1993) 
2.42 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
2.50 (Tomlin 1994) 
2.27 (shake flask-UV, Liu & Qian 1995) 
2.61 (selected, Hansch et al. 1995) 
2.43 (RP-HPLC-RT correlation, Finizio et al. 1997) 
2.00 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
2.63 ± 0.07, 2.47 ± 0.15, 2.46 ± 0.09 (shake flask, isocratic RP-HPLC-k. correlation, gradient RP-HPLC-k. 
correlation, Paschke et al. 2004) 
2.40 (literature derived value LDV, Muir et al. 2004) 
Octanol/Air Partition Coefficient, log KOA: 
9.08 (final adjust value FAV, Muir et al. 2004) 
Bioconcentration Factor, log BCF: 
–2.00 (vegetation, correlated-KOW, Beynon et al. 1972; quoted, Travis & Arms 1988) 
1.04 (Metcalf & Sanborn 1975; quoted, Kenaga & Goring 1980; Isensee 1991) 
1.00 (Isensee 1976) 
0.50 (whitefish, Burkhard & Guth 1976) 
0.90 (fathead minnow, Veith et al. 1979) 
0.30 (catfish, Ellgehausen et al. 1980; quoted, Howard 1991) 
0.26 (Daphnia magna, wet wt. basis, Ellgehausen et al. 1980) 
0.48 (Corygonus fera. at 12°C, Gunkel & Streit 1980) 
1.93, 0.845 (calculated-S, KOC, Kenaga 1980) 
< 0.90 (Veith et al. 1980) 
1.90 (selected, Schnoor & McAvoy 1981) 
1.93, 1.77 (estimated-S, estimated-KOW, Bysshe 1982) 
0.90 (fathead minnow, Veith & Kosian 1982) 
2.00 (mottled sculpin, Lynch et al. 1982) 
1.60 (activated sludge, Freitag et al. 1984) 
1.00 (golden ide, Freitag et al. 1985) 
0.477, 0.954, 0.845, 0.778 (zebrafish: egg, embryo, yolk sac fry, juvenile; Gorge & Nagel 1990) 
0.78 (Brachydanio rerio, Gorge & Nagel 1990) 
0.983 (Hydrilla, Hinman & Klaine 1992) 
1.98, 0.748, 0.230 (algae Scenedesmus acutus, catfish Ictalurus melas, Daphnia magna, wet wt basis, Wang 
et al. 1996) 
© 2006 by Taylor & Francis Group, LLC

3474 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioaccumulation Factor, log BAF: 
1.710 (algae, Ellgehausen et al. 1980;) 
0.329 (catfish, Ellgehausen et al. 1980) 
0.261 (daphnids, Ellgehausen et al. 1980) 
1.72, 0.477, 1.60 (algae, fish, sludge, Klein et al. 1984) 
1.70, < 1.00, 1.60 (algae, fish, sludge, Freitag et al. 1985) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
2.17 (soil, Hamaker & Thompson 1972) 
2.09 (average of 4 soils, Rao & Davidson 1979; Davidson et al. 1980) 
2.81 (calculated, Kenaga & Goring 1980; Kenaga 1980) 
2.20 (average of soils/sediments, Rao & Davidson 1980) 
2.21 (average of 56 soils from lit. review, Rao & Davidson 1980) 
2.33 (a Georgia pond sediment, sorption isotherms by shake flask-GC/ECD, Brown & Flagg 1981) 
1.59 (a Swiss soil, Burkhard & Guth 1981) 
3.11, 2.31; 1.94, 2.42 (estimated-S, calculated-S and mp; estimated-KOW, Karickhoff 1981) 
0.7–1.48 (selected, sediment/water, Schnoor & McAvoy 1981) 
2.18 (soil, Thomas 1982) 
2.29–3.18 (Wolf & Jackson 1982) 
3.23–4.13 (Means & Wijayaratne 1982) 
2.21 (soil average, Jury et al. 1983) 
1.63–3.29 (Wauchope & Myers 1985; 1991) 
2.46 (calculated-MCI ., Gerstl & Helling 1987) 
2.20 (soil, screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
1.92 (RP-HPLC-k. correlation, cyanopropyl column, Hodson & Williams 1988) 
2.21 (estimated as log KOM, Magee 1991) 
2.0, 2.18, 2.17–2.81, 2.26 (soil, literature values, Bottoni & Funari 1992) 
2.27, 2.41, 2.59, 2.16 (soils, no. 1, 2, 3, 4; Francioso et al. 1992) 
1.81 (soil, HPLC-screening method, mean value from different stationary and mobile phases, Kordel 
et al. 1993, 1995a,b) 
2.00 (soil, 20–25°C, selected, Wauchope et al. 1992; quoted, Dowd et al. 1993; Richards & Baker 1993; 
Wienhold & Gish 1994; Hornsby et al. 1996) 
1.95–2.71 (quoted values, Montgomery 1993) 
2,60 (soil with 9.23% organic carbon, Donati et al. 1994) 
2.04 (agricultural soil, Dousset et al. 1994) 
2.40 (estimated-chemical structure, Lohninger 1994) 
2.05 (soil with low organic carbon 0.18%, Roy & Krapac 1994) 
1.95–2.19 (Tomlin 1994) 
2.23 (calculated-KOW, Liu & Qian 1995) 
2.24 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.81; 2.36 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
1.00 (sediment/water, Chung et al. 1996) 
2.64 (Levy wetland soil, sorption equilibrium technique, 24°C, Mersie & Seybold 1996) 
2.14–2.21; 2.03–2.12 (Teufelsweiher pond sediment: field measurement; exptl laboratory data, Gao et al. 1997) 
2.19 (sediment from Teufelsweiher pond, batch equilibrium isotherm, Gao et al. 1998) 
1.93, 1.80–1.85, 1.81 (soil, liquid sewage sludge amended soil, sludge, pH 7.2, batch equilibrium-sorption 
isotherm, Celis et al. 1998) 
1.93, 1.83, 1.79 (soil + CaCl2 at pH 7.2, soil + liquid sewage sludge and dissolved organic matter at pH 7.5, 
soil + liquid sewage sludge at pH 7.2, batch equilibrium-sorption isotherm, Celis et al. 1998) 
2.566, 1.72, 1.75, 1.505, 2.40 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-
HPLC/UV, Gawlik et al. 1998, 1999) 
2.24, 2.45; 2.82., 1.81, 2.81, 1.98, 1.99 (quoted lit., calculated-KOW; HPLC-screening method with different LCcolumns, 
Szabo et al. 1999) 
2.154, 1.97, 1.77, 1.61, 2.496 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1999) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3475 
1.69 (sandy loam soil, column equilibrium method, 20°C, Xu et al. 1999) 
2.154, 1.969, 1.769, 1,610, 2.486 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
2.24; 2.27, 2.47 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
2.59, 2.16 (average values for sediments, soils, Delle Site 2001) 
2.31, 2.17, 2.56 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, and pH 3.2–8.2, average, Delle 
Site 2001) 
2.34, 2.24, 2.06, 2.59 (soils with organic carbon OC . 0.5% at: pH 3.2–5.0, pH 5.1–5.9, pH-6.0, pH 4.4–7.7, 
average, Delle Site 2001) 
1.77, 2.10 (Kishon river sediments, sorption isotherm, Chefetz et al. 2004) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: initial rate constant k = 6.4 . 10–4 h–1 and predicted rate constant k = 4.2 . 10–4 h–1 from soil with 
t. = 1650 h (Thomas 1982); 
t. = 97 d (Jury et al. 1983; quoted, Grover 1991); 
rate constants k(measured) = 1100 d–1 and k(est.) = 6000 d–1 (Glotfelty et al. 1989); 
Half-lives from soil surfaces: t. = 655 to > 1000 d in peat soil and t. = 143–939 d in sandy soil; half-lives 
from plant surfaces: t. = 25.6 d in bean, t. = 24.3 d in turnips and t. = 14.6 d in oats at 20 ± 1°C (Dorfler 
et al. 1991) 
Volatilization rate k = 1.4 . 10–4 d–1, 2.6 . 10–3 d–1, 4.4 . 10–3 d–1 at 15, 25, 35°C, respectively, for commercial 
formulation; k = 1.2 . 10–5 d–1, 4.8 . 10–4 d–1, 8.1 . 10–4 d–1 at 15, 25, 35°C, respectively, for starchencapsulated 
formulation after application (Weinhold et al. 1993) 
Photolysis: t. = (19 ± 9) h under summer sunlight of 9.1 h d–1 exposure and t. = 61 ± 29 h under spring sunlight 
of 3.7 h d–1 exposure in 10 ppm aqueous solutions: (Burkhard et al. 1975); 
t. = 4.9 h for 10 µg/mL to degrade in 1% acetone solution and t. = 25 h for 10 µg/mL to degrade in distilled 
water both under > 290 nm light (Burkhard & Guth 1976); 
nearsurface direct sunlight photolysis rate constant k = 9 . 10–6 d–1 with t. = 81,000 d (Schnoor & McAvoy 
1981; quoted, Schnoor 1992); 
t. = 2.25 h for 17–27% of 100 µg/mL to degrade in distilled water under 300 nm light (Tanaka et al. 1981; 
quoted, Cessna & Muir 1991); 
rate of photolytic degradation was slightly higher in water (t. = 3–12 d) than in sediments (t. = 1–4 wk) 
(Jones et al. 1982; quoted, Montgomery 1993); 
40 ppb contaminated water in presence of TiO2 and H2O2 degraded to 4 ppb after 15 h by solar irradiation 
with complete degradation after 75 h (Muszkat et al. 1992) 
t.(aq.) = 335 d at pH 7 under natural light; t. = 17.5 h at pH 7 using mercury lamp in aqueous solution; 
soil photolysis t.= 12 d under natural light, t. = 5 d using mercury lamp and t. = 45 d using xenon lamp 
(Solomon et al. 1996); 
Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 
with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 
kOH = 147.2 . 10–12 cm3 molecule–1 s–1 with n half-life of 2.6 h at 25°C for the vapor-phase reaction with 
hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
k(aq.) = 5.9 . 109 M–1 s–1 for the reaction (photo-Fenton with reference to acetophenone) with OH radical 
in aqueous solutions at pH 3.6 and 24 ± 1°C (Buxton et al. 1988; quoted, Faust & Hoigne 1990; Haag & 
Yao 1992) 
k(aq.) = (24 ± 4) M–1 s–1 for direct reaction with ozone at pH 4 and 26°C; k = (13 ± 1) M–1 s–1 at pH 4.2 
and 21°C and k = (24 ± 4) M–1 s–1 at pH 4.1 and 19°C in water, with a half-life of 1.5 h at pH 7 (Yao & 
Haag 1991) 
k(aq.) = (2.6 ± 0.4) . 109 M–1 s–1 for the reaction (photo-Fenton with reference to acetophenone) with 
hydroxyl radical in aqueous solutions at pH 3.6 and 24 ± 1°C (Haag & Yao 1992) 
k(aq.) = 0.82 . 109 M–1 s–1 for reaction with hydroxyl radical in irradiated field water (Mabury & Crosby 
1996) 
© 2006 by Taylor & Francis Group, LLC

3476 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Hydrolysis: t. ~ 70 d at pH 3.1 of citrate buffer; t. ~ 75 d at pH 11.1 of carbonate buffer and t. ~ 2 d at 3.9 of 
phosphate buffer + sterile lake sediment in aqueous solutions at 25°C (Armstrong et al. 1967; quoted, Muir 
1991) 
Over all rate constant k = 7.6 . 10–5 s–1 with t. = 2.5 h at 25°C and pH 7 (Mabey & Mill 1978) 
t. = 3.3, 14, 58, 240, 100, 12.5, and 1.5 d at pH 1, 2, 3, 4, 11, 12, and 13, respectively, in aqueous buffered 
solutions in soil at 25°C (Armstrong et al. 1967; quoted, Montgomery 1993); 
t. = 244 d without humic materials, t. = 1.37 d with the presence of 2% humic acid at pH 4 and 25°C 
(Li & Felbeck 1972; quoted, Howard 1991; Montgomery 1993) 
k = 3.9 . 10–5 M–1 s–1 and k = 7.6 . 10–5 M–1 s–1 with t. = 66 and 81 d in aqueous solutions of pH 3.1 and 
11.1, respectively (Wolfe et al. 1976; quoted, Muir 1991) 
k(aq.) = 19.9 d–1 at pH 2.9, k = 3.99 d–1 at pH 4.5, k = 1.74 d–1 at pH 6.0, and k = 0.934 d–1 at pH 7.0 with 
corresponding t. = 34.8, 174, 398, and 742 d all at 25°C in 0.5 mg mL–1 concn. of aqueous fulvic acid 
(Khan 1978; quoted, Howard 1991; Montgomery 1993) 
k(aq.) = 28.4 d–1 at pH 2.8, k = 12.6 d–1 at pH 4.5, k = 3.16 d–1 at pH 6.0, and k = 1.23 d–1 at pH 7.0 with 
corresponding t. = 24.4, 55.0, 219, and 563 d all at 25°C in 1.0 mg mL–1 concn. of aqueous fulvic acid 
(Khan 1978) 
k(aq.) = 151 d–1 at pH 2.4, k = 43.7 d–1 at pH 4.5, k = 13.2 d–1 at pH 6.0, and k = 7.93 d–1 at pH 7.0 with 
corresponding t. = 4.60, 15.9, 52.5 and 87.3 d all at 25°C in 5.0 mg mL–1 concn. of aqueous fulvic acid 
(Khan 1978) 
k(aq.) = 9.30 . 10–6 s–1 with t. = 86 d at 20°C in a buffer at pH 5 (Burkhard & Guth 1981; quoted, Muir 
1991) 
t. > 3 months (in sterile buffer solution at pH 7.2) and t. > 14 d (in sterile mineral salt solution at pH 7.2) 
for 20 µg mL–1 to hydrolyze at 23°C (Geller 1980; quoted, Muir 1991) 
k(alkaline) = 1 . 10–16 M–1 s–1 with t. = 742 d (Schnoor & McAvoy 1981; quoted, Schnoor 1992) 
t. = 1771 yr at pH 7 and 25°C (Montgomery 1993) 
Biodegradation: 
t. = 64 d in soil (Armstrong et al. 1967; Dao et al. 1979; quoted, Means et al. 1983) 
t. = 3.21 d in aqueous solution from river die-away tests (Furmidge & Osgerby 1967; quoted, Scow 1982) 
t.(aerobic) > 90 d for 10–20 µg mL–1 to degrade in soil-water suspension (Goswami & Green 1971; quoted, 
Muir 1991) 
k(aq.) = 0.019 d–1 by soil incubation die-away studies (Rao & Davidson 1980; quoted, Scow 1982); 
t.(aerobic) > 35 d for 0.1–1.0 µg mL–1 to slowly biodegrade in sediment/water at 25°C (Wolf & Jackson 
1982; quoted, Muir 1991) 
t. = 36 and 110 d in soil (Jones et al. 1982; quoted, Means et al. 1983) 
t. = 71 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Jury et al. 1983, 1984, 1987a; 
Jury & Ghodrati 1989; quoted, Grover 1991) 
k = 0.22 d–1 of aerobic degradation rate observed in incubations of river water samples (Lyman et al. 1990; 
quoted, Hemond & Fechner 1994) 
t. = 201 d with 12 mM methanol, for aqueous atrazine using first-order decay rate, t. = 289 d with 6 mM 
sodium acetate, t. = 164 d with 6 mM acetic acid and t. = 200 d with 2 mM glucose; however t. = 224 d 
in the sample reactors without any organic amendments (Chung et al. 1996) 
degradation t. = 39 h and 43 h by soil micro Rhodococcus. sp. NI86/21 with atrazine concn 4 µg/mL and 
8 µg/mL respectively (Van Zwieten & Kennedy 1995) 
first order removal of atrazine from sediment organic carbon: k = –0.0054 d–1 with t. = 128 d in surface 
sediment 0–6 cm depth, k = –0.0016 d–1 with t. = 433 d in sub-surface sediment 24–34 cm depth from 
Blue Heron Pond; k = –0.007 d–1 with t. = 99 d in surface sediment 0–6 cm depth, k = –0.0022 d–1 with 
t. = 630 d in sub-surface sediment 24–34 cm depth rom Oyster Rake Pond; k = –0.0142 d–1 with t. = 49 d 
in surface sediment 0–6 cm depth, k = –0.0009 d–1 with t. = 770 d in sub-surface sediment 24–34 cm 
depth from Trumpet Creeper East Pond, and k = –0.0149 d–1 with t. = 47 d in surface sediment 0–6 cm 
depth, k = –0.0000 d–1 with t. = 70 d in sub-surface sediment 24–34 cm depth from Trumpet Creeper 
North, Kiawah island (Smalling & Aelion 2004) 
50–60% degradation in 35–100 d by anaerobic mixed culture microorganisms with atrazine as sole carbon 
source (Ghosh & Philip 2004) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3477 
k2 = 0.0248, 1.26 h–1 (algae, daphnids, Ellgehausen et al. 1980) 
k2 = 27.2 d–1 (catfish, Ellgehausen et al. 1980) 
k1 = 2.4, 30, 19.0 h–1 (zebrafish: egg, yolk sac fry, juvenile; Gorge & Nagel 1990) 
k1 = 227.0 h–1; k2 = 2.354 h–1 (algae Scenedesmus acutus, Wang et al. 1996) 
k1 = 0.412 h–1; k2 = 0.073 h–1 (catfish Ictalurus melas, Wang et al. 1996) 
k1 = 2.027 h–1; k2 = 1.161 h–1 (water flea Daphnia magna, Wang et al. 1996) 
Half-Lives in the Environment: 
Air: t. = 2.6 h, based on estimated rate constant k = 147.2 . 10–12 cm3 molecule–1 s–1 at 25°C for the vaporphase 
reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard 1991). 
Surface water: estimated t. ~ 3.21 d in aqueous solution from river die-away tests (Furmidge & Osgerby 1967; 
quoted, Scow 1982); 
t. = 1–4 wk in estuarine systems (Jones et al. 1982; quoted, Meakins et al. 1994); 
under laboratory conditions in distilled water and river water was completely degraded after 21.3 and 7.3 h, 
respectively (Mansour et al. 1989; quoted, Montgomery 1993); 
t. = 3.2 d to 7–8 months in aquatic environments (Eisler 1985; quoted, Day 1991); 
measured rate constant k = (24 ± 4) M–1 s–1 at pH 4.0, k = (13 ± 1) M–1 s–1 at pH 4.2, for direct reaction with 
ozone in water at 26 and 21°C, respectively, with t. = 1.5 h at pH 7 (Yao & Haag 1991);. 
t. = 35.6–168 h in surface water system of a small stream in Iowa by water quality analyses (Kolpin & 
Kalkhoff 1993); 
t. = 235 d at 6°C, t. = 164 d at 22°C in darkness, t. = 59 d under sunlight conditions for river water at 
pH 17.3; t. = 130 d at 22°C in darkness for filtered river water at pH 7.3 and t. = 200 d at 22°C in 
darkness, t. = 169 d under sunlight conditions for seawater, pH 8.1 (Lartiges & Garrigues 1995) 
Groundwater: t. = 6–15 months for 0.72–10 µg mL–1 to biodegrade slowly at 25°C (Weidener 1974; quoted, 
Muir 1991) 
reported half-lives or persistence, t. = 60–150, 71, 74, and 130 d (Bottoni & Funari 1992) 
Sediment: t. = 145 d in a Wisconsin Lake sediment (Armstrong et al. 1967; quoted, Jones et al. 1982; Means 
et al. 1983) and t. ~ 30 d for Chesapeake Bay sediment (Ballantine et al. 1978; quoted, Jones et al. 1982); 
t. = 7–28 d for 0.1 µg mL–1 to rapid degrade in both aerobic and low oxygen systems in estuarine 
sediment/water at 12–35°C (Jones et al. 1982, quoted, Muir 1991); 
t.(aerobic) > 35 d for 0.1–1.0 µg mL–1 to slowly biodegrade in sediment/water at 25°C (Wolf & Jackson 
1982; quoted, Muir 1991) 
t. = 60–120 d in surface sediment, t. = 60–223 d in subsurface sediment 
biodegradation t. = 47–128 d in the surface and t. = 70–770 in subsurface sediment (Smalling & Aelion 
2004) 
Soil: half-lives in aqueous buffered solutions in soil at 25°C and pH 1, 2, 3, 4, 11, 12, and 13 were reported to 
be 3.3, 14, 58, 240, 100, 12.5, and 1.5 d, respectively (Armstrong et al. 1967; quoted, Montgomery 1993); 
t. = 3–5 yr in agricultural soils (Armstrong et al. 1967; quoted, Jones et al. 1982); 
estimated persistence of 10 months in soil (Kearney et al. 1969; quoted, Jury et al. 1987a); 
t. = 1.73, and 244 d at 25°C and pH 4 with and without fulvic acid (2%) (Li & Felbeck 1972; quoted, 
Montgomery 1993); 
persistence of 10 months in soil (Edwards 1973; quoted, Morrill et al. 1982); 
t. = 6.0 months at 15°C and t. = 2.0 months at 30°C in soils (Freed & Haque 1973); 
persistence of 12 months (Wauchope 1978); 
correlated t. = 37 d at pH 5.1–7.0, and t. = 28 d at pH 7.7–8.2 (Boddington Barn soil, Hance 1979), 
t. ~ 30 d at pH 4.6–5.3 and t. = 40 d at pH 6.3–8.0 (Triangle soil, Hance 1979); 
t. = 37 d in agricultural soils (Dao et al. 1979; quoted, Jones et al. 1982); 
estimated first-order t. = 36.5 d from biodegradation rate constant k = 0.019 d–1 by soil incubation die-away 
studies (Rao & Davidson 1980; quoted, Scow 1982); 
t. = 53 and 113 d at pH 6.5 at 22°C in a Hatzenbuhl soil at pH 4.8 and Neuhofen soil, respectively (Burkhard 
& Guth 1981; quoted, Montgomery 1993); 
t. = 1–6 months (Jones et al. 1982; quoted, Meakins et al. 1994); 
moderately persistent in soils with t. = 20–100 d (Willis & McDowell 1982); 
biodegradation t. = 71 d from screening model calculations (Jury et al. 1984; 1987a,b; Jury & Ghodrati 
1989); 
© 2006 by Taylor & Francis Group, LLC

3478 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
t. ~ 6–10 wk (Hartley & Kidd 1987; quoted, Montgomery 1993); 
field t. = 4 wk by using lysimeters (Bowman 1990); 
half-lives from soil surfaces: t. = 655 to > 1000 d in peat soil and t. = 143–939 d in sandy soil at 20 ± 1°C 
(Dorfler et al. 1991); 
degradation rate constant k = (1.20 ± 0.097) . 10–2 d–1 with t. = 57.8 d in control soil and k = (1.01 ± 0.034) . 
10–2 d–1 with t. = 68.6 d in pretreated soil once only in the laboratory (Walker & Welch 1991); 
t. ~ 21 d based on extractable residues in microcosm studies, compared to t. = 14 d in surface field soil 
(Winkelmann & Klaine 1991); 
selected field t. = 60 d (Wauchope et al. 1992; quoted, Dowd et al. 1993; Richards & Baker 1993; Hornsby 
et al. 1996); 
soil t. = 130 d (quoted, Pait et al. 1992); 
field t. = 35–50 d in soil and water but may be longer under cold or dry conditions; t. = 105 to > 200 d 
under groundwater conditions, depending on test system (Wood et al. 1991; quoted, Tomlin 1994); 
reported t. = 60–150 d, 71 d, 74 d and 130 d (Bottoni & Funari 1992); 
first-order k = –0.017 to –0.003 d–1 with corresponding t. = 41 d in the 0- to 30-cm soil to t. = 231 d in 
the 90 to 120-cm soil in Ames, Iowa (Kruger et al. 1993); 
dissipation t. = 71 d from soil surface (Gish et al. 1995); 
t. = 60 d (selected, Halfon et al. 1996). 
t. = 60 d (Gao et al. 1997) 
Biota: t. = 0.03 h in algae, t. = 1.52 d in catfish and t. = 9.5 h in daphnids (Ellgehausen et al. 1980); 
biochemical t. = 64 d from screening model calculations (Jury et al. 1987b); 
t. = 25.6 d in bean, t. = 24.3 d in turnips and t. = 14.6 d in oats at 20 ± 1°C from plant surfaces (Dorfler 
et al. 1991). 
TABLE 17.1.1.4.1 
Reported vapor pressures of atrazine at various temperatures and the coefficients for the vapor pressure 
equations 
log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) 
log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) 
log P = A – B/(C + T/K) (3) 
log P = A – B/(T/K) – C·log (T/K) (4) 
Friedrich & Stammbach 1964 Grayson & Fosbracey 1982 Rordorf 1989 Goodman 1997 
gas saturation-GC gas saturation-GC gas saturation-GC Knudsen effusion method 
t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 
20 4.0 . 10–5 51.0 0.0040 25 3.9 . 10–5 40 6.7 . 10–4 
extrapolated 55.5 0.0048 50 1.9 . 10–3 50 2.2 . 10–3 
measured range 50–130°C 63.0 0.0095 75 0.056 60 9.5 . 10–3 
Antoine eq. 66.0 0.0337 100 1.0 70 0.030 
eq. 1 P/mmHg 66.7 0.023 125 13.0 80 0.098 
A 13.766 76.5 0.0713 
B 5945 81.5 0.117 eq. 1 PS/Pa eq. 1 P/Pa 
20 3.7 . 10–5 A 17.583 A 16.08 
B 6558.5 B 6040 
eq. 1a P/Pa for temp range 40–125°C 
A 36.80 
B 13.778 liquid 
eq. 1 PL/Pa 
A 13.2701 
B 4626.79 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3479 
FIGURE 17.1.1.4.1 Logarithm of vapor pressure versus reciprocal temperature for atrazine. 
Atrazine: vapor pressure vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Grayson & Fosbracey 1982 
Rordorf 1989 
Goodman 1997 
Friedrich & Stammbach 1964 (50 to 130 °C) 
Friedrich & Stammbach 1964 (extrapolated) 
m.p. = 173 °C 
© 2006 by Taylor & Francis Group, LLC

3480 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.5 Barban 
Common Name: Barban 
Synonym: Barbamate, Barbane, Carbine, Carbyne, CBN, Chlorinat 
Chemical Name: carbamic acid, (3-chlorophenyl)-, 4-chloro-2-butynyl ester; 4-chlorobut-2-ynyl 3-chloro-carbanilate; 
4-chloro-2-butynyl 3-chlorophenylcarbamate 
Uses: herbicide for post-emergence control of wild oats in wheat, barley, broad beans, field beans, soybeans, peas, sugar 
beet, flax, lucerne, lentils, mustard, oilseed rape, sunflowers, etc. 
CAS Registry No: 101-27-9 
Molecular Formula: C11H9Cl2NO2 
Molecular Weight: 258.101 
Melting Point (°C): 
75 (Khan 1980; Herbicide Handbook 1989; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.403 (25°C, Hartley & Kidd 1987) 
Molar Volume (cm3/mol): 
262.8 (calculated-Le Bas method at normal boiling point, this work) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
109.1 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
26.8 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.323 (mp at 75°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
15.0 (Swezey & Nex 1961) 
11.0 (20°C, Weber 1972; Worthing & Walker 1987) 
11.0 (Martin & Worthing 1977; Ashton & Crafts 1981; Hartley & Kidd 1987; Worthing & Walker 1987; 
Herbicide Handbook 1989, Budavari 1989; Milne 1995) 
11.0 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
1.33 . 10–3 (20°C, Weber 1972; Worthing & Walker 1987) 
5.00 . 10–5 (Hartley & Kidd 1987) 
1.60 . 10–4 (Worthing & Walker 1987) 
5.05 . 10–5 (Herbicide Handbook 1989) 
3.50 . 10–5, 1.0 . 10–3, 0.019, 0.240, 2.20 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 14.669 – 5703.8/(T/K); measured range 72–150°C (gas saturation-GC, Rordorf 1989) 
5.07 . 10–5 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.00117 (20°C, calculated-P/C, Muir 1991) 
1.17 (calculated-P/C as per Worthing & Walker 1987, Majewski & Capel 1995) 
0.00117 (calculated-P/C, this work) 
HN
O 
O 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3481 
Octanol/Water Partition Coefficient, log KOW: 
2.68 (selected, Gerstl & Helling 1987) 
Bioconcentration Factor, log BCF: 
2.20 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
3.06 (soil, calculated-S, Kenaga 1980) 
2.66 (calculated-MCI ., Gerstl & Helling 1987) 
3.00 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 6690 d from 1 m depth of water at 20°C (Muir 1991). 
Photolysis: t. = 2.25 h for 22–99% of 10 µg/ml to degrade in distilled water under 300 nm light (Tanaka et al. 
1981; quoted, Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: estimated persistence of 2 months (Kearney et al. 1969; quoted, Jury et al. 1987); 
persistence of 2 weeks in soil (Edwards 1973; quoted, Morrill et al. 1982); 
persistence of about 3 weeks in soil (Herbicide Handbook 1989); 
selected field t. = 5 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

3482 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.6 Benefin 
Common Name: Benefin 
Synonym: Balan, Bonalan, benfluralin 
Chemical Name: N-butyl-N-ethyl-.,.,.-trifluoro-2,6-dinitro-p-toluidine 
Uses: as pre-emergence herbicide for the control of annual grasses and broadleaf weeds in chicory, cucumbers, endive, 
groundnuts, lettuce, lucerne, and other foliage crops. 
CAS Registry No: 1861-40-1 
Molecular Formula: C13H16F3N3O4 
Molecular Weight: 335.279 
Melting Point (°C): 
66 (Lide 2003) 
Boiling Point (°C): 
121–122 (0.5 mmHg), 148–149 at 7 mmHg (Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.28 (tech., Tomlin 1994) 
Molar Volume (cm3/mol): 
295.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
38.70 (DSC method, Plato & Glasgow 1969) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.396 (mp at 66°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
< 1.0 (Ashton & Crafts 1973) 
0.50 (Weber et al. 1980) 
1.0 (20°C, selected, Suntio et al. 1988) 
0.10 (Herbicide Handbook 1983; Tomlin 1994) 
0.10 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.00519 (30°C, Ashton & Crafts 1973) 
0.0104 (Herbicide Handbook 1983) 
0.0040 (20°C, estimated, Suntio et al. 1988) 
0.0087 (Tomlin 1994) 
0.0088 (20–25°C, selected, Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.34 (20°C, calculated-P/C, Suntio et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
5.34 (selected, Magee 1991) 
5.29 (20°C, pH 7, Tomlin 1994) 
5.29 (pH 7, selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
3.36 (calculated-S per Kenaga 1980, this work) 
N 
NO2 O2N
F F 
F 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3483 
Sorption Partition Coefficient, log KOC: 
4.03 (quoted exptl., Sabljic 1987) 
4.03, 3.75 (quoted, estimated; Magee 1991) 
3.95 (soil, Hornsby et al. 1996) 
2.96 (2.59–3.33) (soil: organic carbon OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: atmospheric and aqueous photolysis half-lives were estimated to be 288–864 h (Howard et al. 1991). 
Oxidation: photooxidation t. ~ 0.782–7.82 h based on reaction with OH radicals in air (Howard et al. 1991). 
Hydrolysis: no hydrolyzable group (Howard et al. 1991). 
Biodegradation: aerobic t. ~ 504–2880 h in soil, and anaerobic soil t. = 144–480 h (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.782–7.82 h based on estimated reaction with OH radicals in the gas-phase (Howard et al. 1991). 
Surface water: t. = 288–864 h based on observed photolysis by sunlight (Howard et al. 1991). 
Groundwater: t. = 144–5760 h based on unacclimated aqueous aerobic and anaerobic biodegradation half-lives 
(Howard et al. 1991). 
Sediment: 
Soil: t. = 504–2880 h based on aerobic solid die-away test data (Howard et al. 1991); 
field t. = 40 d (Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3484 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.7 Bifenox 
Common Name: Bifenox 
Synonym: MC-4379, Modown 
Chemical Name: benzoic acid, 5-(2,4-dichlorophenoxy)-2-nitro-, methyl ester; methyl-5-(2,4-dichlorophenoxy)-2- 
nitrobenzoate 
Uses: selective pre-emergence and post-emergence herbicide to effectively control a wide variety of broadleaf weeds 
in corn, grain, sorghum, maize, rice, and soybeans. 
CAS Registry No: 42576-02-3 
Molecular Formula: C14H9Cl2NO5 
Molecular Weight: 342.131 
Melting Point (°C): 
85 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.155 (Ashton & Crafts 1981; Herbicide Handbook 1989; Montgomery 1993) 
Molar Volume (cm3/mol): 
305.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
90.5 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
26.4 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
74.0 (Rordorf 1989) 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.258 (mp at 85°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.35 (20°C, Weber 1972; Worthing & Walker 1987) 
0.35 (Martin & Worthing 1977; Herbicide Handbook 1978) 
0.35 (Ashton & Crafts 1981; Herbicide Handbook 1989; Budavari 1989) 
0.35 (30°C, Worthing & Walker 1987) 
0.35 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
0.398 (20–25°C, selected, Wauchope et al. 1992; Lohninger 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00032 (20°C, Weber 1972; Worthing & Walker 1987) 
0.00032 (30°C, Ashton & Crafts 1981; Worthing & Hance 1991; Tomlin 1994) 
0.00032 (30°C, Hartley & KIdd 1987; Budavari 1989; Montgomery 1993) 
5.40 . 10–6, 2.0 . 10–4, 4.40 . 10–3, 0.064, 0.67 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 14.996 – 6040.4/(T/K); measured range 36.9–85.5°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.815 – 5582.5/(T/K); measured range 90.5–175°C (liquid, gas saturation-GC, Rordorf 1989) 
0.00032 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.321 (20°C, calculated-P/C, Muir 1991) 
0.011 (calculated-P/C, Montgomery 1993) 
0.313 (calculated-P/C, this work) 
O Cl 
Cl 
NO2 
O 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3485 
Octanol/Water Partition Coefficient, log KOW: 
5.63 (selected, Dao et al. 1983) 
4.50 (Worthing & Hance 1991) 
4.48 (Montgomery 1993; Tomlin 1994) 
4.48 (selected, Hansch et al. 1995) 
5.24 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
2.30 (static water, Metcalf & Sanborn 1975; quoted, Kenaga & Goring 1980; Isensee 1991) 
3.05 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
Sorption Partition Coefficient, log KOC: 
3.89 (soil, calculated per Kenaga & Goring, Kenaga 1980) 
4.0 (soil, 20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
2.24–4.39 (Montgomery 1993) 
4.0 (estimated-chemical structure, Lohninger 1994) 
2.70–4.36 (Tomlin 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 29.8 d from 1 m depth of water at 30°C (Muir 1991). 
Photolysis: with < 5% degradation by UV light of 290–400 nm in 48 h (Worthing & Hance 1991). 
Oxidation: 
Hydrolysis: stable in aqueous solution at pH 5.0–7.3 but rapidly hydrolyzed at pH 9.0 both at 22°C (Worthing 
& Hance 1991). 
Biodegradation: t. = 2–5 d for 10 µg/mL to biodegrade in flooded soil at 30°C (Ohyama & Kuwatsuka 1978; 
quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: t. = 2–5 d for 10 µg/ml to biodegrade in flooded soil at 30°C (Ohyama & Kuwatsuka 1978; quoted, Muir 
1991); 
average t. = 7–14 d in soils (Hartley & Kidd 1987; Herbicide Handbook 1989; quoted, Montgomery 1993); 
selected field t. = 7.0 d (Wauchope et al. 1992; Hornsby et al. 1996); 
average t. = 7–14 d (Herbicide Handbook 1989); 
t. ~ 5–7 d in soil (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

3486 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.8 Bromacil 
Common Name: Bromacil 
Synonym: Borea, Bromax, Bromazil, Cynogan, Hyvar, Hyvarex, Krovar I or II, Nalkil, Uragan, Urox B, Uron HX, 
Weed Blast 
Chemical Name: 5-bromo-3-sec-butyl-6-methyluracil; 5-bromo-6-methyl-3-(1-methylpropyl)-2,4-(1H,3H)pyrimidinedione 
Uses: Herbicide applied to soil to control annual and perennial grasses, broadleaf weeds, and general vegetation on 
uncropped land; also used for selective weed control in apple, asparagus, cane fruit, hops, and citrus crops. 
CAS Registry No: 314-40-9 
Molecular Formula: C9H13BrN2O2 
Molecular Weight: 261.115 
Melting Point (°C): 
158 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.55 (25°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & Hance 1991; Montgomery 
1993) 
1.59 (23°C, Tomlin 1994) 
1.55 (Milne 1995) 
Molar Volume (cm3/mol): 
193.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
9.10 (Wauchope et al. 1992; Hornsby et al. 1996) 
< 7.0 (Montgomery 1993) 
9.27 (Tomlin 1994) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0496 (mp at 158°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
815 (Bailey & White 1965; Khan 1980; Hartley & Kidd 1987; Montgomery 1993; Milne 1995) 
815 (Melnikov 1971; Spencer 1973; Herbicide Handbook 1978; Herbicide Handbook 1989) 
815 (20°C, Weber 1972; Worthing & Walker 1987, Worthing & Hance 1991) 
820 (Beste & Humburg 1983; Jury et al. 1983) 
1064 (shake flask-GC or LSC, Gerstl & Mingelgrin 1984; Gerstl & Helling 1987) 
626, 775, 1043 (4, 25, 40°C, shake flask-LSS, Madhun et al. 1986) 
700 (20–25°C, selected, Wauchope et al. 1992; Lohninger 1994; Hornsby et al. 1996) 
700, 807, 1287 (at pH 7, 5, 9, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
5 . 10–5 (20°C, Weber 1972; Worthing & Walker 1987) 
3 . 10–5 (estimated, USEPA 1975) 
0.107 (100°C, Khan 1980) 
2.9 . 10–5 (Jury et al. 1983) 
0.00033 (Hartley & Kidd 1987; Worthing & Hance 1991) 
4 . 10–5 (20–25°C, selected, Wauchope et al. 1992) 
3.3 . 10–5 (Montgomery 1993) 
NH 
N 
O 
O 
Br 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3487 
Henry’s Law Constant (Pa·m3/mol at 25°C at 25°C or as indicated): 
9.17 . 10–6 (Beste & Humburg 1983; Jury et al. 1983) 
9.17 . 10–5 (calculated-P/C, Jury et al. 1984, 1987a; Jury & Ghodrati 1989) 
0.0019 (20°C, selected, Suntio et al. 1988) 
1.06 . 10–5 (20°C, calculated-P/C, Muir 1991) 
1.06 . 10–5 (calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
2.02 (Rao & Davidson 1980) 
1.33 (selected, Dao et al. 1983) 
1.84 (shake flask-GC or LSC, Gerstl & Mingelgrin 1984) 
1.84, 1.87, 1.90 (4, 25, 40°C, shake flask-LSS, Madhun et al. 1986) 
1.85 (selected, Gerstl & Helling 1987) 
2.11 selected, Magee 1991; Devillers et al. 1996) 
1.84–2.04 (Montgomery 1993) 
2.11 (selected, Sangster 1993) 
1.87, 1.88, 1.63 (at pH 7, 5, 9, Tomlin 1994) 
2.11 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
0.505 (measured, Kenaga 1980) 
2.27 (calculated-S, Kenaga 1980) 
0.477 (calculated-KOC, Kenaga 1980) 
0.51 (Pimephales promelas, Call et al. 1987) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
1.86 (soil, Hamaker & Thompson 1972) 
3.13 (soil, calculated as per Kenaga & Goring 1980, Kenaga 1980) 
1.86 (Rao & Davidson 1980) 
2.33, 1.34, 1.63 (estimated-S, calculated-S and mp, calculated-KOW, Karickhoff 1981) 
1.61 (sediments average-Freundlich adsorption, Corwin & Farmer 1984) 
1.41–2.46 (California lake sediments, Corwin & Farmer 1984) 
1.98, 1.88 (4, 25°C, Semiahmoo soil, in µmol/kg OC, batch equilibrium method-LSS, Madhun et al. 1986) 
2.11, 1.88 (4, 25°C, Adkins soil, in µmol/kg OC, Madhun et al. 1986) 
1.90, 1.66, 1.75; 1.86, 1.89, 1.34 (estimated-KOW; S, Madhum et al. 1986) 
1.53, 2.73 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
1.86 (soil, screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989; Carsel 1989) 
2.56 (calculated-MCI ., Bahnick & Doucette 1988) 
1.86, 1.80 (reported, estimated as log KOM, Magee 1991) 
1.53, 1.86, 3.13 (soil, quoted values, Bottoni & Funari 1992) 
1.51 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.51 (Montgomery 1993) 
2.09 (estimated-chemical structure, Lohninger 1994) 
1.60 (quoted or calculated-QSAR MCI 1., Sabljic et al. 1995) 
1.43, 1.72 (average values for sediments, soils, Delle Site 2001) 
1.48, 1.46, 1.53 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, and pH 6.3–7.9, average, Delle 
Site 2001) 
1.80, 1.72 (soils: organic carbon OC . 0.1%, OC . 0.5%, and pH . 7.3 undissociated, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. ~ 10,000 d from 1 m depth of water at 20°C (Muir 1991). 
Photolysis: 115 ppb contaminated water in the presence of TiO2 and H2O2 photodegraded to 6 ppb by 15 h solar 
irradiation with complete degradation after 75 h (Muszkat et al. 1992). 
Oxidation: 
Hydrolysis: 
© 2006 by Taylor & Francis Group, LLC

3488 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Biodegradation: t. = 350 d for 100 d leaching and screening test in 0–10 cm depth of soil (Rao & Davidson 
1980; quoted, Jury et al. 1983, 1984, 1987a). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: reported t. = 150–158 and 350 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 7.0 months at 15°C and t. = 4.5 months at 30°C in soils (Freed & Haque 1973); 
rate constant k = 0.0038 d–1 with biodegradation t. = 350 d under field conditions (Rao & Davidson 1980; 
quoted, Jury et al. 1984); 
t. = 350 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989); 
t. > 100 d (Willis & McDowell 1982) 
t. ~ 5429–46200 d in loamy sand and peat at 25–35°C as follows (Madhum & Freed 1987): 
t. = 46200, 12391, and 5856 d at 25, 30, and 35°C, respectively, at herbicide concn at 5 µg/kg, while 
t. = 18851, 9925, and 7588 d at 25, 30, and 35°C, respectively, at herbicide concn at 100 µg/kg in an 
Adkins loamy sand; however, the half-lives in peat. t. = 5429, 6789, and 8044 d at 25, 30, and 35°C, 
respectively, at herbicide concn at 5 µg/kg while t. = 6293, 5986, and 6784 d at 25, 30, and 35°C, 
respectively, at herbicide concn at 100 µg/kg in a Semiahoo mucky peat (Madhun & Freed 1987) 
selected field t. = 60 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 150–180d and 350 d (Bottoni & Funari 1992). 
Biota: biochemical t. = 350 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3489 
17.1.1.9 Bromoxynil 
Common Name: Bromoxynil 
Synonym: Brittox, Brominal, Brominex, Brominil, Broxynil, Buctril, Chipco crab-kleen, ENT 20852, Nu-lawn weeder, 
Oxytril M, Partner 
Chemical Name: 3,5-dibromo-4-hydroxybenzonitrile; 4-cyano-2,6-dibromophenol 
Uses: herbicide for post-emergence control of annual broadleaf weeds and it is often used in combination with other 
herbicides to extend the spectrum of control. 
CAS Registry No: 1689-84-5 
Molecular Formula: C7H3Br2NO 
Molecular Weight: 276.913 
Melting Point (°C): 
190 (Khan 1980; Herbicide Handbook 1989; Montgomery 1993; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
176.7 (calculated-Le Bas method at normal boiling point, this work) 
Dissociation Constant pKa: 
4.20 (radiometer/pH meter, Cessna & Grover 1978) 
4.06 (Herbicide Handbook 1989; Montgomery 1993) 
4.06 (Budavari 1989; Worthing & Hance 1991) 
3.86 (Tomlin 1994) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
31.80 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0241 (mp at 190°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
130 (20–25°C, Spencer 1973) 
131 (Kenaga 1980) 
< 200 (Khan 1980) 
130 (20–25°C, Ashton & Crafts 1981) 
130 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994; Milne 1995) 
130 (Worthing & Walker 1987, Worthing & Hance 1991) 
130 (20–25°C, Herbicide Handbook 1989) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 0.0010 (20°C, Hartley & Kidd 1987; Tomlin 1994) 
0.00064 (Herbicide Handbook 1989) 
0.00064 (Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.14180 (20–25°C, calculated-P/C, Montgomery 1993) 
1.36 . 10–3 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.60 (selected, Dao et al. 1983) 
OH 
Br Br 
N 
© 2006 by Taylor & Francis Group, LLC

3490 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
< 2.00 (Herbicide Handbook 1989) 
< 2.00 (Montgomery 1993) 
Bioconcentration Factor, log BCF: 
1.60 (calculated, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.48 (soil, quoted from Kenaga 1980, Bottoni & Funari 1992) 
2.48 (calculated, Montgomery 1993) 
2.86, 3.06 (soil, quoted exptl.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k or Half-Lives, t.: 
Volatilization: 
Photolysis: rate constant of degradation in water, k = 1.04 . 10–3 s–1 at pH 8.3 and k = 1.08 . 10–3 s–1 at pH 11.6 
(Kochany 1992). 
Oxidation: 
Hydrolysis: 
Biodegradation: t. . 24 h for 0.03 µg/mL to biodegrade in runoff water at 20–25°C (Brown et al. 1984; quoted, 
Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. . 24 h for 0.03 µg mL–1 to biodegrade in runoff water at 20–25°C (Brown et al. 1984; quoted, 
Muir 1991). 
Ground water: reported t. = 10 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. ~ 10 d in soil (Hartley & Kidd 1987; Worthing & Hance 1991; quoted, Bottoni & Funari 1992; 
Montgomery 1993; Tomlin 1994);. 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3491 
17.1.1.10 sec-Bumeton 
Common Name: sec-Bumeton 
Synonym: etazine, GS14254, secbumeton 
Chemical Name: N-ethyl-6-methoxy-N.-(1-methylpropyl)-1,3,5-triazine-2,4-diamine 
CAS Registry No: 26259-45-0 
Uses: herbicide 
Molecular Formula: C10H19N5O 
Molecular Weight: 225.291 
Melting Point (°C): 
87 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.105 (Hartley & Kidd 1987; Worthing & Walker 1987) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
4.4 (Worthing 1987) 
4.4, 4.36 (Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.246 (mp at 87°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
620 (quoted, Kenaga & Goring 1980) 
620 (Ashton & Crafts 1981) 
600 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987) 
600 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
9.7 . 10–4 (20°C, Ashton & Crafts 1981; Worthing & Walker 1987) 
9.71 . 10–4 (20°C, Hartley & Kidd 1987) 
9.7 . 10–4 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
3.20 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.20 (fish, Kenaga 1980b) 
Sorption Partition Coefficient, log KOC: 
2.54 (soil, calculated, Kenaga & Goring 1980) 
2.11 (soil, calculated, Kenaga 1980b) 
2.18 (soil, pH 7, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
2.78; 2.29 (soil: quoted, calculated-MCI ., Meylan et al. 1992) 
2.78 (soil, calculated-MCI ., Sabljic et al. 1995) 
N 
N 
N 
NH 
O 
HN 
© 2006 by Taylor & Francis Group, LLC

3492 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.78; 2.78, 2.55 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, 
Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: on hydrolysis at 20°C, t. ~ 30 d at pH 1, t. = 75 d at pH 13 (Worthing & Walker 1987). 
Half-Lives in the Environment: 
Air: 
Surface water: on hydrolysis at 20°C, t. ~ 30 d at pH 1, t. = 75 d at pH 13 (Worthing & Walker 1987). 
Ground water: 
Sediment: 
Soil: field t. ~ 60 d (estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3493 
17.1.1.11 Butachlor 
Common Name: Butachlor 
Synonym: Butanex, Butanox, CP 53619, Lambast, Machete, Pillarsete 
Chemical Name: N-butoxymethyl-2-chloro-2.6.-diethylacetanilide; N-(butoxymethyl)-2-chloro-N-(2,6-diethylphenyl)- 
acetamide 
Uses: herbicide for pre-emergence control of most annual grasses, some broadleaf weeds, and many aquatic weeds in 
both seeded and transplanted rice. 
CAS Registry No: 23184-66-9 
Molecular Formula: C17H26ClNO2 
Molecular Weight: 311.847 
Melting Point (°C): 
< –5.0 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995; Lide 2003) 
Boiling Point (°C): 
156 (at 0.5 mmHg, Ashton & Crafts 1981; Herbicide Handbook 1989; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
1.07 (25°C, Ashton & Crafts 1981; Hartley & Kidd 1987; Herbicide Handbook 1989; Tomlin 1994; 
Milne 1995) 
Molar Volume (cm3/mol): 
387.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
23 (20°C, Weber 1972; Worthing 1987) 
20 (Martin & Worthing 1977) 
23 (24°C, Ashton & Crafts 1981; Herbicide Handbook 1989) 
20 (20°C, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
23 (24°C, Worthing & Walker 1987, Worthing & Hance 1991) 
23 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0007 (20°C, Weber 1972; Worthing & Walker 1987) 
0.0006 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
0.0006 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
0.0006 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.00817 (20°C, calculated-P/C, Muir 1991) 
0.00814 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.50 (quoted and recommended, Hansch et al. 1995; quoted, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
2.06 (calculated-S, Kenaga 1980) 
1.03, 0.756 (18, 9 µg/L concn in water; carp, 3–5 d exposure, Wang et al. 1992) 
N 
O 
Cl 
O 
© 2006 by Taylor & Francis Group, LLC

3494 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.38, 0.845 (10, 1 µg/L concn in water; tilapia, 3–5 d exposure, Wang et al. 1992) 
0.447, 0.845 (10, 1 µg/L concn in water; loach, 3–5 d exposure, Wang et al. 1992) 
1.76, 2.02 (2.5, 1.25 µg/L concn in water; grass carp, 3–5 d exposure, Wang et al. 1992) 
1.71, 1.90 (5, 2.5 µg/L concn in water; eel, 3–5 d exposure, Wang et al. 1992) 
1.99, 2.34 (2.4, 0.4 µg/L concn in water; black silver carp, 3–5 d exposure, Wang et al. 1992) 
0.041, 0.778 (100, 10 µg/L concn in water; freshwater clam, 3–5 d exposure, Wang et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.92 (calculated-solubility, Kenaga 1980) 
2.85 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
2.86 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. ~ 1049 d from 1 m depth of water at 20°C (Muir 1991). 
Photolysis: t. = 0.8–5.4 h in distilled water (Chen et al. 1982; quoted, Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: t. > 2.5 months for 2 µg/mL to hydrolyze in phosphate buffer at pH 6 and borate buffer at pH 9 
both at 25°C (Chen & Chen 1979; quoted, Muir 1991). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: persists for 6–10 wk in soil (Hartley & Kidd 1987; Tomlin 1994); 
t. = 4 to 8 d depending upon soil type (Herbicide Handbook 1989); 
persists in soil 42–70 d (Worthing & Hance 1991); 
selected field t. = 12 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3495 
17.1.1.12 Butralin 
Common Name: Butralin 
Synonym: Amex, Butalin, Rutralin, Sector, Tamex 
Chemical Name: N-sec-butyl-4-tert-butyl-2,6-dinitroaniline; 4-(1,1-dimethylethyl)-N-(1-methylpropyl)-2,6-dinitrobenzenamine 
Uses: herbicide for pre-emergence control of annual broadleaf weeds and grasses in cotton, beans, barley, rice, soybeans, 
alliums, vines, ornamentals and orchards of fruit and nut trees; also to control suckers on tobacco. 
CAS Registry No: 33629-47-9e 
Molecular Formula: C14H21N3O4 
Molecular Weight: 295.335 
Melting Point (°C): 
60 (Lide 2003) 
Boiling Point (°C): 
134–136 (at 0.5 mmHg, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
313.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.454 (mp at 60°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1.0 (Herbicide Handbook 1978) 
1.0 (Khan 1980) 
10 (24°C, Ashton & Crafts 1981) 
1.0 (24°C, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
1.0 (24–26°C, Worthing & Walker 1987, Worthing & Hance 1991) 
1.0 (Budavari 1989) 
Vapor Pressure (Pa at 25°C): 
0.002 (Ashton & Crafts 1981) 
0.0017 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
0.0017 (Budavari 1989) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.502 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.54 (selected, Dao et al. 1983) 
5.16 (quoted LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
2.79 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
2.80 (calculated-KOC, Kenaga 1980) 
HN 
NO2 O2N 
© 2006 by Taylor & Francis Group, LLC

3496 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Sorption Partition Coefficient, log KOC: 
3.64 (calculated, Kenaga & Goring 1980; quoted, Kenaga 1980) 
3.91 (soil, Kenaga & Goring 1980; quoted, Sabljic 1987; Bahnick & Doucette 1988) 
3.75 (calculated-MCI ., Bahnick & Doucette 1988) 
3.98 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.98; 3.38 (soil, quoted exptl.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 8 h for 25% of 2000 µg/mL to degrade in methanol under sunlight (Plimmer & Klingebiel 1974; 
quoted, Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: 
Biodegradation: t. = 24 d for 0.5 µg/mL to biodegrade in soil at 20–42°C (Savage 1978; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: t. = 24 d for 0.5 µg/mL to biodegrade in soil at 20–42°C (Savage 1978; quoted, Muir 1991). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3497 
17.1.1.13 Butylate 
Common Name: Butylate 
Synonym: Butilate, diisocarb, Genate, R 1910, Sutan 
Chemical Name: S-ethyldiisobutylthiocarbamate; S-ethyl-bis(2-methylpropylcarbamothioate 
Uses: herbicide to control annual grass weeds in maize, by pre-plant soil incorporation; also to control some broadleaf 
weeds. 
CAS Registry No: 2008-41-5 
Molecular Formula: C11H23NOS 
Molecular Weight: 217.372 
Melting Point (°C): liquid 
Boiling Point (°C): 
137.5–138 (at 21 mmHg, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
71.0 (at 10 mmHg, Herbicide Handbook 1989) 
Density (g/cm3 at 20°C): 
0.9402 (25°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & Hance 1991; Tomlin 1994) 
0.9417 (Milne 1995) 
Molar Volume (cm3/mol): 
280.9 (calculated-Le Bas method at normal boiling point, Suntio et al. 1988) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
45.0 (Kenaga 1980; Weber et al. 1980) 
45.0 (22°C, Ashton & Crafts 1981; Hartley & Kidd 1987; Herbicide Handbook 1989) 
46.0 (20°C, Worthing & Walker 1987, Worthing & Hance 1991) 
44.0 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
36.0 (20°C, Tomlin 1994) 
45.0 (22°C, Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
1.73 (Ashton & Crafts 1973) 
0.096 (20°C, Hartley & Graham-Bryce 1980) 
1.733 (Herbicide Handbook 1983, 1989) 
0.287 (20°C, GC-RT correlation, Kim 1985) 
0.10 (20°C, selected, Suntio et al. 1988) 
0.17 (Worthing & Hance 1991) 
1.733 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.73 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.560 (20°C, calculated-P/C, Suntio et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
4.15 (Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
4.15 (recommended, Hansch et al. 1995) 
4.17, 4.01, 3.45 (RP-HPLC-RT correlation, CLOGP, calculated-S, Finizio et al. 1997) 
S N 
O 
© 2006 by Taylor & Francis Group, LLC

3498 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioconcentration Factor, log BCF: 
1.86 (calculated-S, Kenaga 1980) 
3.06 (calculated-KOW as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
2.73 (soil, Kenaga 1980) 
2.73, 4.09 (quoted values, Bottoni & Funari 1992) 
2.60 (soil, 20–25°C, selected, Wauchope et al. 1992) 
2.60 (estimated-chemical structure, Lohninger 1994) 
2.11 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.39, 2.13 (soil, estimated-class specific model, estimated-general model using molecular descriptors, Gramatica 
et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: reported half-lives or persistence, t. = 11–21 d (Bottoni & Funari 1992) 
Sediment: 
Soil: measured dissipation rate k = 3.6 d–1 (Nash 1983; quoted, Nash 1988); 
estimated dissipation rate k = 23 and 0.61 d–1 (Nash 1988); 
t. = 1.5–3.0 wk in several soils under crop growing conditions (Herbicide Handbook 1989); 
selected field t. = 13 d (Wauchope et al. 1992; quoted, Richards & Baker 1993; Hornsby et al. 1996) 
reported t. = 11–21 d (Bottoni & Funari 1992); 
soil t. = 12 d (quoted, Pait et al. 1992); 
t. = 1.5–10 wk in soil and water (Tomlin 1994); 
soil t. = 13 d (selected, Halfon et al. 1996). 
Biota: disappear from the stems and leaves of corn plants 7 to 14 d after application (Herbicide Handbook 1989). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3499 
17.1.1.14 Chloramben 
Common Name: Chloramben 
Synonym: ACP-M-728, Amiben, Amoben, Chlorambed, Chlorambene, M-728, NCI-C00055, Ornamental weeder, 
Vegaben, Vegiben 
Chemical Name: 3-amino-2,5-dichlorobenzoic acid 
Uses: pre-emergence or pre-plant herbicide used in many vegetable and field crops to control annual broadleaf weeds 
and grasses. 
CAS Registry No: 133-90-4 
Molecular Formula: C7H5Cl2NO2 
Molecular Weight: 206.027 
Melting Point (C): 
200 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
190.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
3.40 (Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
38.91 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0192 (mp at 200°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
700 (Spencer 1973; Ashton & Crafts 1981) 
700 (Martin & Worthing 1977; Herbicide Handbook 1978; 1989) 
700 (Hartley & Kidd 1987; Budavari 1989; Montgomery 1993; Milne 1995) 
700 (Worthing & Walker 1987, Worthing & Hance 1991; Tomlin 1994; Majewski & Capel 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.933 (100°C, Segal & Sutherland 1967; Spencer 1976) 
0.93 (100°C, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
52.7 (Worthing & Walker 1987) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.274 (calculated-P/C as per Worthing 1987) 
Octanol/Water Partition Coefficient, log KOW: 
1.11 (quoted, Rao & Davidson 1980) 
1.46 (selected, Dao et al. 1983) 
–2.64 (selected, Gerstl & Helling 1987) 
1.11 (Magee 1991) 
1.11 (Montgomery 1993) 
1.11 (Log P database of Hansch & Leo 1987, Sangster 1993) 
1.90 (CLOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
1.18 (calculated-S, Kenaga 1980) 
O OH
Cl 
NH2 Cl 
© 2006 by Taylor & Francis Group, LLC

3500 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
–0.097 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
1.32 (soil, Harris & Warren 1964; Farmer 1976) 
2.08 (soil, calculated as per Kenaga & Goring 1980, Kenaga 1980) 
1.78 (calculated-MCI ., Gerstl & Helling 1987) 
1.32 (reported as log KOM, Magee 1991) 
2.28 (Montgomery 1993) 
1.56 (selected, Lohninger 1994) 
1.48 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 6 h for 206 µg/mL to degrade in distilled water under sunlight (Sheets 1963; quoted, Cessna & 
Muir 1991); 
t. < 2 d for 16 µg/mL to degrade in distilled water under sunlight (Hahn et al. 1969; quoted, Cessna & 
Muir 1991). 
Oxidation: 
Hydrolysis: 
Biodegradation: t. > 70 d for 50 µg/mL to degrade in incubated soil with nutrient medium of 3 g/L (Schliebe 
et al. 1965; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: estimated persistence of 3 months (Kearney et al. 1969; quoted, Jury et al. 1987); 
t. = 36, 38, 41, and 20 d with disappearance rates: k = 0.0193, 0.0182, 0.0169 and 0.0347 d–1 at pH 4.3, 
5.3, 6.5 and 7.5 (Hamaker 1972; quoted, Nash 1988); 
persistence in soil is of 6–8 wk (Hartley & Kidd 1987; Herbicide Handbook 1989; quoted, Montgomery 
1993). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3501 
17.1.1.15 Chlorazine 
Common Name: Chlorazine 
Synonym: 
Chemical Name: 6-chloro-N,N,N.,N.-tetraethyl-1,3,5-triazine-2,4-diamine 
Uses: herbicide 
CAS Registry No: 580-48-3 
Molecular Formula: C11H20ClN5 
Molecular Weight: 257.764 
Melting Point (°C): 
27 (Howard 1991; Lide 2003) 
Boiling Point (°C): 
154–156/4.0 mmHg (Howard 1991) 
Density (g/cm3): 
Acid Dissociation Constants, pKa: 
1.74 (pKa of conjugate acid, Howard 1991) 
Molar Volume (cm3/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C, (assuming .Sfus = 56 J/mol K), F: 0.956 (mp at 27°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
23.7, 22.2, 21.4 (26°C, shake flask-UV at pH 3.0, 7.0, 10.0, Ward & Weber 1968) 
Vapor Pressure (Pa at 25°C): 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
3.236 (estimated, Howard 1991) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
2.033 (estimated-S, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
2.90 (calculated-S, Howard 1991) 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Hydrolysis: may be more important at low pH (Howard 1991). 
Half-Lives in the Environment: 
Air: t. = 2.5 h for the vapor phase reaction with OH radicals (estimated, Howard 1991). 
N 
N 
N 
N 
N Cl 
© 2006 by Taylor & Francis Group, LLC

3502 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.16 Chlorbromuron 
Common Name: Chlorbromuron 
Synonym: Maloran 
Chemical Name: 3-(4-bromo-3-chlorophenyl)-1-methoxy-1-methylurea 
Uses: herbicide 
CAS Registry No: 13360-45-7 
Molecular Formula: C9H10BrClN2O2 
Molecular Weight: 293.544 
Melting Point (°C): 
96 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3): 1.69 (Tomlin 1994) 
Acid Dissociation Constants, pKa: 
Molar Volume (cm3/mol): 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C, (assuming .Sfus = 56 J/mol K) F: 0.201 (mp at 96°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
50 (Kenaga & Goring 1980, Kenaga 1980a; Ashton & Crafts 1981 
35 (20°C, Spencer 1982; Worthing 1983; Hartley & Kidd 1987; Tomlin 1994) 
35; 27.4 (quoted; calculated-MCI ., Patil 1994) 
35 (selected, 20–25°C, Augustjin-Beckers 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
5.33 . 10–5 (20°C, Ashton & Crafts 1981) 
5.3 . 10–5 (Spencer 1982; Worthing 1983; Hartley & Kidd 1987; Tomlin 1994) 
5.33 . 10–5 (selected, 20–25°C, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
3.06 (quoted, Rao & Davidson 1980) 
3.09 (shake flask, Brigg 1981) 
3.09; 3.26 (quoted lit.; calculated-MCI ., Patil 1994) 
3.09 (recommended, Hansch et al. 1995) 
2.86, 2.99, 3.45 (RP-HPLC-RT correlation, CLOGP, HPLC-k. correlation, Finizio et al. 1997) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.83, 1.40 (quoted, calculated, Kenaga 1980b) 
Sorption Partition Coefficient, log KOC: 
2.66 (soil, Kenaga & Goring 1980) 
2.66, 2.71 (quoted, calculated-KOW, Kenaga 1980b) 
3.00 (mean value of 5 soils, Rao & Davidson 1980) 
2.34, 2.94 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
2.19–3.61 (range of reported data, Augustijn-Beckers et al. 1994) 
HN
N 
O 
O 
Cl 
Br 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3503 
2.70 (estimated and recommended, soil, Augustjin-Beckers et al. 1994; Hornsby et al. 1996) 
2.70 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.70, 2.97 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, 
Gramatica et al. 2000) 
2.54, 2.55 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, and Half-Lives, t.: 
Hydrolysis: slowly hydrolyzed in neutral, slightly acidic, and slightly alkaline media (Hartley & Kidd 1987; 
Tomlin 1994). 
Half-Lives in the Environment: 
Soil: persists in soil > 56 d (Worthing 1983); 
t. = 45 d (Hartley & Kidd 1987); 
t. = 45–120 d (Tomlin 1994); 
t. = 21–45 d and 40 d (range of reported values and recommended field half-life, Augustjin-Beckers et al. 
1994; Hornsby et al. 1996) 
© 2006 by Taylor & Francis Group, LLC

3504 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.17 Chlorpropham 
Common Name: Chlorpropham 
Synonym: Beet-Kleen, Bud-nip, Chlor-IFC, Chloro-IPC, CIPC, Ebanil, ENT 18060, Fasco Wy-hoe, Furloe, Nexoval, 
Prevenol, Preweed, Sprout-nip, Taterpex 
Chemical Name: isopropyl N-(3-chlorophenyl) carbamate; isopropyl 3-chlorocarbanilate 
Uses: pre-emergent and post-emergent herbicide used to regulate plant growth and control weeds in carrot, onion, garlic, 
and other crops. 
CAS Registry No: 101-21-3 
Molecular Formula: C10H12ClNO2 
Molecular Weight: 213.661 
Melting Point (°C): 
41 (Lide 2003) 
Boiling Point (°C): 
149 (at 2 mmHg, Budavari 1989) 
Density (g/cm3 at 20°C): 
1.180 (30°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & Hance 1991; Montgomery 
1993; Tomlin 1994) 
1.5388 (Budavari 1989) 
Molar Volume (cm3/mol): 
232.4 (calculated-Le Bas method at normal boiling point) 
Enthalpy of Vaporization, .HV (kJ/mol): 
88.67 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
20.50 (DSC method, Plato & Glasgow 1969) 
16 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.697 (mp at 41°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.470 (Brust 1966) 
102.3 (shake flask-GC, Freed et al. 1967) 
108 (20°C, Gunther et al. 1968) 
89 (20°C, Weber 1972; Martin & Worthing 1977; Worthing & Walker 1987) 
2.0 (Spencer 1973; quoted, Shiu et al. 1990) 
88 (Martin & Worthing 1977; Herbicide Handbook 1978, 1989) 
0.70 (19°C, shake flask-GC, Bowman & Sans 1979) 
0.73 (20°C, shake flask-GC, Bowman & Sans 1983a,b) 
88 (Khan 1980; Ashton & Crafts 1981) 
80–102 (Weber et al. 1980) 
89 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
89 (selected, Gerstl & Helling 1987; Montgomery 1993; Lohninger 1994) 
2.0 (20°C, Worthing & Walker 1987) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00050 (20°C, Weber 1972; Worthing & Walker 1987) 

0.00133 (extrapolated, Spencer 1976) 
0.00133 (Khan 1980) 
0.00133 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
0.00100 (20°C, selected, Suntio et al. 1988) 
HN
O 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3505 
0.012, 0.30, 5.0, 56, 470 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 16.402 – 5467.7/(T/K); measured range 44.9–140°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.753 – 4631.9/(T/K); measured range 44.9–140°C (liquid, gas saturation-GC, Rordorf 1989) 
0.00130 (selected, Taylor & Spencer 1990) 
0.00107 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.00133 (estimated, Montgomery 1993) 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 
0.0021 (20°C, calculated-P/C, Suntio et al. 1988) 
0.0032 (20°C, calculated-P/C, Muir 1991) 
0.0021 (20–25°C, calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
3.06 (Rao & Davidson 1980; Karickhoff 1981) 
3.42 (selected, Dao et al. 1983; Gerstl & Helling 1987) 
3.51 (shake flask, Mitsutake et al. 1986) 
3.10 (selected, Suntio et al. 1988) 
3.51 (recommended, Sangster 1993) 
3.09 (calculated, Patil 1994) 
3.51 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.70 (calculated-S, Kenaga 1980) 
1.52 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.77 (soil, Hamaker & Thompson 1972) 
2.57 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.85, 2.80 (estimated-S, Karickhoff 1981) 
3.17, 3.08 (estimated-S and mp, Karickhoff 1981) 
2.67 (estimated-KOW, Karickhoff 1981) 
2.31 (calculated-MCI ., Gerstl & Helling 1987) 
2.32 (calculated-MCI . and fragment contribution method, Meylan et al. 1992) 
2.60 (soil, 20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
2.77, 2.91 (Montgomery 1993) 
2.60 (estimated-chemical structure, Lohninger 1994) 
2.53 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.40, 2.05 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, 
Gramatica et al. 2000) 
2.62 (2.37–2.87) (soil: organic carbon OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 2220 d from 1-m depth of water at 20°C (estimated, Muir 1991). 
Photolysis: t. = 130 h for 4 µg/mL to degrade in distilled water under > 280 nm light (Guzik 1978; quoted, 
Cessna & Muir 1991) 
direct photolysis t. = 121 d in distilled water pH 5–7 for a mid-summer day at latitude of 40° (Wolfe et al. 
1978) 
t.= 2.25 h for 21–76% of 80 µg/mL to degrade in distilled water under 300 nm light (Tanaka et al. 1981; 
quoted, Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: t. > 4 months for 4274 µg/mL to hydrolyze in phosphate buffer at pH 5–9 and 20°C (El-Dib & Aly 
1976; quoted, Muir 1991) 
k(alkaline) = 2.0 . 10–5 M–1 s–1 at 27°C, 1.9 . 10–4 M–1 s–1 at 50°C, 6.4 . 10–4 M–1 s–1 at 70°C; with 
t. > 1 . 104 d at pH 5, 7 and 9 (Wolfe et al. 1978) 
© 2006 by Taylor & Francis Group, LLC

3506 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
t. > 1 wk for 2.10 µg/mL to hydrolyze in natural waters at 67°C (Schnoor et al. 1982; quoted, Muir 1991). 
Biodegradation: 
t.(aerobic) = 10–75 d for 0.1–5.4 µg/mL to biodegrade in activated sludge (Schwartz 1967; quoted, Muir 
1991) 
k = (3.6–6.7) . 10–10 mL cell–1 d–1 of different river water samples (Paris et al. 1978; quoted, Scow 1982) 
t. = 120 d by fungi Aspergillus fumigatus and t. = 2.9 d by bacteria at 28°C (Wolfe et al. 1978) 
k = 2.5 . 10–4 L (mg M)–1 h–1 with t. = 120 d for 2–25 µg/mL fungus Aspergillus fumigatus; k = 0.1 L (mg 
M)–1 h–1 with t. = 2.9 d for bacteria Pseudomonas striata to biodegrade in stream water at pH 7 and 
28°C (Wolfe et al. 1978; quoted, Muir 1991) 
k = (1.6–1.8) . 10–8 mL cell–1 d–1 of different river water samples (Steen et al. 1979; quoted, Scow 1982) 
k = (2.6 ± 0.72) . 10–14 L cell–1 h–1 in North American waters (Paris et al. 1981; quoted, Battersby 1990) 
k = (1.3–4.9) . 10–4 L org–1 h–1 with t.(aerobic) = 190 h for 0.1–1.0 µg/mL to biodegrade in lake water at 
22°C (Schnoor et al. 1982; quoted, Muir 1991) 
k = (1.4–4.2) . 10–13 L org–1 h–1 for 75 µg/mL to biodegrade at 28°C in natural and sediment waters (Steen 
et al. 1982; quoted, Muir 1991); 
t.(aerobic) > 4 months for 6–7 µg/mL to biodegrade in river water at 25°C (Stepp et al. 1985; quoted, Muir 
1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: rate constant k = 3.6–6.7 . 10–10 mL cell–1 d–1 from measurements of different river water samples 
(Paris et al. 1978; quoted, Scow 1982); 
hydrolysis t. > 1 . 104 d based on neutral and alkaline hydrolysis assuming pseudo-first order kinetics; 
direct photolysis t. = 121 d assuming a quantum efficiency of 1 and for a mid-summer day at altitude 
40°, and biolysis t. = 120 d for 1mg/L of fungus and t. = 2.9 d for bacteria at 28°C (Wolfe et al. 1978); 
k = (1.6–1.8) . 10–8 mL cell–1 d–1 from measurements of different river water samples (Steen et al. 1979; 
quoted, Scow 1982); 
aerobic t. = 190 h for 0.1–1.0 µg/mL to biodegrade in lake water with biodegradation rate of 
(1.3–4.9) . 10–4 L org–1 h–1 at 22°C (Schnoor et al. 1982; quoted, Muir 1991); 
aerobic t. > 4 months for 6–7 µg mL–1 to biodegrade in river water at 25°C (Stepp et al. 1985; quoted, 
Muir 1991). 
Ground water: 
Sediment: aerobic half-life of 10–75 d for 0.1–5.4 µg/mL to biodegrade in activated sludge (Schwartz 1967; 
quoted, Muir 1991). 
Soil: t. = 65 and 30 d soil at 15 and 29°C, respectively (Hartley & Kidd 1987; Herbicide Handbook 1989; 
quoted, Montgomery 1993; Tomlin 1994); 
selected field t. = 30 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3507 
17.1.1.18 Chlorsulfuron 
Common Name: Chlorsulfuron 
Synonym: DPX 4189, Finesse, Glean, Telar 
Chemical Name: 2-chloro-N-(((4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino)-carbonyl)-benzenesulfonamide; 
1-(o-chlorophenyl)-3-(4-methoxy-6-methyl-s-triazin-2-yl)urea 
Uses: herbicide to control broadleaf weeds and some grass weeds. 
CAS Registry No: 64902-72-3 
Molecular Formula: C12H12ClN5O4S 
Molecular Weight: 357.773 
Melting Point (°C): 
176 (Lide 2003) 
Boiling Point (°C): 
192 (dec., Herbicide Handbook 1989; Montgomery 1993) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
3.6 (Herbicide Handbook 1989; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0330 (mp at 176°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
300 (at pH 5, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
27900 (at pH 7, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
28000 (at pH 7 with ionic strength 0.05, Herbicide Handbook 1989) 
7000 (20–25°C, at pH 7, selected, Wauchope et al. 1992; quoted, Majewski & Capel 1995) 
7000 (20–25°C, at pH 7, selected, Hornsby et al. 1996) 
60, 7000 (at pH 5, pH 7, Montgomery 1993) 
32000 (selected, Armbrust 2000) 
Vapor Pressure (Pa at 25°C or as indicated): 
6.10 . 10–4 (Hartley & Kidd 1987) 
6.13 . 10–4 (Herbicide Handbook 1989) 
3.00 . 10–9 (Worthing & Hance 1991; Tomlin 1994) 
1.98 . 10–2 (20–25°C, Wauchope et al. 1992) 
3.11 . 10–9 (Montgomery 1993) 
6.13 . 10–4 (20–25°C, selected, Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
3.60 . 10–11 (calculated-P/C, Montgomery 1993) 
1.98 . 10–5 (20–25°C, calculated-P/C as per Wauchope et al. 1992, Majewski & Capel 1995) 
6.79 . 10–6 (selected, Armbrust 2000) 
Octanol/Water Partition Coefficient, log KOW: 
–0.84, 0.17, 1.09 (pH 8.4, pH 7.1, pH 4.5, UV, Ribo 1988) 
–0.88, 1.05 (pH 8.4, pH 4.5, HPLC, Ribo 1988) 
–1.34, 0.74 (pH 7, pH 4.5, Hay 1990) 
N 
N 
N 
O 
NH 
NH 
O 
S 
O O Cl 
© 2006 by Taylor & Francis Group, LLC

3508 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.20 (Grayson & Kleier 1990) 
–1.0 (Montgomery 1993) 
–0.88, 1.05, –1.34, 0.74, 2.20 (reported values, Sangster 1993) 
–1.00 (at pH 7, Tomlin 1994) 
0.74, –1.34 (lit. values, Hansch et al. 1995) 
2.14 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
0.622 (calculated-S as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
1.02 (Flanagan silt loam, Montgomery 1993) 
1.60 (Tomlin 1994) 
2.19 (calculated-MCI 1., Sabljic et al. 1995) 
1.60 (at pH 7, selected, Hornsby et al. 1996) 
1.56 (selected, Armbrust 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: assuming first-order kinetics, calculated t. .186 h for 33 µg/mL to degrade in distilled water, t. = 31 h 
for creek water, t. = 136 h for silica gel and t. = 115 h for montmorillonit under sunlight (Herrmann et al. 
1985; quoted, Cessna & Muir 1991); 
under indoor conditions t. = 92 h in methanol, t. = 78 h in distilled water but t. = 18 h in natural creek 
water (Herrmann et al. 1985); 
reported t. = 18 h in distilled water at > 290 nm (Montgomery 1993) 
aqueous photolysis rate constant, k = 5.0 . 10–4 h–1 (Armbrust 2000). 
Oxidation: 
Hydrolysis: t. = 4–8 wk at 20°C and pH 5.7–7.0 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 
1993; Tomlin 1994); 
stable aqueous hydrolysis rates at pH 7, 9; measured hydroxy radical rate constant for chlorsulfuron 6.9 . 1012 M–1/h 
(Armbrust 2000). 
Biodegradation: aerobic rate constant, k = 1.44 . 10–3 h–1 (Armbrust 2000). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: hydrolysis rates will be increased by warm soil temperatures at low pH and in the presence of moisture 
with an average t. = 4–6 wk under growing conditions (Hartley & Kidd 1987; Herbicide Handbook 1989) 
t. = 4–6 wk for degradation in soil via hydrolysis followed by microbial degradation (Hartley & Kidd 1987; 
quoted, Montgomery 1993; Tomlin 1994); 
degradation rate constants: k = 0.033 d–1 at depth 0–20 cm with t. = 21 d, k = 0.0315 d–1 at depth 20–40 
cm with t. = 22 d and for depth 40–60 cm with t. > 150 d (Soakwaters soil, Walker et al. 1989); 
degradation k = 0.0116 d–1 at depth 0–20 cm with t. = 60 d, k = 0.0120 d–1 at depth 20–40 cm with t. = 58 d, 
and k = 0.0076 d–1 at depth 40–60 cm with t. = 91 d (Wharf ground soil, Walker et al. 1989); 
degradation k = 0.0126 d–1 at depth 0–20 cm with t. = 55 d, k = 0.0073 d–1 at depth 20–40 cm with t. = 95 d, 
and k = 0.0056 d–1 at depth 40–60 cm with t. = 124 d (Cottage Field soil, Walker et al. 1989); 
degradation k = 0.0147 d–1 at depth 0–20 cm with t. = 47 d, 0.0116 d–1 at depth 20–40 cm with t. = 60 d, 
and k = 0.0047 d–1 at depth 40–60 cm with t. = 147 d (Hunts Mill soil, Walker et al. 1989); 
degradation 0.0094 d–1 (depth 0–20 cm with t. = 74 d), 0.0096 d–1 (depth 20–40 cm with t. = 72 d) and 
0.0082 d–1 (depth 40–60 cm with t. = 85 d) (Bottom Barn soil, Walker et al. 1989); 
degradation k = 0.0141 d–1 at depth 0–20 cm with t. = 49 d, k = 0.0126 d–1 at depth 20–40 cm with t. = 55 d, 
and k = 0.0089 d–1 at depth 40–60 cm with t. = 78 d (Long Ashton soil, Walker et al. 1989); 
degradation k = 0.0144 d–1 at depth 0–20 cm with t. = 48 d, k = 0.0126 d–1 at depth 20–40 cm with t. = 55 d, 
and k = 0.0124 d–1 at depth 40–60 cm with t. = 56 d (Norfolk Agricultural Station soil, Walker et al. 1989) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3509 
degradation k = 0.0248 d–1 at depth 0–20 cm with t. = 28 d, k = 0.0289 d–1 at depth 20–40 cm with t. = 24 d, 
and k = 0.0347 d–1 at depth 40–60 cm with t. = 20 d (Norfolk Agricultural Station soil, Walker et al. 1989); 
selected field t. = 40 d (Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

3510 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.19 Chlorotoluron 
Common Name: Chlorotoluron 

Synonym: C 2242, Clortokem, Deltarol, Dicuran, Highuron, Higaluron, Tolurex 
Chemical Name: 3-(3-chloro-p-tolyl)-1,1-dimethylurea; N.-(3-chloro-4-methylphenyl)-N,N-dimethylurea 
Uses: herbicide to control pre- and post-emergent annual grasses and broadleaf weeds in winter cereals, particularly 
wheat and barley. 
CAS Registry No: 15545-48-9 
Molecular Formula: C10H13ClN2O 
Molecular Weight: 212.675 
Melting Point (°C): 
147 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.40 (Tomlin 1994) 
Molar Volume (cm3/mol): 
192 (modified Le Bas method at normal boiling point, Spurlock & Biggar 1994) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0635 (mp at 147°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
10.0 (20°C, Spencer 1973) 
70.0 (Martin & Worthing 1977) 
10.0 (20°C, Khan 1980) 
70.0 (20°C, Ashton & Crafts 1981) 
56.4, 80.6, 99.1 (4, 25, 40°C, shake flask-liquid scintillation spectrometer LSS, Madhun et al. 1986) 
70.0 (20°C, Hartley & Kidd 1987; Worthing & Walker 1991) 
90.0 (Spurlock 1992; Spurlock & Biggar 1994) 
10660 (calculated, Patil 1994) 
74.0 (Tomlin 1994) 
49.3 (predicted-AQUAFAC, Lee et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
4.8 . 10–6 (20°C, Khan 1980) 
1.7 . 10–5 (20°C, Ashton & Crafts 1981) 
1.7 . 10–5 (20°C, Hartley & Kidd 1987) 
1.7 . 10–5 (Tomlin 1994; selected, Halfon et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
5.17 . 10–5 (20°C, calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.41 (shake flask-UV, Briggs 1981) 
2.54 (Dao et al. 1983; Spurlock 1992; Spurlock & Biggar 1994) 
2.33, 2.34, 2.32 (4, 25, 40°C, shake flask-liquid scintillation spectrometer LSS, Madhun et al. 1986) 
2.41 (shake flask, Mitsutake et al. 1986) 
2.0 (shake flask, pH 7, Baker et al. 1992) 
HN
N 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3511 
2.241 (calculated, Evelyne et al. 1992) 
2.41 (recommended, Sangster 1993) 
2.25 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
0.26 (calculated, Patil 1994) 
2.50 (Tomlin 1994) 
2.41 (recommended, Hansch et al. 1995) 
2.38, 2.44 (shake flask-UV, calculated-RP-HPLC-k. correlation, Liu & Qian 1995) 
2.25, 2.49, 2.42 (RP-HPLC-RT correlation, ClOGP, calculated-S, Finizio et al. 1997) 
2.0 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
1.75 (calculated-S, Kenaga 1980) 
2.09, 2.16 (cuticle/water 24 h: tomato, pepper, Chaumat et al. 1991) 
2.01, 2.15 (cuticle/water 24 h: box tree, pear, Chaumat et al. 1991) 
1.30 (cuticle/water 24 h: vanilla, Chaumat et al. 1991) 
2.09, 2.16 (cuticle/water: tomato, pepper, Evelyne et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.62 (soil, calculated-S, Kenaga 1980) 
1.78 (reported as log KOM, Briggs 1981) 
2.75, 2.62 (4°C, 25°C, Semiahmoo soil, in µmol/kg OC, batch equilibrium-sorption isotherm-liquid scintillation 
spectrometer LSS, Madhun et al. 1986) 
2.57, 2.43 (4°C, 25°C, Adkins soil, in µmol/kg OC, batch equilibrium method-LSS, Madhun et al. 1986) 
2.48, 2.18; 2.54, 2.50 (estimated-KOW; solubility, Madhun et al. 1986) 
2.81, 2.58 (exptl., calculated-KOW, Liu & Qian 1995) 
2.02 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.02; 2.05, 2.15 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
2.00, 2.00 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
2.14, 2.36 (Kishon river sediments, sorption isotherm, Chefetz et al. 2004) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: calculated t. > 200 d at pH 5, 7, 9 and 30°C (Tomlin 1994). 
Biodegradation: Biological degradation rate followed a first order kinetics with t. = 21.6 d by raw water microflora 
from River Nile, t. = 13,8 d by raw water microflora + sewage (El-Dib & Abou-Waly 1998) 
Biotransformation: 4% of the selected 90 strains of micromycetes mostly isolated from soil-soil fungi, depleted 
50% of chlorotoluron (100 mg/L) in 5-d experiment. (Vroumsia et al. 1996) 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: Biological degradation t. = 21.6 d by raw water microflora from River Nile, t. = 13,8 d by raw 
water microflora + sewage (El-Dib & Abou-Waly 1998) 
Ground water: 
Sediment: 
Soil: t. = 4 wk in the moist silty loam at (25 ± 1)°C (Smith & Briggs 1978); 
t. ~ 200–4000 d in loamy sand and peat for 25–35°C as follows (Madhum & Freed 1987): 
t. = 4340, 904, and 381 d at 25, 30, and 35°C, respectively, at herbicide concn at 5 µg/kg, while t. = 1335, 
524, and 266 d at 25, 30, and 35°C, respectively, at herbicide concn at 100 µg/kg in an Adkins loamy 
sand; however, the half-lives in peat. t. = 2306, 1245, and 618 d at 25, 30, and 35°C, respectively, at 
herbicide concn at 5 µg/kg while t. = 1949, 1024, and 582 d at 25, 30, and 35°C, respectively, at herbicide 
concn at 100 µg/kg in a Semiahoo mucky peat (Madhun & Freed 1987) 
© 2006 by Taylor & Francis Group, LLC

3512 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
degradation by microorganism in biometer systems, t. = 93 d in silty sand standard metabolism experiments, 
t. = 140 d corrected standard conditions, t. = 110 d in simulated outdoor conditions; t. = 40 d in silty 
loam standard conditions, t. = 60 d corrected standard conditions, t. = 31 d in simulated outdoor 
conditions; at constant soil moisture and 20°C. Degradation by microorganism in small lysimeter systems: 
t. = 52 d outdoor fallow, t. = 14 d outdoor barley in silty sand, and t. = 49 d outdoor fallow, t. = 38 d 
outdoor barley in silty loam (Rudel et al. 1993) 
t. = 30–40 d in soil (Tomlin 1994); 
t. = 135 d (selected, Halfon et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3513 
17.1.1.20 Cyanazine 
Common Name: Cyanazine 
Synonym: Bladex, 90DF, DW 3418, Fortrok, Fortrol, Payze, SD 15418, WL 19805 
Chemical Name: 2-(4-chloro-6-ethylamino-1,3,5-triazin-2-ylamino)-2-methyl-propionitrile 
Uses: herbicide to control annual grasses and broadleaf weeds in cereals, cotton, maize, onions, peanuts, peas, potatoes, 
soybeans, sugar cane, and wheat fallow. 
CAS Registry No: 21725-46-2 
Molecular Formula: C9H13ClN6 
Molecular Weight: 240.692 
Melting Point (°C): 
168 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant: 
1.00 (pKa, Weber et al. 1980; Willis & McDowell 1982) 
12.9 (pKb, Wauchope et al. 1992; Hornsby et al. 1996) 
0.63, 1.1 (pKa, Montgomery 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0395 (mp at 168°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
171 (Melnikov 1971; Wauchope 1978; Weber et al. 1980; Ashton & Crafts 1981) 
171 (Martin & Worthing 1977; Herbicide Handbook 1978; Worthing & Walker 1987, Worthing & Hance 
1991; Majewski & Capel 1995) 
150 (selected, Schnoor & McAvoy 1981; Schnoor 1992) 
171 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
160 (23°C, Herbicide Handbook 1989) 
171 (Budavari 1989; Milne 1995) 
170 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
6046 (calculated, Patil 1994) 
45 (calculated-group contribution fragmentation method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the 
end of this section): 
2.13 . 10–7 (20°C, Ashton & Crafts 1973; 1981; Spencer 1982; Herbicide Handbook 1989) 
2.67 . 10–7 (20–25°C, Weber et al. 1980) 
5.33 . 10–7 (selected, Schnoor & McAvoy 1981; Schnoor 1992) 
1.00 . 10–5 (20°C, extrapolated from gas saturation measurement, Grayson & Fosbracey 1982) 
ln (P/Pa) = 25.7–10913/(T/K), temp range 65.7–92°C, (Antoine eq., gas saturation, Grayson & Fosbracey 1982) 
2.00 . 10–7 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Majewski & Capel 1995) 
5.21 . 10–6 (Worthing & Walker 1987) 
1.33 . 10–6 (30°C, Herbicide Handbook 1989) 
2.13 . 10–7 (20°C, Budavari 1989) 
2.13 . 10–7 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.13 . 10–7 (20°C, Montgomery 1993) 
N 
N 
N 
Cl 
NH 
NH
N 
© 2006 by Taylor & Francis Group, LLC

3514 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
2816 (20–25°C, calculated-P/C, Montgomery 1993) 
2.87 . 10–7 (calculated-P/C as per Worthing & Walker 1987, Majewski & Capel 1995) 
3.00 . 10–7 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.18 (Kenaga & Goring 1980) 
2.24 (shake flask-GC, Brown & Flagg 1981) 
1.80, 1.66 (RP-HPLC-RT correlation, calculated, Finizio et al. 1991) 
2.22 (selected, Magee 1991) 
1.80, 2.24 (Montgomery 1993) 
2.22 (recommended, Sangster 1993) 
0.79 (calculated, Patil 1994) 
2.10 (Tomlin 1994) 
2.22 (recommended, Hansch et al. 1995) 
2.04 (shake flask-UV, Liu & Qian 1995) 
1.64, 1.29, 3.02 (RP-HPLC-RT correlation, CLOGP, calculated-S, Finizio et al. 1997) 
1.70 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
1.53 (calculated-S, Kenaga 1980) 
1.00 (calculated-KOC, Kenaga 1980) 
1.48 (selected, Schnoor & McAvoy 1981; Schnoor 1992) 
Sorption Partition Coefficient, log KOC: 
2.30 (Kenaga 1980; Kenaga & Goring 1980; Karickhoff 1981; Sabljic 1987; Bahnick & Doucette 1988) 
2.41 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.26 (Georgia’s Hickory Hill pond sediment, Brown & Flagg 1981) 
2.71, 1.75, 1.85 (estimated-S, calculated-S and mp, calculated-KOW, Karickhoff 1981) 
0.48–1.48 (selected, sediment/water, Schnoor & McAvoy 1981; Schnoor 1992) 
2.57, 2.26 (soil, quoted, Madhun et al. 1986) 
2.36, 2.09; 2.33, 1.75 (estimated-reported KOWs; estimated-reported solubilities, Madhun et al. 1986) 
2.23 (soil, screening model calculations, Jury et al. 1987b) 
2.35 (calculated-MCI ., Bahnick & Doucette 1988) 
2.30, 2.16 (reported, estimated as log KOM, Magee 1991) 
2.23, 2.26, 2.30 (soil, quoted values, Bottoni & Funari 1992) 
2.28 (soil, 20–25°C, selected, Wauchope et al. 1992; quoted, Richards & Baker 1993; Hornsby et al. 1996) 
1.58–2.63 (Montgomery 1993) 
2.54 (selected, Lohninger 1994) 
2.05, 2.11 (exptl., calculated-KOW, Liu & Qian 1995) 
2.28 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.28; 2.33, 2.25 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
2.14, 2.19 (soils: organic carbon OC . 0.1%, OC . 0.5%, pH 5.6–8.0, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: alkaline chemical hydrolysis t. > 365 d (Schnoor & McAvoy 1981; quoted, Schnoor 1992). 
Biodegradation: aerobic t. = 14 d for 0.06 µg/mL to degrade in pond water and t. > 28 d in pond sediment both 
at 10–20°C (Roberts 1974; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3515 
Half-Lives in the Environment: 
Air: 
Surface water: aerobic t. = 14 d for 0.06 µg/mL to degrade in pond water at 10–20°C (Roberts 1974; quoted, 
Muir 1991). 
Ground water: reported half-lives or persistence, t. = 10–29, 14 and 108 d (Bottoni & Funari 1992) 
Sediment: aerobic t. > 28 d for 0.06 µg/mL to slowly degrade in pond sediment at 10–20°C (Roberts 1974; 
quoted, Muir 1991). 
Soil: t. ~ 2 wk in soil (Beynon et al. 1972; quoted, Tomlin 1994); 
persistence of 12 months in soil (Wauchope 1978); 
t. = 13.5 d from screening model calculations (Jury et al. 1987b); 
t. = 12–15 d in sandy loam soils and t. = 20–25 d in silt and clay loam soils (Herbicide Handbook 1989; 
quoted, Montgomery 1993); 
disappearance t. = 181 d from the upper 15 cm on a clay loam Ontario soil in 1987 and t. = 90 d in 1988 
with t.(calc) = 27 and 12 d, respectively (Frank et al. 1991); 
reported t. = 10–29 d, 13 d and 108 d (Bottoni & Funari 1992); 
selected field t. = 14 d (Wauchope et al. 1992; quoted, Richards & Baker 1993; Hornsby et al. 1996) 
soil t. = 19 d (Pait et al. 1992). 
Biota: biochemical t. = 13.5 d from screening model calculations (Jury et al. 1987b). 
TABLE 17.1.1.20.1 
Reported vapor pressures of cyanazine at various temperatures 
Grayson & Fosbracey 1982 
gas saturation-GC 
t/°C P/Pa 
65.7 0.0016 
70.0 0.0025 
77.5 0.0040 
85.8 0.0101 
87.8 0.0096 
92.0 0.0181 
20 1. . 10–5 
ln P = A – B/(T/K) 
P/Pa 
A 25.7 
B 10913 
© 2006 by Taylor & Francis Group, LLC

3516 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 17.1.1.20.1 Logarithm of vapor pressure versus reciprocal temperature for cyanazine. 
Cyanazine: vapor pressure vs. 1/T 
-6.0 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP 
/ 
Grayson & Fosbracey 1982 
m.p. = 168 °C 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3517 
17.1.1.21 2,4-D 
(See also Chapter 13, Carboxylic Acids) 
Common Name: 2,4-D 
Synonym: 2,4-Dichlorophenoxyacetic acid 
Chemical Name: 2,4-dichlorophenoxyacetic acid 
Uses: post-emergence control of annual and perennial broadleaf weeds in cereals, maize, sorgum, grassland, established 
turf, grass seed crops, orchards, cranberries, asparagus, sugar cane, rice, forestry, and on noncropland, etc. 
CAS Registry No: 94-75-7 
Molecular Formula: C8H6Cl2O3, Cl2C6H3OCH2COOH 
Molecular Weight: 221.038 
Melting Point (°C): 
140.5 (Hartley & Kidd 1987; Howard 1991; Tomlin 1994; Lide 2003) 
Boiling Point (°C): 
160 (at 0.4 mmHg, Dean 1985) 
215 (Neely & Blau 1985) 
Density (g/cm3 at 25°C): 
1.565 (30°C, Neely & Blau 1985; Tomlin 1994) 
1.416 (Montgomery 1993) 
Molar Volume (cm3/mol): 
209.8 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant, pKa: 
2.73 (potentiometric method, Nelson & Faust 1969) 
2.87 (spectrophotometric method, Cessna & Grover 1978) 
2.80 (Reinert & Rogers 1984; selected, Wauchope et al. 1992) 
2.64 (Dean 1985; Haag & Yao 1992; Lee et al. 1993) 
2.61–3.31 (Howard 1991) 
2.97 (Sangster 1993) 
3.10 (Kollig 1993) 
2.64–3.31 (Montgomery 1993) 
Enthalpy of Vaporization, .HV (kJ/mol): 
93.89 (Rordorf 1989) 
Enthalpy of Fusion .Hfus (kJ/mol): 
38.074 (DSC method, Plato & Glasgow 1969) 
39.6 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0736 (mp at 140.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
890 (Hodgman 1952; Hamaker 1975; Verschueren 1983; Montgomery 1993) 
522 (shake flask-UV, Leopold et al. 1960) 
725 (Bailey & White et al. 1965) 
725, 400, 900, 550 (Gunther et al. 1968) 
900 (Herbicide Handbook 1974; Wauchope 1978; Kenaga 1980a,b; Kenaga & Goring 1980) 
600 (20°C, Khan 1980) 
620–900 (Weber et al. 1980) 
470 (20–25°C, pH 5.6, Geyer et al. 1981) 
633, 812 (15, 25°C, shake flask method, average values of 5 laboratories, OECD 1981) 
620 (20°C, Hartley & Kidd 1983, 1987) 
Cl Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

3518 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
620 (Worthing & Walker 1983) 
609 (Gerstl & Helling 1987) 
400 (20°C, selected, Suntio et al. 1988) 
703 (Gustafson 1989) 
682 (Yalkowsky et al. 1987) 
540–890(Nyholm et al. 1992) 
900, 600, 890, 703, 1072 (Wauchope et al. 1992) 
890 (20–25°C, selected, Wauchope et al. 1992) 
311 (pH 1, Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
8.0 . 10–5 (Hamaker 1975) 
0.180–1.69 (transpiration method, Spencer 1976) 
53.0 (160°C, Hartley & Kidd 1983, 1987) 
8.0 . 10–5 (recommended, Neely & Blau 1985; Lyman 1985) 
1.0 (20°C, selected, Suntio et al. 1988) 
6.0 . 10–6 (selected, Nash 1989) 
4.10 . 10–5, 2.0 . 10–3, 0.058, 1.10, 13.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 17.56 – 6544.1/(T/K); measured range 70.2–135°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.558 – 4904.6/(T/K); measured range 140–196°C (liquid, gas saturation-GC, Rordorf 1989) 
0.20, 0.0032 (quoted, estimated from Henry’s law constant, Howard 1991) 
5.6 . 10–5 (selected, Mackay & Stiver 1991) 
1.40, 3.2 . 10–3 (quoted, estimated from HLC, Howard 1991) 
1.33 . 10–5, 8.0 . 10–5, 1.07 . 10–3; 1.07 . 10–3 (20–25°C, quoted lit; selected, Wauchope et al. 1992) 
0.627 (Montgomery 1993) 
0.011 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.36 . 10–5 (calculated-P/C, Jury et al. 1983) 
1.39 . 10–5 (calculated-P/C, Jury et al. 1987a, Jury & Ghodrati 1989) 
0.55 (20°C, calculated-P/C, Suntio et al. 1988) 
0.0015 (calculated, Nash 1989) 
1.03 . 10–3 (calculated-bond contribution, Howard 1991) 
6.80, 0.853 (pH 1, pH 7 at 20°C, wetted wall column-GC, Rice et al. 1997b) 
1.82 . 10–7 (quoted lit., Armbrust 2000) 
Octanol/Water Partition Coefficient, log KOW: 
2.81 (shake flask-UV, Fujita et al. 1964) 
2.59 (electrometric titration, Freese et al. 1979) 
1.57 (Kenaga & Goring 1980; Kenaga 1980b) 
2.74 (selected, Dao et al. 1983) 
2.81 (20°C, Verschueren 1983) 
1.57, 4.88 (shake flask-OECD 1981 Guidelines, Geyer et al. 1984) 
2.65 (shake flask, log P Database, Hansch & Leo 1987) 
2.50 (OECD 1981 method, Kerler & Schonherr 1988) 
2.649 (liquid/liquid-countercurrent-chromatography, Ilchmann et al. 1993) 
2.81 (recommended, Sangster 1993) 
1.44–4.18 (quoted lit. range, Montgomery 1993) 
2.58–2.83 (pH 1, Tomlin 1994) 
2.81 (selected, Hansch et al. 1995) 
0.59 (RP-HPLC-RT correlation, CLOGP, Calculated-S, Finizio et al. 1997) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3519 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.11, –0.097 (calculated-S, KOW, Kenaga 1980a) 
–2.46, 1.30 (beef fat, fish, Kenaga 1980b) 
0.778, 1.94 (alga Chlorella: exptl. 24 h exposure, calculated-S, Geyer et al. 1981) 
0.778 (algae, Freitag et al. 1982) 
< 1.00 (golden orfe, Freitag et al. 1982) 
1.23 (activated sludge, Freitag et al. 1982) 
0.0 (fish, microcosm conditions, Garten & Trabalka 1983;) 
0.778, 1.23 (algae, calculated-KOW, Geyer et al. 1984) 
1.23 (algae, Geyer et al. 1984) 
1.11 (calculated, Isensee 1991) 
–5.00 (bluegill sunfish and channel catfish, Howard 1991) 
–2.70 (frog tadpoles, Howard 1991) 
–3.0, –2.52 (pH 7.8, seaweeds, Howard 1991) 
0.778, 0.85 (quoted: alga, fish, Howard 1991) 
0.0, 0.505 (catfish Ictalurus melas, water flea Daphnia magna, wet wt basis, Wang et al. 1996) 
Sorption Partition Coefficient, log KOC: 
1.51 (Hamaker 1975) 
1.30, 2.0 (quoted, calculated, Kenaga 1980a) 
1.30, 2.11 (quoted, Kenaga & Goring 1980) 
1.30 (quoted, Kenaga 1980b) 
1.76 (quoted, average value of 3 soils, McCall et al. 1980) 
2.25, 2.04, 2.35 (soil I-very strongly acid sandy soil pH 4.5–5.5, soil II-moderately or slightly acid loamy soil 
pH 5.6–6.5, soil III-slightly alkaline loamy soil pH 7.1–8.0, OECD 1981) 
1.29 (soil, Neely & Blau 1985) 
1.30 (soil, screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
1.61 (soil, quoted, Sabljic 1987) 
1.75, 2.00 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
2.59 (HPLC-k. correlation, cyanopropyl column, mobile phase buffered to pH 3, Hodson & Williams 
1988) 
1.00, 1.23, 2.29 (sediment, Alfisol soil, Podzol soil, von Oepen et al. 1991) 
1.30–1.78, 1.30–2.0, 1.72 (soil, quoted lit. values, Bottoni & Funari 1992) 
1.30, 1.78, 1.51, 1.26, 1.72, 1.75, 1.76 (soil, quoted values, Wauchope et al. 1992) 
1.30 (soil, selected, Wauchope et al. 1992) 
0.68 (calculated-KOW, Kollig 1993) 
1.68–2.73 (Montgomery 1993) 
1.66 (calculated-QSAR MCI 1., Sabljic et al. 1995) 
2.09, 1.04, 1.40, 0.778 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, shake flask/batch equilibrium- 
HPLC/UV, Gawlik et al. 1998, 1999) 
1.65, 1.36, 1.37, 0.899 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, shake flask/batch equilibrium- 
HPLC/UV, Gawlik et al. 1999) 
1.652 (second generation Eurosoil ES-1, HPLC-k. correlation, Gawlik et al. 2000) 
1.68 (soil, quoted, Armbrust 2000) 
1.79, 1.77 (soils: organic carbon OC . 0.1%, OC . 0.5%, pH 2.8–8.0, average, Delle Site 2001) 
2.16, 2.13 (soils: organic carbon OC . 0.1%, OC . 0.5%, pH 2.8–5.0, average, Delle Site 2001) 
1.68, 1.68 (soils: organic carbon OC . 0.1%, OC . 0.5%, pH > 5.0, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: volatilization from water is negligible, calculated volatilization t. = 660 d (from 1 cm) and 
t. = 7.1 yr (from 10 cm) from soil (Howard 1991). 
© 2006 by Taylor & Francis Group, LLC

3520 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Photolysis: aqueous photolysis t. = 2–4 d when irradiated at 356 nm, t. = 50 min in water when irradiated at 
254 nm and t. = 29–43 d when exposed to September sunlight (Howard 1991); 
aqueous photolysis rate constant, k = 2.2 . 10–3 h–1 (Armbrust 2000). 
Oxidation: 
photooxidation t. = 1.8–18 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl 
radical in air (Howard et al. 1991) 
k(aq.) = (1.0–2.3) M–1 s–1 for direct reaction with ozone in water at pH 1.5–2.9 and 21 ± 1°C, with t. = 3.9 h 
at pH 7 (Yao & Haag 1991). 
k(calc) = 5.0 . 109 M–1 s–1 (Haag & Yao 1992) 
kOH(aq.) = 1.6 . 109 M–1 s–1 for reaction with hydroxyl radical in irradiated field water both in the laboratory 
and sunlit rice paddies (Mabury & Crosby 1996; quoted, Armbrust 2000); 
kOH(aq.) = 8.4 . 1012 M–1 h–1 at pH 5, 7, 9; measured hydroxyl radical rate constant for 2,4-D, (Armbrust 
2000) 
Hydrolysis: no hydrolyzable groups and rate constant at neutral pH is zero (Kollig et al. 1987; selected, Howard 
et al. 1991); generally resistant to hydrolysis, may become important at pH > 8 (Howard 1991). 
Biodegradation: 
k = 0.7–14.0 d–1 and t. = 10 to > 50 d in clear to murky river water with lag time ranges from 6–12 d 
(Nesbitt & Watson 1980a); 
t. = 4 d in river with nutrient and suspended sediments and t. = 10 d with a lag time of 5 d for filtered 
river water (Nesbitt & Watson 1980b); 
degradation kinetics not first-order, time for 50% decomposition in six soils: Commerce 5 d, Catlin 1.5 d, 
Keith 3.9 d, Cecil 3.0 d, Walla-Walla 2.5 d and Fargo 8.5 d, with an average time of 4 d (McCall et al. 1981) 
aerobic degradation k = 0.3 . 10–3 h–1 with t. = 97.0 d for control system, k = 9.5 . 10–3 h–1 with t. = 3.1 d for 
metabolism, k = 16.2 . 10–3 h–1 with t. = 1.8 d for co-metabolism; anaerobic degradation k = 0.24 . 10–3 h–1 
with t. = 120 d for control system, k = 0.21 . 10–3 h–1 with t. = 135 d for metabolism, k = 0.42 . 10–3 h–1 
with t. = 69 d for co-metabolism, by a mixture of microorganisms from activated sludge, soil and sediment 
in cyclone fermentors (Liu et al. 1981) 
k = (3.6–28.8) . 10–6 mL cell–1 d–1 in natural water (Paris et al. 1981; quoted, Klecka 1985) 
k < 0.14–0.07 d–1 in river water at 25°C (Nesbitt & Watson 1980; quoted, Klecka 1985) 
k = (0.058 ± 0.006) d–1 in lake water at 29°C (Subba-Rao et al. 1982; quoted, Klecka 1985) 
k = 0.08–0.46 d–1 in soil at 25°C (McCall et al. 1981; quoted, Klecka 1985); 
t. (aq. aerobic) = 240–1200 h, based on unacclimated aerobic river die-away test data (Nesbitt & Watson 
1980; selected, Howard et al. 1991); 
t. (anaerobic) = 672–4320 h, based on unacclimated aqueous screening test data (Liu et al. 1981; selected, 
Howard et al. 1991); 
k = 0.035 d–1 in die-away test, k = 0.029 d–1 in CO2 evolution test, in soil and k = 6.9 . 10–1 mL (g bacteria)–1 d–1 
by activated sludge cultures (Scow 1982); 
t. = 18 to over 50 d in clear river water, and t. = 10 to 25 d in muddy river water with lag times of 6 to 
12 d; degradation with a mixture of microorganisms from activated sludge, soil, and sediments lead to 
half-lives of 1.8–3.1 d under aerobic conditions and 69–135 d under anaerobic conditions (Howard 1991) 
k(aerobic) = 5.25 . 10–3 h–1 (Armbrust 2000). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 0.0092 h–1; k2 = 0.0092 h–1 (catfish Ictalurus melas, Wang et al. 1996) 
k1 = 0.8560 h–1; k2 = 0.2690 h–1 (Water flea Daphnia magna, Wang et al. 1996) 
Half-Lives in the Environment: 
Air: t. = 1.8–18 h, based on estimated rate constant for the reaction with OH radical (Howard et al. 1991); 
photooxidation t. = 23.9 h for reactions with OH radical in air (Howard 1991). 
Surface water: t. = 48–96 h, based on reported photolysis half-lives for aqueous solution irradiated at UV 
wavelength of 356 nm (Baur & Bovey 1974; selected, Howard et al. 1991); 
degradation t. = 14 d in sensitized, filtered and sterilized river water, based on sunlight photolysis test of 
1 µg mL–1 in distilled water (Zepp et al. 1975; quoted, Cessna & Muir 1991); 
t. = 1.8 and 3.1 d for cometabolism and metabolism, respectively, easily degraded under aerobic conditions; 
t. = 69 and 135 d under anaerobic conditions (Liu et al. 1981;) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3521 
typical biodegradation t. = 10 to < 50 d with longer expected in oligotrophic waters, photolysis t. = 29–43 d 
for water solutions irradiated at sunlight (Howard 1991); 
degraded relatively slowly when incubated in natural waters or in soil/sediment suspensions, with t. ~ 6 to 
170 d (Muir 1991); 
rate constant k(exptl) = (1.0–2.3) M–1 s–1 for direct reaction with ozone in water at pH 1.5–2.9 and 21°C, 
with t. = 3.9 h at pH 7 (Yao & Haag 1991); 
rate constant k(calc) = 5 . 109 M–1 s–1 for the reaction with hydroxyl radical in aqueous solution (Haag & 
Yao 1992); 
t. = 2–4 d when irradiated at . = 356 nm in aqueous solution (Montgomery 1993). 
Ground water: t. = 480–4320 h, based on estimated unacclimated aqueous aerobic and anaerobic biodegradation 
half-lives (Howard et al. 1991) 
reported t. = 4, 15, 1–35, 7–21 d (Bottoni & Funari 1992) 
Sediment: t. < 1 d for degradation in sediments and lake muds (Howard 1991); 
degraded relatively slowly when incubated in natural waters or in soil/sediment suspensions, with t. = 6 to 
170 d (Muir 1991). 
Soil: degradation t. = 5.0 and 4.0 d in Quachita Highlands’ forest and grassland soil respectively, t. = 4 d in 
Gross Timbers Forest soil, average t. = 4 d in 3 soils (shake flask, Altom & Stritzke 1973); 
field t. = 5.2 d in Arid range (Lane et al. 1977; quoted, Nash 1983); 
field t. = 19 d in Dykland soil (Stewart & Gaul 1977; quoted, Nash 1983); 
lab. t. = 5.5 d in Naff soil (Wilson & Cheng 1978; quoted, Nash 1983); 
microagroecosystem t. = 11 d for granular application to bluegrass turf (Nash & Beall 1980) 
non-persistent in soil with t. < 20 d (Willis & McDowell 1982); 
microagroecosystem t. = 3 d in moist fallow soil (Nash 1983); 
t. = 15 d in soil (Jury et al. 1983, 1987a,b; Jury & Ghodrati 1989); 
persistence of one month in soil (Jury et al. 1987); 
t. = 240–1200 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 
1991); 
biodegradation t. < 1 d to several weeks, t. = 3.9 and 11.5 d in 2 moist soils and t. = 9.4 to 254 d in the 
same soils under dry conditions (Howard 1991); 
degraded relatively slowly when incubated in natural waters or in soil/sediment suspensions, with t. = 6 to 
170 d (Muir 1991); 
reported t. = 4,15, 1–35 and 7–21 d (Bottoni & Funari 1992); 
field t. = 2–16 d, with a selected value of 10 d (Wauchope et al. 1992); 
soil t. = 18 d (Pait et al. 1992); 
rate constants for Amsterdam silt loam at soil depth 0–30 cm: k = 0.0053 d–1 at 10°C, k = 0.0046 d–1 at 
17°C and k = 0.0127 d–1 at 24°C with corresponding first-order t. = 7, 7, and 2 d; at soil depth 30–60 
cm: k = 0.00012 d–1 at 10°C, k = 0.0044 d–1 at 17°C and k = 0.0077 d–1 at 24°C with corresponding 
first-order t. = 273, 8, and 4 d; and at soil depth 60–120 cm: k = 0.00005 d–1 at 10°C, k = 0.0013 d–1 at 
17°C and k = 0.0022 d–1 at 24°C with corresponding first-order t. = 593, 25, and 12 d (Veeh et al. 1996). 
Biota: depuration t. = 13.8 h in daphnids, t. = 1.32 d in catfish (Ellgehausen et al. 1980). 
© 2006 by Taylor & Francis Group, LLC

3522 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.22 Dalapon 
Common Name: Dalapon 
Synonym: Alatex, Basinex P, Crisapon, D-Granulat, Dawpon-Rae, Ded-Weed, Dowpon, DPA, Gramevin, Kenapon, 
Liropon, Proprop, Radapon 
Chemical Name: 2,2-dichloropropanoic acid; 2,2-dichloropropionic acid; .-dichloropropanoic acid; .,.-dichloropropionic 
acid 
Uses: selective systemic herbicide to control perennial and annual grasses on noncropland, fruits, vegetables, and some 
aquatic weeds. 
CAS Registry No: 75-99-0 
Molecular Formula: C3H4Cl2O2 
Molecular Weight: 1432.969 
Melting Point (°C): liquid 
Boiling Point (°C): 
185–190 (Herbicide Handbook 1989; Worthing & Hance 1991; Tomlin 1994) 
98–99 (sodium salt at 20 mmHg, Budavari 1989) 
Density (g/cm3 at 20°C): 
1.389 (Nelson & Faust 1969; quoted, Kenaga 1974; Montgomery 1993) 
1.389 (22.8°C, Herbicide Handbook 1989) 
1.4014 (Budavari 1989; Milne 1995) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
1.84 (potentiometric titration, Nelson & Faust 1969; Freed 1976; Hornsby et al. 1996) 
1.74 (Kenaga 1974; quoted, Howard 1991) 
1.74–1.84 (Worthing & Hance 1991; Tomlin 1994) 
2.06 (Yao & Haag 1991; Haag & Yao 1992) 
1.84 (free acid, Montgomery 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
900000 (Woodford & Evans 1963; Bailey & White 1965) 
> 800000 (Kenaga 1974) 
502000 (Martin & Worthing 1977) 
450000 (Weber et al. 1980; Budavari 1989) 
501200 (Garten & Trabalka 1983) 
431850 (selected, Gerstl & Helling 1987) 
900000 (sodium salt, Worthing & Walker 1987, Worthing & Hance 1991) 
500000 (Reinert 1989) 
450000–900000 (Montgomery 1993) 
900000 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
16.0 (calculated from high temp., Foy 1976) 
1.0 . 10–5 (Worthing & Hance 1991; Tomlin 1994) 
0.0 (20–25°C, selected, Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
6.50 . 10–3 (Hine & Mookerjee 1975) 
0.608 (calculated, Montgomery 1993) 
OH 
O 
Cl Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3523 
4.56 . 10–3 (calculated-P/C as per Howard 1991, Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW: 
0.76 (Kenaga 1974) 
0.78 (Kenaga 1980) 
1.34 (selected, Dao et al. 1983) 
–2.76 (selected, Gerstl & Helling 1987) 
1.48 (Reinert 1989) 
0.78 (selected, Hansch et al. 1995) 
1.47 (LOGSTAR or CLOGP data, Sabljic et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
0.477 (dalapon sodium salt in fish, Kenaga 1974) 
–0.444 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
0.301 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
0.477 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
0.97 (calculated-MCI ., Gerstl & Helling 1987) 
2.13 (Reinert 1989) 
0.48, 2.13 (soil, quoted values, Bottoni & Funari 1992) 
0.27–2.18 (calculated, Montgomery 1993) 
0.40 (soil, calculated-MCI 1., Sabljic et al. 1995) 
0.0 (soil, 20–25°C, selected, Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
photooxidation t. = 289–2893 h in air, based on an estimated rate constant for the vapor-phase reaction 
with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991); 
k(aq.) = 4.6 . 108 M–1 s–1 for the reaction (photo-Fenton with reference to acetophenone) with hydroxyl 
radical in aqueous solutions at pH 3.4 and at 24 ± 1°C (Buxton et al. 1988; quoted, Faust & Hoigne 
1990; Haag & Yao 1992) 
k(aq.) . 0.005 M–1 s–1 for direct reaction with ozone in water at pH 6.4 and 22°C, with a half-life of > 2 yr 
at pH 7 (Yao & Haag 1991). 
k(aq.) = (7.3 ± 0.3) . 107 M–1 s–1 for the reaction (photo-Fenton with reference to acetophenone) with 
hydroxyl radical in aqueous solutions at pH 3.4 and at 24 ± 1°C (Haag & Yao 1992). 
Hydrolysis: 
Biodegradation: aqueous aerobic t. = 336–1440 h, based on unacclimated aerobic soil grab sample data (Corbin & 
Upchurch 1967; Kaufman & Doyle 1977; quoted, Howard et al. 1991); 
rate constant k = 0.047 d–1 by soil incubation die-away studies (Rao & Davidson 1980; quoted, Scow 1982); 
aqueous anaerobic t. = 1344–5760 h, based on estimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 289–2893 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radical in 
air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 336–1440 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 
1991); 
© 2006 by Taylor & Francis Group, LLC

3524 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
measured rate constant k . 0.0005 M–1 s–1 for direct reaction with ozone in water at pH 6.4 and 22°C, with 
a t. . 2 yr at pH 7 (Yao & Haag 1991). 
Groundwater: t. = 672–2880 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 
1991). 
reported t. = 30 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 7–8 d in soil (Kaufman 1966; quoted, Kaufman 1976); 
persistence across 43 soils from < 2 wk to > 8 wk (Day et al. 1963; quoted, Kaufman 1976); 
t. = 336–1440 h, based on unacclimated aerobic soil grab sample data (Corbin & Upchurch 1967; Kaufman 
& Doyle 1977; quoted, Howard et al. 1991); 
estimated persistence of 8 months (Kearney et al. 1969; quoted, Jury et al. 1987); 
persistence of 8 wk in soil (Edwards 1973; quoted, Morrill et al. 1982); 
persistence of about 2 wk in growing season in most agricultural soils (Herbicide Handbook 1974; quoted, 
Kaufman 1976); 
estimated first-order t. = 15 d from biodegradation rate constant k = 0.047 d–1 by soil incubation die-away 
studies (Rao & Davidson 1980; quoted, Scow 1982); 
non-persistent in soil with t. < 20 d (Willis & McDowell 1982); 
reported half-life or persistence, 30 d (Verschuren 1983; Bottoni & Funari 1992); 
field t. = 30 d at 20–25°C (selected, Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3525 
17.1.1.23 2,4-DB 
Common Name: 2,4-DB 
Synonym: Butoxon, Butyrac, Butyrac 118, Embutox, Legumex D 
Chemical Name: 4-(2,4-dichlorophenoxy)butanoic acid; 4-(2,4-dichlorophenoxy)butyric acid 
Uses: herbicide for post-emergence control of many annual and perennial broadleaf weeds in lucerne, clovers, undersown 
cereals, grassland, forage legumes, soybeans, and groundnuts. 
CAS Registry No: 94-82-6 
Molecular Formula: C10H10Cl2O3 
Molecular Weight: 249.090 
Melting Point (°C): 
118 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
254.2 (calculate-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
5.95 (Bailey & White 1965; Que Hee et al. 1981) 
4.80 (Worthing & Walker 1987; Hornsby et al. 1996) 
Enthalpy of Vaporization, .HV (kJ/mol): 
91.29 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
33.6 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.122 (mp at 118°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
82.3 (Bailey & White 1965) 
53 (rm. temp., Melnikov 1971) 
46 (Martin & Worthing 1977; Worthing & Walker 1987, Worthing & Hance 1991) 
46 (Weber et al. 1980) 
46 (Hartley & Kidd 1987; Budavari 1989;, Milne 1995) 
46 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
negligible (Hartley & Kidd 1987) 
1.0 . 10–5, 5.90 . 10–4, 0.019, 0.38, 5.20 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 17.692 – 6760.5/(T/K); measured range 80–120°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 12.682 – 4768.7/(T/K); measured range 125–196°C (liquid, gas saturation-GC, Rordorf 1989) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
3.53 (shake flask-HPLC/UV, Jafvert et al. 1990) 
3.53 (selected, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
1.85 (calculated-S, Kenaga 1980) 
2.21 (calculated-log KOW as per Mackay 1982, this work) 
Cl Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

3526 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Sorption Partition Coefficient, log KOC: 
2.72 (soil, calculated-S, Kenaga 1980) 
1.3 (organic carbon, Wauchope et al. 1991) 
2.64 (20–25°C, estimated, Hornsby et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: photooxidation t. = 6–60 h in air, based on an estimated rate constant for the vapor-phase reaction 
with hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: stable in distilled water for 40 d (Chau & Thomson 1978; quoted, Howard et al. 1991). 
Biodegradation: aqueous aerobic t. = 24–168 h, based on unacclimated soil grab sample data (Smith 1978; 
quoted, Howard et al. 1991); aqueous anaerobic t. = 96–672 h, based on estimated unacclimated aqueous 
aerobic biodegradation half-life (Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 6–60 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radicals in air 
(Atkinson 1987; Howard et al. 1991). 
Surface water: t. = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991). 
Groundwater: t. = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard 
et al. 1991) 
reported t. < 7 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 24–168 h, based on unacclimated soil grab sample data (Smith 1978; quoted, Howard et al. 1991) 
selected t. = 10 d (Wauchope et al. 1991; quoted, Dowd et al. 1993); 
t. < 7 d (Worthing & Hance 1991; Bottoni & Funari 1992); 
field t. = 5 d (20–25°C, selected, Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3527 
17.1.1.24 Diallate 
Common Name: Diallate 
Synonym: Avadex, CP 15336, DATC, Pyradex 
Chemical Name: S-(2,3-dichloroallyl)diisopropyl(thiocarbamate); S-(2,3-dichloro-2-propenyl)bis(1-methylethyl)- 
carbamothioate 
Uses: pre-emergent and selective herbicide to control wild oats and blackgrass in barley, corn, flax, lentils, peas, potatoes, 
soybeans, and sugar beets. 
CAS Registry No: 2303-16-4 
Molecular Formula: C10H17Cl2NOS 
Molecular Weight: 270.219 
Melting Point (°C): 
25–30 (Herbicide Handbook 1989; Montgomery 1993) 
Boiling Point (°C): 
97 (at 0.15 mmHg, Herbicide Handbook 1989) 
108 (at 0.25 mmHg, Herbicide Handbook 1989; Montgomery 1993) 
150 (at 9 mmHg, Howard 1991; Milne 1995; Montgomery 1993) 
Density (g/cm3 at 20°C): 
1.188 (25°C, Hartley & Kidd 1987; Montgomery 1993) 
Molar Volume (cm3/mol): 
305.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
40.0 (Gunther et al. 1968) 
14.0 (Ashton & Crafts 1973, 1981) 
40.0 (rm. temp., Spencer 1973; Khan 1980) 
40.0 (Martin & Worthing 1977; Hartley & Kidd 1987; Montgomery 1993; Milne 1995) 
14.0 (Herbicide Handbook 1978; Herbicide Handbook 1989; Montgomery 1993) 
68.8 (22°C, shake flask-GC, Bowman & Sans 1979, 1983a,b) 
40.5 (20–25°C, shake flask-GC, Kanazawa 1981) 
52.5 (Garten & Trabalka 1983) 
14.0 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.020 (Ashton & Crafts 1973; Herbicide Handbook 1989) 
0.0117 (20°C, Hartley & Graham-Bryce 1980) 
0.0337 (20°C, GC-RT correlation, Kim 1985) 
0.020 (Hartley & Kidd 1987) 
0.013 (20°C, selected, Suntio et al. 1988) 
0.020 (20°C, Montgomery 1993) 
0.020 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.250 (20°C, calculated-P/C, Suntio et al. 1988) 
0.385 (calculated-P/C, Howard 1991) 
0.253 (20–25°C, calculated-P/C, Montgomery 1993) 
CClCH2S N 
O 
ClCH 
© 2006 by Taylor & Francis Group, LLC

3528 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.108 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
5.23 (estimated, USEPA 1988; quoted, Howard 1991) 
3.29 (calculated, Montgomery 1993) 
3.67 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF: 
2.15 (calculated-S, Kenaga 1980; quoted, Howard 1991; Isensee 1991) 
2.08 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.28 (soil, Grover 1974) 
2.96. 2.46, 2.59, 2.49, 2.65 (Melfort loam, Weyburn sandy loam, Regina clay, Indian Head sandy loam, 
Asquith loamy sand, Grover et al. 1979) 
3.28 (soil, measured value, Kenaga 1980; Kenaga & Goring 1980) 
3.00 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.77 (calculated-MCI ., Bahnick & Doucette 1988) 
2.28 (Montgomery 1993) 
3.52 (selected, Lohninger 1994) 
2.70 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
3.28 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.28; 3.21, 2.66 (soil, cis-isomer, quoted exptl.; estimated-class-specific model, estimated-general model using 
molecular descriptors, Gramatica et al. 2000) 
3.28; 3.21, 2.65 (soil, trans-isomer, quoted exptl.; estimated-class-specific model, estimated-general model using 
molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 4 h, < 1% of 135 µg/mL to degrade in distilled water under > 300 nm light (Ruzo & Casida 
1985; quoted, Cessna & Muir 1991). 
Oxidation: photooxidation t. = 0.58–5.8 h, based on an estimated rate constant for the vapor-phase reaction with 
hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: neutral hydrolysis rate constant k = (1.2 ± 0.7) . 10–5 h–1 with a calculated first-order t. = 6.6 yr at 
pH 7 (Ellington et al. 1987, 1988); 
first-order t. = 6.6 yr, based on measured first-order base catalyzed hydrolysis rate constant at pH 7 (Ellington 
et al. 1987; quoted, Howard et al. 1991) 
t. = 2400 d at pH 2, t. = 2500 d at pH 7 and t. = 32 d at pH 12 in natural waters (Capel & Larson 1995). 
Biodegradation: aqueous aerobic t. = 252–2160 h, based on aerobic soil die-away test data (Anderson & Domsch 
1976; Smith 1970; quoted, Howard et al. 1991); aqueous anaerobic t. = 1008–8640 h, based on aerobic 
soil die-away test data (Anderson & Domsch 1976; Smith 1970; quoted, Howard et al. 1991) 
t.(aerobic) = 11 d, t.(anaerobic) = 42 d in natural waters (Capel & Larson 1995) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.58–5.8 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radicals in 
air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 252–2160 h, based on aerobic soil die-away test data (Anderson & Domsch 1976; Smith 
1970; quoted, Howard et al. 1991) 
Biodegradation t.(aerobic) = 11 d, t.(anaerobic) = 42 d, hydrolysis t. = 2400 d at pH 2, t. = 2500 d at 
pH 7 and t. = 32 d at pH 12 in natural waters (Capel & Larson 1995) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3529 
Ground water: t. = 504–4320 h, based on aerobic soil die-away test data (Anderson & Domsch 1976; Smith 
1970; quoted, Howard et al. 1991). 
Sediment: 
Soil: t. = 252–2160 h, based on aerobic soil die-away test data (Anderson & Domsch 1976; Smith 1970; quoted, 
Howard et al. 1991; Montgomery 1993); 
t. = 30 d (Hartley & Kidd 1987; quoted, Montgomery 1993); 
selected field t. = 30 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3530 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.25 Dicamba 
Common Name: Dicamba 
Synonym: Banex, Banvel, Banvel D, Brush buster, Dianat, MDBA, Mediben 
Chemical Name: 3,6-dichloro-2-methoxybenzoic acid; 3,6-dichloro-o-anisic acid 
Uses: systemic pre-emergent and post-emergent herbicide to control both annual and perennial broadleaf weeds. 
CAS Registry No: 1918-00-9 
Molecular Formula: C8H6Cl2O3 
Molecular Weight: 221.038 
Melting Point (°C): 
115 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.570 (25°C, Hartley & Kid 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
207.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
1.94 (Kearney & Kaufman 1975; Spencer 1982; Lee et al. 1993) 
1.90 (Cessna & Grover 1978; Weber et al. 1980; Willis & McDowell 1982; Howard 1991; Montgomery 
1993; Armbrust 2000) 
1.95 (Worthing & Hance 1991; Montgomery 1993; Caux et al. 1993) 
1.87 (Tomlin 1994) 
1.91 (Hornsby et al. 1996) 
Enthalpy of Vaporization, .HV (kJ/mol): 
77.85 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
22.59 (DSC method, Plato & Glasgow 1969) 
19.1 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.131 (mp at 115°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
7900 (Freed 1966; Verschueren 1983) 
4500 (Martin & Worthing 1977; quoted, Kenaga 1980; Kenaga & Goring 1980; Khan 1980; Ashton & 
Crafts 1981; Weber et al. 1980; Hartley & Graham-Bryce 1980) 
6500 (Hartley & Kidd 1987; Herbicide Handbook 1989; Caux et al. 1993) 
6500 (Worthing & Walker 1987, Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
5600 (20°C, selected, Suntio et al. 1988) 
4410, 221 (quoted, calculated-group contribution fragmentation method, Kuhne et al. 1995) 
8310 (selected., Armbrust 2000) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00454 (Ashton & Crafts 1973; 1981) 
0.00267 (Baur & Bovey 1974; Spencer 1976) 
0.49 (20°C, Hartley & Graham-Bryce 1980; Khan 1980) 
< 0.00013 (20–25°C, Weber et al. 1980; Willis & McDowell 1982) 
0.00453 (Herbicide Handbook 1983, 1989; Worthing & Hance 1991) 
0.0045 (Hartley & Kidd 1987; Tomlin 1994) 
0.50 (100°C, Budavari 1989) 
2.90 . 10–3, 6.40 . 10–2, 0.88, 8.60, 63.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
O OH
O
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3531 
log (PS/Pa) = 14.706 – 5139.1/(T/K); measured range 60.1–110°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 11.911 – 4067.0/(T/K); measured range 115–176°C (liquid, gas saturation-GC, Rordorf 1989) 
0.50 (20°C, selected, Taylor & Spencer 1990) 
0.0045 (20°C, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.00012 (20°C, calculated-P/C, Suntio et al. 1988) 
0.0248 (calculated-P/C, Taylor & Glotfelty 1988) 
0.0918 (Suntio et al. 1988; quoted, Howard 1991; Majewski & Capel 1995) 
2.2 . 10–5 (calculated-P/C, Nash 1989) 
1.22 . 10–4 (20–25°C, calculated-P/C, Montgomery 1993) 
0.00012, 0.000154 (20, 25°C, quoted, Caux et al. 1993) 
4.46 . 10–5 (quoted lit., Armbrust 2000) 
Octanol/Water Partition Coefficient, log KOW: 
0.477 (Rao & Davidson 1980) 
2.41 (selected, Dao et al. 1983) 
2.21 (shake flask, Log P Database, Hansch & Leo 1985, 1987) 
–1.69 (selected, Gerstl & Helling 1987) 
3.01 (selected, Travis & Arms 1988) 
2.46 (Reinert 1989) 
2.49 (shake flask-HPLC/UV, Jafvert et al. 1990) 
2.46 (EPA Environmental Fate one-liner database Version 3.04, Lee et al. 1993) 
2.21 (recommended, Sangster 1993) 
0.48 (Montgomery 1993) 
–0.80 (pH 7, Tomlin 1994) 
2.21 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
0.699 (calculated-S, Kenaga 1980) 
–2.00 (calculated-KOC, Kenaga 1980) 
–4.58 (beef biotransfer factor logBb, correlated-KOW, Oehler & Ivie 1980) 
–4.60 (milk biotransfer factor logBm, correlated-KOW, Oehler & Ivie 1980) 
1.450 (estimated-KOW per Hansch & Leo 1985, Lyman et al. 1982) 
0.903 (estimated-S per Suntio et al. 1988, Lyman et al. 1982) 
Sorption Partition Coefficient, log KOC: 
–0.398 (soil, quoted exptl., Kenaga 1980) 
1.63 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
0.342 (av. soils/sediments, Rao & Davidson 1980) 
–0.40, 2.08 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
0.34 (soil, screening model calculations, Jury et al. 1987b) 
2.67 (KOC = 470 reported, Reinert 1989) 
0.643 (soil, estimated, Shirmohammadi et al. 1989) 
–1.00 (selected, USDA 1989; quoted, Neary et al. 1993) 
0.30 (organic carbon, Wauchope et al. 1991) 
–0.40, 1.62, 0.18, 0.34 (soil, quoted values, Bottoni & Funari 1992) 
1.50; 1.46 (soil, quoted exptl.; calculated-MCI . and fragment contribution Meylan et al. 1992) 
–0.40, 0.34 (Montgomery 1993) 
0.30 (Tomlin 1994) 
1.50 (quoted or calculated-QSAR MCI 1., Sabljic et al. 1995) 
1.114 (quoted lit., Armbrust 2000) 
Sorption Partition Coefficient, log KOM: 
2.74 (organo-clay DODMA140-SAz, sorption isotherm, Zhao et al. 1996) 
© 2006 by Taylor & Francis Group, LLC

3532 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.57 (organo-clay DODMA-SAz, sorption isotherm-HPLC/UV, Zhao et al. 1996) 
2.48 (organo-clay HDTMA-SAz, sorption isotherm-HPLC/UV, Zhao et al. 1996) 
2.59 (organo-clay HDTMA-SWy, sorption isotherm-HPLC/UV, Zhao et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: aqueous photolysis rate constant k = 7.5 . 10–4 h–1 (Armbrust 2000). 
Oxidation: photooxidation t. = 2.4–6.0 d, based on estimated rate constant for the vapor-phase reaction with 
hydroxyl radicals in the atmosphere (Atkinson 1985; quoted, Howard 1991); 
measured hydroxy radical reaction rate constant for dicamba 4.8 . 1012 M–1 /h (Armbrust 2000). 
Hydrolysis: t. > 133 d for 2 µg mL–1 to hydrolyze in dark sterile pond water at 37–39°C (Scifres et al. 1973; 
quoted, Muir 1991); 
stable aqueous hydrolysis rates at pH 5, 7, 9 (Armbrust 2000). 
Biodegradation: t. = 60 d to > 160 d for 100 µg mL–1 to degrade in pond sediment/water under lighted conditions 
at 20–30°C (Scifres et al. 1973; quoted, Muir 1991); under lab. conditions using nonsterile sandy loam, 
silty clay, or heavy clay soil, 50% of applied dicamba degraded within 2 weeks; however in sterilized (via 
heating) soil, over 90% of applied dicamba was recovered after 4 weeks, suggesting that microbes were 
responsible for the decomposition (Smith 1973; quoted, Howard 1991); 
t. > 25 d for 5.85 mg of labeled dicamba to plants to degrade following washoff from plants and sands in 
model ecosystem (derived from data of Yu et al. 1975; Muir 1991); 
k = 0.022 d–1 by soil incubation die-away studies (Rao & Davidson 1980; quoted, Scow 1982); 
rate of biodegradation in soil generally increases with temperature and soil moisture (up to 50%) and tends 
to be faster when the soil is slightly acidic (Herbicide Handbook 1983; quoted, Howard 1991); 
aerobic rate constant k = 1.60 . 10–3 h–1 (Armbrust 2000). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. ~ 2.42 d for reaction with hydroxyl radicals (estimated, Eisenreich et al. 1981; quoted, Caux et al. 1993 
t. = 2.42–6.0 d, based on estimated rate constant for the vapor-phase reaction with hydroxyl radicals in the 
atmosphere (Atkinson 1985; quoted, Howard 1991). 
Surface water: 
Ground water: t. = 23.5 d determined under batch conditions at 28°C, t. = 38 d at 20°C, and t. = 151 d at 12°C 
and were all higher than t. ~ 13.5 d from the decrease in column effluent concentrations over time (Comfort 
et al. 1992); 
reported t. = 14–433, 201 and 25 d (Bottoni & Funari 1992) 
t. < 7 d in surface water (Caux et al. 1993). 
Sediment: 
Soil: estimated persistence of 2 months (Kearney et al. 1969; quoted, Jury et al. 1987a); 
t. = 59, 19, and 17 d with disappearance rates: k = 0.0117, 0.036 and 0.041 d–1 at pH 4.3, 5.3 and 6.5 
(Hamaker 1972; quoted, Nash 1988); 
persistence of 2 months in soil (Edwards 1973; quoted, Morrill et al. 1982); 
degradation t. = 32 d and 17 d in Quachita Highlands = forest and grassland soil respectively, t. = 26 d in 
Gross Timbers Forest soil, average t. = 25 d in 3 soils (Altom & Stritzke 1973); 
first-order t. ~ 31.5 d in soil from biodegradation rate constant k = 0.022 d–1 by soil incubation die-away 
studies (Rao & Davidson 1980; quoted, Scow 1982); 
nonpersistent in soils with t. < 20 d (Willis & McDowell 1982); 
mean t. = 14 d under lab. conditions from review of persistence literature, while the mean t. = 8 d under 
field conditions (Rao & Davidson 1982; quoted, Howard 1991); 
non-persistent with t. < 20 d in soil (Willis & McDowell 1982); 
t. = 14 d from screening model calculations (Jury et al. 1987b); 
t. < 14 d under conditions amenable to rapid metabolism (Herbicide Handbook 1989); 
selected t. = 14 d (Wauchope et al. 1991; quoted, Dowd et al. 1993); 
t. < 14–25 d (Worthing & Hance 1991; quoted, Montgomery 1993); 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3533 
reported t. = 20 d, 25 d and 14–433 d (Bottoni & Funari 1992); 
t. = 4–555 d with a mean t. = 24 d (Caux et al. 1993); 
t. < 14 d (Tomlin 1994). 
Biota: biochemical t. = 14 d from screening model calculations (Jury et al. 1987b); 
average t. = 25 d in the forest (USDA 1989; quoted, Neary et al. 1993); 
biological t. = 0.64 h (Caux et al. 1993). 
© 2006 by Taylor & Francis Group, LLC

3534 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.26 Dichlobenil 
Common Name: Dichlobenil 
Synonym: Barrier 2G, Barrier 50W, Casoron, DBN, DCB, Decabane, Du-Sprex, Dyclomec, NIA 5996, Niagara 5006, 
Niagara 5996, Norosac 
Chemical Name: 2,6-dichlorobenzonitrile 
Uses: soil applied herbicide to control many annual and perennial broadleaf weeds. 
CAS Registry No: 1194-65-6 
Molecular Formula: C7H3Cl2N 
Molecular Weight: 172.012 
Melting Point (°C): 
144.5 (Lide 2003) 
Boiling Point (°C): 
270 (Verloop 1972; Khan 1980; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
> 1.0 (Milne 1995) 
Molar Volume (cm3/mol): 
148.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
65.74 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
25.94 (DSC method, Plato & Glasgow 1969) 
34.33 (Verloop 1972) 
24.2 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0672 (mp at 144.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
18 (20°C, Gunther et al. 1968; Weber 1972; Verloop 1972; Spencer 1982; Verschueren 1983) 
25 (Gunther et al. 1968; Montgomery 1993) 
18 (Martin & Worthing 1977; Herbicide Handbook 1978) 
18 (Wauchope 1978; Khan 1980; Burkhard & Guth 1981) 
18 (20°C, Ashton & Crafts 1981; Hartley & Kidd 1987; Herbicide Handbook 1989) 
18 (20°C, Worthing & Walker 1987, Worthing & Hance 1991; Tomlin 1994) 
21.2 (20–25°C, selected, Wauchope et al. 1992; Lohninger 1994; Hornsby et al. 1996) 
18, 25 (20°C, 25°C, Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.072 (20°C, effusion manometer technique, Barnsley & Rosher 1961) 
0.0733 (20°C, Verloop 1972; Khan 1980; Ashton & Crafts 1981; Herbicide Handbook 1989) 
0.0667 (20°C, Weber 1972; Worthing & Walker 1987) 
0.0004 (20°C, Spencer 1976) 
0.0666 (20°C, effusion method, Spencer 1976) 
0.0733 (20–25°C, Weber et al. 1980) 
0.073 (20°C, Hartley & Kidd 1987) 
0.070 (20°C, selected, Suntio et al. 1988) 
0.110, 1.80, 20.0, 160, 970 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 14.787 – 4698.2/(T/K); measured range 32.4–125°C (solid, gas saturation-GC, Rordorf 1989) 
Cl Cl 
N 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3535 
log (PL/Pa) = 11.754 – 3434.1/(T/K); measured range 32.4–125°C (liquid, gas saturation-GC, Rordorf 1989) 
0.133 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.0733 (Montgomery 1993) 
0.088 (20°C, gas saturation, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.700 (20°C, volatilization rate, Burkhard & Guth 1981) 
0.669 (20°C, calculated-P/C, Suntio et al. 1988) 
0.637 (20°C, calculated-P/C, Muir 1991) 
0.669 (20–25°C, calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
2.90 (Rao & Davidson 1980; selected, Suntio et al. 1988, Magee 1991) 
2.57; 2.65 (RP-HPLC-RT correlation; shake flask, Eadsforth & Moser 1983) 
3.06 (shake flask, Geyer et al. 1984) 
2.94 (Hansch & Leo 1985) 
1.63 (Reinert 1989) 
2.98 (selected, Dao et al. 1983, Gerstl & Helling 1987) 
2.90 (shake flask, Log P Database, Hansch & Leo 1987) 
2.90 (recommended, Sangster 1993) 
2.70 (Tomlin 1994) 
2.74 (recommended, Hansch et al. 1995) 
2.95 (RP-HPLC-RT correlation, Nakamura et al. 2001) 
2.98 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
1.74 (fish in static water, Kenaga 1975; Kenaga & Goring 1980) 
2.08 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
1.08 (calculated-KOC, Kenaga 1980) 
1.18–1.60 (fish, Freitag et al. 1982) 
1.30 (algae, Freitag et al. 1982) 
1.72 (estimated-S, Lyman et al. 1982; quoted, Howard 1991) 
2.03–2.32 (Montgomery 1993) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
2.91 (potting soil with 22% organic content, Massini 1961) 
2.08 (sandy loam with 5% organic content, Massini 1961) 
2.37 (soil, Hamaker & Thompson 1972–1987) 
2.95 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.35 (Rao & Davidson 1980) 
2.94 (soil, estimated-S, Lyman et al. 1982; quoted, Howard 1991) 
2.37, 1.45 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
2.96 (Reinert 1989) 
2.37; 2.31 (reported as log KOM; estimated as log KOM, Magee 1991) 
2.21, 2.57–2.96 (soil, quoted values, Bottoni & Funari 1992) 
2.60 (soil, 20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
2.60 (estimated-chemical structure, Lohninger 1994) 
2.31 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. ~ 7.4 d, based on Henry’s law constant for a model river 1-m deep with a wind velocity of 
3 m/s and flowing at 1 m/s (estimated, Lyman et al. 1982; quoted, Howard 1991); 
t. ~ 11 d from 1 m depth of water at 20°C (estimated, Muir 1991). 
Photolysis: photolytic t. = 15 d in water (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

3536 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Oxidation: photooxidation t. = 92 d in air, based on estimation for the vapor-phase reaction with hydroxyl 
radicals in atmosphere (Atkinson 1987; quoted, Howard 1991). 
Hydrolysis: 
Biodegradation: t. ~ 7 d for 5 µg/mL to biodegrade in sediment suspension at 30°C (Miyazaki et al. 1975; 
quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 92 d, based on estimation for the vapor-phase reaction with hydroxyl radicals in atmosphere (Atkinson 
1987; quoted, Howard 1991). 
Surface water: 
Ground water: reported t. = 44–360 d (Bottoni & Funari 1992) 
Sediment: t. ~ 7 d for 5 µg/mL to biodegrade in sediment suspension at 30°C (Miyazaki et al. 1975; quoted, 
Muir 1991). 
Soil: estimated persistence of 4 months (Kearney et al. 1969; quoted, Jury et al. 1987); 
t. = 1–6 months in soil depending on soil type (Beynon & Wright 1972; Verloop 1972; quoted, Tomlin 1994); 
persistence of 4 months in soil (Edwards 1973; quoted, Morrill et al. 1982); 
persistence of 4 months (Wauchope 1978); 
t. = 1.5 to 12 months depending upon soil type (Herbicide Handbook 1989); 
selected t. = 60 d (Wauchope et al. 1992; Hornsby et al. 1996); 
reported t. = 45–360 d (Bottoni & Funari 1992). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3537 
17.1.1.27 Dichlorprop 
Common Name: Dichlorprop 
Synonym: Cornox RK, dichloroprop, Dikofag DP, 2,4-DP, Hedonal DP, Polymone 
Chemical Name: ( ± )-2-(2,4-dichlorophenoxy) propanoic acid; ( ± )-2-(2,4-dichlorophenoxy) propionic acid 
Uses: herbicide and growth regulator to control annual broadleaf and grass weeds; also to control aquatic weeds and 
chemical maintenance of embankments and roadside verges. 
CAS Registry No: 120-36-5 
Molecular Formula: C9H8Cl2O3 
Molecular Weight: 235.064 
Melting Point (°C): 
117.5 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.64 (25°C, Bailey & White 1965) 
1.42 (Herbicide Handbook 1989; Tomlin 1994) 
Molar Volume (cm3/mol): 
232.0 (calculated-Le Bas method at normal boiling point) 
165.6 (calculated-density) 
Dissociation Constant pKa: 
2.855 (Cessna & Grover 1978) 
2.86 (Wauchope et al. 1992; Hornsby et al. 1996) 
3.00 (Tomlin 1994) 
Enthalpy of Vaporization, .HV (kJ/mol): 
127.9 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
34.31 (DSC method, Plato 1972) 
30.9 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.124 (mp at 117.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
350 (20°C, Woodford & Evans 1963; Spencer 1973) 
350 (Martin & Worthing 1977) 
350 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987, 1991) 
710 (28°C, Herbicide Handbook 1989) 
50 (ester, 20–25°C, estimated, Wauchope et al. 1992; Lohninger 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
4.50 . 10–4 (20°C, Hartley & Kidd 1987) 
2.90 . 10–7, 4.10 . 10–5, 2.8 . 10–3, 0.11, 2.80 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 21.26 – 8289.2/(T/K); measured range 95.7–118°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 17.174 – 6682.8/(T/K); measured range 120–150°C (liquid, gas saturation-GC, Rordorf 1989) 
4.00 . 10–4 (20–25°C, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
< 1.0 . 10–5 (20°C, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
2.69 . 10–4 (calculated-P/C, this work) 
Cl Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

3538 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Water Partition Coefficient, log KOW: 
2.75 (RP-HPLC-k. correlation, Braumann et al. 1983) 
3.43 (shake flask-GC, Ilchmann et al. 1993) 
2.06 to –0.22 (pH 4–7, shake flask-LSC, Riise & Salbu 1992) 
1.77 (Tomlin 1994) 
3.43 (recommended, Sangster 1993; Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.36 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.23 (soil, calculated-S, Kenaga 1980) 
3.00 (soil, 20–25°C, estimated, Wauchope et al. 1992; Lohninger 1994; Hornsby et al. 1996) 
2.05, 2.07, 1.70, 1.79, 1.73 (5 soils: soil A 30.4% OC and pH 4.4, soil B14.6% OC pH 4.1, soil C/loam 3.3% 
OC pH 5.0, soil D/silty clay 1.3% OC pH 5.1, soil E/sand 1.4% OC pH 5.3, batch equilibrium-sorption 
isotherms, Riise Salbu 1992) 
1.08–1.60 (Tomlin 1994) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Photolysis: photodegradation t. = 10 to 19 d on 3 Spanish natural dry soils; t. = 22 to 59 d on 10% peat-amened 
dry soils; degradation t. ~ 2–6 d on moist soils at field capacity and saturation soils for degradation at 0,1 
and 2 exposures days; and t. = 16–37 d on moist soils at field capacity and saturated soils for degradation 
at 2,4 and 10 exposure days (Romero et al. 1998) 
Half-Lives in the Environment: 
Soil: t. = 12 d and 8 d in Quachita Highlands = forest and grassland soil, respectively, t. = 10 d in gross timbers 
forest soil, average t. = 10 d in 3 soils (Altom & Stritzke 1973); 
selected field t. = 10 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. ~ 8 d in soil (Tomlin 1994) 
photodegradation t. = 10–19 d in 3 Spanish natural dry soils, t. = 22–59 d in the 10% peat-amended dry 
soils; degradation t. ~ 2–6 d on moist soils at field capacity and saturation soils for degradation at 0,1 
and 2 exposures days; and t. = 16–37 d on moist soils at field capacity and saturated soils for degradation 
at 2,4 and 10 exposure days (Romero et al. 1998) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3539 
17.1.1.28 Diclofop-methyl 
Common Name: Diclofop-methyl 
Synonym: Hoelon, dichlordiphenoprop, Hoegrass, Illoxan 
Chemical Name: methyl 2-[4-(2.,4.-dichlorophenoxy)-phenoxy]propanoate 
Uses: herbicide to control post-emergent wild oats, wild millets, and other annual grass weeds in wheat, barley, rye, 
red fescue, and broadleaf weeds in crops such as soybeans, sugar cane, fodder beet, flax, legumes, oilseed rape, 
sunflowers, clover, lucerne, groundnuts, brassicas, carrots, celery, beet root, parsnips, lettuce, spinach, potatoes, 
tomatoes, fennel, alliums, herbs, etc. 
CAS Registry No: 51338-27-3 
Molecular Formula: C16H14Cl2O4 
Molecular Weight: 341.186 
Melting Point (°C): 
40 (Lide 2003) 
Boiling Point (°C): 
175–176 (at 0.1 mmHg, Hartley & Kidd 1987; Herbicide Handbook 1989) 
Density (g/cm3): 
1.30 (40°C, Hartley & Kidd 1987; Worthing & Walker 1987; Herbicide Handbook 1989) 
1.035 (Herbicide Handbook 1989) 
Acid Dissociation Constants, pKa: 
3.1 (Wauchope et al. 1992; Hornsby et al. 1996) 
Molar Volume (cm3/mol): 
349.6 (calculated-Le Bas method at normal boiling point) 
329.7 (calculated-density) 
Dissociation Constant pKa: 
3.1 (Wauchope et al. 1992; Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.713 (mp at 40°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
3.0 (22°C, Hartley & Kidd 1987; Worthing & Walker 1987; Worthing & Hance 1991) 
3.0 (22°C, Herbicide Handbook 1989) 
0.80 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.80 (20°C, pH 7, Tomlin 1994) 
4.23 (Majewski & Capel 1995) 
4.06 (calculated-group contribution method, Kuhne et al. 1995) 
3.0 (Lohninger 1994; Milne 1995) 
0.8 (selected, Halfon et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
3.44 . 10–5 (20°C, Worthing 1983, 1987; Hartley & Kidd 1987) 
3.40 . 10–5 (20°C, Worthing & Walker 1987, Worthing & Hance 1991) 
3.47 . 10–5, 1.6 . 10–4, 3.87 . 10–3 (20°C, 30°C, 54.3°C, Herbicide Handbook 1989) 
5.91 . 10–5 (selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.5 . 10–4, 7.7 . 10–3 (20°C, 50°C, Tomlin 1994) 
4.80 . 10–5 (quoted, Majewski & Capel 1987) 
4.7 . 10–4 (selected, Halfon et al. 1996) 
Cl 
Cl 
O 
O 
O 
O 
© 2006 by Taylor & Francis Group, LLC

3540 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.00387 (calculated-P/C, Majewski & Capel 1995) 
0.199 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.80 (shake flask, Log P Database, Hansch & Leo 1987) 
4.601 (Stevens et al. 1988) 
4.58 (Worthing & Hance 1991) 
4.60 (shake flask, pH 7, Baker et al. 1992) 
4.80 (recommended, Sangster 1993) 
4.5775 (Tomlin 1994) 
4.80 (recommended, Hansch et al. 1995) 
5.52 (Pomona-database, Muller & Kordel 1996) 
4.87 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF or log KB: 
2.74 (calculated-S as per Kenaga 1980, this work) 
Sorption Partition Coefficient, log KOC: 
4.69, 4.20 (Wauchope et al. 1992) 
4.15–4.39 (soil, quoted values, Bottoni & Funari 1992) 
4.20 (20–25°C, soil, recommended, Wauchope et al. 1992; Hornsby et al. 1996) 
4.25 (soil, HPLC-screening method, mean value of different stationary and mobile phases, Kordel et al. 
1993, 1995b) 
4.15–4.39 (soil, Tomlin 1994) 
4.20 (estimated-chemical structure, Lohninger 1994) 
4.25; 3.61 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
5.505, 5.334, 4.122, 4.737, 4.182 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1998) 
4.002, 3.731, 3.453, 3.257, 3.715 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask-batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: 
Oxidation: 
Hydrolysis: 
Biodegradation: first-order rate constants k = –0.0883, –0.225, –0.266 h–1 in nonsterile sediment and k = –0.0158, 
–0.0139, –0.0134 h–1 in sterile sediment by shake-tests at Davis Bayou, k = –0.0457, –0.103, –0.120 h–1 in 
nonsterile water and k = –0.00233, –0.00722, –0.00785 h–1 in sterile water by shake-tests at Davis Bayou 
(Walker et al. 1988) 
t. = 10 d in sandy soils and t. ~ 30 d in sandy clay soils under aerobic conditions (Herbicide Handbook 1989) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 363 d at 25°C and pH 5, t. = 31.7 d at pH 7 and t. = 0.52 d at pH 9 (Tomlin 1994). 
Ground water: reported t. = 6–9, 23–38 and 150 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 10 d in sandy soils and t. ~ 30 d in sandy clay soils while under anaerobic conditions, results were 
similar except that the very rapid cleavage of the ester bond by hydrolysis within one hour to propionic acid 
derivatives was experienced and within 2 d, up to 86% of the parent compound was metabolized into various 
free acid metabolites and up to 3.7% of phenol metabolites (Herbicide Handbook 1989); 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3541 
t. = 6–9 d, 23–38 d and 150 d (Bottoni & Funari 1992); 
selected field t. = 30 d at pH 7.0 (Wauchope et al. 1992; Hornsby et al. 1996) 
V = 1–57 d and t. = 30–281 d for various soils in field trials (Tomlin 1994). 
t. = 30 d (selected, Halfon et al. 1996). 
Biota: t. = 3–7 d for wheat (Herbicide Handbook 1989) 
t. = 3 d in sugar beet (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

3542 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.29 Dinitramine 
Common Name: Dinitramine 
Synonym: Cobex, Cobexo 
Chemical Name: N,N-diethyl-2,6-dinitro-4-trifluoromethyl-m-phenylenediamine 
Uses: herbicide for selective pre-plant soil incorporating control of many annual grass and broadleaf weeds in cotton, 
soybeans, peas, groundnuts, beans, sunflowers, safflowers, carrots, turnips, fennel, chicory, etc. and in transplanted 
tomatoes, capsicums, aubergines, and brassicas. 
CAS Registry No: 29091-05-2 
Molecular Formula: C11H13N4O4F3 
Molecular Weight: 322.241 
Melting Point (°C): 
98 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.50 (25°C, Ashton & Crafts 1981; Hartley & Kidd 1987) 
Molar Volume (cm3/mol): 
265.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
4.5 (Haag & Yao 1992) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.192 (mp at 98°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1.1 (Martin & Worthing 1977; Kenaga 1980; Kenaga & Goring 1980; Khan 1980; Isensee 1991) 
1.0 (Wauchope 1978; Verschueren 1983) 
1.0 (20°C, Ashton & Crafts 1981; Hartley & Kidd 1987) 
1.1 (Worthing & Walker 1987, 1991) 
1.1 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
1.0 (20°C, Tomlin 1994; Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.00048 (Khan 1980; Ashton & Crafts 1981) 
0.00048 (Verschueren 1983) 
0.000479 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
0.00040 (20°C, selected, Suntio et al. 1988) 
0.00048 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.160 (20°C, calculated-P/C, Suntio et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
4.31 (selected, Dao et al. 1983) 
4.30 (Worthing & Hance 1991; Tomlin 1994) 
4.30 (Milne 1995) 
4.30 (recommended, Hansch et al. 1995) 
3.89 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
NH2 
NO2 O2N 
N 
F F 
F 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3543 
Bioconcentration Factor, log BCF: 
2.77 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
2.45 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.60 (soil, Harvey 1974) 
3.61 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
3.60 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
3.84 (estimated-chemical structure, Lohninger 1994) 
3.63 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.63; 3.42 (soil, quoted exptl.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. < 1 h in distilled water, river water and ocean water under sunlight (Newsom & Woods 1973; 
quoted, Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: 
Biodegradation: t. = 22 d for 0.5 µg/mL to biodegrade in flooded soil with approximately 1 cm of water on top 
of the soil (Savage 1978; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: t. = 22 d for 0.5 µg/mL to biodegrade in flooded soil with approximately 1 cm of water on top of the soil 
(Savage 1978; quoted, Muir 1991); 
persistence of 3 months in soil (Wauchope 1978); 
selected field t. = 30 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996); 
t. = 10–66 d (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

3544 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.30 Dinoseb 
Common Name: Dinoseb 
Synonym: Anatox, Aretit, Basanite, Butaphene, Caldon, Chemox, Dibutox, Dinitrall, DNBP, DN-289, DNOSAP, 
DNOSBP, DNSBP, Dow General, Dyanap, Dytop 
Chemical Name: 2-sec-butyl-4,6-dinitrophenol 
Uses: herbicides/insecticides; pre- or post-emergence control of broadleaf weeds in cereals, maize, lucerne, clover, 
trefoil, grass leys, potatoes, peas, onions, garlics, peas, leeks, soya beans, orchards, groundnuts, strawberries, 
vineyards and other crops; for control of strawberry runners and raspberry suckers and overwintering forms of 
insect pests on fruit trees; also used as a desiccant for leguminous seed crops; destruction of potato haulms; as a 
pre-harvest hop defoliant, etc. 
CAS Registry No: 88-85-7 
Molecular Formula: C10H12N2O5 
Molecular Weight: 240.212 
Melting Point (°C): 
40 (Lide 2003) 
Boiling Point (°C): 
362 (estimated, Grain 1982) 
Density (g/cm3 at 20°C): 
1.265 (45°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Milne 1995) 
Molar Volume (cm3/mol): 
218.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
4.62 (radiometer/pH meter, Cessna & Grover 1978; Hornsby et al. 1996) 
4.61 (radiometer/pH meter, Cessna & Grover 1978) 
4.62 (Worthing & Walker 1987, 1991) 
4.50 (Yao & Haag 1991) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.713 (mp at 40°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
50 (Gunther 1968; Spencer 1982; Thomas 1982) 
52 (Kearney & Kaufman 1975; Khan 1980) 
50 (Martin & Worthing 1977; Kenaga 1980) 
52 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
100 (rm. temp., Worthing & Walker 1983, Worthing & Hance 1991) 
52 (20°C, Hartley & Kidd 1987; Milne 1995) 
52 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
130 (151.5°C, Khan 1980) 
133 (151.1°C, Ashton & Crafts 1981) 
0.0008, 0.0067 (supercooled liquid, estimated, Grain 1982) 
0.0067 (Thomas 1982) 
0.0023 (30°C, Spencer 1982) 
10 (20°C, selected, Suntio et al. 1988) 
0.183 (60°C, Worthing & Hance 1991) 
0.0067 (20–25°C, selected, Hornsby et al. 1996) 
OH 
NO2 
O2N 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3545 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
51.1 (20°C, calculated-P/C, Suntio et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
3.59 (Hansch & Leo 1979) 
3.69 (calculated, Zitko et al. 1976) 
3.69 (Hansch & Leo 1985) 
4.10 (RP-PHLC-RT correlation, Klein et al. 1988) 
3.14 (shake flask/slow stirring-GC, De Bruijn et al. 1989) 
3.0, 3.57 (pH 7, pH 2, shake flask, Brooke et al. 1990) 
3.69 (recommended, Sangster 1993) 
3.56 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.83 (calculated-S, Kenaga 1980a; quoted, Howard 1991) 
0.778 (calculated-KOC, Kenaga 1980) 
1.51 (measured, Kenaga 1980; quoted, Isensee 1991) 
Sorption Partition Coefficient, log KOC: 
2.85 (soil, Thomas 1982) 
2.09 (soil, Kenaga 1980a; Kenaga & Goring 1980) 
2.71 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980a) 
3.82 (HPLC-k. correlation, cyanopropyl column, mobile phase buffered to pH 3, Hodson & Williams 1988) 
2.68 (estimated as log KOM, Magee 1991) 
1.80, 2.04, 2.08 (soil, literature values, Bottoni & Funari 1992) 
2.70 (selected, Lohninger 1994) 
2.09 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.48 (soil, 20–25°C, estimated, Hornsby et al. 1996) 
Adsorption coefficient, Kd (L·kg–1): 
6.4, 64 (homoionic K+-kaolinite, K+-montmorillonite clay minerals, Haderlein et al. 1996) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: initial rate constant k = 1.1 . 10–3 h–1 and predicted rate constant k = 2.6 . 10–3 h–1 from soil with 
t. = 266.5 h (Thomas 1982). 
Photolysis: 
Oxidation: 
photooxidation t. = 12.2–122 h in air, based on estimated rate constant for the reaction with hydroxyl radical 
in air (Atkinson 1987; quoted, Howard et al. 1991) 
k(aq.) = (0.003–2) . 105 M–1 s–1 for direct reaction with ozone in water at pH 1.9–5.0 and 24 ± 1°C, with 
t. = 0.16 s at pH 7 (Yao & Haag 1991). 
k(calc) = 4 . 109 M–1 s–1 for the reaction with hydroxyl radical in aqueous solutions at 24 ± 1°C (Haag & 
Yao 1992). 
Hydrolysis: 
Biodegradation: aqueous aerobic t. = 1032–2952 h, based on aerobic soil mineralization data for one soil (Doyle 
et al. 1978; quoted, Howard et al. 1991) and aqueous anaerobic t. = 96–360 h, based on anaerobic soil dieaway 
test data for isopropalin (Gingerich & Zimdahl 1976; quoted, Howard et al. 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination Constants (k2): 
Half-Lives in the Environment: 
Air: t. = 12.2–122 h, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 
1987; quoted, Howard et al. 1991). 
Surface water: t. = 1032–2952 h, based on aerobic soil mineralization data for one soil (Doyle et al. 1978; 
quoted, Howard et al. 1991); 
© 2006 by Taylor & Francis Group, LLC

3546 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
measured rate constant k = (0.003–2) . 105 M–1 s–1 for direct reaction with ozone in water at pH 1.9 -5.0 
and 24 ± 1°C, with t. = 0.16 s at pH 7 (Yao & Haag 1991). 
Ground water: t. = 96–5904 h, based on estimated unacclimated aqueous aerobic and anaerobic biodegradation 
half-lives (Howard et al. 1991) 
reported t. = 30 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 1032–2952 h, based on aerobic soil mineralization data for one soil (Doyle et al. 1978; quoted, Howard 
et al. 1991); 
reported t. = 30 d (Bottoni & Funari 1992); 
field t. = 30 d at 20–25°C (estimated, Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3547 
17.1.1.31 Diphenamid 
Common Name: Diphenamid 
Synonym: Difenamide, Dimid, Dymid, Enide, Fenam, Rideon 
Chemical Name: N,N-dimethyldiphenylacetamide; N,N-dimethyl-.-phenyl-benzeneacetamide 
Uses: herbicide for pre-emergence control of annual grasses and some broadleaf weeds in cotton, sweet potatoes, 
tomatoes, vegetables, capsicums, okra, soybeans, groundnuts, tobacco, pome fruit, stone fruit, citrus fruit, bush 
fruit, strawberries, forestry nurseries, and ornamental plants, shrubs, and trees. 
CAS Registry No: 957-51-7 
Molecular Formula: C16H17NO 
Molecular Weight: 239.312 
Melting Point (°C): 
135 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.17 (23.3°C, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
284.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
27.405 (DSC method, Plato & Glasgow 1969) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0833 (mp at 135°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
240 (Melnikov 1971) 
260 (27°C Spencer 1973, 1982; Khan 1980; Worthing & Walker 1987) 
260 (Martin & Worthing 1977; Weber et al. 1980; Kenaga 1980) 
260 (27°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Tomlin 1994) 
280 (20–25°C, selected, Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 1.33 . 10–4 (Weber et al. 1980) 
negligible (20°C, Hartley & Kidd 1987; Tomlin 1994) 
4.0 . 10–6 (20–25°C, selected, Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
Octanol/Water Partition Coefficient, log KOW: 
Bioconcentration Factor, log BCF: 
1.43 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.32 (soil, calculated-S, Kenaga 1980) 
2.32 (selected, Lohninger 1994) 
2.32 (soil, 20–25°C, selected, Hornsby et al. 1996) 
O N 
© 2006 by Taylor & Francis Group, LLC

3548 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Photolysis: t. = 2.25 h in distilled water (Tanaka et al. 1981; quoted, Cessna & Muir 1991); 
Half-Lives in the Environment: 
Soil: estimated persistence of 8 months (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury 
et al. 1987); 
persistence under warm damp conditions is ca. 3–6 months (Herbicide Handbook 1989; Tomlin 1994) 
field t. = 30 d at 20–25°C (selected, Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3549 
17.1.1.32 Diquat 
Common Name: Diquat 
Synonym: Aquacide, Deiquat, Dextrone, Ortho, Pathclear, Preeglone, Reglone, Weedol, Weedtrine-D 
Chemical Name: 1,1.-ethylene-2,2.-dipyridine 
Uses: nonselective contact herbicide to control broadleaf weeds in fruit and vegetable crops. 
CAS Registry No: 2764-72-9 
Molecular Formula: C12H14N2 
Molecular Weight: 186.236 
Melting Point (°C): 335–340 (Spencer 1982) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.22–1.27 (Ashton & Crafts 1981; Herbicide Handbook 1989; Montgomery 1993; Tomlin 1994) 
Molar Volume (cm3/mol): 
230.6 (calculated-Le Bas method at normal boiling point) 
149.6 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C): 
700000 (Khan 1980; Spencer 1982) 
670000 (Weber et al. 1980) 
700000 (Verschueren 1983) 
700000 (Worthing & Hance 1991; Tomlin 1994) 
700000 (Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 0.00533 (Agrochemicals Handbook 1983) 
< 1.3 . 10–5 (Worthing & Hance 1991; Tomlin 1994) 
< 1.3 . 10–5 (20°C, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
< 6.38 . 10–9 (20–25°C, calculated-P/C, Montgomery 1993) 
< 3.42 . 10–9 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
–3.05 (Garten & Trabalka 1983) 
2.78 (Reinert 1989) 
–4.60 (20°C, Worthing & Hance 1991; Tomlin 1994) 
–4.60 (Montgomery 1993) 
Bioconcentration Factor, log BCF: 
–2.84 (calculated-S as per Kenaga 1980, this work) 
–5.92 (calculated-log KOW as per Mackay 1982, this work) 
Sorption Partition Coefficient, log KOC: 
2.84 (Reinert 1989) 
0.420 (calculated, Montgomery 1993) 
0.425 (calculated-S as per Kenaga 1980, this work) 
N N 
© 2006 by Taylor & Francis Group, LLC

3550 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 192 h for 10 µg/mL to degrade in distilled water under 240–260 nm light (Funderburk et al. 
1960; quoted, Cessna & Muir 1991); 
t. < 5 wk for 4 µg/mL to degrade in distilled water under sunlight (Slade & Smith 1967; quoted, Cessna & 
Muir 1991); 
dry diquat photodecomposed by UV light with t. = 48 h (Funderburk & Bozarth 1967; quoted, Montgomery 
1993); 
t. ~ 48 h when associated with aerosols (Howard 1991); 
t. = 3 wk for 3% of 5 µg/mL to degrade in distilled water under sunlight (Smith & Grove 1969; quoted, 
Cessna & Muir 1991). 
Oxidation: 
k(aq.) = 5.9 . 109 M–1 s–1 for the reaction (Fenton with reference to acetophenone) with hydroxyl radical in 
aqueous solutions at pH 3.1 and at 24 ± 1°C (Buxton et al. 1988; quoted, Faust & Hoigne 1990; Haag & 
Yao 1992) 
k(aq.) = (0.6 ± 0.2) M–1 s–1 for direct reaction with ozone in water at pH 3.1 and 22°C, with a half-life of 
15 h at pH 7 (Yao & Haag 1991). 
k(aq.) = (8.0 ± 1.8) . 108 M–1 s–1 for the reaction (Fenton with reference to acetophenone) with hydroxyl 
radical in aqueous solutions at pH 3.1 and at 24 ± 1°C (Haag & Yao 1992). 
Hydrolysis: t. = 74 d under simulated sunlight at pH 7 (Montgomery 1993; Tomlin 1994). 
Biodegradation: t. ~ 50 d to biodegrade in lake water (Hiltibran 1972; quoted, Muir 1991); 
t. > 158 d for 1.5 µg/mL of infested sediment-water microcosm to biodegrade in sediment and t. ~ 2 d in 
water both at 25°C (derived from Simsiman & Chesters 1976; Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. ~ 50 d to biodegrade in lake water (Hiltibran 1972; quoted, Muir 1991); 
t. ~ 2 d of 14C-diquat in water of a weed-infested simulated lake impoundment containing Lake Mendota 
sediment, the rapid disappearance is attributed to adsorption by sediments, suspended particulate matter 
and aquatic plants (shake flask-scintillation spectrometry, Simsiman & Chesters 1976) 
measured rate constant k = (0.6 ± 0.2) M–1 s–1 for direct reaction with ozone in water at pH 3.1 and 22°C, 
with t. = 15 h at pH 7 (Yao & Haag 1991). 
Ground water: 
Sediment: Slow microbial degradation due to tight bonding of adsorbed Diquat to the clay minerals on the 
sediment (shake flask-liquid scintillation spectrometry, Simsiman & Chesters 1976) 
t. > 158 d for 1.5 µg/mL of infested sediment-water microcosm to biodegrade (derived from results of 
Simsiman & Chesters 1976; Muir 1991). 
Soil: 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3551 
17.1.1.33 Diuron 
Common Name: Diuron 
Synonym: AF 101, Cekiuron, Crisuron, Dailon, DCMU, Diater, dichlorofonidim, Di-on, Direx, DMU, Drexel, Duran, 
Dynex, Herbatox, Karmex, Marmer, NA 2767, Telvar, Unidron, Urox D, Vonduron 
Chemical Name: 3-(3,4-dichlorophenyl)-1,1-dimethylurea; N.-(3,4-dichlorophenyl)-N,N-dimethylurea 
Uses: pre-emergence herbicide in soils to control germinating broadleaf grasses and weeds in crops such as apples, 
cotton, grapes, pears, pineapple, and alfalfa; also used as sugar cane flowering depressant. 
CAS Registry No: 330-54-1 
Molecular Formula: C9H10Cl2N2O 
Molecular Weight: 233.093 
Melting Point (°C): 
158 (Lide 2003) 
Boiling Point (°C): 
180 (decomposes, Montgomery 1993) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
223.8 (calculated-Le Bas method at normal boiling point) 
188.0 (modified Le Bas method at normal boiling point, Spurlock & Biggar 1994a) 
Dissociation Constant pKa: 
–1 to –2 (Montgomery 1993) 
Enthalpy of Vaporization, .HV (kJ/mol): 
66.0 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
33.89 (DSC method, Plato & Glasgow 1969) 
27.3 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0496 (mp at 158°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
42.0 (Gunther et al. 1968; Melnikov 1971; Spencer 1973. 1982; Khan 1980; Ashton & Crafts 1981) 
42.0 (20°C, Weber 1972; Weber et al. 1980) 
37.3 (shake flask-UV, Freed et al. 1976; Freed 1976) 
42.0 (Martin & Worthing 1977; Hartley & Kidd 1987; Worthing & Walker 1987, Worthing & Hance 
1991; Herbicide Handbook 1989; Tomlin 1994; Milne 1995) 
42.4 (shake flask, Briggs 1981) 
22.0 (shake flask-HPLC, Ellgehausen et al. 1981) 
38.7 (generator column-HPLC/RI, Swann et al. 1983) 
120 (RP-HPLC-RT correlation, Swann et al. 1983) 
19.6, 40.1, 53.4 (4, 25, 40°C, shake flask-liquid scintillation spectrometer LSS, Madhun et al. 1986) 
42.0 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
40.0 (20°C, Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
1.6 . 10–5 (estimated, Nex & Swezey 1954) 
3.8 . 10–6 (20°C, Johnson & Julin 1974) 
4.1 . 10–4 (50°C, Khan 1980; Ashton & Crafts 1981) 
< 1.3 . 10–4 (20–25°C, Weber et al. 1980) 
2.5 . 10–4 (Thomas 1982) 
HN
N 
O 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

3552 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.1 . 10–5 (Jury et al. 1983; quoted, Taylor & Glotfelty 1988; Taylor & Spencer 1990) 
3.6 . 10–4 (Jury et al. 1983; quoted, Howard 1991) 
2.7 . 10–4 (selected, Nkedi-Kizza et al. 1985) 
4.1 . 10–4 (50°C, Hartley & Kidd 1987; Worthing & Hance 1991; Herbicide Handbook 1989) 
2.0 . 10–4 (20°C, selected, Suntio et al. 1988) 
5.30 . 10–4, 1.0 . 10–2, 0.130, 1.20, 79 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 13.339 – 4953.8/(T/K); measured range 36.2–90.2°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 9.800335 – 3445.24/(T/K); measured range not specified (liquid, gas saturation-GC, Rordorf 1989) 
9.2 . 10–6 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.1 . 10–6 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.4 . 10–4 (calculated-P/C, Jury et al. 1984, 1987a,b; Jury & Ghodrati 1989) 
1.2 . 10–4 (20°C, calculated-P/C, Suntio et al. 1988) 
1.3 . 10–4 (calculated-P/C, Taylor & Glotfelty 1988) 
0.274 (calculated-P/C, Howard 1991) 
2.1 . 10–5 (20°C, calculated-P/C, Muir 1991) 
1.5 . 10–4 (20–25°C, calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
2.60 (calculated-f const., Rekker 1977) 
2.81 (Rao & Davidson 1980) 
2.68 (shake flask-UV, Briggs 1981) 
2.89 (shake flask-HPLC, Ellgehausen et al. 1981) 
2.60 (Elgar 1983) 
2.77 (Hansch & Leo 1985) 
2.69, 2.65, 2.63 (4, 25, 40°C, shake flask-liquid scintillation spectrometer LSS, Madhun et al. 1986) 
2.86 (shake flask, Mitsutake et al. 1986) 
1.97–2.81 (Montgomery 1993) 
2.78 (recommended, Sangster 1993) 
2.45 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
2.80 (Aquasol Database 1994; quoted, Pinsuwan et al. 1995) 
2.81 (shake flask, Spurlock & Biggar 1994a) 
2.85 ± 1.70 (Tomlin 1994) 
2.58, 2.73 (shake flask-UV, RP-HPLC-k. correlation, Liu & Qian 1995) 
2.68 (recommended, Hansch et al. 1995) 
2.45 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.40 (measured, Isensee 1976) 
1.88 (calculated-S, Kenaga 1980) 
1.34 (calculated-KOC, Kenaga 1980) 
2.16 (Pimephales promelas, Call et al. 1987) 
2.41, 2.48 (cuticle/water: tomato, pepper, Chaumat et al. 1991) 
2.41, 2.51 (cuticle/water: box tree, laurel, Chaumat et al. 1991) 
2.55, 2.28 (cuticle/water: pear, ivy, Chaumat et al. 1991) 
1.18, 1.64 (cuticle/water: cleavers, vanilla, Chaumat et al. 1991) 
2.45, 2.48 (cuticle/water: tomato, pepper, Evelyne et al. 1992) 
Bioaccumulation Factor, log BF: 
–1.70 (adipose tissue in both male & female Albino rats, Hodge et al. 1967) 
Sorption Partition Coefficient, log KOC: 
2.60 (soil, Hamaker & Thompson 1972; Farmer 1976; Hance 1976) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3553 
2.75 (soil, calculated-S as per Kenaga & Goring 1977, Kenaga 1980) 
2.59 (average of 3 soils, HPLC-RT correlation, McCall et al. 1980) 
2.15–2.52 (Peck et al. 1980) 
2.21 (soil, converted from reported KOM multiplied 1.724, Briggs 1981) 
3.06, 2.41 (estimated-S, solubility and mp, Karickhoff 1981) 
1.58, 2.42 (estimated-KOW, Karickhoff 1981) 
2.58 (average of 84 soils, Rao & Davidson 1982) 
2.18 (soil, Thomas 1982) 
2.83 (Webster soil, Nkedi-Kizza 1983) 
2.49 (soil slurry method, Swann et al. 1983) 
2.48 (RP-HPLC-RT correlation, Swann et al. 1983) 
3.03, 2.94 (4°C, 25°C, Semiahmoo soil, batch equilibrium method-LSS, Madhun et al. 1986) 
2.82, 2.68 (4°C, 25°C, Adkins soil, batch equilibrium method-LSS, Madhun et al. 1986) 
2.86, 2.44, 2.48; 2.81, 2.74, 2.44 (estimated-KOW; solubility, Madhun et al. 1986) 
2.50 (calculated-MCI ., Gerstl & Helling 1987) 
2.58 (soil, screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
2.35, 2.57 (2 subsurface soils from Oklahoma, Bouchard & Wood 1988) 
2.94, 2.68 (mucky peat soil, loam sand soil, quoted, Howard 1991) 
2.18, 2.48–2.49, 2.59, 2.66 (soil, quoted values, Bottoni & funari 1992) 
2.68 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.21–2.87 (Montgomery 1993) 
2.68 (selected, Lohninger 1994) 
2.60 (Tomlin 1994) 
2.70 (calculated-KOW, Liu & Qian 1995) 
2.40 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.07, 2.37, 2.82, 2.51, 2.96 (calculated-KOW; HPLC-screening method with different LC-columns, Szabo 
et al. 1999) 
2.48, 2.42 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, Gramatica 
et al. 2000) 
2.44, 2.43, 2.57 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, average, Delle Site 2001) 
2.78‘ (sediment: organic carbon OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 2.5 . 10–3 h–1 (initial) and 5.3 . 10–4 h–1 (predicted) from soil with t. = 1307 h (Thomas 1982); 
the calculated t. = 1918 d due to volatilization from soil when incorporated into 1 cm of soil (Jury et al. 
1983; quoted, Howard 1991). 
Photolysis: t. = 2.25 h for 80–84% of 40 µg/mL to degrade in distilled water under 300 nm light (Tanaka et al. 
1981; quoted, Cessna & Muir 1991); in surface waters should be photolyzed within a few days (Howard 
1991). 
Oxidation: photooxidation t. = 0.12 d in air, based on estimation for the vapor-phase reaction with hydroxyl 
radical in the atmosphere (Atkinson 1987; quoted, Howard 1991). 
Hydrolysis: t. > 4 months for 4660 µg/mL to hydrolyze in phosphate buffer at pH 5–9 and 20°C (El-Dib & Aly 
1976; quoted, Muir 1991). 
Biodegradation: t. = 328 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Rao & Davidson 
1980; quoted, Jury et al. 1983, 1984, 1987a); 
t. = 3–10 d for 40 µg/mL to biodegrade in pond sediment of anaerobic media at 30°C (Attaway et al. 1982a 
quoted, Muir 1991); 
t. < 17 d for 40 µg/mL to biodegrade in pond sediment at 30°C (Attaway et al. 1982b; quoted, Muir 1991); 
67–99% will be degraded in 10 wk under aerobic conditions by mixed cultures isolated from pond water 
and sediments forming 6–7 products (Ellis & Camper 1982; quoted, Howard 1991; Muir 1991); 
t. < 70 d at 30°C (Ellis & Camper 1982; quoted, Muir 1991; Montgomery 1993); 
t. ~ 5 d for 0.22 µg/mL to biodegrade in pond sediment of anaerobic media (Stepp et al. 1985; quoted, Muir 
1991); 
t.(aerobic) ~ 20 d for 0.0005–10 µg/mL to biodegrade in filtered sewage water at 20°C (Wang et al. 1985; 
quoted, Muir 1991). 
© 2006 by Taylor & Francis Group, LLC

3554 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Biotransformation: ~ 7% of a selection of 90 strains of micromycetes mostly isolated from soil-soil fungi, depleted 
over 50% of diuron (20 mg/L) in 5-d experiment (Vroumsia et al. 1996) 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.12 d, based on estimation for the vapor-phase reaction with hydroxyl radical in the atmosphere 
(Atkinson 1987; quoted, Howard 1991). 
Surface water: should be photolyzed within a few days (Howard 1991). 
Ground water: reported half-lives or persistence, t. = 20–70, 90–180, 200, and 328 d (Bottoni & Funari 1992) 
Sediment: t. = 3–10 d for 40 µg/mL to biodegrade in pond sediment of anaerobic media at 30°C (Attaway 
et al. 1982a; quoted, Muir 1991); 
t. < 17 d for 40 µg/mL to biodegrade in pond sediment at 30°C (Attaway et al. 1982b); 
t. ~ 5 d for 0.22 µg/mL to biodegrade in pond sediment of anaerobic media (Stepp et al. 1985) 
Soil: estimated persistence of 10 months in soil (Kearney et al. 1969; quoted, Jury et al. 1987); 
persistence of 8 months in soil (Edwards 1973; quoted, Morrill et al. 1982); 
t. = 7.0 months at 15°C and t. = 5.5 months at 30°C in soils (Freed & Haque 1973); 
persistence of 10 months (Wauchope 1978); 
rate constant k = 0.0031 d–1 with t. = 328 d under field conditions (Rao & Davidson 1980); 
calculated t. = 1918 d due to volatilization from soil when incorporated into 1 cm of soil (Jury et al. 1983; 
quoted, Howard 1991); 
t. ~ 200–4000 d in loamy sand and peat at 25–35°C as follows (Madhum & Freed 1987): 
t. = 705, 414, and 225 d at 25, 30, and 35°C, respectively, at herbicide concn at 5 µg/kg, while t. = 1392, 
630, and 406 d at 25, 30, and 35°C, respectively, at herbicide concn at 100 µg/kg in an Adkins loamy 
sand; however, the half-lives were considerable higher in peat. t. = 3991, 2164, and 1165 d at 25, 30, 
and 35°C, respectively, at herbicide concn at 5 µg/kg while t. = 3416, 1832, and 896 d at 25, 30, and 
35°C, respectively, at herbicide concn at 100 µg/kg in a Semiahoo mucky peat (Madhun & Freed 1987) 
t. = 328 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989); 
reported t. = 20–70 d, 90–180 d, 200 d and 328 d (Bottoni & Funari 1992); 
t. = 75–102 d in 0–40 cm soil cores taken, from cultivated field, t. = 55–65 d from meadow and t. = 29–35 
d from gravel track (Hassink et al. 1994); 
selected field t. = 90 d (Wauchope et al. 1992; Hornsby et al. 1996). 
Biota: biochemical t. = 328 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3555 
17.1.1.34 EPTC 
Common Name: EPTC 
Synonym: Eptam, Eradicane, FDA 1541, R 1608, Torbin 
Chemical Name: carbamic acid, dipropylthio-, S-ethyl ester; S-ethyldipropyl(thiocarbamate); S-ethyldipropylcarbamothioate 
Uses: selective systemic herbicide for pre-emergence control of perennial and annual grasses, broadleaf weeds. 
CAS Registry No: 759-94-4 
Molecular Formula: C9H19NOS 
Molecular Weight: 189.318 
Melting Point (°C): liquid 
Boiling Point (°C): 
235.0 (Khan 1980; Herbicide Handbook 1989) 
127.0 (at 20 mmHg, Hartley & Kidd 1987; Budavari 1989; Worthing & Hance 1991; Montgomery 1993; 
Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
0.9546 (30°C, Spencer 1982; Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994; Milne 1995) 
0.960 (25°C, Herbicide Handbook 1989; Montgomery 1993) 
Molar Volume (cm3/mol): 
236.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
375 (shake flask-GC, Freed et al. 1967) 
365 (Martin & Worthing 1977) 
370 (20°C, Khan 1980; Ashton & Crafts 1981; Herbicide Handbook 1989) 
370–375 (Weber et al. 1980) 
375 (20°C, Spencer 1982) 
370 (Beste & Humburg 1983; Jury et al. 1983, 1984) 
375 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
375 (24°C, Worthing & Walker 1987, Worthing & Hance 1991) 
365 (20°C, Budavari 1989; Milne 1995) 
344 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996; Lohninger 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
4.666 (extrapolated, Patchett et al. 1964) 
20.66 (Bailey & White 1965) 
1.84 (20°C, effusion method, Hamaker & Kerlinger 1971) 
2.16, 2.63, 3.69, 8.266 (23, 24, 28, 40°C, Hamaker 1972) 
4.532 (Khan 1980; Ashton & Crafts 1981; Herbicide Handbook 1989) 
2.62 (20°C, volatilization rate, Burkhard & Guth 1981) 
2.80 (Patchett et al. 1983) 
0.612 (20°C, GC-RT correlation, Kim 1985) 
4.70 (Hartley & Kidd 1987) 
2.00 (20°C, selected, Suntio et al. 1988) 
4.532 (35°C, Budavari 1989) 
4.50 (Worthing & Hance 1991) 
O 
S N 
© 2006 by Taylor & Francis Group, LLC

3556 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
4.532 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
4.532 (20°C, Montgomery 1993) 
0.00001 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.32 (20°C, volatilization rate, Burkhard & Guth 1981) 
1.463 (calculated-P/C, Jury et al. 1983, 1984, 1987a,b; Jury & Ghodrati 1989) 
1.02 (20°C, calculated-P/C, Suntio et al. 1988) 
1.463 (calculated-P/C, Taylor & Glotfelty 1988) 
1.013 (20–25°C, calculated-P/C, Montgomery 1993) 
1.023 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.76 (selected, Dao et al. 1983) 
3.21 (shake flask, Log P Database, Hansch & Leo 1987) 
3.20 (Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
3.21 (recommended, Sangster 1993) 
3.21 (recommended, Hansch et al. 1995) 
3.45 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.34 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
1.08 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.38 (soil, Hamaker & Thompson 1972) 
2.45 (soil, Hamaker & Thompson 1972) 
2.23 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.58 (soil, screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
2.23–2.38, 2.45 (quoted values, Bottoni & Funari 1992) 
2.30 (soil, 20–25°C, selected, Wauchope et al. 1992) 
2.38 (Montgomery 1993) 
2.30 (selected, Lohninger 1994) 
2.45 (selected, Wienhold & Gish 1994) 
2.38 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.23, 1.98 (soil, estimated-class specific model, estimated-general model using molecular descriptors, 
Gramatica et al. 2000) 
2.03, 2.00 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 3.7 d (Jury et al. 1983). 
Photolysis: rate constant k = 5.2 . 10–3 s–1 for a light intensity corresponding to a 12-h average NO2 photolysis 
rate with a black lamp spectral distribution (Kwok et al. 1992); 
photodegradation t. = 14.0 and 18.5 min in water solution under irradiation with UV light at 254 nm 
(Abu-Qare & Duncan 2002). 
Oxidation: second order rate constants kOH = (3.10–3.40) . 10–11 cm3 molecule–1 s–1 for gas-phase reaction with 
OH radical, kNO3 = 0.92 . 10–14 cm3 molecule–1 s–1 with NO3 radical and kO3 < 1.3 . 10–19 cm3 molecule–1 s–1 
with O3 at 298 K (Kwok et al. 1992); 
calculated lifetime of 6 h for the vapor-phase reaction with OH radical in the troposphere (Atkinson et al. 
1992; Kwok et al. 1992). 
Hydrolysis: 
Biodegradation: t. = 30 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Nash 1980; quoted, 
Jury et al. 1983, 1984, 1987a; quoted, Grover 1991). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3557 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: calculated tropospheric lifetimes are: > 8 h due to photolysis, 5.8 d due to reaction with OH radical, 5.0 d 
with NO3 radical and > 125 d with O3 (Kwok et al. 1992); 
calculated lifetime of 6 h for the vapor-phase reaction with OH radical in the troposphere (Atkinson et al. 
1992; Kwok et al. 1992). 
Surface water: t. = 14.0 and 18 min for elimination in water under irradiation with UV light at 254 nm 
(Abu-Qare & Duncan 2002). 
Ground water: reported half-lives or persistence, t. = 7 and 30 d (Bottoni & Funari 1992) 
Sediment: 
Soil: estimated persistence of 4 months in soil (Kearney et al. 1969; quoted, Jury et al. 1987a); 
t. = 30 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989); 
t. ~ 1 wk in moist loam soil at 21 to 27°C (Herbicide Handbook 1974, 1989); 
reported t. = 7, 30 d (Bottoni & Funari 1992); 
selected field t. = 6 d (Wauchope et al. 1992; quoted, Richards & Baker 1993; Hornsby et al. 1996). 
Biota: biochemical t. = 30 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989) 
© 2006 by Taylor & Francis Group, LLC

3558 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.35 Ethalfluralin 
Common Name: Ethalfluralin 
Synonym: Benzenamine, Somilan, Sonalan, Sonalen 
Chemical Name: N-ethyl-N-(2-methyl-2-propenyl)-2.6-dinitro-(trifluoromethyl)-benzenamine 
CAS Registry No: 55283-68-6 
Uses: herbicide 
Molecular Formula: C13H14F3N3O4 
Molecular Weight: 333.263 
Melting Point (°C): 
57 (Lide 2003) 
Boiling Point (°C): 
256 (decomposes, Hartley & Kidd 1987; Tomlin 1994; Milne 1995) 
Density (g/cm3 at 20°C): 
1.32 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.485 (mp at 57°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
0.21 (Ashton & Crafts 1981) 
0.20 (pH 7, Spencer; Hartley & Kidd 1987; Worthing & Walker 1987) 
0.30 (pH 7, Herbicide Handbook 1989) 
0.30 (selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.30 (pH 7, Tomlin 1994; Milne 1995) 
0.40 (Majewski & Capel 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
1.10 . 10–4 (Worthing & Walker 1983, 1987; Hartley & Kidd 1987) 
0.0109 (Spencer 1982; Herbicide Handbook 1989) 
0.0117 (selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.0117 (Tomlin 1994) 
2.22 . 10–4 (20–25°C, Majewski & Capel 1995) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.183 (calculated-P/C, Majewski & Capel 1995) 
13 (calculated-P/C, Wolt 1997) 
Octanol/Water Partition Coefficient, log KOW: 
5.11 (pH 7, Tomlin 1994; Milne 1995) 
4.92 (quoted values; selected, Wolt 1997) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
NO2 
N
NO2 
F 
F 
F 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3559 
Sorption Partition Coefficient, log KOC: 
3.60 (selected, soil, Wauchope et al. 1992; Hornsby et al. 1996) 
3.60–3.90 (soil, Tomlin 1994) 
3.61–3.92 (soil, Wolt 1997) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 6.3 h in aqueous phase and t. = 2 h in vapor phase (Tomlin 1994); 
Aqueous photolysis t. = 6.3 h in pH 5 sterile buffer solution; soil photolysis t. = 14.2 d in air-dry sandy 
loam soil when exposed to a xenon light source; air photolysis t. = 2 h when exposed to a light source 
simulating summer sunlight at 34°C (Wolt 1997). 
Oxidation: 
Hydrolysis: no hydrolysis after 33 d at pH 3, 6 and 9 (51°C, Tomlin 1994); stable in sterile, buffered solutions 
across a range of pH (Wolt 1997). 
Biodegradation:. 
Biotransformation: t. = 45 d for aerobic metabolism in sandy loam soils and t. = 14 d for more rapid metabolism 
anaerobically in the same soil (quoted, Tomlin 1994; Wolt 1997). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: air photolysis t. = 2 h when exposed to a light source simulating summer sunlight at 34°C (Wolt 1997). 
Surface water: water photolysis t. = 6.3 h in pH 5 sterile buffer solution; t. = 2 d for dissipation from the water 
column in a pond water-sediment system under outdoor conditions (Wolt 1997). 
Ground water: 
Sediment: t. = 38 h in anaerobic pond water sediment system (Wolt 1997). 
Soil: reported field t. = 30–60 d, 60 d, 25–46 d; recommended t. = 60 d (Wauchope et al. 1992; Hornsby et al. 
1996); 
t. = 45 d for aerobic metabolism in sandy loam soils and t. = 14 d for more rapid metabolism anaerobically 
in the same soil (Tomlin 1994); 
terrestrial filed dissipation t. = 4–146 d, t. = 45 d in moist aerobic soil, t. = 14 d in anaerobic soil shifted 
to anaerobic conditions (Wolt 1997). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3560 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.36 Fenoprop 
Common Name: Fenoprop 
Synonym: Silvex, 2,4,5-TP, Kuron, Kurosal, Fruitone T 
Chemical Name: 2-(2,4,5-trichlorophenoxy) propionic acid 
CAS Registry No: 93-72-1 
Uses: herbicide/growth regulator 
Molecular Formula: C9H7Cl3O3 
Molecular Weight: 269.509 
Melting Point (°C): 
181.6 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
2.84 (Worthing 1983, 1987; Augustijn-Beckers et al. 1994) 
Enthalpy of Vaporization, .HV (kJ/mol): 
75.75 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
44.6 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0291 (mp at 181.6°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
140 (Kenaga & Goring 1980, Kenaga 1980a,b, Spencer 1982) 
140 (Worthing & Walker 1983, 1987; Budavari 1989) 
200 (Verschueren 1983) 
176 (Hartley & Kidd 1987) 
12.0 (calculated-MCI ., Patil 1994) 
140 (selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
2.30 . 10–3, 4.40 . 10–2, 0.55, 4.90, 34.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 13.953 – 4948/(T/K); measured range 85.4–181°C (gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 11.727 – 3956.9/(T/K); measured range 181–211°C (gas saturation-GC, Rordorf 1989) 
< 1.33 . 10–6 (estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
2.44 (Kenaga 1980a) 
3.86 (estimated, Garten & Trabalka 1983) 
3.13 (counter-current chromatography, Ilchmann et al. 1993) 
2.75 (calculated-MCI ., Patil 1994) 
3.80 (selected, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.76 (calculated, Kenaga 1980a) 
1.58, 2.23 (calculated-solubility, KOW, Kenaga 1980b) 
Cl 
Cl Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3561 
1.76 (fish, flowing water, Garten & Grabalka 1983) 
2.35 (Isensee 1991) 
Sorption Partition Coefficient, log KOC: 
3.41 (soil, Kenaga & Goring 1980) 
2.46 (calculated-KOW, Kenaga 1980b) 
1.91 (soil: calculated-MCI ., Meylan et al. 1992) 
2.48 (soil, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
3.28 (soil, calculated-MCI ., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Biodegradation: t. > 205 d for ring cleavage in soil suspensions (Verschueren 1983) 
Half-Lives in the Environment: 
Soil: persistence 47–205 d in soil (Alexander et al. 1961) 
degradation t. = 21 d and 14 d in Quachita Highlands’ forest and grassland soil respectively, t. = 15 d in 
gross timbers forest soil, average t. = 17 d in 3 soils (Altom & Stritzke 1973); 
t. = 5–11 d in a microagroecosystem study (Nash 1983); 
t. > 205 d for ring cleavage in soil suspensions (Verschueren 1983); 
field t. = 21 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
© 2006 by Taylor & Francis Group, LLC

3562 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.37 Fenuron 
Common Name: Fenuron 
Synonym: Dozer, Dybar, Falisilvan, Fenidim, Fenulon, Urab 
Chemical Name: 1,1-dimethyl-3-phenylurea; N,N-dimethyl-N.-phenylurea 
Uses: herbicide to control woody plants and deep-rooted perennial weeds, often used in combination with chlorpropham 
to extend its weed control spectrum and range of crops. 
CAS Registry No: 101-42-8 
Molecular Formula: C9H12N2O 
Molecular Weight: 164.203 
Melting Point (°C): 
132 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.13 (25°C, Hartley & Kidd 1987) 
1.08 (Worthing & Hance 1991; Tomlin 1994) 
Molar Volume (cm3/mol): 
182.0 (calculated-Le Bas method at normal boiling point) 
159.0 (modified Le Bas method, Spurlock & Biggar 1994a) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
24.267 (DSC method, Plato & Glasgow 1969) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0892 (mp at 132°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
2600 (Freed 1966) 
2400 (Gunther et al. 1968) 
3850 (Martin & Worthing 1977; Kenaga 1980; Kenaga & Goring 1980; Verschueren 1983) 
3850 (Khan 1980; Weber et al. 1980; Ashton & Crafts 1981; Willis & McDowell 1982) 
3700 (shake flask-HPLC, Ellgehausen et al. 1981) 
3850 (Hartley & Kidd 1987; Worthing & Walker 1987, Worthing & Hance 1991; Tomlin 1994) 
3000 (20°C, selected, Suntio et al. 1988) 
3900 (Spurlock 1992; Spurlock & Biggar 1994b) 
3850 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0213 (60°C, Khan 1980; Verschueren 1983) 
0.0210 (60°C, Hartley & Kidd 1987) 
0.0050 (20°C, selected, Suntio et al. 1988) 
0.0210 (60°C, Worthing & Hance 1991; Tomlin 1994) 
0.0267 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C at 25°C or as indicated): 
0.00027 (20°C, calculated-P/C, Suntio et al. 1988) 
Octanol/Water Partition Coefficient, log KOW: 
0.98 (shake flask-UV, Hansch & Anderson 1967) 
1.00 (Leo et al. 1971) 
1.00 (shake flask-UV, Lord et al. 1980) 
HN
N 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3563 
0.96 (shake flask-UV, Briggs 1981; Karickhoff 1981) 
0.88 (shake flask-HPLC, Ellgehausen et al. 1981) 
0.62 (HPLC-k. correlation, McDuffie 1981) 
0.70 (Elgar 1983) 
1.18 (RP-HPLC-k. correlation, Braumann et al. 1983) 
1.00 (shake flask-HPLC, Spurlock & Biggar 1994a) 
0.98 (recommended, Sangster 1993) 
1.18 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
0.98 (recommended, Hansch et al. 1995) 
1.18 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
0.778 (calculated-S, Kenaga 1980) 
0.0 (calculated-KOC, Kenaga 1980) 
1.34 (earthworms, Lord et al. 1980) 
0.699, 0.602 (cuticle/water: tomato, pepper, Evelyne et al. 1992) 
Sorption Partition Coefficient, log KOC: 
1.43 (soil, Hamaker & Thompson 1972) 
1.67 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
0.88 (reported as log KOM, Briggs 1981) 
0.61 (estimated-KOW, Karickhoff 1981) 
1.80, 1.86 (estimated-S, Karickhoff 1981) 
0.72, 0.84 (estimated-S and mp, Karickhoff 1981) 
1.74 (calculated-MCI ., Gerstl & Helling 1987) 
1.62 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
1.40 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.40; 1.40, 1.70 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
1.42, 1.41 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Biodegradation: aerobic t. . 10 d for 0.01 µg/mL to biodegrade in river water (Eichelberger & Lichtenberg 
1971; quoted, Muir 1991). 
Half-Lives in the Environment: 
Air: 
Surface water: aerobic t. .10 d for 0.01 µg/mL to biodegrade in river water (Eichelberger & Lichtenberg 1971; 
quoted, Muir 1991); 
persistence of up to 4 weeks in river water (Eichelberger & Lichtenberg 1971). 
Ground water: 
Sediment: 
Soil: t. = 4.5 months at 15°C and 2.2 months at 30°C in soils (Freed & Haque 1973); 
persistence of 8 months in soil (Edwards 1973; quoted, Morrill et al. 1982); 
selected field t. = 60 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3564 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.38 Fluchloralin 
Common Name: Fluchloralin 
Synonym: BAS-392H, Basalin 
Chemical Name: N-(2-chloroethyl)-2,6-dinitro-N-propyl-4-(trifluoromethyl)benzenamine; N-(2-chloroethyl).,.,.-trifluoro- 
2,6-dinitro-N-propyl-p-toluidine 
Uses: herbicide for pre-plant or pre-emergence control of annual grass and broadleaf weeds in cotton, groundnuts, jute, 
potatoes, rice soybeans, and sunflowers, etc. 
CAS Registry No: 33245-39-5 
Molecular Formula: C12H13ClF3N3O4 
Molecular Weight: 355.697 
Melting Point (°C): 
42 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
326.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.681 (mp at 42°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1.00 (20°C, Weber 1972; Ashton & Crafts 1981) 
1.00 (Edwards 1977) 
< 1.0 (Martin & Worthing 1977; Herbicide Handbook 1978, 1989) 
0.70 (20°C, Spencer 1982) 
< 1.0 (Worthing & Walker 1987, 1991; Tomlin 1994) 
10 (Budavari 1989; Milne 1995) 
0.90 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
0.50 (selected, Lohninger 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0033 (20°C, Weber 1972; Worthing & Walker 1987) 
0.373 (20°C, Ashton & Crafts 1981) 
0.0008, 0.0033, 0.0133, 0.533 (20, 30, 40, 50°C, gas saturation, Spencer 1982) 
0.0035 (Herbicide Handbook 1983; quoted, Nash 1988) 
0.0037, 0.0033 (20°C, 30°C, Herbicide Handbook 1989) 
0.004 (20°C, Worthing & Hance 1991; Tomlin 1994) 
0.004 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
1.174 (20°C, calculated-P/C, Muir 1991) 
1.343 calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.63 (selected, Magee 1991) 
N 
NO2 O2N
F F 
F 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3565 
4.70 (CLOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
> 2.79, 2.40 (calculated-S, calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.56 (soil, Harvey 1974) 
3.60 (soil, Kenaga 1980) 
> 3.64 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
4.25 (calculated-MCI ., Bahnick & Doucette 1988) 
3.56; 3.58 (reported as log KOM, estimated as log KOM, Magee 1991) 
3.48 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
3.80 (estimated-chemical structure, Lohninger 1994) 
3.55 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.55; 4.02 (soil, quoted obs.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. ~ 1 d from 1 m depth of water (20°C, Muir 1991). 
Photolysis: t. = 13 d for 84% of 5 µg/mL to degrade in distilled water under sunlight (Nilles & Zabik 1974; 
quoted, Cessna & Muir 1991); 
t. = 8 h for 50% of 2000 µg/mL to degrade in methanol under sunlight (Plimmer & Klingebiel 1974; quoted, 
Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: 
Biodegradation: t. = 8 d for 0.5 µg/mL to biodegrade in soil at 20–42°C (Savage 1978; quoted, Muir 1991); 
t. = 3.6 wk for 2.0 µg/mL to biodegrade in soil at 25°C (Brewer et al. 1982; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: t. = 8 d for 0.5 µg/mL to biodegrade in soil at 20–42°C (Savage 1978; quoted, Muir 1991); 
t. = 1.5 d on Bosket silt loam, t. = 4 d on Sharkey clay for the first 3 to 5 days when sprayed onto soil 
surface, rate of loss much slower for the remainder of the 7- or 12-d sampling period with t. = 13 d on 
Bosket silt loam, t. = 8 d on Sharkey clay (Savage & Jordon 1980) 
measured dissipation rate k = 0.099–0.13 d–1 (derived from Savage & Jordan 1980, Nash 1988); 
field studies, t. = 12.2 wk - 1978 first study; t. = 13.0 wk -1978 second study; t. = 17.6 wk -1979, in a 
Crowley silt loam at Stuttgart, Arkansas (Brewer et al. 1982) 
Laboratory studies: t. = 28.7 wk at 4°C, 10.5 wk at 25°C for soils of field capacity moisture (27% w/w for 
Crowley silt loam) and t. = 20.8 wk at 4°C, t. = 8.4 wk at 25°C for flooded soil of Crowley silt loam; 
t. = 29.3 wk at 4°C, t. = 10.5 wk at 25°C for soil of field capacity moisture (34% w/w for Sharkey silty 
clay) and t. = 20.8 wk at 4°C and t. = 4.3 wk at 25°C for flooded soil, Sharkey silty clay (Brewer et al. 
1982); 
t. = 3.6 wk for 2.0 µg/mL to biodegrade in soil at 25°C (derived form Brewer et al. 1982, Muir 1991); 
estimated dissipation rate k = 0.29, and 0.120 d–1 (Nash 1988); 
estimated field t. ~ 60 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

3566 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.39 Fluometuron 
Common Name: Fluometuron 
Synonym: CIBA 2059, Cotoran, Cottonex, Higalcoton, Lanex, Meturon, Pakhtaran 
Chemical Name: 1,1-dimethyl-3-(.,.,.-trifluoro-m-tolyl)urea; N,N-dimethyl-N.-[3-(trifluoromethyl)phenyl]urea 
Uses: herbicide to control many annual broadleaf weeds in sugar cane and cotton. 
CAS Registry No: 2164-17-2 
Molecular Formula: C10H11F3N2O 
Molecular Weight: 232.201 
Melting Point (°C): 
163–164.5 (Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & Hance 1991; Montgomery 1993; 
Tomlin 1994; Milne 1995) 
164 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.390 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 1995) 
Molar Volume (cm3/mol): 
229.7 (calculated-Le Bas method at normal boiling point) 
167.1 (calculated-density) 
Dissociation Constant pKa: 
–1.00 (Sangster 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
29.706 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0433 (mp at 164°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
90 (Melnikov 1971; Spencer 1973, 1982; quoted, Wauchope 1978; Khan 1980; Weber et al. 1980) 
90 (20°C, Martin & Worthing 1977; Herbicide Handbook 1978,89) 
106 (shake flask-UV, Briggs 1981) 
90 (Herbicide Handbook 1983) 
105 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987, 1991) 
110 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
80 (Montgomery 1993) 
110 (Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
6.70 . 10–5 (20–25°C, Weber et al. 1980) 
6.70 . 10–5 (Herbicide Handbook 1983) 
6.70 . 10–5 (20°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Montgomery 1993) 
6.60 . 10–5 (20°C, Worthing & Hance 1991) 
1.25 . 10–4 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.25 . 10–4 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
< 0.283 (20–25°C, calculated-P/C, Montgomery 1993) 
1.73 . 10–4 (calculated-P/C, this work) 
HN
N 
O 
F F 
F 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3567 
Octanol/Water Partition Coefficient, log KOW: 
1.34 (Briggs 1969) 
2.42 (shake flask-UV, Briggs 1981) 
1.88 (shake flask-UV, pH 5, Barak et al. 1983) 
2.40 (selected, Gerstl & Helling 1987) 
2.23 (Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
2.23, 2.38 (Montgomery 1993) 
2.03 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
2.20 (recommended, Sangster 1993) 
2.42 (recommended, Hansch et al. 1995) 
2.03 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.67 (calculated-S, Kenaga 1980) 
0.954 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.24 (soil, Abernethy & Davidson 1971; Davidson & McDougal 1973; Savage & Wauchope 1974; 
Carringer et al. 1975; Wood & Davidson 1975) 
2.30 (soil, Kenaga 1980) 
2.57 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
1.82 (soil, converted from reported KOM multiplied by 1.724, Briggs 1981) 
2.30 (calculated-MCI ., Gerstl & Helling 1987) 
2.00 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.46–2.08 (Montgomery 1993) 
2.00 (estimated-chemical structure, Lohninger 1994) 
1.49–2.07 (Tomlin 1994) 
2.00 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.33; 2.66., 2.03, 2.64, 2.36, 1.94 (quoted lit., calculated-KOW; HPLC-screening method with different 
LC-columns, Szabo et al. 1999) 
2.14, 2.51 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, 
Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = (11 ± 2 h) in 10 ppm aqueous solutions under summer sunlight of 9.1 h/d exposure and 
t. = (33 ± 16) h under spring sunlight of 3.7 h/d exposure (Burkhard et al. 1975). 
Oxidation: 
Hydrolysis: t. = 1.6 yr at 20°C and pH 1, t. = 2.4 yr at pH 5, and t. = 2.8 yr at pH 9 (Montgomery 1993). 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 730–1010 d at pH 5–9 and 20°C in aqueous solutions (Herbicide Handbook 1989). 
Ground water: 
Sediment: 
Soil: measured dissipation rate k = 0.023–0.043 d–1 (Horowitz & Herzlinger 1974: quoted, Nash 1988); 
estimated dissipation rate k = 0.0012, and 0.011 d–1 (Nash 1988); 
persistence of 4 months in soil (Wauchope 1978); 
selected field t. = 85 d (Wauchope et al. 1992; Hornsby et al. 1996); 
soil t. = 30 d (Pait et al. 1992); 
median t. ~ 30 d in soil (Herbicide Handbook 1989; Tomlin 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3568 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.40 Fluorodifen 
Common Name: Fluorodifen 
Synonym: Preforan, Soyex 
Chemical Name: 4-nitrophenyl .,.,.-trifluoro-2-nitro-p-tolyl ether 
Uses: herbicide. 
CAS Registry No: 15457-05-3 
Molecular Formula: C13H7F3N2O5 
Molecular Weight: 328.200 
Melting Point (°C): 
94 (Spencer 1982; Milne 1995; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
282.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.210 (mp at 94°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
2.0 (20°C, Spencer 1973, 1982) 
< 2.0 (Weber et al. 1980) 
2.0 (shake flask-HPLC, Ellgehausen et al. 1981) 
2.0 (20°C, Worthing & Walker 1987, Worthing & Hance 1991) 
Vapor Pressure (Pa at 25°C or as indicated): 
9.33 . 10–6 (20°C, Spencer 1982) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
3.30 (shake flask-HPLC, Ellgehausen et al. 1980; Geyer et al. 1991) 
4.40 (20 ± 2°C, shake flask-UV, Briggs 1981) 
3.65 (shake flask-HPLC, Ellgehausen et al. 1981) 
3.60 (HPLC-RT correlation, Nandihalli et al. 1993) 
3.65 (recommended, Sangster 1993) 
3.65 (recommended, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
2.019 (algae, log BF-bioaccumulation factor, Ellgehausen et al. 1980) 
2.386 (catfish, log BF-bioaccumulation factor, Ellgehausen et al. 1980) 
1.178 (daphnids, log BF-bioaccumulation factor, Ellgehausen et al. 1980) 
Sorption Partition Coefficient, log KOC: 
3.13 (calculated-MCI ., Gerstl & Helling 1987) 
Environmental Fate Rate Constants, k, or Half-Lives. t.: 
Half-Lives in the Environment: 
O
O2N 
O2N 
F
F
F 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3569 
17.1.1.41 Fluridone 
Common Name: Fluridone 
Synonym: Brake, EL-171, Fluridon, Pride, Sonar 
Chemical Name: 1-methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl] 4(1H)-pyridinone; 1-methyl-3-phenyl-5-( ., ., .-trifluorom-
tolyl)-4-pyridone 
Uses: herbicide to control annual grass and broadleaf weeds and certain perennial species in cotton; also used to control 
aquatic weeds and plants in lakes, ponds, ditches, etc. 
CAS Registry No: 59756-60-4 
Molecular Formula: C19H14F3NO 
Molecular Weight: 329.315 
Melting Point (°C): 
155 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
333.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
12.3 (pKb, Wauchope et al. 1992) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0530 (mp at 155°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
12.0 (20°C, Weber 1972; Worthing & Walker 1987) 
12.0 (Kenaga 1980) 
12.0 (Herbicide Handbook 1983, 1989; Budavari 1989; Milne 1995) 
12.0 (Hartley & Kidd 1987; Worthing & Walker 1987, Worthing & Hance 1991) 
10.0 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
10.0 (selected, Lohninger 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
1.31 . 10–5 (20°C, Weber 1972; Worthing & Walker 1987) 
1.00 . 10–5 (Herbicide Handbook 1983) 
0.013 (Hartley & Kidd 1987; Worthing & Hance 1991) 
1.33 . 10–5 (Herbicide Handbook 1989) 
1.33 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.30 . 10–5 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
3.59 . 10–4 (20°C, calculated-P/C, Muir 1991) 
Octanol/Water Partition Coefficient, log KOW: 
1.87 (Reinert 1989) 
1.87 (Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
2.98 (shake flask, Takahashi et al. 1993; quoted, Sangster 1993) 
3.16 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
F 
F 
F 
N
O 
© 2006 by Taylor & Francis Group, LLC

3570 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioconcentration Factor, log BCF: 
2.18 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
0.778 (measured, West et al. 1983; quoted, Isensee 1991) 
Sorption Partition Coefficient, log KOC at 25°C or as indicated: 
1.60 (soil, Kenaga 1980) 
2.97–3.39 (pond sediment, Muir et al. 1980) 
3.36, 2.95 (lake and river sediment, Muir et al. 1980) 
2.94 (Reinert 1989) 
2.90, 3.81, 3.03 (Norfolk sand pH 6.0, Norfold with montmorillonite pH 5.9, Norfolk sand with added organic 
matter pH 5.3, Reinert 1989) 
3.43, 2.57, 2.43 (California soil at pH 6, 7, 7.3, Reinert 1989) 
3.00 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
3.00 (selected, Lohninger 1994) 
2.85 (soil, calculated-MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. = 10,000 d from 1 m depth of water at 20°C (Muir 1991). 
Photolysis: t. . 23 h to degrade in distilled water under > 290 nm light (West et al. 1979; quoted, Cessna & 
Muir 1991); 
t. . 6 h for 5 µg/mL to degrade in nonsterile pond water under sunlight (Muir & Grift 1982; quoted, Cessna & 
Muir 1991); 
t. = 27 d for 85% of 10 µg/mL to degrade in distilled water and for 85% of 10 µg/mL to degrade in lake 
water at pH 8.4 both under sunlight (Sanders & Mosier 1983; quoted, Cessna & Muir 1991; Howard et 
al. 1991) 
resistance to decomposition by UV light with t. = 23 h in deionized water (Herbicide Handbook 1989). 
Oxidation: photooxidation t. = 0.359–3.20 h, based on estimated rate constant for reaction with hydroxyl radicals 
(Atkinson 1987; quoted, Howard et al. 1991) and ozone (Atkinson & Carter 1984; quoted, Howard et al. 
1991). 
Hydrolysis: t. > 113 d for 1 µg/mL to hydrolyze in pond water at 4°C (Ghassemi et al. 1981; quoted, Muir 
1991); t. = 23 h in water (Tomlin 1994). 
Biodegradation: aqueous aerobic t. = 44–192 d, based on soil die-away test data and field study soil persistence 
(Banks et al. 1979; quoted, Howard et al. 1991); 
t. = 12 months for 5 µg/mL to biodegrade in static sediment and water, and t. . 9 months in aerobic and 
anaerobic sediment and water all at 25°C (Muir & Grift 1982; quoted, Muir 1991); 
aqueous anaerobic t. = 176 d to 2.1 yr, based on estimated unacclimated aqueous aerobic biodegradation 
half-life (Howard et al. 1991); 
microbial degradation t. > 343 d at pH 7.3 with 2.6% organic matter in a silt loam soil (Tomlin 1994). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k1 = 0.9–1.3 h–1 (Chironomus tentans larvae in pond sediment-water system, 96-h exposure, calculated by 
using first-order kinetic and concn factors, Muir et al. 1983) 
k1 = 0.70–5.6 h–1 (Chironomus tentans larvae in river sediment-water system, 96-h exposure, calculated by 
using first-order kinetic and concn factors, Muir et al. 1983) 
k1 = 1.7–3.40 h–1 (Chironomus tentans larvae in sediment (sand)-water system, 96-h exposure, calculated 
by using first-order kinetic and concn factors, Muir et al. 1983) 
k1 = 1.7–2.1 h–1 (Chironomus tentans larvae in sediment (sand)-water system, 96-h exposure, calculated by 
using initial uptake data of 0–12 h, Muir et al. 1983) 
k2 = 0.052 h–1 (Chironomus tentans larvae in pond sediment-water system, calculated by concentration decay 
curve, Muir et al. 1983) 
k2 = 0.118 h–1 (Chironomus tentans larvae in river water system, calculated by concentration decay curve, 
Muir et al. 1983) 
k2 = 0.055 h–1 (Chironomus tentans larvae in river sediment-water system, calculated by concentration decay 
curve, Muir et al. 1983) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3571 
k2 = 0.041 h–1 (Chironomus tentans larvae in sediment (sand)-water system, calculated by concentration 
decay curve, Muir et al. 1983) 
Half-Lives in the Environment: 
Air: t. = 0.359–3.20 h, based on estimated rate constant for reaction with hydroxyl radicals (Atkinson 1987; 
quoted, Howard et al. 1991) and ozone (Atkinson & Carter 1984; quoted, Howard et al. 1991). 
Surface water: t. ~ 21 d in water (Hartley & Kidd 1987); 
t. = 288–864 h, based on estimated photolysis half-life in water (Howard et al. 1991); 
anaerobic t. = 9 months and aerobic t. ~ 20 d (Tomlin 1994). 
Ground water: t. = 2112–9216 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Sediment: t. = 12 months for 5 µg/mL to biodegrade in static sediment and water, and t. . 9 months in aerobic 
and anaerobic sediment and water all at 25°C (Muir & Grift 1982; quoted, Muir 1991). 
Soil: measured dissipation rate k = 0.0041 d–1 (Banks et al. 1979; quoted, Nash 1988) with estimated t. = 44–192 
d (Banks et al. 1979; quoted, Howard et al. 1991); 
estimated dissipation rate k = 0.0067 and 0.025 d–1 (Nash 1988); 
selected field t. = 21 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. ~ 90 d in the hydrosoil (Tomlin 1994). 
Biota: elimination t. = 13.2 h in pond sediment-water, t. = 5.9 h in river water, t. = 12.5 h in river sedimentwater, 
t. = 16.9 in sand-water systems (Chironomus tentans larvae, Muir et al. 1983) 
© 2006 by Taylor & Francis Group, LLC

3572 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.42 Glyphosate 
Common Name: Glyphosate 
Synonym: Mon-0573, 0468, 2139; Polado, Roundup 
Chemical Name: N-(phosphoromethyl)glycine 
Uses: nonselective, post-emergent, broad spectrum herbicide to control annual and perennial grasses, sedges, broadleaf, 
and emerged aquatic weeds; also used to control insects on fruit trees. 
CAS Registry No: 1071-83-6 
Molecular Formula: C3H8NO5P 
Molecular Weight: 169.074 
Melting Point (°C): 
230 (dec., Montgomery 1993; Milne 1995; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.74 (Herbicide Handbook 1989; Montgomery 1993) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
5.70 (Worthing & Hance 1991) 
2.60, 5.90, 10.40 (pK1, pK2, pK3, Yao & Haag 1991; Haag & Yao 1992) 
2.32, 5.86, 10.86 (pK1, pK2, pK3, Montgomery 1993; Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0097 (mp at 230°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
10000 (Spencer 1973, 1982; Herbicide Handbook 1978; Ashton & Crafts 1981) 
12000 (Martin & Worthing 1977; Worthing & Walker 1987, Worthing & Hance 1991; Tomlin 1994) 
15700 (Herbicide Handbook 1989) 
12000 (Budavari 1989; Montgomery 1993; Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
2.59 . 10–5 (45°C, Herbicide Handbook 1989) 
4.00 . 10–5 (Worthing & Hance 1991) 
0.001 (Montgomery 1993; quoted, Majewski & Capel 1995) 
negligible (Tomlin 1994) 
0.0 (selected, Halfon et al. 1996) 
Henry’s Law Constant (Pa m3/mol at 25°C): 
1.41 . 10–5 (calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
–1.70 (shake flask, pH 5.3, Martin & Edgington 1981) 
–4.10 (shake flask, pH 2.5, Stevens et al. 1988) 
–3.25 (Reinert 1989) 
–4.59 (Worthing & Hance 1991) 
–1.60 (Montgomery 1993) 
–4.10, –1.70 (pH 2.5, pH 5.3, quoted, Sangster 1993) 
–1.70 (pH 5.3, selected, Hansch et al. 1995) 
0.94 (RP-HPLC-RT correlation, Finizio et al. 1997) 
P 
HN
OH 
O 
HO 
O 
HO 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3573 
Bioconcentration Factor, log BCF: 
0.477 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
2.26 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.42 (soil, Sprankle et al. 1975; Hance 1976; Nomura & Hilton 1977) 
1.40 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
1.22 (selected, USDA 1989; quoted, Neary et al. 1993) 
–0.43 (Reinert 1989) 
3.69, 3.53, 3.42 (3 agricultural soils: Houston clay loam at pH 7.5, Muskingum silt loam at pH 5.8, Sassafras 
sandy loam at pH 5.6, Reinert 1989) 
4.38 (organic carbon, Wauchope et al. 1991) 
3.43–3.69 (Montgomery 1993) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 48 h for 0% of 168 µg/mL to degrade in distilled water under > 290 nm light (Rueppel et al. 
1977; quoted, Cessna & Muir 1991); 
t. = 9 wk for > 90% of 2 µg/mL to degrade in distilled water under sunlight (Lund-HOie & Friestad 1986; 
quoted, Cessna & Muir 1991); 
t. = 4.0 d and 3–4 wk for aqueous solutions of 1.0 and 2000 ppm under indoor UV light (Lund-HOie & 
Friestad 1986; quoted, Montgomery 1993). 
Oxidation: 
k(aq.) = 7.3 . 108 M–1 s–1 for the reaction (photo-Fenton with reference to glycolic acid) with hydroxyl 
radical in aqueous solutions at pH 3.8 and at 24 ± 1°C (Buxton et al. 1988; quoted, Faust & Hoigne 
1990; Haag & Yao 1992) 
k(aq.) = (0.027–8.2) . 103 M–1 s–1 for direct reaction with ozone in water at pH 1.8–7.0 and 22 ± 2°C, with 
a half-life of 4.0 s at pH 7 (Yao & Haag 1991). 
k(aq.) = (1.8 ± 0.5) . 108 M–1 s–1 for the reaction (photo-Fenton with reference to glycolic acid) with hydroxyl 
radical in aqueous solutions at pH 3.8 and at 24 ± 1°C (Haag & Yao 1992). 
Hydrolysis: t. = 7 d for 10 µg/mL to hydrolyze in sterile water + soil (Rueppel et al. 1977; quoted, Muir 1991); 
t. = 32 d for 25 and 250 µg/mL to hydrolyze in sterile distilled water at pH 3, 6 and 9 in the dark at 5 and 
35°C (Ghassemi et al. 1981; quoted, Muir 1991) 
Biodegradation: t. < 28 d for 10 µg/mL to biodegrade in soil-water suspension (Rueppel et al. 1977; quoted, 
Muir 1991); 
t. > 9 wk for 2 µg/mL to biodegrade in polluted lake water (Rueppel et al. 1977; quoted, Muir 1991); 
rate constant k = 0.1 d–1 from soil incubation die-away studies (Rao & Davidson 1980; quoted, Scow 1982); 
t. = 70 d in pond water at pH 7.2, t. = 63 d in swamp water at pH 6.3 and t. = 49 d in Sphagnum bog 
water at pH 4.2 (Ghassemi et al. 1981; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. > 9 wk for 2 µg/mL to biodegrade in polluted lake water (Rueppel et al. 1977; quoted, Muir 
1991); 
t. = 70 d in pond water at pH 7.2, t. = 63 d in swamp water at pH 6.3 and t. = 49 d in Sphagnum bog 
water at pH 4.2 (Ghossemi et al. 1981; quoted, Muir 1991); 
measured rate constant k = (0.027 - 8.2) . 103 M–1 s–1 for direct reaction with ozone in water at pH 1.8–7.0 
and 22 ± 2°C, with t. = 4.0 s at pH 7 (Yao & Haag 1991). 
Ground water: 
Sediment: 
© 2006 by Taylor & Francis Group, LLC

3574 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Soil: t. < 28 d for 10 µg/mL to biodegrade in soil-water suspension (Rueppel et al. 1977; quoted, Muir 1991); 
estimated first-order t. = 7 d from biodegradation rate constant k = 0.1 d–1 from soil incubation die-away 
studies (Rao & davidson 1980; quoted, Scow 1982); 
moderately persistent in soil with t. = 20–100 d (Willis & McDowell 1982); 
average t. < 60 d (Hartley & Kidd 1987; Herbicide Handbook 1989; quoted, Montgomery 1993); 
selected t. = 47 d (Wauchope et al. 1991; quoted, Dowd et al. 1993; Halfon et al. 1996). 
Biota: average t. = 60 d in the forest (USDA 1989; quoted, Neary et al. 1993). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3575 
17.1.1.43 Isopropalin 
Common Name: Isopropalin 
Synonym: EL 179, Isopropaline, Isopropalin solution, Paarlan 
Chemical Name: 4-isopropyl-2,6-dinitro-N,N-dipropylaniline; 4-(1-methylethyl)-2,6-dinitro-N,N-dipropylbenzenamine; 
2,6-dinitro-N,N-dipropylcumidine 
Uses: herbicide used pre-planting and incorporated with soil preparation to control broadleaf weeds and grasses in 
transplanted tobacco, and in direct-seeded tomatoes and capsicums. 
CAS Registry No: 33820-53-0 
Molecular Formula: C15H23N3O4 
Molecular Weight: 309.362 
Melting Point (°C): liquid 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
361.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.11 (Martin & Worthing 1977; Herbicide Handbook 1978) 
1.10 (Ashton & Crafts 1981) 
0.10 (Spencer 1982; Hartley & Kidd 1987; Budavari 1989; Milne 1955) 
0.10 (Worthing & Walker 1987, Worthing & Hance 1991) 
0.08 (Herbicide Handbook 1989) 
0.10 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.02 (predicted-AQUAFAC, Lee et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0019 (30°C, Ashton & Crafts 1981) 
0.0019 (30°C, Hartley & Kidd 1987) 
0.0040 (25.6°C, Herbicide Handbook 1989) 
0.0012 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
5.34 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
Bioconcentration Factor, log BCF: 
3.50 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
3.88 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
4.88 (soil, Harvey 1974) 
4.17 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
4.17–4.88 (soil, quoted values, Bottoni & Funari 1992) 
N 
NO2 O2N 
© 2006 by Taylor & Francis Group, LLC

3576 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
4.00 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
4.00 (selected, Lohninger 1994) 
3.50 (soil, estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: atmosphere photolysis t. = 288–864 h, based on observed photolysis on soil TLC plates under 
summer sunlight (Helling 1976; quoted, Howard et al. 1991) and adjusted for relative winter sunlight intensity 
(Lyman et al. 1982; quoted, Howard et al. 1991); aqueous photolysis t. = 288–864 h, based on observed 
photolysis on soil TLC plates under summer sunlight (Helling 1976; quoted, Howard et al. 1991) and 
adjusted for relative winter sunlight intensity (Lyman et al. 1982; quoted, Howard et al. 1991). 
Oxidation: photooxidation t. = 0.743–74.3 h in air, based on estimated rate constant for the vapor-phase reaction 
with hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: 
Abiotic Transformation: Degradation by abiotic reductive transformations: 
k = 1.71 M–1 s–1 in H2S with (mecapto)juglone (hydroquinone moiety, an abiotic reductant found in natural 
systems) solution at pH 6.65 (Wang & Arnold 2003) 
Aqueous solutions with surface-bound Fe(II) species and their furst-order rate constants as: 
k = 0.94 . 10–3 h–1 at pH 6.5, k = 0.36 . 10–2 h–1 at pH 7.0, k = 0.057 h–1 at pH 7.4, and k = 1.76 h–1 at 
pH 7.8 for aqueous ferrous ion system; 
k = 0.297 h–1 at pH 6.5, k = 0.586 h–1 at pH 6.7, k = 1.28 h–1 at pH 7.0, and k = 6.90 h–1 at pH 7.3 for 
Fe(II)/goethite system; 
k = 9.91 . 10–3 h–1 at pH 6.5, k = 8.45 . 10–3 h–1 at pH 7.0, k = 7.45 . 10–3 h–1 at pH 7.4 and k = 6.96 . 10–2 
h–1 at pH 7.8 for Fe(II)/clay system, all with total dissolved Fe(II) = 1 mM (Wang & Arnold 2003) 
Biodegradation: 
t.(aq. aerobic) = 408–2520 h, based on aerobic soil die-away test data for one soil at 15°C and 30°C 
(Gingerich & Zimdahl 1976; quoted, Howard et al. 1991) 
t.(aq. anaerobic) = 96–360 h, based on anaerobic soil die-away test that tested one soil (Gingerich & Zimdahl 
1976; quoted, Howard et al. 1991) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.743–74.3 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl radicals in 
air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 288–864 h, based on observed photolysis on soil TLC plates under summer sunlight (Helling 
1976; quoted, Howard et al. 1991) and adjusted for relative winter sunlight intensity (Lyman et al. 1982; 
quoted, Howard et al. 1991). 
Ground water: t. = 96–5040 h, based on estimated unacclimated aqueous aerobic and anaerobic degradation 
half-lives (Howard et al. 1991) 
reported t. < 180 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 408–2520 h, based on aerobic soil die-away test data for one soil at 15°C and 30°C (Gingerich & 
Zimdahl 1976; quoted, Howard et al. 1991); 
selected field t. = 100 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. < 180 d (Bottoni & Funari 1992). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3577 
17.1.1.44 Isoproturon 
Common Name: Isoproturon 
Synonym: Alon, Arelon, CGA 18731, Gramion, Graminon, Hoe 16410, Hytane, IP 50, IP flo, Tolkan 
Chemical Name: 3-(4-isopropylphenyl)-1,1-dimethylurea; 3-p-cumenyl-l-1-dimethylurea 
Uses: herbicide used for pre- and post-emergence control of annual grasses and broadleaf weeds in spring and winter 
wheat (except durum wheat), spring and winter barley, winter rye, and triticale. 
CAS Registry No: 34123-59-6 
Molecular Formula: C12H18N2O 
Molecular Weight: 206.284 
Melting Point (°C): 
155–156 (Worthing & Hance1991) 
158 (Tomlin 1994) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.16 (Hartley & Kidd 1987; Tomlin 1994) 
Molar Volume (cm3/mol): 
259.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
60 (Martin & Worthing 1977) 
70 (20°C, Spencer 1982) 
72 (20°C, Hartley & Kidd 1987) 
55 (Worthing & Walker 1987, Worthing & Hance 1991) 
55.9 (Chaumat et al. 1991) 
65 (22°C, Tomlin 1994; quoted, Otto et al. 1997) 
65 (20°C, selected, Traub-Eberhard et al. 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
3.3 . 10–6 (20°C, Spencer 1982; Hartley & Kidd 1987) 
3.3 . 10–6 (20°C, Worthing & Hance 1991) 
3.3 . 10–6, 3.15 . 10–2, 0.172 (20, 77, 150°C, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
1.05 . 10–5 (calculated-P/C, Otto et al. 1997) 
1.24 . 10–5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW at 25°C or as indicated: 
2.87 (shake flask, Log P Database, Hansch & Leo 1987) 
2.25 (Worthing & Hance 1991) 
2.30 (shake flask, pH 7, Baker et al. 1992) 
2.537 (calculated, Evelyne et al. 1992) 
2.30 (Behrendt & Bruggemann 1993) 
2.87 (recommended, Sangster 1993) 
2.87 (recommended, Hansch et al. 1995) 
HN
N 
O 
© 2006 by Taylor & Francis Group, LLC

3578 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.50 (pH 7, 22°C, Tomlin 1994) 
2.40 (quoted Pomona-database, Muller & Kordel 1996) 
Bioconcentration Factor, log BCF: 
1.79 (calculated-S, Kenaga 1980) 
1.76, 1.82 (cuticle/water: tomato, pepper; Chaumat et al. 1991) 
1.71, 1.90 (cuticle/water: box tree, pear; Chaumat et al. 1991) 
1.52, 1.20 (cuticle/water: ivy, vanilla; Chaumat et al. 1991) 
1.76, 1.82 (cuticle/water: tomato, pepper; Evelyne et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.66 (soil, calculated-S, Kenaga 1980) 
1.86 (soil, HPLC-screening method, mean value of different stationary and mobile phases, Kordel et al. 1993) 
2.11 (soil, quoted from Kordel et al. 1993, Traub-Eberhard et al. 1994) 
1.86; 2.40 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
2.57, 1.71, 1.78, 1.73, 2.34 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-
HPLC/UV, Gawlik et al. 1998, 1999) 
1.86, 2.31; 2.81, 2.24, 2.83, 2.35, 1.93 (quoted lit., calculated-KOW; HPLC-screening method with different LCcolumns, 
Szabo et al. 1999) 
2.155, 1.918, 1.790, 1.719, 2.367 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 1999) 
2.155, 1.918, 1.790, 1.719, 2.367 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
1.78, 2.10 (Kishon river sediments, sorption isotherm, Chefetz et al. 2004) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: atmosphere photolysis t. = 288–864 h, based on observed photolysis on soil TLC plates under 
summer sunlight (Helling 1976; quoted, Howard et al. 1991) and adjusted for relative winter sunlight intensity 
(Lyman et al. 1982; quoted, Howard et al. 1991); 
aqueous photolysis t. = 288–864 h, based on observed photolysis on soil TLC plates under summer sunlight 
(Helling 1976; quoted, Howard et al. 1991) and adjusted for relative winter sunlight intensity (Lyman 
et al. 1982; quoted, Howard et al. 1991); 
t. = 1.5 h for 215 µg/mL to degrade in distilled water under 254 nm light (Kulshrestha & Mukerjee 1986; 
quoted, Cessna & Muir 1991). 
Oxidation: photooxidation t. = 0.743–74.3 h in air, based on estimated rate constant for the vapor-phase reaction 
with hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: 
Biodegradation: aqueous aerobic t. = 408–2520 h, based on aerobic soil die-away test data for one soil at 15°C 
and 30°C (Gingerich & Zimdahl 1976; quoted, Howard et al. 1991); aqueous anaerobic t. = 96–360 h, 
based on anaerobic soil die-away test which tested one soil (Gingerich & Zimdahl 1976; quoted, Howard 
et al. 1991) 
Biotransformation: ~ 11% of a selection of 90 strains of micromycetes mostly isolated from soil-soil fungi, 
depleted over 50% of isoproturon (100 mg/L) in 5-d experiment (Vroumsia et al. 1996) 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.743–74.3 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl radicals in 
air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 288–864 h, based on observed photolysis on soil TLC plates under summer sunlight (Helling 
1976; quoted, Howard et al. 1991) and adjusted for relative winter sunlight intensity (Lyman et al. 1982; 
quoted, Howard et al. 1991). 
Groundwater: t. = 96–5040 h, based on estimated unacclimated aqueous aerobic and anaerobic degradation halflives 
(Howard et al. 1991) 
reported half-lives or persistence, t. = 12–29 and 60–120 d (Bottoni & Funari 1992) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3579 
Sediment: 
Soil: t. = 408–2520 h, based on aerobic soil die-away test data for one soil at 15°C and 30°C (Gingerich & 
Zimdahl 1976; quoted, Howard et al. 1991); 
reported t. = 12–29 d and 60–120 d (Bottoni & Funari 1992); 
t. = 15–21 d in sandy loam, t. = 11 d in silt loam at 20°C (Traub-Eberhard et al. 1994) 
Degradation and mineralization t. = 16 d, 24 d and 34 d for pelosol, brown calcareous soil and brown acid 
soil, respectively, over 120 days under controlled laboratory conditions (Pieuchot et al. 1996) 
estimated t. ~ 14.6 d under conventional tillage, t. = 7.99 d under ridge tillage and t. = 12.17 d with no 
tillage (Otto et al. 1997). 
© 2006 by Taylor & Francis Group, LLC

3580 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.45 Linuron 
Common Name: Linuron 
Synonym: Afalon, Cephalon, Garnitan, Herbicide 326, Hoe 2810, Linex 4L, Linorox, Linurex, Lorox, Methoxydiuron, 
Premalin, Scarclex, Sinuron 
Chemical Name: 3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea; N.-(3,4-dichlorophenyl)-N-methoxy-N-methylurea 
Uses: selective pre-emergence and post-emergence herbicide used on a wide variety of food crops to control many 
annual broadleaf and grass weeds. 
CAS Registry No: 330-55-2 
Molecular Formula: C9H10Cl2N2O2 
Molecular Weight: 249.093 
Melting Point (°C): 
93 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
232.9 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
90.23 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
28.66 (DSC method, Plato & Glasgow 1969) 
25.9 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.215 (mp at 93°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
75 (Woodford & Evans 1963; Bailey & White 1965; Hartley & Graham-Bryce 1980; Kenaga 1980; 
Kenaga & Goring 1980; Beste & Humburg 1983) 
75 (Melnikov 1971; Spencer 1973, 1982; Wauchope 1978; Khan 1980; Weber et al. 1980; Ashton & 
Crafts 1981; Briggs 1981) 
75 (Martin & Worthing 1977; Worthing & Walker 1983, 1987; Herbicide Handbook 1978,1989) 
81 (Hartley & Kidd 1987; Milne 1995) 
81 (24°C, Worthing & Hance 1991) 
75 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
75–81 (Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00147 (20°C, Quellette & King 1977) 
0.0012 (20°C, Hartley & Graham-Bryce 1980) 
0.002 (24°C, Khan 1980) 
0.002 (20–25°C, Weber et al. 1980) 
0.002 (24°C, Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993) 
0.0014 (20°C, selected, Suntio et al. 1988) 
3.50 . 10–4, 1.10 . 10–2, 0.22, 2.90, 28.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 16.074 – 5824.2/(T/K); measured range 40.5–92 7°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 12.989 – 4713.7/(T/K); measured range 92.7–160°C (liquid, gas saturation-GC, Rordorf 1989) 
0.0011 (20°C, selected, Taylor & Spencer 1990) 
0.0023 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
HN
N 
O 
O 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3581 
0.0027 (selected, Halfon et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.0054 (20°C, calculated-P/C, Suntio et al. 1988) 
0.004 (Taylor & Glotfelty 1988) 
0.0062 (20–25°C, calculated-P/C, Montgomery 1993) 
0.00465 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.19 (Briggs 1969) 
3.20 (shake flask-UV, Erkell & Walum 1979) 
2.76 (shake flask-UV, Briggs 1981) 
3.11 (shake flask, Mitsutake et al. 1986) 
2.48 (selected, Gerstl & Helling 1987) 
3.00 (Worthing & Hance 1991; Milne 1995) 
2.19, 3.00 (Montgomery 1993) 
2.75 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
3.20 (recommended, Sangster 1993) 
3.20 (recommended, Hansch et al. 1995) 
3.18 (Pomona-database, Muller & Kordel 1996) 
2.75 (RP-HPLC-RT correlation, Finizio et al. 1997) 
2.72 (RP-HPLC-RT correlation, Yu et al. 1997) 
Bioconcentration Factor, log BCF: 
1.73 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
1.68 (calculated-KOC, Kenaga 1980) 
1.73 (calculated, Pait et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.91 (soil, Hamaker & Thompson 1972) 
2.61 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.93 (average soils/sediments, Rao & Davidson 1980) 
2.43 (soil, converted form reported KOM multiplied by 1.724, Briggs 1981) 
2.93, 2.80, 1.80 (estimated-S, calculated-S and mp, calculated-KOW, Karickhoff 1981) 
3.83 (Means & Wijayaratne 1982) 
2.99, 2.58; 2.62, 2.80 (estimated-KOW, S, Madhun et al. 1986) 
2.76, 2.64 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
2.94 (screening model calculations, Jury et al. 1987b) 
2.61–2.91, 2.83, 2.93 (soil, quoted values, Bottoni & Funari 1992) 
2.60 (soil, 20–25°C, selected, Wauchope et al. 1992;) 
2.70–2.78 (Montgomery 1993) 
2.59 (soil, HPLC-screening method, mean value from different stationary and mobile phases, Kordel 
et al. 1993, 1995a) 
2.59 (soil, HPLC-screening method, Kordel et al. 1993, 1995b) 
2.70 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.59; 2.54 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
3.28, 2.39, 2.46, 2.29, 3.12 (first generation Eurosoils ES-1, ES2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-
HPLC/UV, Gawlik et al. 1998, 1999) 
2.884, 2.58, 2.45, 1.33, 3.18 (second generation Eurosoils ES-1, ES2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1999) 
2.884, 2.578, 2.450, 2.336, 3.183 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
2.70; 2.55, 2.61 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
2.65, 2.64 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
© 2006 by Taylor & Francis Group, LLC

3582 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
2.78 (average values for sediment OC. 0.5%, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 2 months for 31% of 55 µg mL–1 to degrade in distilled water under sunlight (Rosen et al. 1969; 
quoted, Cessna & Muir 1991); 
t. = 2.25 h for 67–75% of 75 µg mL–1 to degrade in distilled water under 300 nm light (Tanaka et al. 1981; 
quoted, Cessna & Muir 1991); 
atmosphere photolysis t. = 1344–4032 h, based on measured rate constant for summer sunlight photolysis 
in distilled water (Rosen et al. 1969; quoted, Howard et al. 1991) and adjusted to relative winter sunlight 
intensity (Lyman et al. 1982; quoted, Howard et al. 1991); aqueous photolysis t. = 1344–4032 h, based 
on measured rate constant for summer sunlight photolysis in distilled water (Rosen et al. 1969; quoted, 
Howard et al. 1991) and adjusted to relative winter sunlight intensity (Lyman et al. 1982; quoted, Howard 
et al. 1991). 
Oxidation: photooxidation t. = 0.49–4.90 h in air, based on an estimated rate constant for the vapor-phase 
reaction with hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: t. > 4 months for 4980 µg mL–1 to hydrolyze in phosphate buffer at pH 5–9 and 20°C (El-dib & 
Aly 1976; quoted, Muir 1991). 
Biodegradation: t. = 78 d in soil (Moyer et al. 1972; quoted, Means et al. 1983), 
t. = 87 d in soil (Hance 1974; quoted, Means et al. 1983), 
t. = 58 and 180 d in soil (Urosol & Hance 1974; quoted, Means et al. 1983); 
aqueous aerobic t. = 672–4272 h, based on soil die-away test data (Walker 1978; Walker & Zimdahl 1981; 
quoted, Howard et al. 1991); 
rate constant k = 0.0096 d–1 by soil incubation die-away studies (Rao & Davidson 1980; quoted, Scow 1982); 
aerobic t. . 40 d for 1 µg mL–1 to biodegrade in lake sediment and t. . 60 d for 4 µg mL–1 to biodegrade 
in lake sediment and water (Huber & Gemes 1981; quoted, Muir 1991); 
aerobic t. . 20 d for 0.22 µg mL–1 to biodegrade in pond sediment plus aerobic salts medium of 34 g L–1 
(Stepp et al. 1985; quoted, Muir 1991); 
aqueous anaerobic t. = 2688–17088 h, based on estimated unacclimated aqueous aerobic biodegradation 
half-life (Howard et al. 1991) 
degradation rate constant k = (3.48 ± 0.156) . 10–2 d–1 with t. = 19.9 d in control soil and k = (23.2 ± 2.07) 
. 10–2 d–1 with t. = 2.99 d in pretreated soil in the field; k = (3.73 ± 0.208) . 10–2 d–1 with t. = 18.6 d 
in control soil and k = (18.8 ± 2.76) . 10–2 d–1 with t. = 3.68 d in pretreated soil once only in the laboratory 
(Walker & Welch 1991) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 0.49–4.90 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radicals 
in air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 672–4272 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991). 
Ground water: t. = 1344–8544 h, based on estimated unacclimated aqueous aerobic biodegradation half-life 
(Howard et al. 1991) 
reported half-lives or persistence, t. = 38–69 and 75 d (Bottoni & Funari 1992). 
Sediment: degradation t. = 12 d in estuarine sediment (12o/.) system (Cunningham et al. 1981; quoted, Means 
et al. 1983); 
degradation t. = 6 d in estuarine sediment (18o/.) system (Means et al. 1983). 
Soil: estimated persistence of 4 months (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury 
et al. 1987a); 
t. = 672–4272 h, based on soil die-away test data (Walker 1978; Walker & Zimdahl 1981; quoted, Howard 
et al. 1991); 
persistence of 4 months (Wauchope 1978); 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3583 
correlated t. = 57 d at pH 5.1–5.8, t. = 22 d at pH 6.3–7.0 and t. = 19 d at pH 7.7–8.2 (Boddington Barn 
soil, Hance 1979) and t. = 67 d at pH 4.6–5.2, t. = 53 d at pH 5.3–6.1, and t. ~ 20 d at pH 6.3–8.0 
(Triangle soil, Hance 1979); 
estimated first-order t. = 72 d from biodegradation rate constant k = 0.0096 d–1 by soil incubation die-away 
studies (Rao & Davidson 1980; quoted, Scow 1982); 
decomposition t. = 11 d in fresh soil and t. = 12 d in air dried soil both in polyethylene bags, t. = 49 d in 
undisturbed cores and t. = 40 d in perfusion (Hance & Haynes 1981); 
moderately persistent in soil with t. = 20–100 d (Willis & McDowell 1982); 
t. = 2 to 5 months under field conditions (Hartley & Kidd 1987; Herbicide Handbook 1989; quoted, 
Montgomery 1993); 
t. = 75 d from screening model calculations (Jury 1987b); 
t. = 60, 35, 35, 30 d in plots treated, i.e., repeated application of pesticide, for the first, second, third and 
fourth time, respectively, in the field; in the laboratory t. reduced from 19 d to 3–7 d in a single 
pretreatment in moist oil at 20°C (Walker & Welch 1991) 
reported t. = 38–69 d and 75 d (Bottoni & Funari 1992); 
selected field t. = 60 d (Wauchope et al. 1992; quoted, Richards & Baker 1993; quoted, Halfon et al. 1996; 
Hornsby et al. 1996); 
soil t. = 60 d (Pait et al. 1992); 
soil t. = 29–67 d (Di Guardo et al. 1994). 
Biota: biochemical t. = 75 d from screening model calculations (Jury et al. 1987b). 
© 2006 by Taylor & Francis Group, LLC

3584 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.46 MCPA 
Common Name: MCPA 
Synonym: Agritox, Agroxohe, Agroxone, Anicon Kombi, Bordermaster, Chiptox, Chwastox, Cornox, Ded-weed, 
Dicopur-M, Dicotex, Dikotes, Emcepan, Empal, Hedapur M 52, Hederax M, Herbicide M, Hedonal, Hormotuho, 
Kilsem, Krezone, Legumex DB, Leuna M, Leyspray, Linormone, MCP, metaxon, Methoxone, Netazol, Okultin M, 
Phenoxylene Plus, Raphone, Razol dock killer, Rhomenc, Rhonox, Shamrox, Seppic MMD, Trasan, Ustinex, Vacate, 
Verdone, Weedar, Weed-rhap, Zelan 
Chemical Name: (4-chloro-2-methylphenoxy)acetic acid; 4-chloro-o-tolyloxyacetic acid 
Uses: systemic post-emergence herbicide to control annual and perennial weeds in cereals, rice, flax, vines, peas, 
potatoes, asparagus, grassland and turf. 
CAS Registry No: 94-74-6 
Molecular Formula: C9H9ClO3 
Molecular Weight: 200.618 
Melting Point (°C): 
120 (Montgomery 1993; Milne 1995; Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.56 (25°C, Que Hee et al. 1981; Herbicide Handbook 1989; Montgomery 1993) 
Molar Volume (cm3/mol): 
211.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
3.05 (potentiometric titration, Nelson & Faust 1969) 
3.125 (Cessna & Grover 1978) 
3.07 (Worthing & Hance 1991) 
3.05–3.13 (Montgomery 1993) 
3.12 (Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.117 (mp at 120°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1605 (shake flask-UV, Leopold et al. 1960) 
1605 (Bailey & White 1965) 
< 1000 (Khan 1980) 
630 (20°C, Melnikov 1971) 
825 (Martin & Worthing 1977; Weber et al. 1980; Milne 1995) 
1500 (selected, Seiber et al. 1986) 
825 (room temp., Hartley & Kidd 1987; Worthing & Hance 1991) 
817 (selected, Gerstl & Helling 1987) 
835 (room temp., Worthing & Walker 1987) 
730–825 (Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
7.9 . 10–4 (measured-volatilization rate, Seiber et al. 1986) 
2.0 . 10–4 (20°C, Hartley & Kidd 1987) 
2.0 . 10–4 (21°C, Worthing & Walker1987, 1991) 
2.3 . 10–5 (20°C, Tomlin 1994) 
2.0 . 10–4 (20°C, Milne 1995) 
2.0 . 10–4 (selected, Halfon et al. 1996) 
Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3585 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
1.0 . 10–4 (calculated-P/C, Seiber et al. 1986) 
4.86 . 10–4 (calculated-P/C as per Worthing & Walker 1987, Majewski & Capel 1995) 
< 0.010 (estimated, Mabury & Crosby 1996) 
2.5 . 10–4 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
2.69 (selected, Dao et al. 1983) 
2.30 (RP-HPLC-k. correlation, Braumann et al. 1983) 
–1.41 (selected, Gerstl & Helling 1987) 
–0.57 (shake flask-UV, pH 7, Stevens et al. 1988) 
3.25 (countercurrent LC, Ilchmann et al. 1993) 
1.37–1.43 (calculated, Montgomery 1993) 
–0.57, 3.25 (quoted, Sangster 1993) 
2.68 (MedChem Master file or ClogP program, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
1.15 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.04 (soil, calculated-S, Kenaga 1980; quoted, Bottoni & Funari 1992) 
1.95 (calculated-MCI ., Gerstl & Helling 1987) 
2.03–2.07 (calculated, Montgomery 1993) 
1.73 (calculated-QSAR MCI 1., Sabljic et al. 1995) 
2.49; 1.58., 3.27, 3.17, 1.85, 2.19 (calculated-KOW; HPLC-screening method with different LC-columns, Szabo 
et al. 1999) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: k = 9.78 . 10–7 h–1 at pH 3.5 (Seiber et al. 1986). 
Photolysis: t. = 71 h for < 10% of 50 µg mL–1 to degrade in NaOH solution at pH 9.8 under > 290 nm light 
(Soderquist & Crosby 1975; quoted, Cessna & Muir 1991); 
t. = 245 h for 17–98.5% of 9 µg mL–1 to degrade in distilled water under sunlight (Draper & Crosby 1984; 
quoted, Cessna & Muir 1991); 
t. = 4.6 d for 14,700 µg mL–1 to degrade in droplets of spray solution suspended in air under sunlight 
(Freiberg & Crosby 1986; quoted, Cessna & Muir 1991). 
Oxidation: degradation by ozone in dilute aqueous solutions (Benoit-Guyod et al. 1986) as follows:- 
t. = 9.4 min - dark with O3 in air; t. = 8.4 min - light with O3 in air, t. = 500 min - light, air only, at initial 
pH of 3.55; MCPA concn of 224 µM L–1, ozone input at 246 µM h–1; 
t. = 10.4 min - dark with O3 in air; t. = 9.0 min - light with O3 in air, at initial pH of 8.0, 
t. = 11.5 min - dark with O3 in air; t. = 11.3 min - light with O3 in air, at initial pH of 7.0, 
t. = 8.4 min - dark with O3 in air; t. = 9.4 min - light with O3 in air, at initial pH of 7.0, 
t. = 4.2 min - dark with O3 in air; t. = 4.2 min - light with O3 in air, t. = 150 min - light, air only, at initial 
pH of 8.0; MCPA concn of 5 µM L–1, ozone input at 246 µM h–1; 
t. = 176 min - dark with O3 in air; t. = 63 min - light with O3 in air, at initial pH of 8.0, MCPA concn of 
224 µM L–1, ozone input at 4.6 µM h–1; 
t. = 300 min - dark with O3 in air; t. = 162 min - light with O3 in air, at initial pH of 8.0; MCPA concn of 
224 µM L–1, ozone input at 0.2 µM h–1 (Benoit-Guyod et al. 1986). 
measured rate constant kOH(aq.) = 1.70 . 109 M–1 s–1 for reaction with hydroxyl radical, in irradiated field 
water both in the laboratory and sunlit rice paddies (Mabury & Crosby 1996). 
Hydrolysis: 
Biodegradation: t. > 168 h for 1 µg mL–1 to degrade in activated sludge (Schmidt 1975; quoted, Muir 1991); 
aerobic t. . 9 d for 1 µg mL–1 to degrade in natural water in absence of sunlight (Soderquist & Crosby 
1975; quoted, Muir 1991); 
t. > 12 d for 0.045–0.156 µg mL–1 to degrade in water after application to model crop and washoff (Virtanen 
et al. 1979; quoted, Muir 1991); 
© 2006 by Taylor & Francis Group, LLC

3586 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
t. = 15–25 d for 10 µg mL–1 to degrade in flooded soils (Duah-Yentumi & Kuwatsuka 1980; quoted, Muir 
1991); 
first order microbial degradation k = 0.01393 d–1 with t. = 50 d at room temp, k = 0.01687 d–1 with t. = 41 
d at 35°C in sandy clay soil from Finland; k = 0.02999 d–1 with t. = 23 d at room temp, k = 0.03397 d–1 
with t. = 20 d at 35°C in sandy loam soil from Bangladesh (Sattar & Paasivirta 1980) 
t. > 25 d for 10 µg mL–1 to degrade in flooded soils (Ursin 1985; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: dissipation t. . 4 d in rice field; t. = 17 d in dilute aqueous solution under laboratory irradiation 
(Soderquist & Crosby 1975); 
degradation t. = 4.2 - 300 min by ozone and light (UV > 300 nm) in dilute aqueous solution, depending 
on pH, concn of MCPA and ozone (shake flask-GC, Benoit-Guyod et al. 1986) 
degraded rapidly with t. = 9 d in rice paddy water held under darkened conditions (Muir 1991) 
field dissipation t. = 28.8 h in water (Mabury & Crosby 1996) 
Ground water: reported t. < 7 and t. = 20–25 d (Bottoni & Funari 1992) 
Sediment: t. = 80 to 400 d of MCPA at low concentrations in marine sediments (Muir 1991). 
Soil: degradation t. = 50 d at room temp., t. = 41 d at 35°C in Finland sandy clay soil; degradation t. = 23 d 
at room temp., t. = 20 d at 35°C in Bangladesh loam soil from first-order rate constant obtained by linear 
regression (Sattar & Paasivirta 1980); 
persistence of 3 months in soil (Edwards 1973; quoted, Morrill et al. 1982); 
t. = 25 d in flooded soils (Muir 1991); 
t. = 15 d (selected, Halfon et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3587 
17.1.1.47 MCPB 
Common Name: MCPB 
Synonym: Bexane, Can-Trol, Legumex, Thistrol, Thitrol, Trifolex, Tropotox 
Chemical Name: 4-(4-chloro-2-methylphenoxy)butanoic acid; 4-(4-chloro-2-methylphenoxy)-butyric acid 
Uses: herbicide for post-emergence control of annual and perennial broadleaf weeds in cereals, clovers, sainfoin, 
groundnuts, peas, etc. and also used to control broadleaf and woody weeds in forestry. 
CAS Registry No: 94-81-5 
Molecular Formula: C11H13ClO3 
Molecular Weight: 228.672 
Melting Point (°C): 
100 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995; Lide 2003) 
Boiling Point (°C): 
> 280 (Tomlin 1994) 
Density (g/cm3 at 22°C): 
1.254 (Tomlin 1994) 
Molar Volume (cm3/mol): 
255.5 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
4.80 (potentiometric titration, Nelson & Faust 1969) 
4.84 (Worthing & Hance 1991; Tomlin 1994) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
34.31 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.184 (mp at 100°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
41 (shake flask-UV, Leopold et al. 1960) 
44 (rm. temp., Melnikov 1971) 
44 (Bailey & White 1965; Martin & Worthing 1977; Hartley & Kidd 1987) 
44 (rm. temp., Worthing & Walker 1987, Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
5.77 . 10–5, 9.83 . 10–5 (20, 25°C, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
3.22 . 10–4 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.60 (selected, Dao et al. 1983) 
3.53 (RP-HPLC-k. correlation, Braumann et al. 1983) 
3.473 (countercurrent LC, Ilchmann et al. 1993) 
2.79 (Tomlin 1994) 
3.43 (selected, Hansch et al. 1995) 
Bioconcentration Factor, log BCF: 
1.86 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.73 (soil, calculated-S, Kenaga 1980) 
Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

3588 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Soil: duration of residual activity in soil is ca. 3–4 months (Hartley & Kidd 1987; Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3589 
17.1.1.48 Mecoprop 
Common Name: Mecoprop 
Synonym: Compitox, Duplosan, Hedonal, Iso-Cornox, Kilprop, MCPP, Mecopex, Mepro, Methoxone, Propal 
Chemical Name: ( ± )-2-(4-chloro-2-methylphenoxy)propanoic acid; ( ± )-2-(4-chloro-o-tolyl-oxy)propionic acid 
Uses: herbicide for post-emergence control of broadleaf weeds in wheat, barley, rye, herbage seed crops, grassland, and 
under fruit trees and vines, etc. 
CAS Registry No: 7085-19-0 
Molecular Formula: C10H11ClO3 
Molecular Weight: 214.645 
Melting Point (°C): 
94–95 (Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & Hance 1991) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
233.3 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
3.75 (Bailey & White 1965; quoted, Que Hee et al. 1981) 
3.105 (Cessna & Grover 1978) 
3.78 (Worthing & Hance 1991) 
3.11 (Armbrust 2000) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
28.87 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
895 (Martin 1961; Bailey & White 1965) 
891 (Bailey & White 1965) 
620 (20°C, Melnikov 1971; Ashton & Crafts 1981; Herbicide Handbook 1989) 
620 (Martin & Worthing 1977) 
620 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987, Worthing & Hance 1991) 
734 (Tomlin 1994) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 1.0 . 10–5 (20°C, Hartley & Kidd 1987) 
3.10 . 10–4 (20°C, Worthing & Hance 1991) 
0.0 (selected, Halfon et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
7.43 . 10–5 (calculated-P/C, this work) 
1.11 . 10–5 (quoted lit., Armbrust 2000) 
Octanol/Water Partition Coefficient, log KOW: 
3.94 (selected, Dao et al. 1983) 
2.83 (RP-HPLC-k. correlation, Braumann et al. 1983) 
0.10 (Worthing & Hance 1991) 
0.09; 3.126 (quoted; countercurrent LC, Ilchmann et al. 1993) 
3.13 (recommended, Hansch et al. 1995) 
Cl 
O 
OH 
O 
© 2006 by Taylor & Francis Group, LLC

3590 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Bioconcentration Factor, log BCF: 
1.20 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.11 (soil, calculated, Kenaga 1980, quoted, Bottoni & Funari 1992) 
1.30 (selected, Lohninger 1994) 
1.30 (quoted lit., Armburst 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: photodegradation t. < 10 -15 d on 3 Spanish natural dry soils; t. = 15–50 d on 10% peat-amened 
dry soils; degradation t. ~ 2–5.5 d on moist soils at field capacity and saturated soils for degradation at 0,1 
and 2 exposures days; and t. = 13–32 d on moist soils at field capacity and saturated soils for degradation 
at 2,4 and 10 exposure days (Romero et al. 1998) 
Oxidation: photooxidation t. = 3.8–37.8 h in air, based on an estimated rate constant for the vapor-phase reaction 
with hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991). 
Hydrolysis: stable aqueous hydrolysis rate at pH 5, 7, pH 9; measured hydroxy radical rate constant for mecoprop 
k = 9.0 . 1012 M–1 h–1 (Armbrust 2000) 
Biodegradation: aqueous aerobic t. = 168–240 h, based on aerobic soil grab sample data (Kirkland & Fryer 
1972; Smith & Hayden 1981; quoted, Howard et al. 1991); aqueous anaerobic t. = 672–4320 h, based on 
anaerobic digest or sludge data (Battersby & Wilson 1989; quoted, Howard et al. 1991); 
aerobic rate constant, k = 2.89 . 10–3 h–1 (Armbrust 2000). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 3.8–37.8 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radicals in 
air (Atkinson 1987; quoted, Howard et al. 1991). 
Surface water: t. = 168–240 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). 
Groundwater: t. = 336–4320 h, based on estimated aqueous aerobic and anaerobic biodegradation half-lives 
(Howard et al. 1991) 
reported t. = 8 d (Bottoni & Funari 1992). 
Sediment: 
Soil: t. = 168–240 h, based on aerobic soil grab sample data (Kirkland & Fryer 1972; Smith & Hayden 1981; 
quoted, Howard et al. 1991); 
reported t. = 8 d (Bottoni & Funari 1992); 
t. = 21 d (selected, Halfon et al. 1996) 
photodegradation t. < 10 -15 d on 3 Spanish natural dry soils; t. = 15–50 d on 10% peat-amened dry soils; 
degradation t. ~ 2–5.5 d on moist soils at field capacity and saturated soils for degradation at 0,1 and 2 
exposures days; and t. = 13–32 d on moist soils at field capacity and saturated soils for degradation at 
2,4 and 10 exposure days (Romero et al. 1998). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3591 
17.1.1.49 Metolachlor 
Common Name: Metolachlor 
Synonym: Bicep, CGA 24705, Codal, Cortoran multi, Dual, Metetilachlor, Milocep, Ontrack 8E, Pennant, Primagram, 
Primextra 
Chemical Name: 2-chloro-6.-ethyl-N-(2-methoxy-1-methylethyl)acet-o-toluidide; 2-chloro-N-(2-ethyl-6-methylphenyl)- 
N-(2-methoxy-1-methylethyl)acetamide 
Uses: pre-emergence herbicide to control most annual grasses and weeds in beans, chickpeas, corn, cotton, milo, okra, 
peanuts, peas, potatoes, sunflower, soybeans and some ornamentals. 
CAS Registry No: 51218-45-2 
Molecular Formula: C15H22ClNO2 
Molecular Weight: 283.795 
Melting Point (°C): liquid 
Boiling Point (°C): 
100 (at 0.001 mmHg, Herbicide Handbook 1989; Budavari 1989; Worthing & Hance 1991; Montgomery 
1993; Milne 1995) 
Density (g/cm3 at 20°C): 
1.12 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Milne 1995) 
1.085 (Herbicide Handbook 1989) 
Molar Volume (cm3/mol): 
340.0 (calculated-Le Bas method at normal boiling point) 
258.0 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
530 (Martin & Worthing 1977) 
440 (selected, Ellgehausen et al. 1980) 
520 (20°C, Ashton & Crafts 1981; Spencer 1982) 
530 (shake flask-HPLC, Ellgehausen et al. 1981) 
530 (20°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Budavari 1989; Montgomery 1993) 
530 (Hartley & Graham-Bryce 1980; Beste & Humburg 1983) 
530 (20°C, Worthing & Walker 1987, Worthing & Hance 1991; Majewski & Capel 1995; Milne 1995) 
488 (Tomlin 1994) 
530 (20–25°C, selected, Hornsby et al. 1996) 
531, 505 (supercooled liquid SL: literature derived value LDV, final adjust value FAV, Muir et al. 2004) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
0.00170 (20°C, Hartley & Graham-Bryce 1980) 
0.00173 (20°C, Ashton & Crafts 1981) 
0.00173 (20°C, volatilization rate, Burkhard & Guth 1981) 
0.00170 (20°C, Hartley & Kidd 1987) 
0.00170 (20°C, Worthing & Walker 1987, Worthing & Hance 1991) 
0.00173 (20°C, Herbicide Handbook 1989; Budavari 1989; Montgomery 1993) 
4.20 . 10–3, 6.60 . 10–2, 0.70, 5.40, 33.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.115 – 4619.7/(T/K); measured range 32.5–140°C (gas saturation-GC, Rordorf 1989) 
0.00420 (Tomlin 1994) 
N 
O 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

3592 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.0023 (liquid PL, GC-RT correlation; Donovan 1996) 
0.00418 (selected, Halfon et al. 1996) 
0.00418 (20–25°C, selected, Hornsby et al. 1996) 
0.00239, 0.0024 (supercooled liquid PL: literature derived value LDV, final adjust value FAV, Muir et al. 2004) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated. Additional data at other temperatures designated * are 
complied at the end of this section): 
0.00092 (Hartley & Graham-Bryce 1980) 
0.00093 (20°C, volatilization rate, Burkhard & Guth 1981) 
0.00091 (20°C, calculated-P/C as per Worthing & Walker 1987) 
0.00093 (20°C, calculated-P/C, Montgomery 1993) 
0.00082 (20°C, calculated-P/C, Majewski & Capel 1995) 
0.00244 (calculated-P/C, Otto et al. 1997) 
0.00782 (20°C, distilled water, wetted wall column-GC, Rice et al. 1997b) 
0.00110 (calculated-P/C, this work) 
0.00238* (20°C, gas stripping-GC/MS, measured range 283.05–299.45 K, Feigenbrugel et al. 2004) 
H./(M atm–1) = (3.0 ± 0.4) . 10–11 exp[(10200 ± 1000)/(T/K)]; temp range 283–310 K (Arrhenius eq., gas stripping- 
GC/MS, Feigenbrugel et al. 2004) 
0.0014. 0.0014 (literature derived value LDV, final adjust value FAV, Muir et al. 2004) 
Octanol/Water Partition Coefficient, log KOW: 
3.13 (shake flask-HPLC, Ellgehausen et al. 1980; Geyer et al. 1991) 
3.28 (shake flask-HPLC, Ellgehausen et al. 1981) 
3.45 (Worthing & Hance 1991) 
2.93, 3.45 (Montgomery 1993) 
3.13, 3.28 (quoted, Sangster et al. 1993) 
2.90 (Tomlin 1994) 
3.45 (Milne 1995) 
3.31, 2.95 (selected, calculated-f const., Pinsuwan et al. 1995) 
3.13 (recommended, Hansch et al. 1995) 
2.60 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
3.10 (literature derived value LDV, Muir et al. 2004) 
Octanol/Air Partition Coefficient, log KOA: 
9.37 (final adjust value FAV, Muir et al. 2004) 
Bioconcentration Factor, log BCF: 
1.813 (log BF-bioaccumulation of algae, Ellgehausen et al. 1980) 
0.733 (log BF-bioaccumulation of daphnids, Ellgehausen et al. 1980; quoted, Geyer et al. 1991) 
0.851 (log BF-bioaccumulation of catfish, Ellgehausen et al. 1980) 
1.26 (calculated-S, Kenaga 1980) 
1.15 (catfish Ictalurus melas, wet wt basis, Wang et al. 1996) 
Sorption Partition Coefficient, log KOC: 
2.15 (soil, calculated-S, Kenaga 1980) 
2.26 (soil, screening model calculations, Jury et al. 1987b) 
2.00, 2.15, 2.28, 2.30 (soil, quoted values, Bottoni & Funari 1992) 
2.46, 2.46 (soil, quoted exptl., calculated-MCI . and fragment contribution, Meylan et al. 1992) 
2.30 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.08–2.49 (Montgomery 1993; Tomlin 1994) 
2.46 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.43 (soil, estimated-general model using molecular descriptors, Gramatica et al. 2000) 
2.28, 2.19, 2.69 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0 .5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3593 
Photolysis: under optimum exposure conditions to natural sunlight, t. ~ 8 d (Herbicide Handbook 1989). 
Oxidation ; kOH = 5.6 . 10–11 cm3 molecule–1 s–1 at 298 K in gas phase with atmospheric lifetime of 0.9 h but 
reduced to 0.4 h at 283 K; log kOH(aq.) = 1.2 . 1010 M–1 s–1 in aqueous phase (Feigenbrugel et al. 2004) 
Hydrolysis: t. > 200 d at 20°C and 1 . pH . 9 (Montgomery 1993); 
t.(calc) > 200 d (2 . pH . 10) (Tomlin 1994). 
Biodegradation: overall degradation rate constant k = 0.0154 h–1 with t. = 45.0 h in sewage sludge and rate 
constant k = 0.0460 d–1 with t. = 15.1 d in garden soil (Muller & Buser 1995). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k2 = 9.11 d–1 (catfish, Ellgehausen et al. 1980) 
k1 = 0.336 h–1, k2 = 0.024 h–1 (catfish Ictalurus melas, Wang et al. 1996) 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: reported t. = 20, 30, 42, and 47–107 d (Bottoni & Funari 1992) 
degradation time 500–1000 d (Tomlin 1994). 
Sediment: 
Soil: t. = 15–38 d in clay loam soils and t. = 33–100 d in sandy loam soils (Zimdahl & Clark 1982; quoted, 
Montgomery 1993); 
t. = 42 d from field t. = 3–4 wk by using lysimeters (Bowman 1990); 
t.(calc) = 80, 99 and 142 d for the disappearance from upper 15 cm on an Ontario clay loam soil while the 
decline was followed for 332, 364 and 370 d, respectively, in 1987, 1988 and 1989 (Frank et al. 1991); 
t. ~ 6 d in soil (Worthing & Hance 1991; quoted, Montgomery 1993); 
reported t. = 20, 30, 42, 47–107 d (Bottoni & Funari 1992) 
field t. = 90 d at 20–25°C (selected, Wauchope et al. 1992; quoted, Richards & Baker 1993; Halfon et al. 
1996; Hornsby et al. 1996); 
soil t. = 40 d (Pait et al. 1992); 
soil t. = 28–46 d (Di Guardo et al. 1994); 
t. ~ 30 d (Tomlin 1994); 
degradation t. = 15.1 d in garden soil (Muller & Buser 1995); 
t. ~ 28.3 d under conventional tillage, t. ~ 25.61 d under ridge tillage and t. ~ 8.63 d with no tillage (Otto 
et al. 1997). 
Biota: t. = 1.15 d in catfish (Ellgehausen et al. 1980); 
biochemical t. = 42 d from screening model calculations (Jury et al. 1987b). 
TABLE 17.1.1.49.1 
Reported Henry’s law constants of metolachlor at various temperatures 
Feigenbrugel et al. 2004 
gas stripping-GC/MS 
t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) 
283.05 5.39 . 10!4 293.25 2.262 . 10!3 
283.15 6.34 . 10!4 297.55 3.099 . 10!3 
283.25 8.126 . 10!4 298.05 4.053 . 10!3 
283.65 8.465 . 10!4 298.15 4.757 . 10!3 
285.55 8.01 . 10!4 298.15 4.312 . 10!3 
287.55 1.088 . 10!3 299.45 4.170 . 10!3 
289.45 1.193 . 10!3 
291.55 1.419 . 10!3 ln H.= A – B/(T/K) 
293.05 2.702 . 10!3 H./(M/atm) 
293.05 2.471 . 10!3 A !24.2298 
293.15 2.282 .10!3 B 10200 
293.15 2.227 .10!3 
© 2006 by Taylor & Francis Group, LLC

3594 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
FIGURE 17.1.1.49.1 Logarithm of Henry’s law constant versus reciprocal temperature for metolachlor. 
Metolachlor: Henry's law constant vs. 1/T 
-9.0 
-8.0 
-7.0 
-6.0 
-5.0 
-4.0 
0.0032 0.0033 0.0034 0.0035 0.0036 
1/(T/K) 
m. aP( / H 
nl 
3 
) l om/ 
Feigenbrugel et al. 2004 
Rice et al. 1997b 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3595 
17.1.1.50 Metribuzin 
Common Name: Metribuzin 
Synonym: Metribuzine, Lexone, Preview, Sencor, Sencoral, Sencorer, Sencorex 
Chemical Name: 4-amino-6-(t-butyl)-3-(methylthio)-1,2,4-triazin-5-(4H)-one 
CAS Registry No: 21087-64-9 
Uses: herbicide 
Molecular Formula: C8H14N4OS 
Molecular Weight: 214.288 
Melting Point (°C): 
126 (Lide 2003) 
Boiling Point (°C): 132.2 Pa (Tomlin 1994) 
Density (g/cm3 at 20°C): 
1.31 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
1.28 (Herbicide Handbook 1989) 
Dissociation Constant pKb: 
13.0 (Wauchope et al. 1992; Hornsby et al. 1996) 
1.0 (pKa, Montgomery 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.102 (mp at 126°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1220 (Kenaga & Goring 1980; Kenaga 1980b; Verschueren 1983) 
1200 (20°C, Spencer 1982; Worthing & Walker 1983, 1987; Hartley & Kidd 1987) 
1220 (Herbicide Handbook 1989) 
1050 (20°C, Montgomery 1993; Tomlin 1994) 
1220 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1065 (20–25°C, reported as 4.97E + 01 mol/m3, Majewski & Capel 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 1.3 . 10–3 (20°C, Worthing 1983, 1987; Hartley & Kidd 1987; Tomlin 1994) 
< 1.3 . 10–3; 2.67 . 10–2 (20°C; 60°C, Herbicide Handbook 1989) 
5.8 . 10–5 (20°C, Montgomery 1993) 
< 1.3 . 10–3 (20–25°C, Wauchope et al. 1992; Hornsby et al. 1996) 
5.89 . 10–4 (20–25°C, Majewski & Capel 1995) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
< 1.3 . 10–3 (Spencer 1982; Worthing 1987; Hartley & Kidd 1987) 
1.21 . 10–5 (calculated-P/C, Montgomery 1993) 
1.18 . 10–5 (calculated-P/C, Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW: 
1.60, 1.70 (quoted, Montgomery 1993) 
1.58 (pH 5.6, Tomlin 1994) 
1.70 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
N 
N 
N
NH2 
O S 
© 2006 by Taylor & Francis Group, LLC

3596 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
2.46, 1.48, < 1.30 (algae, activated sludge, fish in 3-d testing, Korte et al. 1978) 
1.77, 1.75 (Chlorella, calculated-solubility, Geyer et al. 1981) 
1.77, 1.48, 1.04 (algae, activated sludge, Golden orfe, Geyer et al. 1982) 
1.04, 0.602 (calculated-solubility, calculated-KOW, Kenaga 1980a) 
1.48, 1.78, 1.0 (activated sludge, algae, Golden ide, Freitag et al. 1985) 
Sorption Partition Coefficient, log KOC: 
1.98 (soil, Kenaga & Goring 1980) 
1.98; 1.94 (quoted, calculated-KOW, Kenaga 1980b) 
0.954–2.72 (soil, literature range, Wauchope et al. 1992) 
1.80 (soil, estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
1.94–1.98, 2.18 (soil, Bottoni & Funari 1992) 
1.80–2.72 (soil, Montgomery 1993) 
1.78 (soil, Senseman et al. 1997) 
1.71 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.71; 1.68, 1.33 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
2.05, 2.06, 2.04 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: photodecomposition in water is very rapid with t. < 1 d; on soil surface under natural sunlight 
conditions, t. = 14–25 d (Tomlin 1994). 
Oxidation: 
Hydrolysis: t. ~ 1 wk in pond water (Hartley & Kidd 1987; Montgomery 1993). 
Biodegradation: under goes microbial degradation in moist soil (Worthing 1987) 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: hydrolysis t. ~ 1 wk in pond water (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994); 
stable to dilute acids and alkalis, t. = 6.7 h at pH 1.2 and 37°C; t. = 569 h at pH 4, t. = 47 d at pH 7 and 
t. = 191 h at pH 9 for 70°C (Tomlin 1994). 
Ground water: reported half-life or persistence t. = 4–25, 17–301 and 56 d (Bottoni & Funari 1992). 
Sediment: 
Soil: undergoes microbial degradation in moist soil (Worthing 1983, 1987); 
half-life varies with soil types, t. ~ 90–115 d for Red River, Almasippi, and Stockton soils the 3 times this 
period for Newdale soil for normal application rates (Verschueren 1983); 
t. ~ 1–2 months in soil (Hartley & Kidd 1987; Tomlin 1994); 
t. ~ 30–60 d in various soil types varies greatly with climatic conditions, during the growing season 
(Herbicide Handbook 1989); 
t. = 9–12 d irrespective of the number of previous treatments in the field; t. = 25–40 d irrespective of the 
pretreatment history of the soil at 20°C in the laboratory (Walker & Welch 1992) 
reported t. = 23–120 d and the recommended field t. = 40 d (Wauchope et al. 1992; Hornsby et al. 1996; 
quoted, Senseman et al. 1997); 
half-lives of in two surface soil microcosms under nitrate, t. = 157 d and non-nitrate, t. = 187 and 349 d 
in reducing culture conditions at 16.4°C (Pavel et al. 1999). 
Biota: in mammals, following oral administration, 90% elimination within 96 h (Hartley & Kidd 1987). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3597 
17.1.1.51 Molinate 
Common Name: Molinate 
Synonym: Felan, Higalnate, Hydram, Jalan, Molmate, Ordram, Stauffer R 4572, Sakkimok, Yalan, Yulan 
Chemical Name: 1H-azepine-1-carbothioic acid, hexahydro, S-ethyl ester; ethyl 1-hexa-methyleneiminecarbothioate 
Uses: selective herbicide to control the germination of annual grasses and broadleaf weeds in rice crops. 
CAS Registry No: 2212-67-1 
Molecular Formula: C9H17NOS 
Molecular Weight: 187.302 
Melting Point (°C): < 25 (Montgomery 1993) 
Boiling Point (°C): 
202 (at 10 mmHg, Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & Hance 1991; Milne 
1995) 
117 (at 10 mmHg, Montgomery 1993) 
Density (g/cm3 at 20°C): 
1.064 (Hartley & Kidd 1987) 
1.0643 (Herbicide Handbook 1989; Montgomery 1993) 
1.063 (Worthing & Hance 1991; Milne 1995) 
Molar Volume (cm3/mol): 
220.6 (calculated-Le Bas method at normal boiling point) 
176.1 (calculated-density) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
880 (20°C, Weber 1972; Hartley & Kidd 1987; Worthing & Walker 1987; Worthing & Hance 1991) 
800 (Martin & Worthing 1977) 
800–912 (Weber et al. 1980) 
912 (21°C, Spencer 1982) 
800 (20°C, Herbicide Handbook 1983, 1989) 
870 (Kanazawa 1989) 
970 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996; Armbrust 2000) 
880 (20°C, Montgomery 1993; Tomlin 1994; Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.748 (20°C, Weber 1972; Worthing & Walker 1987) 
0.746 (20°C, Khan 1980) 
0.185 (20°C, GC-RT correlation, Kim 1985) 
0.413 (Seiber et al. 1986, 1989) 
0.746 (Hartley & Kidd 1987; Montgomery 1993; Tomlin 1994) 
0.746 (Herbicide Handbook 1989; Worthing & Hance 1991) 
0.746 (20–25°C, selected, Wauchope et al. 1992) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.097 (calculated-P/C, Seiber et al. 1986, 1989) 
0.314 (20°C, calculated-P/C, Suntio et al. 1988) 
0.159 (20°C, calculated-P/C as per Worthing & Walker 1987;) 
0.159 (20°C, calculated-P/C, Muir 1991) 
N 
S O 
© 2006 by Taylor & Francis Group, LLC

3598 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.095 (20°C, calculated-P/C, Sagebiel et al. 1992) 
0.460 (20°C, gas-stripping method, Sagebiel et al. 1992) 
0.390 (20°C, headspace-GC method, Sagebiel et al. 1992) 
0.162 (calculated-P/C, Montgomery 1993) 
0.145 (calculated-P/C, this work) 
0.132 (quoted lit., Armbrust 2000) 
0.397 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001) 
log KAW = 6.527 – 3024/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 
Octanol/Water Partition Coefficient, log KOW: 
3.21 (shake flask-GC, Kanazawa 1981) 
2.88 (Worthing & Hance 1991; Tomlin 1994) 
2.88 (Montgomery 1993) 
3.13 (RP-HPLC-RT correlation, Saito et al. 1993) 
3.26 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
3.21 (recommended, Sangster 1993) 
2.88 (Milne 1995) 
3.21 (recommended, Hansch et al. 1995) 
3.25 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.15 (calculated-S, Kenaga 1980; quoted, Pait et al. 1992) 
1.41 (Peudorasbora parva, Kanazawa 1981) 
Sorption Partition Coefficient, log KOC: 
2.04 (soil, calculated-S, Kenaga 1980) 
1.92 (average of 2 soils, Kanazawa 1989) 
1.92, 2.04 (soil, quoted values, Bottoni & Funari 1992) 
1.92, 2.46 (soil, quoted exptl., calculated-MCI . and fragments contribution, Meylan et al. 1992) 
2.28 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.93–1.97 (Montgomery 1993) 
2.28 (selected, Lohninger 1994) 
1.92 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.07 (soil, quoted lit., Armbrust 2000) 
1.92; 2.31, 1.86 (soil, quoted exptl.; estimated-class specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: k = 0.0150 h–1 (average of 2 runs, Seiber et al. 1986); 1.1 kg ha–1 (1st 4 day) from flooded rice 
fields (Seiber et al. 1986; Seiber & McChesney 1987); 
estimated t. = 43 d from 1 m depth of water at 20°C (Muir 1991). 
Photolysis: t. = 7–10 d for 8–10 µg mL–1 to degrade in distilled water under > 290 nm light (Soderquist et al. 
1977; quoted, Cessna & Muir 1991); 
t. = 96 h for < 5% of 0.2 µg mL–1 to degrade in distilled water under sunlight (Deuel et al. 1978; quoted, 
Cessna & Muir 1991); 
t. = 245 h for 2–54% of 10 µg mL–1 to degrade in distilled water under sunlight (Draper & Crosby 1984; 
quoted, Cessna & Muir 1991). 
Oxidation: calculated life-time of 6 h for the vapor-phase reaction with OH radicals in the troposphere (Atkinson 
et al. 1992; Kwok et al. 1992); 
measured rate constant for reaction with hydroxyl radical, k(aq.) = 0.85 . 109 M–1·s–1 in irradiated field 
water both in the laboratory and sunlit rice paddies (Mabury & Crosby 1996); 
measured hydroxy radical reaction rate constant for molinate k = 7.7 . 1012 M–1 h–1 (Armbrust 2000). 
Hydrolysis: t. > 10 d in aqueous buffer at pH 5–9 in the dark (Soderquist et al. 1977; quoted, Muir 1991); stable 
aqueous hydrolysis rate at pH 5, 7, 9 (Armbrust 2000). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3599 
Biodegradation: t. ~16 d for 0.2 µg mL–1 to biodegrade in flooded soils (Deuel et al. 1978; quoted, Muir 1991); 
t. = 10 wk for 4.2 µg mL–1 to biodegrade in flooded soil and t. < 2 wk in water both at 21–26°C (Thomas & 
Holt 1980; quoted, Muir 1991); 
aerobic rate constant, k = 2.22 . 10–3 h–1 (Armbrust 2000). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: calculated lifetime of 6 h for the vapor-phase reaction with OH radicals in the troposphere (Atkinson et al. 
1992; Kwok et al. 1992). 
Surface water: t. = 84 h from dissipation from flooded rice fields (Seiber & McChesney 1987; quoted, Seiber 
et al. 1989). 
Ground water: reported half-lives or persistence, t. = 3–14, 8–25 and 40–160 d (Bottoni & Funari 1992) 
Sediment: 
Soil: persistence of 2 months in soil (Wauchope 1978); 
t. ~ 3 wk in moist loam soils at 21–27°C (Herbicide Handbook 1989); 
selected field t. = 21 d (Wauchope et al. 1992; quoted, Halfon et al. 1996; Hornsby et al. 1996); 
soil t. = 21 d (Pait et al. 1992); 
reported t. = 3–14 d, 8–25 d and 40–160 d (Bottoni & Funari 1992). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3600 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.52 Monolinuron 
Common Name: Monolinuron 
Synonym: Afesin, Aresin, Arresin, Hoe 02747 
Chemical Name: 3-(4-chlorophenyl)-1-methoxy-1-methylurea; N.-(4-chlorophenyl)-N-methoxy-N-methylurea 
Uses: herbicide for pre- or post-emergence control of annual broadleaf weeds and annual grasses in asparagus, berry 
fruit, cereals, maize, field beans, vines, leeks, onions, potatoes, herbs, lucerne, flowers, ornamental shrubs and 
trees, etc. 
CAS Registry No: 1746-81-2 
Molecular Formula: C9H11ClN2O2 
Molecular Weight: 214.648 
Melting Point (°C): 
77 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
224.0 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.309 (mp at 77°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
735 (20°C, Melnikov 1971) 
735 (Spencer 1973, 1982) 
580 (Martin & Worthing 1977; Khan 1980) 
735 (Worthing & Walker 1983, 1987, Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994) 
735 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.02 (22°C, Khan 1980; Hartley & Kidd 1987) 
0.0015 (20°C, Spencer 1982) 
6.40 (65°C, Worthing & Hance 1991) 
0.02 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
0.0013, 0.10 (20°C, 50°C, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.0058 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.60 (Briggs 1969) 
2.30 (shake flask-UV, Briggs 1981) 
1.60 (selected, Dao et al. 1983) 
1.99 (RP-HPLC-k. correlation, Braumann et al. 1983) 
2.22 (shake flask, Mitsutake et al.1986) 
2.20 (Worthing & Hance 1991; Tomlin 1994) 
2.16 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
2.30 (recommended, Sangster 1993) 
2.30 (recommended, Hansch et al. 1995) 
2.31 (Pomona-database, Muller & Kordel 1996) 
HN
N 
O 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3601 
2.16 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.23; 1.00 (calculated-S, calculated-KOC, Kenaga 1980) 
1.85 (activated sludge, Freitag et al. 1982, 1984, 1985) 
1.52, < 1.0 (algae, golden orfe, Freitag et al. 1982) 
1.60, 1.30 (algae, golden ide, Freitag et al. 1985) 
Sorption Partition Coefficient, log KOC: 
2.30 (soil, Hamaker & Thompson 1972) 
2.11 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
1.60 (reported as log KOM, Briggs 1981) 
2.36, 2.08, 1.21 (estimated-S, calculated-S and mp, calculated-KOW, Karickhoff 1981) 
2.40–2.70 (soil, Worthing & Hance 1991) 
2.26–2.30, 2.40–2.70 (soil, quoted values, Bottoni & Funari 1992) 
1.78 (soil, HPLC-screening method, mean value of different stationary and mobile phases, Kordel et al. 
1993, 1995b) 
2.30 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
2.10 (soil, calculated-MCI 1., Sabljic et al. 1995) 
1.78; 2.33 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
2.44, 1.50, 1.71, 1.754, 2.45 (first generation Eurosoils ES-1, ES2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-
HPLC/UV, Gawlik et al. 1998, 1999) 
2.05, 1.72, 1.695, 1.825, 2.407 (second generation Eurosoils ES-1, ES2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1999) 
2.050, 1.721, 1.695, 1.825, 2.407 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask-batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
2.10; 2.04, 2.31 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
1.88, 1.88 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Photolysis: t. = 23 h for 66% of 286 µg/mL to degrade in distilled water under > 300 nm light (Kotzias et al. 
1974; quoted, Cessna & Muir 1991). 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: reported half-lives or persistence, t. = 45–60 d (Bottoni & Funari 1992) 
Sediment: 
Soil: reported t. = 45–60 d (Worthing & Hance 1991); 
estimated field t. = 60 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3602 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.53 Monuron 
Common Name: Monuron 
Synonym: Chlorfenidim, CMU, Karmex, Lirobetarex, Monurex, Monurox, Rosuran, Telvar, Urox 
Chemical Name: N.-(4-chlorophenyl)-N-N-dimethylurea; 1,1-dimethyl-3-(p-chlorophenyl)urea 
Uses: herbicide; also as sugar cane flowering suppressant. 
CAS Registry No: 150-68-5 
Molecular Formula: C9H11ClN2O 
Molecular Weight: 198.648 
Melting Point (°C): 
170.5 (Kuhne et al. 1995; Lide 2003) 
Boiling Point (°C): 
185–200 (decomposes, Montgomery 1993) 
Density (g/cm3 at 20°C): 
1.27 (Spencer 1982; Hartley & Kidd 1987; Montgomery 1993) 
Molar Volume (cm3/mol): 
202.9 (calculated-Le Bas method at normal boiling point) 
173.0 (modified Le Bas method, Spurlock & Biggar 1994a) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0374 (mp at 170.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
203 (Freed 1966) 
230 (Gunther et al. 1968; Sanborn et al. 1977; Khan 1980; Ashton & Crafts 1981) 
262 (shake flask-UV, Hurle & Freed 1972) 
230 (20°C, Weber 1972; Worthing & Walker 1987) 
230 (Martin & Worthing 1977; Hartley & Kidd 1987) 
200 (shake flask-HPLC, Ellgehausen et al. 1981) 
200 (20°C, selected, Suntio et al. 1988) 
275 (Spurlock 1992; Spurlock & Biggar 1994b) 
230 (at pH 6.26, Montgomery 1993) 
230 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other 
temperatures designated * are compiled at the end of this section): 
7.60 . 10–5, 1.2 . 10–5 (25, 27°C, Nex & Swezey 1954) 
6.67 . 10–5 (Bailey & White 1965) 
6.72 . 10–5 (20°C, Weber 1972; Worthing & Walker 1987) 
6.67 . 10–5 (Ashton & Crafts 1973, 1981; Khan 1980) 
5.33 . 10–5* (30.35°C, Knudsen effusion, measured range 303.5–379.1 K, Wiedemann 1972) 
log (P/mmHg) = 13.3052 – 5988.39/(T/K); temp range 303.5–379.1 K (Antoine eq., effusion, Wiedemann 1972) 
6.70 . 10–5 (OECD 1981) 
2.30 . 10–5 (calculated, Jury et al. 1983) 
6.00 . 10–5 (Hartley & Kidd 1987) 
6.67 . 10–5 (Budavari 1989) 
2.30 . 10–5 (selected, Taylor & Spencer 1990) 
6.00 . 10–5 (20°C, Montgomery 1993) 
6.67 . 10–5 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
HN
N 
O 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3603 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
5.80 . 10–5 (20°C, volatilization rate, Burkhard & Guth 1981) 
1.88 . 10–5 (calculated-P/C, Jury et al. 1984, 1987a; Jury & Ghodrati 1989) 
3.00 . 10–3 (20°C, calculated-P/C, Suntio et al. 1988) 
1.91 . 10–5 (calculated-P/C, Taylor & Glotfelty 1988) 
5.60 . 10–5 (20°C, calculated-P/C, Muir 1991) 
3.00 . 10–3 (20°C, calculated-P/C, Montgomery 1993) 
6.60 . 10–5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.46 (Briggs 1969) 
1.66 (calculated-fragment const., Rekker 1977) 
1.80 (shake flask-UV, Erkell & Walum 1979) 
2.08 (selected, Ellgehausen et al. 1980; Geyer et al. 1991) 
2.12 (Rao & Davidson 1980) 
1.98 (shake flask-UV, Briggs 1981) 
2.08 (shake flask, Ellgehausen et al. 1980) 
1.66 (shake flask, Ellgehausen et al. 1981) 
1.86 (selected, Dao et al. 1983; Gerstl & Helling 1987) 
1.91 (RP-HPLC-k. correlation Braumann et al. 1983) 
1.80 (selected, Suntio et al. 1988) 
2.12 (shake flask-HPLC, Spurlock 1992; Spurlock & Biggar 1994b) 
1.46, 2.12 (Montgomery 1993) 
1.86 (RP-HPLC-RT correlation, Sicbaldi & Finizio 1993) 
1.94 (recommended, Sangster 1993) 
1.89; 1.88 (shake flask-UV; RP-HPLC-k. correlation, Liu & Qian 1995) 
1.94 (recommended, Hansch et al. 1995) 
1.99 (Pomona-database, Muller & Kordel 1996) 
1.86 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.786 (log BF bioaccumulation factor for algae, Ellgehausen et al. 1980) 
0.32 (log BF bioaccumulation factor for daphnids, Ellgehausen et al. 1980) 
0.245 (log BF bioaccumulation factor for daphnids, Ellgehausen et al. 1980) 
1.46 (calculated-S, Kenaga 1980) 
0.699 (calculated-KOC, Kenaga 1980) 
0.0 (Triaenodes tardus, Belluck & Felsot 1981) 
1.58, 1.67 (cuticle/water: tomato, pepper; Evelyne et al. 1992) 
Sorption Partition Coefficient, log KOC: 
2.00 (soil, Hamaker & Thompson 1972) 
2.34 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.26 (av. of 18 soils, Rao & Davidson 1980) 
1.70 (soil, converted from reported KOM, multiplied by 1,724, Briggs 1981) 
2.58, 1.51 (estimated-S, calculated-S and mp, Karickhoff 1981) 
1.07, 1.73 2.58 (estimated-KOW, Karickhoff 1981) 
2.03, 1.85; 2.17, 1.52 (estimated-KOWs; solubilities, Madhun et al. 1986) 
1.99; 2.12 (quoted; calculated-MCI ., Gerstl & Helling 1987) 
2.26 (screening model calculations, Jury et al. 1987a,b; Jury & Ghoodrati 1989) 
1.99, 2.33 (Montgomery 1993) 
2.18 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
1.99 (soil, HPLC-screening method, mean value from different stationary and mobile phases, Kordel et 
al. 1993, 1995a,b) 
2.29 (calculated-KOW, Liu & Qian 1995) 
1.95 (soil, calculated-MCI 1., Sabljic et al. 1995) 
© 2006 by Taylor & Francis Group, LLC

3604 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
1.99; 1.92 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
2.58, 1.77, 1.85, 1.77, 2.41 (first generation Eurosoils ES-1, ES2, ES-3, ES-4, ES-5, shake flask/batch equilibrium- 
HPLC/UV, Gawlik et al. 1998, 1999) 
2.14, 2.018, 1.79, 1.764, 2.243 (second generation Eurosoils ES-1, ES2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1999) 
2.141, 2.018, 1.793, 1.764, 2.243 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
1.95; 1.96, 2.13 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
1.80, 1.80 (soils: organic carbon OC . 0.1%, OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 14 d for 6% of 200 µg mL–1 to degrade in distilled water under sunlight (Crosby & Tang 1969; 
quoted, Cessna & Muir 1991); 
t. = 2.25 h for 44% of 200 µg mL–1 to degrade in distilled water under 300 nm light (Tanaka et al. 1977; 
quoted, Cessna & Muir 1991); 
t. = 2.25 s for 75% of 100 µg mL–1 to degrade in 0.2% Triton X-100 aqueous solution under 300 nm light 
(Tanaka et al. 1981; quoted, Cessna & Muir 1991); 
t. = 2.25 h for > 70% of 200 µg mL–1 to degrade in aqueous solutions of nonionic surfactants at concns. in 
excess of critical micelle concn. under 300 nm light (Tanaka et al. 1979; quoted, Cessna & Muir 1991); 
t. = 45 h for 69% of 165 µg mL–1 to degrade in distilled water under > 280 nm light (Tanaka et al. 1982; 
quoted, Cessna & Muir 1991). 
Oxidation: 
Hydrolysis: t. > 4 months for 3974 µg mL–1 to hydrolyze in phosphate buffer at pH 5–9 and 20°C (El-Dib & 
Aly 1976; quoted, Muir 1991). 
Biodegradation: aerobic t. . 7 d for 0.01 µg mL–1 to biodegrade in river water (Eichelberger & Lichtenberg 
1971; quoted, Muir 1991); 
t. = 166 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Jury et al. 1983, 1984, 1987a,b; 
Jury & Ghodrati 1989); 
aerobic t. . 10–15 d for 0.0005–10 µg mL–1 to biodegrade in filtered sewage water at 20°C (Wang et al. 
1985; quoted, Muir 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
k2 = 21.05 d–1 (catfish, Ellgehausen et al. 1980) 
Half-Lives in the Environment: 
Air: 
Surface water: persistence of up to 8 wk in river water (Eichelberger & Lichtenberg 1971). 
Ground water: 
Sediment: 
Soil: t. = 5.0 months at 15°C and 4.1 months at 30°C in soils (Freed & Haque 1973); 
reported t. = 166 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989; quoted, 
Montgomery 1993); 
estimated field t. = 170 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: t. = 0.45 d in catfish (Ellgehausen et al. 1980); 
biochemical t. = 166 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989). 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3605 
TABLE 17.1.1.53.1 
Reported vapor pressures of monuron at various temperatures 
Wiedemann 1972 
Knudsen effusion 
T/K P/Pa T/K P/Pa 
303.5 5.33 . 10!5 358.7 0.0536 
316.0 2.44 . 10!4 360.2 0.0561 
329.8 2.16 . 10!3 379.1 0.399 
330.6 1.53 . 10!3 
330.6 2.22 . 10!3 log P = A – B/(T/K) 
338.8 7.05 . 10!3 P/mmHg 
341.4 9.45 . 10!3 A 13.3952 
345.7 0.0105 B 5988.39 
349.5 0.0204 
357.0 0.0529 .Hsubl/(kJ mol–1) = 114.6 
FIGURE 17.1.1.53.1 Logarithm of vapor pressure versus reciprocal temperature for monuron. 
Monuron: vapor pressure vs. 1/T 
-6.0 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Wiedemann 1972 
m.p. = 170.5 °C 
© 2006 by Taylor & Francis Group, LLC

3606 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.54 Napropamide 
Common Name: Napropamide 
Synonym: Devrinol 
Chemical Name: 2-(.-naphthloxy)-N,N-diethylpropionamide 
CAS Registry No: 15299-99-7 
Uses: herbicide 
Molecular Formula: C17H21NO2 
Molecular Weight: 271.355 
Melting Point (°C): 
75 (Worthing & Walker 1987; Lide 2003) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
2.93 (Woodburn et al. 1993) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.323 (mp at 75°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
69 (shake flask-LSC or GC, Gerstl & Mingelgrin 1984) 
73 (20°C, Spencer 1982; Hartley & Kidd 1987; Worthing & Walker 1987; Herbicide Handbook 1989; 
Montgomery 1993; Tomlin 1994) 
74 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
2.67 . 10–4 (Spencer 1982) 
5.3 . 10–4 (Herbicide Handbook 1989) 
5.3 . 10–4 (Hartley & Kidd 1987; Worthing & Walker 1987; Montgomery 1993; Tomlin 1994) 
2.27 . 10–5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.67 . 10–3 (20–25°C, Majewski & Capel 1995) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.00294 (calculated-P/C, Montgomery 1993) 
0.00197 (20–25°C, Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW: 
3.08 (shake flask-GC or LSC, Gerstl & Mingelgrin 1984) 
3.36 (Montgomery 1993) 
3.30 (Tomlin 1994) 
3.36 (recommended, Hansch et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
2.04–3.09 (various soils, Mingelgrin & Gestl 1983) 
2.82, 3.56 (soil: quoted, calculated-MCI ., Gerstl & Helling 1987) 
O 
N 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3607 
2.62 (soil, average of log KOC values, Gerstl 1990) 
3.52–4.29; 3.72 at pH 2, 3.35 at pH 6 (Dead sea sediment, Gestl & Kilger 1990) 
2.62–3.54; 3.54 at pH 2, 3.40 at pH 6 (Kinnert F sediment, Gestl & Kilger 1990) 
2.71–3.62; 3.62 at pH 2, 3.27 at pH 6 (Kinnert G sediment, Gestl & Kilger 1990) 
2.40–3.31; 3.31 at pH 2, 3.20 at pH 5 (Oxford soil, Gestl & Kilger 1990) 
2.39–3.15; 3.15 at pH 2, 2.88 at pH 6 (Malkiya soil, Gestl & Kilger 1990) 
2.28–3.29; 3.29 at pH 2, 3.09 at pH 5 (Neve Ya’ar soil, Gestl & Kilger 1990) 
2.85 (soil, Wauchope et al. 1992; Hornsby et al. 1996) 
2.29–3.99 (soil/sediment, literature range, Montgomery 1993) 
2.83 (soil, Montgomery 1993) 
2.62 (soil, calculated-MCI ., Sabljic et al. 1995) 
2.58, 2.58, 2.61 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, average, Delle Site 2001) 
2.80 (sediment: organic carbon OC . 0.5%, average, Delle Site 2001) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: very little loss occurred by volatilization from soil surface (Herbicide Handbook 1989). 
Photolysis: under condition of high sunlight intensity in the summer, t. ~ 4 d on the soil surface (Herbicide 
Handbook 1989); 
decomposed by sunlight, t. = 25.7 min. (Tomlin 1994). 
Oxidation: 
Hydrolysis: stable to hydrolysis between pH 4 and 10 at 40°C (Hartley & Kidd 1987; Worthing 1987; Tomlin 
1994). 
Biodegradation: slowly broken down by microorganisms in soil, in pure culture, a soil fungus metabolizes rapidly 
with t. = 2 wk (Herbicide Handbook 1989). 
Biotransformation: rapidly metabolized in plants to water-soluble metabolites (Tomlin 1994). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: decomposed by sunlight, t. = 25.7 min. (Montgomery 1993; Tomlin 1994). 
Sediment: 
Soil: t. ~ 55 d in the plots treated for the first time whereas t. = 6–12 d in pre-treated plots that had previously 
been sprayed with napropamide in the field; t. = 25–40 d irrespective of the pre-treatment history of the 
soil in the laboratory at 20°C (Walker & Welch 1992) 
t. ~ 8–12 wk (Hartley & Kidd 1987; Tomlin 1994); 
field t. = 70 d (Wauchope et al. 1992; Hornsby et al. 1996); 
moist loam or sandy-loam soils at 79–90°C, t. = 8–12 wk (Montgomery 1993). 
Biota: rapidly metabolized in plants to water-soluble metabolites (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

3608 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.55 Neburon 
Common Name: Neburon 
Synonym: Kloben, Neburea, Neburex 
Chemical Name: 1-butyl-3-(3,4-dichlorophenyl)-1-methylurea; N-butyl-N.(3,4-dichloro-phenyl)-N-methylurea 
Uses: pre-emergence herbicide to control grasses and broadleaf weeds in peas, beans, lucerne, garlic, beets, cereals, 
strawberries, ornamentals and forestry. 
CAS Registry No: 555-37-3 
Molecular Formula: C12H16Cl2N2O 
Molecular Weight: 275.174 
Melting Point (°C): 
102–103 (Khan 1980; Spencer 1982; Worthing & Hance 1991; Tomlin 1994) 
101.5–103 (Montgomery 1993) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
236.0 (modified Le Bas method at normal boiling point, Spurlock & Biggar 1994a) 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
96.91 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
29.71 (DSC method, Plato & Glasgow 1969) 
26.9 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
4.8 (24°C, Bailey & White 1965; Melnikov 1971) 
4.8 (Martin & Worthing 1977) 
4.8 (28°C, Khan 1980) 
5.0 (Hartley & Kidd 1987; Tomlin 1994) 
4.8 (24°C, Worthing & Walker 1987, Worthing & Hance 1991; Montgomery 1993) 
5.2 (Spurlock 1992; Spurlock & Biggar 1994b) 
5.0 (20–25°C, selected, Augustijn-Beckers et al. 1994; selected, Hornsby et al. 1996) 
4.67, 9.99 (quoted, calculated-group contribution fragmentation method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 
6.30 . 10–6, 4.10 . 10–4, 0.015, 0.33, 4.90 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 18.272 – 6999.1/(T/K); measured range 50–103°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.285 – 5062.2/(T/K); measured range 105–140°C (liquid, gas saturation-GC, Rordorf 1989) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
Octanol/Water Partition Coefficient, log KOW: 
4.59 (selected, Dao et al. 1983; Gerstl & Helling 1987) 
4.31 (RP-HPLC-k. correlation, Braumann et al. 1983) 
4.22 (Spurlock 1992; Spurlock & Biggar 1994b) 
3.80 (selected, Sangster 1993) 
3.80 (calculated, Montgomery 1993) 
HN
N 
O 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3609 
4.10 (shake flask-UV, Liu & Qian 1995) 
3.99 (RP-HPLC-k. correlation, Liu & Qian 1995) 
3.80 (recommended, Hansch et al. 1995) 
3.40, 4.02, 4.13 (RP-HPLC-RT correlation, CLOGP, calculated-S, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
2.41 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
1.85, 2.18 (calculated-S, KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.36 (soil, Hamaker & Thompson 1972) 
3.26, 2.72 (soil, calculated-S, Kenaga 1980) 
3.49 (average of soils/sediments, Rao & Davidson 1980) 
3.36, 3.23 (quoted, calculated-MCI ., Gerstl & Helling 1987) 
2.95 (soil, calculated-. and fragment contribution, Meylan et al. 1992) 
3.49 (Montgomery 1993) 
3.40 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
3.40 (selected, Lohninger 1994) 
3.60 (calculated-KOW, Liu & Qian 1995) 
3.140 (soil, calculated-MCI 1., Sabljic et al. 1995) 
3.40; 2.86, 2.69 (soil, quoted exptl.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Hydrolysis: t. > 4 months for 5500 µg/mL to hydrolyze in phosphate buffer at pH 5–9 and 20°C (El-dib & Aly 
1976; quoted, Muir 1991). 
Half-Lives in the Environment: 
Soil: residual activity in soil is limited to approximately 3–4 months (Hartley & Kidd 1987; quoted, Montgomery 
1993); 
selected field t. = 120 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

3610 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.56 Nitralin 
Common Name: Nitralin 
Synonym: Planavin 
Chemical Name: 4-(methylsulfonyl)-2,6-dinitro-N,N-dipropylbenzamine 
CAS Registry No: 4726-14-1 
Uses: herbicide 
Molecular Formula: C13H19N3O6S 
Molecular Weight: 345.371 
Melting Point (°C): 
150 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 1.39 (Hartley & Kidd 1987) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0594 (mp at 150°C) 
Water Solubility (g/m3 or mg/L at 25°C): 
0.60 (Melnikov 1971; Kenaga & Goring 1980; Kenaga 1980b; Isensee 1991) 
0.60 (Ashton & Crafts 1981; Hartley & Kidd 1987; Worthing & Walker 1987) 
Vapor Pressure (Pa at 25°C): 
0.240 (Ashton & Crafts 1981) 
2.0 . 10–5 (Hartley & Kidd 1987) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
6.73 (calculated-MCI ., Patil 1994) 
2.81 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
2.90, 1.76 (calculated-solubility, KOW, Kenaga 1980b) 
Sorption Partition Coefficient, log KOC: 
2.98 (Kenaga & Goring 1980) 
3.76 (calculated, Kenaga 1980a) 
2.92 (soil, calculated-MCI ., Sabljic et al. 1995) 
2.92; 3.28 (soil, quoted obs.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Biotransformation: Degradation by abiotic reductive transformations: 
k = 3.44 M–1 s–1 in H2S with (mecapto)juglone (hydroquinone moiety, an abiotic reductant found in natural 
systems) solution at pH 6.65 (Wang & Arnold 2003) 
Aqueous solutions with surface-bound Fe(II) species and their furst-order rate constants as: 
N 
NO2 O2N 
S O O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3611 
k = 0.44 . 10–3 h–1 at pH 6.5, k = 0.68 . 10–2 h–1 at pH 7.0, k = 0.133 h–1 at pH 7.4, and k = 1.96 h–1 at pH 
7.8 for aqueous ferrous ion system; 
k = 0.580 h–1 at pH 6.5, k = 1.15 h–1 at pH 6.7, k = 6.06 h–1 at pH 7.0, and k = 20.9 h–1 at pH 7.3 for 
Fe(II)/goethite system; 
k = 2.54 . 10–3 h–1 at pH 6.5, k = 1.83 . 10–3 h–1 at pH 7.0, k = 4.13 . 10–3 h–1 at pH 7.4 and k = 7.70 . 10–3 h–1 
at pH 7.8 for Fe(II)/clay system, all with total dissolved Fe(II) = 1 mM(Wang & Arnold 2003) 
Half-Lives in the Environment: 
Air: 
Surface water: 
Ground water: 
Sediment: 
Soil: t. ~ 30–54 d in dry soil (Hartley & Kidd 1987) 
Biota: in mammals, following oral administration, degradation and elimination occur within a few days (Hartley & 
Kidd 1987). 
© 2006 by Taylor & Francis Group, LLC

3612 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.57 Nitrofen 
Common Name: Nitrofen 
Synonym: nitrophen Tok, Tokkron 
Chemical Name: 2,4-dichloro-1-(4-nitrophenoxy)benzene 
CAS Registry No: 1836-75-5 
Uses: herbicide 
Molecular Formula: C12H7Cl2NO3 
Molecular Weight: 284.095 
Melting Point (°C): 
70 (Lide 2003) 
Boiling Point (°C): 
180–190/0.25 mmHg (Hartley & Kidd 1987) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Vaporization, .HV (kJ/mol): 
93.66 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
22,7 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.362 (mp at 70°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
1.0 (Kenaga 1980b) 
~1.0 (Spencer 1982) 
0.7–1.2 (22°C, Worthing 1987) 
~1 (room temp., Hartley & Kidd 1987) 
1.0 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et a;. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations.): 
1.07 . 10–3 (40°C, Spencer 1982) 
1.06 . 10–3 (40°C, Worthing 1987; Hartley & Kidd 1987) 
1.30 . 10–4, 4.50 . 10–3, 0.091, 1.20, 12.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 15.867 – 5886.5/(T/K); measured range 50–70.2°C (solid, gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.022 – 4892.8/(T/K); measured range 72.7–140°C (liquid, gas saturation-GC, Rordorf 1989) 
1.33 . 10–5 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol): 
Octanol/Water Partition Coefficient, log KOW: 
3.09 (Rao & Davidson 1980) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
2.79 (fish, Kenaga 1980b) 
Sorption Partition Coefficient, log KOC: 
3.64 (soil, calculated, Kenaga 1980b) 
3.01, 3.64, 4.18, 4.05 (quoted literature values, Augustijn-Beckers et al. 1994) 
4.0 (soil, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
O O2N Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3613 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Half-Lives in the Environment: 
Soil: reported field t. = 3 to 25 d and the recommended field t. = 30 d (Augustijn-Beckers et al. 1994; Hornsby 
et al. 1996). 
© 2006 by Taylor & Francis Group, LLC

3614 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.58 Norflurazon 
Common Name: Norflurazon 
Synonym: Zorial, Solicam, Evital, Telok 
Chemical Name: 4-chloro-5-(methylamino)-2[3-(trifluoromethyl)phenyl]-3-(2H)-pyridazinone 
CAS Registry No: 27314-13-2 
Uses: herbicide 
Molecular Formula: C12H9ClF3N3O 
Molecular Weight: 303.666 
Melting Point (°C): 
184 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0275 (mp at 184°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
28 (Kenaga & Goring 1980; Kenaga 1980b; Gerstl & Helling 1987; Isensee 1991) 
28 (Ashton & Crafts 1981; Worthing & Walker 1987; Herbicide Handbook 1989; Tomlin 1994) 
40 (Spencer 1982) 
28 (23°C, Hartley & Kidd 1987) 
28 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996; quoted, Senseman et al. 1997) 
Vapor Pressure (Pa at 25°C or as indicated): 
2.7 . 10–6 (20°C, Ashton & Crafts 1981; Spencer 1982) 
2.8 . 10–6 (20°C, Worthing & Walker 1987; Tomlin 1994) 
2.7 . 10–6, 3.3 . 10–5, 3.3 . 10–4, 1.6 . 10–3, 1.3 . 10–2 (20, 40, 60, 80, 100°C, Herbicide Handbook 1989) 
9.24 . 10–5 (20–25°C, Majewski & Capel 1995) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
3.04 . 10–5 (20–25°C, Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW: 
2.30 (22°C, shake flask-UV, Braumann & Grimme 1981) 
2.52 (shake flask, Takahashi et al. 1993) 
2.45 (pH 6.5, Tomlin 1994) 
2.30 (recommended, Hansch et al. 1995) 
2.30 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
2.60 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
1.97 (fish, calculated-solubility, Kenaga 1980b; Isensee 1991) 
N 
N 
Cl 
HN
O 
F 
F 
F 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3615 
Sorption Partition Coefficient, log KOC: 
3.28 (soil, Kenaga & Goring 1980) 
2.85 (calculated-solubility, Kenaga 1980b) 
3.28, 3.07 (soil: quoted, calculated-MCI ., Gerstl & Helling 1987) 
2.85 (soil, Wauchope et al. 1992; Hornsby et al. 1996) 
3.02, 2.64, 3.02, 2.46 2.59 (sandy loam, Mississippi loam, Mississippi sediment, Keaton sandy loam, Biggs clay, 
Tomlin 1994) 
3.75 (calculated-MCI ., Meylan et al. 1992) 
3.28 (soil, calculated-MCI ., Sabljic et al. 1995) 
2.78 (soil, Senseman et al. 1997) 
Environmental Fate Rate Constants, or Half-Lives, t.: 
Volatilization: dissipated in soil by photodegradation and volatilization, t. = 45–180 d (Tomlin 1994) 
Photolysis: rapidly degraded by sunlight (Worthing 1987; Tomlin 1994) 
dissipated in soil by photodegradation and volatilization, t. = 45–180 d (Tomlin 1994) 
Oxidation: 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 3.4 and 1.9 d reported in the absence and presence of 20 ppm H2O2 (quoted, Massad et al. 2004) 
Ground water: 
Sediment: 
Soil: the average t. = 45–130 d residues in soil from the Delta and Southeast depending on clay and organic 
content (Herbicide Handbook 1989) 
field t. ~ 30 d (estimated, Wauchope et al. 1992; Hornsby et al. 1996) 
dissipated in soil by photodegradation and volatilization, t. = 45–180 d (Tomlin 1994) 
soil t. = 90 d (Senseman et al. 1997) 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3616 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.59 Oryzalin 
Common Name: Oryzalin 
Synonym: Dirimal, EL 119, Rycelan, Rycelon, Ryzelan, Surflan 
Chemical Name: 4-(dipropylamino)-3,5-dinitrobenzene-sulfonamide; 3,5-dinitro-N4, N4-dipropylsulfanilamide 
Uses: herbicide for pre-emergence control of many annual grasses and broadleaf weeds in cotton, fruit trees, vines, nut 
trees, soybeans, groundnuts, oilseed rape, sunflowers, lucerne, peas, sweet potatoes, mint, ornamentals and also 
used in noncrop areas. 
CAS Registry No: 19044-88-3 
Molecular Formula: C12H18N4O6S 
Molecular Weight: 346.359 
Melting Point (°C): 
141 (Lide 2003) 
Boiling Point (°C): 265 (dec. Tomlin 1994) 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
351.1 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
9.40 (Worthing & Hance 1991; Tomlin 1994) 
8.60 (Wauchope et al. 1992; Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0728 (mp at 141°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
2.4 (Martin & Worthing 1977; Spencer 1982; Ashton & Crafts 1981) 
2.6 (Weber et al. 1980) 
2.5 (Hartley & Kidd 1987; Budavari 1989; Milne 1995) 
2.4 (Worthing & Walker 1987, Worthing & Hance 1991) 
2.6 (Herbicide Handbook 1989; Tomlin 1994) 
2.5 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
3.5 (calculated-group contribution fragmentation method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
< 1.33 . 10–5 (30°C, Ashton & Crafts 1981) 
< 1.30 . 10–5 (30°C, Hartley & Kidd 1987) 
< 1.33 . 10–6 (Herbicide Handbook 1989; Tomlin 1994) 
< 1.33 . 10–5 (30°C, Budavari 1989) 
< 1.30 . 10–6 (Worthing & Hance 1991) 
< 1.30 . 10–6 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.000188 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
4.13 (selected, Dao et al. 1983) 
3.73 (Worthing & Hance 1991) 
N 
NO2 O2N 
S O O 
NH2 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3617 
3.72 (pH 7, Tomlin 1994) 
3.73 (Milne 1995) 
3.73 (selected, Hansch et al. 1995) 
2.79 (MedChem master file or ClogP program, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
2.58 (calculated-S, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.43 (soil, calculated-S, Kenaga 1980) 
2.78 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.78 (estimated-chemical structure, Lohninger 1994) 
2.85–3.04 (Tomlin 1994) 
3.40 (quoted or calculated-QSAR MCI 1., Sabljic et al. 1995) 
3.40; 3.18 (soil, quoted obs.; estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Biodegradation: in soil, microbial degradation occurs rapidly, t. = 2.1 months for aerobic and t. = 10 d for 
anaerobic metabolism (Tomlin 1994). 
Half-Lives in the Environment: 
Soil: selected field t. = 20 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 2.1 months for aerobic degradation and t. = 10 d for anaerobic degradation (Tomlin 1994). 
© 2006 by Taylor & Francis Group, LLC

3618 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.60 Pebulate 
Common Name: Pebulate 
Synonym: PEBC, R-2061, Stauffer 2061, Tillam, Timmam-6-E 
Chemical Name: S-propyl butylethyl(thiocarbamate); S-propyl butylethylcarbamothioate 
Uses: selective pre-emergence herbicide to control annual grasses and broadleaf weeds in tomatoes, sugar beet, and 
tobacco. 
CAS Registry No: 1114-71-2 
Molecular Formula: C10H21NOS 
Molecular Weight: 203.345 
Melting Point (°C): liquid 
Boiling Point (°C): 
142 (at 20 mmHg, Hartley & Kidd 1987; Budavari 1989; Montgomery 1993; Milne 1995) 
142 (at 21 mmHg, Herbicide Handbook 1989) 
Density (g/cm3 at 20°C): 
0.956 (Hartley & Kidd 1987; Worthing & Hance 1991; Tomlin 1994; Milne 1995) 
0.9555 (Herbicide Handbook 1989; Montgomery 1993) 
Molar Volume (cm3/mol): 
258.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 1.0 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
92 (21°C, Woodford & Evans 1963) 
92 (21°C, Spencer 1973, 1982) 
60 (Herbicide Handbook 1978, 1989; quoted, Kenaga 1980; Kenaga & Goring 1980) 
60 (Ashton & Crafts 1973, 1981) 
60 (20°C, Khan 1980; Hartley & Kidd 1987; Tomlin 1994; Montgomery 1993; Milne 1995) 
60 (20°C, Worthing & Walker 1987, Worthing & Hance 1991) 
100 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
4.67 (Ashton & Crafts 1973, 1981; Herbicide Handbook 1989) 
3.60 (20°C, Hartley& Graham-Bryce 1980) 
9.06 (30°C, Khan 1980) 
0.216 (20°C, GC-RT correlation, Kim 1985) 
9.00 (30°C, Hartley & Kidd 1987; Tomlin 1994) 
3.50 (20°C, selected, Suntio et al. 1988) 
4.70 (Worthing & Hance 1991; Tomlin 1994) 
1.186 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
9.064 (20°C, Montgomery 1993) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
11.67 (20°C, calculated-P/C, Suntio et al. 1988) 
11.65 (20°C, calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
3.78 (selected, Magee 1991) 
3.84 (Worthing & Hance 1991; Montgomery 1993; Milne 1995) 
S N 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3619 
3.83 (Tomlin 1994) 
3.84 (selected, Hansch et al. 1995) 
4.19, 3.74, 3.27 (RP-HPLC, CLOGP, calculated-S, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.79 (calculated-S, Kenaga 1980) 
1.54 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.80 (soil, Hamaker & Thompson 1972) 
2.66 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.80 (reported as log KOM, Magee 1991) 
2.65 (estimated as log KOM, Magee 1991) 
2.63 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.80 (Montgomery 1993) 
2.63 (selected, Lohninger 1994) 
2.80 (quoted or calculated-QSAR MCI 1., Sabljic et al. 1995) 
2.48, 2.10 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, 
Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Biodegradation: in soil, microbial degradation t. = 2–3 wk (Tomlin 1994). 
Half-Lives in the Environment: 
Air: 
Surface water: t. = 11 d, at pH 4 and pH 10, t. = 12 d at pH 7 (40°C, Tomlin 1994). 
Ground water: 
Sediment: 
Soil: t. ~ 2 wk in moist loam soil at 21–27°C (Herbicide Handbook 1989; Montgomery 1993); 
selected field t. = 14 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 2–3 wk (Tomlin 1994);. 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3620 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.61 Pendimethalin 
Common Name: Pendimethalin 
Synonym: penoxalin 
Chemical Name: N-(1-ethylpropyl-3,4-dimethyl-2,6-dinitrobenzenamine 
CAS Registry No: 40487-42-1 
Uses: herbicide 
Molecular Formula: C13H19N3O4 
Molecular Weight: 281.308 
Melting Point (°C): 
56 (Lide 2003) 
Boiling Point (°C): 
330 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
decomposes on heating (Hartley & Kidd 1987; Tomlin 1994) 
Density (g/cm3 at 25°C): 
1.19 (Ashton & Crafts 1981; Montgomery 19993; Tomlin 1994) 
1.12 (Hartley & Kidd 1987) 
1.17 (Herbicide Handbook 1989) 
Molar Volume (cm3/mol): 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.496 (mp at 56°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.50 (23°C, Ashton & Crafts 1981) 
0.30 (20°C, Hartley & Kidd 1987; Worthing & Walker 1987; Montgomery 1993; Tomlin 1994) 
0.275 (Herbicide Handbook 1989) 
0.275 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.61 (20–25°C, Majewski & Capel 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.004 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
0.004 (Hartley & Kidd 1987; Worthing & Walker 1987; Tomlin 1994) 
1.25 . 10–3 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.004 (Montgomery 1993) 
8.16 . 10–3 (20–25°C, Majewski & Capel 1995) 
0.00123; 0.00776 (liquid PL, GC-RT correlation; quoted lit., Donovan 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.0867 (Montgomery 1993) 
3.75 (20–25, calculated-P/C, Majewski & Capel 1995) 
Octanol/Water Partition Coefficient, log KOW: 
5.18 (Montgomery 1993) 
5.18 (Tomlin 1994) 
5.24 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
HN 
NO2 O2N 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3621 
Octanol/Air Partition Coefficient, log KOA: 
Bioconcentration Factor, log BCF or log KB: 
Sorption Partition Coefficient, log KOC: 
2.95 (soil, Wauchope et al. 1992; Hornsby et al. 1996) 
4.20 (soil, Bottoni & Funari 1992) 
4.14, 4.47 (loam, pH 7, pH 6.5, quoted, Montgomery 1993) 
3.81 (sand, pH 7.6, Montgomery 1993) 
4.07, 4.14 (sandy loam pH 6.4, silty loam, pH 7.0, Montgomery 1993) 
1.48–2.93 (soil, Montgomery 1993) 
3.70 (soil, Senseman et al. 1997) 
3.14 (soil, estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: slowly decomposed by light (Hartley & Kidd 1987; Tomlin 1994). 
Oxidation: 
Hydrolysis: t. < 21 d (Montgomery 1993). 
Biodegradation: observed t. = 33 d, 45 d, 52 d and 67 d in flooded and nonflooded conditions in nonsterile and 
sterile soils, respectively, in the study of degradation of pendimethalin under the influence of soil moisture 
and microbial activity in a sandy loam soil, in both nonsterile nonflooded and flooded soil, degradation 
followed first-order kinetics. (Kulshrestha & Singh 1992; quoted, Montgomery 1993). 
Biotransformation: Degradation by abiotic reductive transformations: 
k = 1.25 M–1 s–1 in H2S with (mecapto)juglone (hydroquinone moiety, an abiotic reductant found in natural 
systems) solution at pH 6.65 (Wang & Arnold 2003) 
Aqueous solutions with surface-bound Fe(II) species and their first-order rate constants as: 
k = 0.50 . 10–3 h–1 at pH 6.5, k = 0.27 . 10–2 h–1 at pH 7.0, k = 0.093 h–1 at pH 7.4, and k = 0.81 h–1 at pH 
7.8 for aqueous ferrous ion system; 
k = 0.216 h–1 at pH 6.5, k = 0.274 h–1 at pH 6.7, k = 0.918 h–1 at pH 7.0, and k = 2.10 h–1 at pH 7.3 for 
Fe(II)/goethite system; 
k = 3.81 . 10–3 h–1 at pH 6.5, k = 2.66 . 10–3 h–1 at pH 7.0, k = 1.13 . 10–2 h–1 at pH 7.4 and k = 1.74 . 10–2 
h–1 at pH 7.8 for Fe(II)/clay system, all with total dissolved Fe(II) = 1 mM (Wang & Arnold 2003) 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: t. < 21 d in water (Tomlin 1994). 
Ground water: reported t. = 30–90 d (Bottoni & Funari 1992) 
Sediment: 
Soil: t. = 98 and 409 d at 30 and 10°C in a sandy loam soil with 75% moisture (Walker & Bond 1977) 
t. = 4 d on Bosket silt loam, t. = 6 d on Sharkey clay for the first 3 to 5 days when sprayed onto soil 
surface, rate of loss much slower for the remainder of the 7- or 12-d sampling period with t. = 18 d on 
Bosket silt loam, t. = 27 d on Sharkey clay (Savage & Jordon 1980) 
t. = 58–63 d in IARI sandy loam soil under Indian tropical climate (Kulshrestha & Yaduraju 1987) 
t. = 30–90 d or persistence (Bottoni & Funari 1992) 
t. = 66.9 d in sterile, t. = 52.2 d in nonsterile non-flooded sandy loam soil; t. = 44.9 d in sterile and 33.4 
d in nonsterile flooded sandy loam soil in the study of degradation under the influence of soil moisture 
and microbial activity (Kulshrestha & Singh 1992; quoted, Montgomery 1993) 
reported field t. = 8–480 d, recommended t. = 90 d (Wauchope et al 1992; Hornsby et al. 1996); 
soil t. = 90 d (Senseman et al. 1997). 
Biota: t. = 3–4 months (quoted, Hartley & Kidd 1987; Tomlin 1994) 
© 2006 by Taylor & Francis Group, LLC

3622 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.62 Picloram 
Common Name: Picloram 
Synonym: Amdon, ATCP, Borolin, Grazon, K-Pin, Tordon 
Chemical Name: 4-amino-3,5,6-trichloropicolinic acid; 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid 
Uses: systemic herbicide to control most broadleaf weeds on grassland and noncropland. 
CAS Registry No: 1918-02-1 
Molecular Formula: C6H3Cl3N2O2 
Molecular Weight: 241.459 
Melting Point (°C): 
218.5 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
204.2 (calculated-Le Bas method at normal boiling point, Suntio et al. 1988) 
Dissociation Constant pKa: 
3.43, 3.42, 3.39, 3.36 (10, 20, 30. 40°C, Cheung & Biggar 1974) 
1.90 (Weber et al. 1980; Willis & McDowell 1982) 
3.60 (Windholz 1983; quoted, Howard 1991; Yao & Haag 1991; Haag & Yao 1992; Montgomery 1993) 
2.3 (22°C, Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
1.94 (Hornsby et al. 1996) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0126 (mp at 218.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional 
data at other temperatures designated * are compiled at the end of this section): 
430 (Bailey & White 1965; Freed 1966; Khan 1980; Weber et al. 1980; Ashton & Crafts 1981; Spencer 
1982) 
546* (20°C, shake flask-IR, measured range 10–40°C, pH 2.8, distilled water, Cheung & Biggar 1974) 
73.65* (20°C, shake flask-IR, measured range 10–40°C at pH 0.2, Cheung & Biggar 1974) 
62.7* (20°C, shake flask-IR, measured range 10v40°C at pH 1.1, Cheung & Biggar 1974) 
137* (20°C, shake flask-IR, measured range 10–40°C at pH 2.0, Cheung & Biggar 1974) 
19560* (20°C, shake flask-IR, measured range 10–40°C at pH 4.2, Cheung & Biggar 1974) 
74593* (20°C, shake flask-IR, measured range 10–40°C at pH 4.7, Cheung & Biggar 1974) 
430 (Martin & Worthing 1977, Worthing & Hance 1991; quoted, Kenaga 1980; Kenaga & Goring 1980; 
Isensee 1991; Howard 1991) 
430 (Hartley & Graham-Bryce 1980; Taylor & Glotfelty 1988) 
430 (Hartley & Kidd 1987; Herbicide Handbook 1989; Tomlin 1994; Milne 1995) 
400–430 (Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
7.30 . 10–7 (20°C, Hartley & Graham-Bryce 1980) 
8.20 . 10–5 (35°C, Khan 1980; Ashton & Crafts 1981; Hartley & Kidd 1987; Herbicide Handbook 1989) 
8.26 . 10–5 (20–25°C, Weber et al. 1980; Willis & McDowell 1982) 
9.70 . 10–9 (Dobbs & Cull 1982; quoted, Howard 1991) 
7.30 . 10–6 (20°C, quoted from Hartlet & Graham-Bryce 1980, Dobbs et al. 1984) 
6.00 . 10–5 (20°C, selected, Suntio et al. 1988) 
1.40 . 10–4 (45°C, Herbicide Handbook 1989) 
N 
OH 
O
Cl 
NH2 
Cl 
Cl 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3623 
4.50 . 10–8 (quoted, Nash 1989) 
7.40 . 10–7 (20°C, selected, Taylor & Spencer 1990) 
8.20 . 10–5 (35°C, Worthing & Hance 1991; Montgomery 1993; Tomlin 1994) 
Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 
3.40 . 10–5 (20°C, calculated-P/C, Suntio et al. 1988; quoted, Mabury & Crosby 1996) 
4.20 . 10–7 (calculated-P/C, Taylor & Glotfelty 1988) 
2.50 . 10–5 (calculated-P/C, Nash 1989) 
4.10 . 10–6 (calculated-P/C, Howard 1991) 
3.40 . 10–5 (20–35°C, calculated-P/C, Montgomery 1993) 
3.17 . 10–5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
0.30 (Kenaga 1975) 
0.63 (selected, Dao et al. 1983) 
0.30 (Hansch & Leo 1985; Hansch et al. 1995;) 
–3.47 (selected, Gerstl & Helling 1987) 
1.166 (calculated as per Broto et al. 1984, Karcher & Devillers 1990) 
0.26, 0.30 (quoted, Sangster 1993) 
1.87 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
–1.70 (fish in static water, quoted from Dow Chemical data, Kenaga & Goring 1980) 
1.30 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
–0.222 (calculated-KOC, Kenaga 1980) 
0.0 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1991) 
1.49 (fish in flowing water, Garten & Trabalka 1983; quoted, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
1.23 (soil, Hamaker & Thompson 1972) 
1.10 (average in soil, Hamaker & Thompson 1972) 
1.10 (average in soil, Reinhold et al. 1979) 
1.23 (Kenaga & Goring 1980; quoted, Bahnick & Doucette 1988) 
2.20 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
1.41 (av. of 26 soils, Rao & Davidson 1980) 
1.40 (soil, Rao & Davidson 1982) 
1.31, 1.05, 1.34, 1.0, 1.26. 1.10, 1.05 (Catlin soil, Commerce soil, Fargo soil, Holdredge soil, Norfolk soil, 
Kawkawlin soil, Walla-Walla soil, McCall & Agin 1985; quoted, Brusseau & Rao 1989) 
2.11 (calculated-MCI ., Gerstl & Helling 1987) 
1.68 (screening model calculations, Jury et al. 1987b) 
1.47 (calculated-MCI ., Bahnick & Doucette 1988) 
1.88 (Nash 1989) 
1.23 (reported as log KOM, Magee 1991) 
1.20 (organic carbon, Wauchope et al. 1991) 
1.11, 1.41, 1.68 (soil, quoted values, Bottoni & Funari 1992) 
1.41 (Montgomery 1993) 
1.30 (soil, calculated-QSAR MCI 1., Sabljic et al. 1995) 
1.55, 1.39, 2.38 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, and pH 2.0–10.5, average, 
Delle Site 2001) 
3.07, 2.96, 3.30 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, and pH . 2.0 undissociated, 
average, Delle Site 2001) 
1.80, 1.76 (soils: organic carbon OC . 0.1%, OC . 0.5%, pH 4.2–5.9, average, Delle Site 2001) 
1.12, 2.02, 1.93 (soils: organic carbon OC . 0.1%, OC . 0.5%, 0.1 . OC < 0.5%, pH . 6.0, dissociated, average, 
Delle Site 2001) 
© 2006 by Taylor & Francis Group, LLC

3624 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: 
Photolysis: t. = 200 h for 40% of 4,840 µg/mL to degrade in dilute NaOH solution under sunlight (Hall et 1968; 
quoted, Cessna & Muir 1991); 
t. = 2.3 d to 9.58 d direct photolysis by sunlight under various conditions, at depths of 2.54 cm-3.65 m at 
various times of the year; one result at 3.65 m during Sept.-Oct. gave t. = 41.3 d; distilled water and 
canal water gave essentially the same results in one set of experiments (Hedlund & Youngson 1972; 
quoted, Cessna & Muir 1991; Howard 1991); 
t. = 72 h for 99% of 548 µg mL–1 to degrade in Na salt solution under 300–380 nm light (Mosier & Guenzi 
1973; quoted, Cessna & Muir 1991); 
t. = 0.5 h for 38% of 265 µg mL–1 to degrade in distilled water under 254 nm light (Glass 1975; quoted, 
Cessna & Muir 1991); 
t. = 2.2 d for < 2.4 µg mL–1 L to degrade in distilled water under sunlight (Skurlatov et al. 1983; quoted, 
Cessna & Muir 1991); 
t. = 16 h in surface water estimated from direct midday sunlight photolysis in mid-summer at 40°N (Zepp 
1991). 
Oxidation: 
photooxidation: t. = 12.21 d in air, based on estimated rate constant for the reaction with photochemically 
produced hydroxyl radical in the atmosphere (GEMS 1986; quoted, Howard 1991) 
k = 5.9 . 109 M–1 s–1 for the reaction (Fenton with reference to acetophenone) with hydroxyl radical in 
aqueous solutions at pH 2.1–3.7 and at 24 ± 1°C (Buxton et al. 1988; quoted, Haag & Yao 1992) 
k(aq.) = (50–150) M–1 s–1 for direct reaction with ozone in water at pH 1.5–4.9 and 21 ± 1°C, with t. = 4.0 
min at pH 7 (Yao & Haag 1991). 
k(aq.) = (3.4 ± 0.3) . 109 M–1 s–1 for the reaction (Fenton with reference to acetophenone) with hydroxyl 
radicals in aqueous solutions at pH 2.1–3.7 and at 24 ± 1°C (Haag & Yao 1992) 
k(aq.) = 1.3 . 109 M–1 s–1 for reaction with hydroxyl radical, in irradiated field water both in the laboratory 
and sunlit rice paddies (Mabury & Crosby 1996). 
Hydrolysis: 
Biodegradation: t. = 128–144 h in mixture of 5 g soil and 1–4 mL water, t. = 90–1000 h in mixture of 1 mL 
water with 0.25–10 g soil, (Hance 1969; quoted, Howard 1991); 
t. > 15 months for 0.07, 0.72 and 10 µg mL–1 to biodegrade in groundwater (Weidner 1974; quoted, Muir 
1991); 
k = 0.0073 d–1 by soil incubation die-away test studies (Rao & Davidson 1980; quoted, Scow 1982); 
biochemical t. = 100 d from screening model calculations (Jury et al. 1987b); 
t. = 30–300 d, degraded slowly by soil microorganisms (Tomlin 1994). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 12.21 d, based on estimated rate constant for the vapor-phase reaction with photochemically produced 
hydroxyl radicals in the atmosphere (GEMS 1986; quoted, Howard 1991). 
Surface water: t. = 2.6 d decomposed by UV irradiation (Tomlin 1994); 
measured rate constant k = (50 - 150) M–1 s–1 for direct reaction with ozone in water at pH 1.5–4.9 and 
21°C, with t. = 4.0 min at pH 7 (Yao & Haag 1991). 
Ground water: t. > 15 months for 0.07, 0.72 and 10 µg/mL to biodegrade in ground water (Weidner 1974; 
quoted, Muir 1991); 
measured rate constant k . 0.005 M–1 s–1 for direct reaction with ozone in water at pH 2 and 21°C, with 
t. . 80 d at pH 7 (Yao & Haag 1991) 
reported t. = 30–330, 138, 180 and 206 d (Bottoni & Funari 1992). 
Sediment: 
Soil: estimated persistence of 18 months (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury 
et al. 1987b); 
persistent in soils with t. > 5 yr (Alexander 1973; quoted, Howard 1991); 
estimated first-order t. = 95 d in soil from biodegradation rate constant k = 0.0073 d–1 by soil incubation 
die-away test studies (Rao & Davidson 1980; quoted, Scow 1982); 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3625 
persistent in soil with t. > 100 d (Willis & McDowell 1982); 
t. = 100 d from screening model calculations (Jury et al. 1987b); 
selected t. = 90 d (Wauchope et al. 1991; quoted, Dowd et al. 1993); 
reported t. = 30–330 d, 18 d, 180 d and 206 d (Bottoni & Funari 1992); 
t. = 3–330 d (Tomlin 1994). 
Biota: biochemical t. = 100 d from screening model calculations (Jury et al. 1987b); 
average t. = 60 d in the forest (USDA 1989; quoted, Neary et al. 1993). 
TABLE 17.1.1.62.1 
Reported aqueous solubilities of picloram at various temperatures 
Cheung & Biggar 1974 
shake flask-IR spec. 
t/°C S/g·m–3 S/g·m–3 S/g·m–3 S/g·m–3 S/g·m–3 S/g·m–3 
pH 0.20 pH 1.10 pH 2.0 pH 2.8 pH 4.2 pH 4.7 
10 43.95 39.12 89.11 475 22240 84446 
20 73.65 62.78 136.92 545.74 19560 74953 
30 119.5 108.9 205.3 683.4 21395 82248 
40 214.9 199 316.3 704.5 21371 78240 
.Hsol/(kJ mol–1) 38.49 38.91 31.38 12.97 0 0 
© 2006 by Taylor & Francis Group, LLC

3626 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.63 Profluralin 
Common Name: Profluralin 
Synonym: CGA 10832, Pregard, Tolban 
Chemical Name: N-(cyclopropylmethyl)-2,6-dinitro-N-propyl-4-trifluoromethylaniline; N-(cyclopropylmethyl)- 
2,6-dinitro-N-propyl-4-(trifluoromethyl) benzenamine 
Uses: herbicide for pre-planting by soil incorporation to control annual and perennial broadleaf and grass weeds in 
cotton, soybeans, brassicas, capsicums, tomatoes and other crops. 
CAS Registry No: 26399-36-0 
Molecular Formula: C14H16F3N3O4 
Molecular Weight: 347.290 
Melting Point (°C): 
34 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.45 (25°C, Ashton & Crafts 1981) 
1.38 (Hartley & Kidd 1987; Worthing & Hance 1991) 
Molar Volume (cm3/mol): 
304.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.816 (mp at 34°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
0.10 (20°C, Weber 1972) 
0.10 (Spencer 1973, 1982; Wauchope 1978; Kenaga 1980) 
0.10 (27°C, Ashton & Crafts 1973, 1981) 
0.10 (shake flask-HPLC, Ellgehausen et al. 1981) 
0.10 (20°C, Hartley & Kidd 1987; Milne 1995) 
0.10 (20°C, Worthing & Walker 1987, Worthing & Hance 1991) 
0.10 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0092 (20°C, Weber 1972; Worthing & Walker 1987) 
0.0092 (20°C, Ashton & Crafts 1973, 1981) 
0.0084 (20°C, Hartley & Kidd 1987) 
0.0084 (20°C, Worthing & Hance 1991) 
0.0084 (20–25°C, selected, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
39.07 (20°C, calculated-P/C, Suntio et al. 1988) 
31.91 (20°C, calculated-P/C, Muir 1991) 
Octanol/Water Partition Coefficient, log KOW: 
5.16 (selected, Dao et al. 1983) 
6.34 (shake flask-HPLC/UV, Ellgehausen et al. 1981) 
6.34 (recommended, Sangster 1993) 
NO2 
F F 
F 
O2N 
N 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3627 
4.46 (calculated-fragment const., Pinsuwan et al. 1995) 
6.34 (recommended, Hansch et al. 1995) 
5.08 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Bioconcentration Factor, log BCF: 
3.35 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
2.83 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
3.93 (soil, exptl., Kenaga 1980) 
4.19 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
3.83 (estimated as log KOM, Magee 1991) 
3.93 (soil, quoted exptl., Meylan et al. 1992) 
4.26 (soil, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
4.00 (20–25°C, estimated, Augustijn-Beckers et al. 1994; Hornsby et al. 1996) 
4.16 (selected, Lohninger 1994) 
4.01 (soil, calculated-QSAR MCI 1., Sabljic et al. 1995) 
3.87 (soil, estimated-general model using molecular descriptors, Gramatica et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: estimated t. ~ 1.2 d from 1 m depth of water at 20°C (Muir 1991). 
Photolysis: 
Oxidation: 
Hydrolysis: 
Biodegradation: t. = 12 d for 0.5 µg mL–1 to biodegrade in flooded soils at 20–42°C (Savage 1978; quoted, 
Muir 1991); 
Degradation t. < 1 month in three soils, Goldsborol loamy sand, Cecil loamy sand Drummer clay loam 
treated with 1 ppm profluralin) for 4 month under aerobic conditions, no degradation in sterile controls. 
(shake flask-TLC, Camper et al. 1980) 
t. < 1 month for 1 µg/mL to biodegrade in flooded soils at 25°C (derived from results of Camper et al. 
1980, Muir 1991); 
biodegradation t. < 20 d in water and sediment with flooded soils and terrestrial-aquatic model ecosystems 
(Miur 1991). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: biodegradation t. < 20 d in water and sediment with flooded soils and terrestrial-aquatic model 
ecosystems (Muir 1991). 
Ground water: 
Sediment: biodegradation t. < 20 d in water and sediment with flooded soils and terrestrial-aquatic model 
ecosystems (Muir 1991). 
Soil: t. = 12 d for 0.5 µg mL–1 to biodegrade in flooded soils at 20–42°C (Savage 1978, Muir 1991) 
persistence of 12 months in soil (Wauchope 1978); 
aerobic and anaerobic degradation t. < 1 month in 3 flooded soils at 25°C (Camper et al. 1980); 
field studies, t. = 10.9 wk - 1978 first study; t. = 10.1 wk -1978 second study; t. = 11.5 wk -1979, in a 
Crowley silt loam at Stuttgart, Arkansas (Brewer et al. 1982) 
laboratory studies: t. = 19.9 wk at 4°C, t. = 6.7 wk at 25°C for soil of field capacity moisture (27% w/w 
for Crowley silt loam), t. = 20.4 wk at 4°C, t. = 4.8 wk at 25°C for flooded soils, Crowley silt loam; 
and t. = 25.8 wk at 4°C, t. = 8.6 wk at 25°C for soil of field capacity moisture (34% w/w for Sharkey 
silty clay), t. = 21.3 wk at 4°C and t. = 6.2 wk at 25°C for flooded soils, Sharkey silty clay (Brewer et 
al. 1982); 
selected field t. = 110 d (Augustijn-Beckers et al. 1994; Hornsby et al. 1996). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3628 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.64 Prometon 
Common Name: Prometon 
Synonym: G 31435, Gesafram, Gesagram, Methoxypropazine, Ontracic 800, Ontrack, Pramitol, Prometone 
Chemical Name: 6-methoxy-N,N.-bis(methylethyl)-1,3,5-triazine-2,4-diamine; 2,4-bis(isopropylamino)-6-methoxy- 
1,3,5-triazine 
Uses: nonselective pre-emergence and post-emergence herbicide to control most annual and broadleaf weeds, grasses, 
and brush weeds on noncropland. 
CAS Registry No: 1610-18-0 
Molecular Formula: C10H19N5O 
Molecular Weight: 225.291 
Melting Point (°C): 
91.5 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.088 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993) 
Molar Volume (cm3/mol): 
280.2 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
4.28 (pKa, Weber 1970; quoted, Bintein & Devillers 1994) 
4.30 (pKa, 21°C, Worthing & Hance 1991; Montgomery 1993) 
9.73 (pKb, Wauchope et al. 1992; Hornsby et al. 1996) 
9.7 (21°C, pKb, Tomlin 1994) 
Enthalpy of Vaporization, .HV (kJ/mol): 
90.77 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
22.175 (DSC method, Plato & Glasgow 1969) 
21.6 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.223 (mp at 91.5°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
750 (20°C, Bailey & White 1965; Ashton & Crafts 1981; Herbicide Handbook 1989) 
1000, 678, 669 (26°C, pH 3.0, 7.0, 10.0, shake flask-UV, Ward & Weber 1968) 
750 (Martin & Worthing 1977; Herbicide Handbook 1978) 
677 (Weber et al. 1980) 
620 (20°C, Spencer 1982) 
750 (20°C, Verschueren 1983) 
750 (20°C, Hartley & Kidd 1987; Montgomery 1993) 
620 (20°C, Worthing & Walker 1987, 1991; Tomlin 1994) 
720 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations.): 
3.07 . 10–4 (20°C, extrapolated-Antoine eq. from gas saturation-GC measurements, measured range 50–130°C, 
Friedrich & Stammbach 1964) (See figure at the end of this section.) 
log (P/mmHg) = 11.911 – 4933/(T/K), temp range 50–130°C (gas saturation-GC, data presented in Antoine eq., 
Friedrich & Stammbach 1964) 
N 
N 
N 
HN 
NH 
O 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3629 
0.00030 (20°C, Khan 1980) 
0.00031 (20°C, Ashton & Crafts 1981; Worthing & Hance 1991) 
0.00083 (Jury et al. 1984; selected, Spencer et al. 1988; Spencer & Cliath 1990; Taylor & Spencer 1990) 
0.00031 (20°C, Hartley & Kidd 1987) 
0.00031, 0.00105 (20°C, 30°C, Herbicide Handbook 1989) 
1.0 . 10–3, 3.30 . 10–2, 0.65, 8.60, 82 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 16.525 – 5817.4/(T/K); measured range 32.1–89.3°C (gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 13.617 – 4741.7/(T/K); measured range 92.3–140°C (gas saturation-GC, Rordorf 1989) 
0.00103 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.00031 (20°C, Montgomery 1993) 
0.000306 (20°C, Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
2.50 . 10–4 (calculated-P/C, Jury et al. 1984; Spencer et al. 1988; Spencer & Cliath 1990) 
9.02 . 10–5 (20°C, calculated-P/C, Montgomery 1993) 
9.01 . 10–5 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
1.94 (selected, Dao et al. 1983) 
1.94 (Gerstl & Helling 1987) 
2.99 (RP-HPLC-RT correlation, Finizio et al. 1991; quoted, Sangster 1993) 
2.85 (selected, Magee 1991) 
2.55 (shake flask-UV, Liu & Qian 1995) 
2.69, 2.99 (Montgomery 1993) 
2.99 (recommended, Hansch et al. 1995) 
2.82 (RP-HPLC-RT correlation, Finizio et al. 1997) 
Bioconcentration Factor, log BCF: 
1.18 (calculated-S, Kenaga 1980; quoted, Isensee 1991) 
1.28 (calculated-KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.54 (soil, Hamaker & Thompson 1972; Kenaga 1980; Kenaga & Goring 1980) 
2.04 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.61 (Jury et al. 1984; quoted, Spencer & Cliath 1990) 
2.40 (calculated-MCI ., Gerstl & Helling) 
2.48 (Spencer et al. 1988) 
2.35 (estimated as log KOM, Magee 1991) 
2.20 (soil, calculated-MCI . and fragment contribution, Meylan et al. 1992) 
2.18 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
1.92–2.24 (Montgomery 1993) 
2.77 (selected, Lohninger 1994) 
2.39 (calculated-KOW, Liu & Qian 1995) 
2.50 (soil, calculated-MCI 1., Sabljic et al. 1995) 
2.60; 2.70, 2.68 (soil, quoted obs.; estimated-class-specific model, estimated-general model using molecular 
descriptors, Gramatica et al. 2000) 
2.47, 2.50 (soils: organic carbon OC . 0.1%, OC . 0.5%, pH 4.3–7.1, average, Delle Site 2001) 
2.81, 2.65, 2.53 (soils with organic carbon OC . 0.5% at: pH 4.3–4.9, pH 5.0–5.9, pH- 6.0, average, Delle Site 
2001) 
Environmental Fate Rate Constants, or Half-Lives, t.: 
Volatilization: estimated t. ~ 100 d (Spencer & Cliath 1990). 
Photolysis: t. = 2.25 h for 1% of 100 µg mL–1 to degrade in distilled water under 300 nm light (Tanaka et al. 
1981; quoted, Cessna & Muir 1991). 
Oxidation: 
© 2006 by Taylor & Francis Group, LLC

3630 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
Hydrolysis: 
Biodegradation: 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Soil: selected field t. = 500 d (Wauchope et al. 1992; Hornsby et al. 1996). 
FIGURE 17.1.1.64.1 Logarithm of vapor pressure versus reciprocal temperature for prometon. 
Prometon: vapor pressure vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Friedrich & Stammbach 1964 (50 to 130 °C) 
Friedrich & Stammbach 1964 (extrapolated) 
m.p. = 91.5 °C 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3631 
17.1.1.65 Prometryn 
Common Name: Prometryn 
Synonym: Caparol, Cotton-Pro, Gesagard, G-34161, Mercasin, Mercazin, Polisin, Primatol, Prometrex, Prometrin, 
Selectin, Sesagard, Uvon 
Chemical Name: N,N.-bis(1-methylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine; 2,4-bis(isopropylamino)-6-(methylthio)-
1,3,5-triazine 
Uses: selective herbicide to control many annual grass and broadleaf weeds in celery, cotton and peas. 
CAS Registry No: 7287-19-6 
Molecular Formula: C10H19N5S 
Molecular Weight: 241.357 
Melting Point (°C): 
119 (Lide 2003) 
Boiling Point (°C): 
Density (g/cm3 at 20°C): 
1.157 (Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Milne 1995) 
Molar Volume (cm3/mol): 
299.7 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant: 
4.05 (pKa, Weber 1970; Pacakova et al. 1988; Somasundaram et al. 1991; Bintein & Devillers 1994) 
4.10 (pKa, 21°C, Weber et al. 1980; Willis & McDowell 1982; Worthing & Hance 1991) 
9.95 (pKb, Wauchope et al. 1992; Hornsby et al. 1996) 
4.05 (pKa, 21°C, Montgomery 1993) 
Enthalpy of Vaporization, .HV (kJ/mol): 
96.43 (Rordorf 1989) 
Enthalpy of Fusion, .Hfus (kJ/mol): 
26.36 (DSC method, Plato & Glasgow 1969) 
25.4 (Rordorf 1989) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.120 (mp at 119°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
48 (20°C, Woodford & Evans 1963) 
48 (20°C, Bailey & White 1965; Ashton & Crafts 1973, 1981; Khan 1980) 
206, 40.3, 41.8 (26°C, shake flask-UV at pH 3.0, 7.0, 10.0, Ward & Weber 1968) 
48 (Martin & Worthing 1977; Herbicide Handbook 1978) 
40 (Weber et al. 1980) 
48 (20°C, Hartley & Kidd 1987; Herbicide Handbook 1989; Montgomery 1993; Milne 1995) 
33 (20°C, Worthing & Walker 1987, Worthing & Hance 1991) 
33 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
33 (Tomlin 1994; selected, Lohninger 1994) 
241 (calculated-group contribution method, Kuhne et al. 1995) 
Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations.): 
1.33 . 10–4 (20°C, extrapolated-Antoine eq. from gas saturation-GC measurements, measured range 50–130°C, 
Friedrich & Stammbach 1964) (See figure at the end of this section.) 
log (P/mmHg) = 11.911 – 4933/(T/K), temp range 50–130°C (gas saturation-GC, data presented in Antoine eq., 
Friedrich & Stammbach 1964) 
N 
N 
N 
HN 
NH 
S 
© 2006 by Taylor & Francis Group, LLC

3632 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
0.00028 (from Friedrich & Stammbach 1964; Jury et al. 1983; 1984; Spencer & Cliath 1990) 
0.00013 (20°C, Ashton & Crafts 1973, 1981) 
0.00013 (20–25°C, Weber et al. 1980) 
0.00028 (quoted, Jury et al. 1984; Spencer & Cliath 1990) 
0.00013 (20°C, Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993) 
0.00010 (20°C, selected, Suntio et al. 1988) 
0.00013, 0.00053 (20, 30°C, Herbicide Handbook 1989) 
1.60 . 10–4, 6.70 . 10–3, 0.16, 2.50, 28.0 (25, 50, 70, 100, 125°C, gas saturation-GC, Rordorf 1989) 
log (PS/Pa) = 17.063 – 6215.6/(T/K); measured range 32.4–117°C (gas saturation-GC, Rordorf 1989) 
log (PL/Pa) = 14.013 – 5037.2/(T/K); measured range 129–140°C (gas saturation-GC, Rordorf 1989) 
0.00017 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.000169 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 
0.00139 (calculated-P/C, Jury et al. 1984; quoted, Spencer & Cliath 1990) 
0.00139 (calculated-P/C, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
0.00050 (20°C, calculated-P/C, Suntio et al. 1988; quoted, Majewski & Capel 1995) 
0.00050 (20°C, calculated-P/C, Montgomery 1993) 
Octanol/Water Partition Coefficient, log KOW: 
2.99 (selected, Dao et al. 1983) 
1.91 (RP-HPLC-k. correlation, Braumann et al. 1983) 
3.46 (selected, Yoshioka et al. 1986) 
3.51 (shake flask, Mitsutake et al. 1986) 
2.99 (Gerstl & Helling 1987) 
3.34 (RP-HPLC-RT correlation, Finizio et al. 1991) 
3.43 (selected, Magee 1991) 
3.34 (Worthing & Hance 1991; Milne 1995) 
3.34, 3.46 (Montgomery 1993) 
3.51 (recommended, Sangster 1993) 
2.93 (RP-HPLC-k. correlation, Liu & Qian 1995) 
3.51 (recommended, Hansch et al. 1995) 
3.35 (Pomona-database, Muller & Kordel 1996) 
3.25 (RP-HPLC-RT correlation, Finizio et al. 1997) 
2.99 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002) 
Bioconcentration Factor, log BCF: 
1.85, 1.67 (calculated-S, KOC, Kenaga 1980) 
Sorption Partition Coefficient, log KOC: 
2.91 (soil, Hamaker & Thompson 1972; Kenaga 1980; Kenaga & Goring 1980) 
2.72 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.79 (Rao & Davidson 1980) 
3.17 (calculated-MCI ., Gerstl & Helling) 
2.78 (screening model calculations, Jury et al. 1987a,b; Jury & Ghodrati 1989) 
2.75 (estimated as log KOM, Magee 1991) 
2.72–2.91, 2.79, 2.83 (soil, quoted values, Bottoni & Funari 1992) 
2.60 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.38 (soil, HPLC-screening method, mean value from different stationary and mobile phases, Kordel 
et al. 1993, 1995b) 
2.28–2.79 (Montgomery 1993) 
3.15 (estimated-chemical structure, Lohninger 1994) 
2.60 (soil, Tomlin 1994) 
2.63 (calculated-KOW, Liu & Qian 1995) 
2.85 (soil, calculated-QSAR MCI 1., Sabljic et al. 1995) 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3633 
2.38; 2.84 (HPLC-screening method; calculated-PCKOC fragment method, Muller & Kordel 1996) 
3.54, 1.595, 1.968, 1.77, 2.67 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV, Gawlik et al. 1998) 
3.24, 2.16, 2.86, 2.59, 2.53 (calculated-KOW; HPLC-screening method with different LC-columns, Szabo et al. 
1999) 
2.544, 2.635, 2.484, 1.816, 2.933 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch 
equilibrium-HPLC/UV and HPLC-k. correlation, Gawlik et al. 2000) 
2.85, 2.89 (soil, estimated-class-specific model, estimated-general model using molecular descriptors, Gramatica 
et al. 2000) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: t. = 60 d (Jury et al. 1984). 
Photolysis: 
Oxidation: 
Hydrolysis: t. = 22 d in 0.1 N hydrochloric acid solution, t. = 500 yr at pH 7 in distilled water and t. = 30 yr 
in 0.01 sodium hydroxide solution all at 25°C (Montgomery 1993). 
Biodegradation: t. = 60 d (Wauchope 1978); 
t. = 60 d for a 100 d leaching and screening test in 0–10 cm depth of soil (Jury et al. 1987a,b; Jury & Ghodrati 1989); 
soil microbial degradation t. = 70 d (Tomlin 1994). 
Biotransformation: 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: 
Surface water: completely decomposed when exposed to UV light for 3 h (Montgomery 1993). 
Ground water: reported half-lives or persistence, t. = 40–70, 60 and 94 d (Bottoni & Funari 1992) 
Sediment: 
Soil: estimated persistence of 3 months (Kearney et al. 1969; Edwards 1973; quoted, Morrill et al. 1982; Jury 
et al. 1987a,b; Jury & Ghodrati 1989); 
t. ~ 6 months to biodegrade in flooded soils (Plimmer et al. 1970; quoted, Muir 1991); 
persistence of 2 months in soil (Wauchope 1978); 
reported t. = 40–70 d, 60 d and 94 d (Bottoni & Funari 1992); 
selected field t. = 60 d (Wauchope et al. 1992; Hornsby et al. 1996); 
t. = 70 d for microbial degradation in soil (Tomlin 1994). 
Biota: biochemical t. = 60 d from screening model calculations (Jury et al. 1987a,b; Jury & Ghodrati 1989). 
FIGURE 17.1.1.65.1 Logarithm of vapor pressure versus reciprocal temperature for prometryn. 
Prometryn: vapor pressure vs. 1/T 
-5.0 
-4.0 
-3.0 
-2.0 
-1.0 
0.0 
1.0 
2.0 
3.0 
0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 
1/(T/K) 
P( gol 
S 
) aP/ 
Friedrich & Stammbach 1964 (50 to 130 °C) 
Friedrich & Stammbach 1964 (extrapolated) 
m.p. = 119 °C 
© 2006 by Taylor & Francis Group, LLC

3634 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.66 Pronamide 
Common Name: Pronamide 
Synonym: Kerb, Promamide, Propyzamide, RH-315 
Chemical Name: 3,5-dichloro-N-(1,1-dimethylpropynyl)benzamide 
Uses: herbicide. 
CAS Registry No: 23950-58-5 
Molecular Formula: C12H11Cl2NO 
Molecular Weight: 256.127 
Melting Point (°C): 
155 (Lide 2003) 
Boiling Point (°C): 321 
Density (g/cm3 at 20°C): 
Molar Volume (cm3/mol): 
270.4 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.0530 (mp at 155°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
15 (Martin & Worthing 1977; Herbicide Handbook 1978, 1983; Worthing & Walker 1987) 
15 (15°C, Khan 1980) 
15 (Ashton & Crafts 1981) 
15 (24°C, Herbicide Handbook 1989) 
15 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
15 (Tomlin 1994; Milne 1995) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.0113 (Khan 1980) 
0.0113 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
0.0536 (Dixon & Rissman 1985; quoted, Howard 1991) 
0.227 (Worthing & Walker 1987) 
0.0113 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
0.000058 (Tomlin 1994) 
Henry’s Law Constant (Pa·m3/mol at 25°C): 
0.912 (Dixon & Rissman 1985) 
0.193 (calculated-P/C as per Worthing & Walker 1987, Majewski & Capel 1995) 
0.188 (calculated-P/C, this work) 
Octanol/Water Partition Coefficient, log KOW: 
3.26 (estimated, Lyman et al. 1982; quoted, Howard 1991) 
3.36 (selected, Magee 1991) 
3.26 (selected, Dao et al. 1983) 
2.95 (estimated-QSAR and SPARC, Kollig et al. 1993) 
3.09–3.28 (Tomlin 1994; Milne 1995) 
3.87 (LOGPSTAR or CLOGP data, Sabljic et al. 1995) 
Cl Cl 
O 
HN 
© 2006 by Taylor & Francis Group, LLC

Herbicides 3635 
Bioconcentration Factor, log BCF: 
2.13 (calculated-S, Kenaga 1980) 
1.00 (calculated-KOC, Kenaga 1980) 
2.25 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1991) 
2.13 (estimated-S, Lyman et al. 1982; quoted, Howard 1991) 
Sorption Partition Coefficient, log KOC: 
2.30 (soil, Leistra et al. 1974; Carlson et al.) 
2.30 (measured for single soil, Kenaga 1980) 
3.00 (soil, calculated-S as per Kenaga & Goring 1980, Kenaga 1980) 
2.99 (soil, estimated-S, Lyman et al. 1982; quoted, Howard 1991) 
2.30; 2.42 (reported as log KOM, estimated as log KOM, Magee 1991) 
2.30; 3.20 (soil, quoted; calculated-MCI . and fragment contribution, Meylan et al. 1992) 
2.90 (soil, 20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
2.63 (estimated-QSAR and SPARC, Kollig 1993) 
2.54 (selected, Lohninger 1994) 
2.31 (soil, calculated-QSAR MCI 1., Sabljic et al. 1995) 
Environmental Fate Rate Constants, k, or Half-Lives, t.: 
Volatilization: based on a Henry’s law constant of 0.9118 Pa·m3/mol, t. ~ 6.6 d from a river 1-m deep flowing 
1 m/s with a wind velocity of 3 m/s (estimated, Lyman et al. 1982; quoted, Howard 1991). 
Photolysis: degraded photolytically on soil thin films, t. = 13–57 d in artificial sunlight (Tomlin 1994). 
Oxidation: photooxidation t. = 4.2 h in air, based on an estimated rate constant for the vapor-phase reaction 
with photochemically produced hydroxyl radicals in the atmosphere (Atkinson 1985; quoted, Howard 1991). 
Hydrolysis: neutral hydrolysis rate constant k < 1.5 . 10–5 h–1 with a calculated t. > 700 d in neutral solution 
and with faster hydrolysis rates in acidic and basic solutions to be expected (Ellington et al. 1987, 1988; 
quoted, Howard 1991). 
Biodegradation: depending on soil and climatic conditions, the degradation t. = 10 to 112 d, but a t. = 40 d 
may be more common under field conditions (Walker 1976,78; Zandvoort et al. 1979; quoted, Howard 1991). 
Biotransformation: second-order rate constant k = 5 . 10–14 L/organisms·h with an estimated t. ~ 580 d for 
microbial degradation in natural water (Steen & Collette 1989; quoted, Howard 1991). 
Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: 
Half-Lives in the Environment: 
Air: t. = 4.2 h, based on an estimated rate constant for the vapor-phase reaction with photochemically produced 
hydroxyl radicals in the atmosphere (Atkinson 1985; quoted, Howard 1991). 
Surface water: 
Ground water: 
Sediment: 
Soil: depending on soil and climatic conditions, the degradation t. = 10 to 112 d, but a t. = 40 d may be more 
common under field conditions (Walker 1976, 1978; Zandvoort et al. 1979; quoted, Howard 1991); 
selected field t. = 60 d (Wauchope et al. 1992; Hornsby et al. 1996); 
degraded photolytically on soil thin films, t. = 13–57 d in artificial sunlight (Tomlin 1994). 
Biota: 
© 2006 by Taylor & Francis Group, LLC

3636 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 
17.1.1.67 Propachlor 
Common Name: Propachlor 
Synonym: Albrass, Bexton, CIPA, CP 31393, Niticid, Propachlore, Prolex, Ramrod, Satecid 
Chemical Name: 2-chloro-N-(1-methylethyl)-N-phenylacetamide; 2-chloro-N-isopropyl-acetanilide 
Uses: selective pre-emergence herbicide to control most annual grasses and some broadleaf weeds in brassicas, corn, 
cotton, flax, leeks, maize, milo, onions, peas, roses, ornamental trees and shrubs, soybeans, and sugar cane. 
CAS Registry No: 1918-16-7 
Molecular Formula: C11H14ClNO 
Molecular Weight: 211.688 
Melting Point (°C): 
77 (Herbicide Handbook 1989; Worthing & Hance 1991; Tomlin 1994; Milne 1995; Lide 2003) 
Boiling Point (°C): 
110 (at 0.03 mmHg, Ashton & Crafts 1981; Hartley & Kidd 1987; Herbicide Handbook 1989; Worthing & 
Hance 1991; Montgomery 1993; Milne 1995) 
Density (g/cm3 at 20°C): 
1.13 (25°C, Ashton & Crafts 1981) 
1.242 (25°C, Hartley & Kidd 1987; Worthing & Hance 1991; Montgomery 1993; Tomlin 1994; Milne 
1995) 
1.134 (25°C, Herbicide Handbook 1989) 
Molar Volume (cm3/mol): 
231.6 (calculated-Le Bas method at normal boiling point) 
Dissociation Constant pKa: 
Enthalpy of Fusion, .Hfus (kJ/mol): 
27.614 (DSC method, Plato 1972) 
Entropy of Fusion, .Sfus (J/mol K): 
Fugacity Ratio at 25°C (assuming .Sfus = 56 J/mol K), F: 0.309 (mp at 77°C) 
Water Solubility (g/m3 or mg/L at 25°C or as indicated): 
700 (Melnikov 1971; Khan 1980) 
614 (20°C, Weber 1972) 
693 (Spencer 1973, 1982) 
580 (20°C, Ashton & Crafts 1973) 
580 (Martin & Worthing 1977; Herbicide Handbook 1978) 
839 (generator column-HPLC-RI, Swann et al. 1983) 
2300 (HPLC-RT correlation, Swann et al. 1983) 
613 (Hartley & Kidd 1987; Worthing & Walker 1987, Herbicide Handbook 1989 Worthing & Hance 
1991; Tomlin 1994; Milne 1995) 
613 (20–25°C, selected, Wauchope et al. 1992; Hornsby et al. 1996) 
613–700 (Montgomery 1993) 
Vapor Pressure (Pa at 25°C or as indicated): 
0.032 (20–25°C, Weber et al. 1980) 
0.0307 (24°C, Beestman & Demming 1974) 

0.0307 (Ashton & Crafts 1981; Herbicide Handbook 1989) 
0.03 (Hartley & Kidd 1987) 
0.03 (20°C, selected, Suntio et al. 1988) 
0.0306 (Worthing & Hanc