
February 2003 • Volume 9, Number 2

With so much written and
talked about the diff e r e n t
phases of testing, it is

easy to become confused about what
constitutes the ‘correct’ amount of
testing for any specific application or
implementation. This article at-
tempts to simplify some of the many
testing terms, and provide some
practical guidance in performing ef-
fective testing. The advice offered is
focused on process control/automated
manufacturing systems, but is also ap-
plicable to other computerized sys-
t e m s .

As with all aspects of computer
validation, a basic knowledge of the
theory must be understood before
testing can be effective. A l t h o u g h
this article is a personal viewpoint, I
have included several document ref-
erences for further guidance on the
s u b j e c t .

The fundamental objective of test-
ing is to prove some assertion. This sounds so obvious
as to be silly, but the biggest cause of ineffective test-
ing I have seen is the loss of clarity of this objective.
People lose focus about what they are trying to prove,
or only superficially test assertions. It is always easier
to test what is expected than what is not. The reason
why users can find problems in systems that are not
found during defined testing times is that they are not
restricted to a defined set of test data to use.

We need to ensure that we are clear on what we
are trying to prove, and that our test data truly cov-

ers all aspects of that assertion.
The next section describes how

paragraphs on testing are generally
written and expanded upon in pro-
ject documentation.

At the highest level ‘Overall Te s t
O b j e c t i v e ’ stage, the purpose is al-
most always correct (e.g., show that
system X works as described in the re-
quirements specification). At this
stage, objectives are very generic, so
anything that conveys the general idea
of implementing a quality system can
be construed as correct.

At the next level down, the ‘test
c a s e s ’ stage, test objectives are again
fairly generic (e.g., show that the
user security system works as ex-
pected). At this stage, errors are usu-
ally not found in what is written, but
rather what is not. A common cause
for test omissions is to write the
cases based on the programs to test,
rather than the functions to test. T h i s

then leads to an almost one-to-one mapping between
programs and tests, and makes the testing easier to
perform from a testing point of view. Unfortunately,
from the project point of view, the idea is not to make
the testing easier, but to ensure as much effective test-
ing of the critical areas of the system is tested in the
time provided.

From the test cases, the test scripts are written.
These describe the actual actions to perform, and the
expected results that should be observed to prove the
intent of the case. There is a real skill required to be

153

Testing Times in
Computer Validation

Ian Lucas

SeerPharma Pty Ltd.

❖

❝The
fundamental
objective of
testing is to
prove some

assertion. This
sounds so

obvious as to
be silly , but the
biggest cause
of ineffective
testing I have

seen is the loss
of clarity of this

objective. ❞

I N T E R N A T I O N A L C O N T R I B U T O RI N T E R N A T I O N A L C O N T R I B U T O R

Journal of Validation Technology

Ian Lucas

able to write these, so that the correct emphasis is
placed on the intent of the case, rather than the periph-
eral actions required to set-up the case.

There is also a skill required in asking the tester to
produce, annotate, and verify hard copy attachments
that form ‘defendable proof’for that case (without pro-
ducing attachments simply for the sake of documenta-
tion). There will be more information on this topic in
the Journal of Validation Te ch n o l og y at a later date.

Even with a clarity of focus on the test objectives
for a single test exercise, it is easy to lose focus as to
where that exercise sits in relation to the total project.
This can be due to the high number of testing terms,
and where they all fit in relation to each other. It is also
attributable to the fact that many people’s definitions
of these terms are different than other individuals.

Included are my definitions and general testing
philosophies below to assist with the understanding of
the examples supplied.

As a general rule, I’m an advocate of the ‘X’m o d e l
(G A M P 3)1 of system development and testing (see
Fi g u re 1). This takes into account that systems are de-
veloped and tested (to varying degrees) in conditions
away from their final environment.

The overall testing exercise therefore covers both en-
vironments, with common sense and experience being
used to determine the amount of testing being per-
formed in each sub phase for each individual project.

The aim is to minimize the duplication of testing
throughout the phases, and to use each sub phase to
build upon the previous phases to provide compre-

hensive testing coverage.
(Note that in the interest of not over complicating

this paper, I have not added the documents created on
the left side of this diag ram. Varying re q u i rement spec-
i fications and designs can be on both the USER and
SUPPLIER sides, depending upon whether a pro d u c t
or custom solution is being dev e l o p e d .)

The Supplier Testing

Unit Testing
For systems where new code is developed, ‘Unit

Te s t i n g ’ is used to provide structural (also referred to
as ‘white box’) testing of this code. This involves
checking that the code has been written to defined cod-
i n g standards, that the code reflects the design (usual-
ly the pseudo code process specifications), and varying
degrees of stand-alone module performance checks.
These need to fit the criticality of the module, and
involve input/output parameter checking and
branch/code coverage. Note that for this testing there
is an assumption that the design is correct as approved
for development (a costly assumption in some cases).

As this testing is usually performed by another
d e v e l o p e r, emphasis is placed on the technical aspects,
rather than the functional aspects. However, it must be
noted that additional code cannot magically appear in
the executable program after the source code is writ-
ten. It is therefore, imperative, that the coder add a
detailed level of implicit ‘safety-net’ (my definition)
code, as well as the explicit ‘requirements’code.

154

Figure 1

System Development and Testing

USER (Final Environment) Performance Qualification/User Acceptance Testing

Operational Qualification

Installation Qualification/Installation

Testing

Supplier (Development Environment) Customer Acceptance Testing

System Testing

Unit Testing

FAT

SAT

February 2003 • Volume 9, Number 2

Ian Lucas

Without going into an overly technical explana-
tion, please refer to Fi g u re 2, which is the following
two pseudo-code listings. Both describe the process
for summing a set of numbers, working out their aver-
age, and then saving the information in a data table.

The design pseudo-code may not explicitly have
the bold lines in the Listing Two described, but it is im-
portant that the code review pick up that a level of this
‘ s a f e t y - n e t ’ code has been written.

For the above example, a typical functional test may
be to run two or three sets of standard data through the
algorithm, and check the expected result against the
one in the database. Note that both sets of codes would
pass this test. It would only be when non-numeric data,
no data, or when a problem with the database occurred,
that the code generated from Listing Two would show
its robustness over Listing One.

The above example is a little contrived, but the
point is that in a large system many of these ‘safety-
n e t ’ checks will not be tested (as time is given to test-
ing the expected paths). The robustness of the system
only comes out over time, as inadvertently, unexpect-
ed data or situations are encountered.

This highlights the importance of unit testing, and
auditing the developers of critical software products to

ensure that they have performed these code reviews on
their products. As mentioned before, functional testing
cannot put this safety net back in – only show that it is
not there.

Unit Integration Testing – A Link Between Unit and
System Testing

For complex systems, a level of testing of some of
the integrated software modules may be warranted.
This may involve writing software shell ‘driver’ p r o-
grams, and calling up several modules to test flow and
control between these modules.

Note that this control will be tested again during
system testing, and should only be performed if the
jump between a single unit test and full functional test-
ing is considered a substantial risk.

System Testing
The supplier ‘system testing’is where the system

is functionally put through its paces. As well as the
standard expected operational tests, other stress tests
should be devised. These include:

• Power Tests – think about the most inopportune
times to lose power on the system and try these

• Time – if applicable, wind back and forward the
time on the server and client Personal Computers
(PCs) to simulate daylight savings time

• Status Transitions – look for processes that use sta-
tus’to determine operation, and check that these
cannot deadlock the process. I have seen several
processes where a product/batch had to be in sta-
tus Ato initiate the process, moved to status B dur-
ing the process, then finished with status C. T h e
problem was that if the process failed in process B,
there was no way to restart or finish that process
on that product/batch.

Amajor difference between system testing (also read
OQ) and customer/user acceptance testing (also read
PQ) is that system testing is not just trying to show the
system does what it is designed to do from the specifi-
cations – it is also trying to find errors.

There is a fundamental mindset change between
these two objectives that has not been captured in most
guideline reference material. Take most V-model dia-
grams (see Fi g u re 4) that associate requirements and
design documents to the different testing phases. T h e

155

Figure 2

Pseudo-Code Listings Describing
the Sum Process and Averages

Listing Two
Set Sum = 0, Count = 0

While not exit selected
Read Number

If input not numeric
R e p o rt erro r, and do
not add / i n c r e m e n t

Add Number to sum

Increment count

End while

If count = 0
R e p o rt message, a n d

do not calculate total or
s t o r e
Set average = Sum/count

Store ave rage in data tabl e

If store fails, Report
error

Listing One
Set Sum = 0, Count = 0

While not exit selected
Read Number

Add Number to sum

Increment count

End while

Set average = Sum/count

Store ave rage in data tabl e

Journal of Validation Technology

Ian Lucas

common thread is that tests can ONLY be written
against requirements documented in those specifica-
tions. We are also constantly told that all testing must
be planned before being performed.

Both of these philosophies are contributing to test-
ing not being as effective as it should be.

There needs to be a realization that some tests need
to ‘think outside the specification.’ In Fi g u re 3, a
computerized system is pictorially represented as sets
of requirements and actions.

Almost all testing is quite naturally focused on the
inner ellipse. If users always acted exactly as expect-
ed, this would be fine. However, over a system’s life,
‘actions not explicitly described but likely to occur, ’
most probably will. Actions including:

• Non-numeric values where numbers are requested
• Escape, control, function, and ALT characters

pressed when not expected
• Opening and using windows out of sequence
• Running multiple unexpected processes at the same

t i m e
• Not entering mandatory data
• Data files/tables growing larger than expected

These actions cannot be stopped – only mitigated
by performing expected reactions when they occur.

Note that the perfect system is not one where the
tester has thought of all these unspecified actions,
but where the developer has.

Given that almost all computerized systems have
some degree of actions not specified in the requirements

that will cause unexpected results, these are best picked
up (in the development environment) in the unit testing
(by another developer) or in supplier system testing.

A more relevant V-model diagram (although less
aesthetic) would resemble Figure 4.

In this destructive testing phase (which is really a
sub phase of system testing), tests would mainly be de-
veloped from common sense and experience. Guide-
lines should be developed to aid inexperienced per-
sonnel in areas to consider. Other tests also need to be
developed by looking at common problems associated
with the following areas, including:

• The software development tool (if known)
• The product itself
• The customer site
• Interfaces to the system

The idea of this testing is not to follow a structured
plan, but to purposely try to find errors. All tests and re-
s ults must be documented, and it will be up to the dis-
cretion of the project/validation team afterwards to re-
view each issue to determine the likelihood of the pro-
blem occurring, the risk if it does, and the cost of the
r e c t i f i c a t i o n .

Customer Acceptance Testing
Prior to a system being installed in the live environ-

ment, the actual users should check that they are indeed
receiving what they expect. This level of testing (and to
varying degrees, the system testing) is often called the

156

Figure 3

Requirements and Actions
Computerized System Pictorial

Explicit System
Requirements

Actions not
Explicitly
Described
but Likely,
to Occur

Unlikely
Actions

Figure 4

V-Model Diagram

Unit
Testing

Design

Coding

System
testing/OQ
Destructive
Testing

Implicit
Requirements

FS

UAT/PQURS

Key:
FS: Functional

Specification
UAT: User Acceptance

Testing
URS: User Requirements

Specification

February 2003 • Volume 9, Number 2

Ian Lucas

Factory Acceptance Test (FAT) for process control sys-
t e m s .

A set of tests should be developed from the require-
ments documents that test the system running through a
typical process flow in chronological order. To obtain
the maximum benefit out of this testing, both the writing
of the protocols and the performing of the testing should
be conducted by different personnel than those who per-
formed the system testing. However, the system testing
results and report should be reviewed prior to customer
acceptance testing to ensure that testing time is not being
wasted in simply reperforming previous tests.

Keep in mind that each testing exercise needs to
be as comprehensive or narrow as deemed appropri-
ate for the risk of the system.

For a purchased product where extensive system
testing cannot be guaranteed, a full set of customer
acceptance tests may be warranted; whereas for a cus-
tom developed solution where detailed unit, system
and destructive testing have occurred, a reduced cus-
tomer acceptance testing may be acceptable.

The Testing Exercise
In all stages of testing, the exercise can only be as ef-

fective as the protocols developed, and the skill and
attentiveness of the tester. The ability to hypothesize and
observe the entire system environment, whilst testing
specific assertions is a valuable asset in any testing team.
The idea is to not only look for the obvious expected r e-
sult, but to be ready for the obscure discrepancies.

In developing protocols, a common question is “how
detailed does the test step description text (also refer-
red to as ‘actions’ text) need to be?”

A couple of serious problems arise when the act-
ions are made too detailed (e.g., place the cursor over
batch 12345 and press F5 (Select). Enter ‘1.564’in the
Weight field and ‘Acceptable’ in the Pass/Fail field.
Press F5 (Continue), then F7 (Update), etc):

❶ To write the actions, the protocol developer usu-
ally has to actually run the product with the test
data to see what happens. If the tester then re-
peats these actions during testing, this is not in-
dependent testing, but simply confirming what
the test developer did. In this way, the test devel-
oper can sway the tester in the performance of
the testing. It also totally removes any testing in
the ease of use of the system as the tester is sim-

ply entering data as instructed.
❷ Even with an experienced tester, the emphasis is

placed on reading the many instructions and per-
forming each step, with many more expected re-
sults than is really necessary. It is not always
clear which action is significant, and which are
only there to prepare for a significant step.

Another problem that can make the testing less ef-
fective is to ask for too many hard copy print outs.
These form important test result evidence when request-
ed (and annotated) correctly, but can add unnecessary
time and effort when requested at each test step. Each
print out takes time to physically produce, collect, col-
late, annotate, and review.

Also, from an auditor’s point of view, producing un-
necessary output shows that the testing team is not cer-
tain what the critical control points in the process are.

G e n e r a l l y, it is better to give the clear intent of the
test with the expected result, and only aim to give as
many explicit actions as is truly necessary. Of course,
there will always be situations where more detail is nec-
essary (e.g., regression test suites where the aim is to run
a known set of data through a previously tested process
to ensure that it still operates as it formerly did).

Annotating Printouts

Many testers fall at the last hurdle when it comes
to tying up the test results. There are many formats for
the test scripts, but they should minimally contain:

• Intent – what the test is trying to demonstrate
• Actions – what actions need to be performed to

show the intent
• Expected Result – what constitutes acceptance of

the intent
• Actual Result – what actually happened. There

should be room provided to note an incident or
anomaly number, and to reference hard copy print-
outs (if requested)

• Pass or Fail – does the actual result either match the
expected result, or can it be explained as to why it
d o e s n ’t match, but can still be deemed as a pass

• Signature, date, and time

An example is shown in Fi g u re 5. Note that log
files can sometimes be hundreds of pages long. To

157

Journal of Validation Technology

Ian Lucas

simply print this, and include it as an attachment to
the completed test scripts does not automatically show
o bvious success. As well as annotating a two-way ref-
e rence between the test and the output, all relevant
statements on the print out should be highlighted, ini-
tialed, and dated, and reasons written why the state-
ment should be accepted as proof or rejected. For an
example, see Fi g u re 6.

Note that if follow-up actions are required as part
of output justification, additional attachments (cor-
rectly annotated back to the original document) will be
required for completeness. When reviewed (by an inde-
pendent reviewer), all outputs should also be signed and
dated to complete the ‘defendable proof’p a c k a g e .

Another method of recording test results is to use a
tester and a witness whilst testing, and not produce hard
copy output. Although this may reduce the overall test-
ing and review time, it does prevent further independent
r e v i e w, and is less defendable, should issues arise later.

As mentioned before, a combination of both meth-
ods (with hard copy outputs limited to critical con-
trol/decision points) is best.

Installing the Software in
the Live Environment

Once the FAT has been approved, the system is
ready to be commissioned and qualified in the live en-
vironment. For most implementations, this is more
than just physically moving the test environment. It
may involve:

• Running two systems in parallel
• Decommissioning the current system to implement

the new one
• Moving current live data to the new system
• A defined time period in which to work
• Coordinating multiple activities and disciplines

• Downtime of critical business processes

From this, it is clear that an installation plan (and
subsequent Installation Qualification [IQ]) is vital to
ensure that the system configuration tested in the devel-
opment environment is the same system to be commis-
sioned in the live environment. Without this assurance,
the case for using assertions proved in the development
environment to minimize testing in the live environ-
ment declines.

R e m e m b e r, effective testing relies on building the
overall validation package throughout the layers of
t e s t i n g .

Qualifying the System
There has always been much discussion about what

activities should be in the qualifying phase of a sys-
tem. Statements such as ‘all IQ activities should be
performed with the power off’may be true for many
cases, but there would be few software installation
checks using that philosophy.

I believe it doesn’t matter whether activities occur
in your IQ, Operational Qualification (OQ), or Perfor-
mance Qualification (PQ), as long as they are done.

For some systems (especially control systems),
qualifying the total solution will involve many indi-
vidual qualifications. For example, the physical hard-
ware, operating system, database, and application may
all be installed separately. It is important to get the or-
der and timing of these correct to again build on pre-
vious assertions.

Installation Qualification
If the actual installation plan has been written and

performed correctly, the actual IQ should be a fairly
simple exercise. The intent of the IQ is to prove that the
system has been installed as per the developer’s instruc-
tions. This includes:

158

Figure 5
Annotating Printout

Intent: To prove that the standard import feature can import an export file successfully.

Test Actions Expected Actual Pass S i g n a t u r e Date
Number Fail Time

4.5 Use the import fe a t u r e Data imports without Log file name:_________
to load the export errors. All duplicate Attachment no.:_______
file into the database. records can be
Note the log file name, explained. Incident no.:__________
p rint it out, and rev i ew.

February 2003 • Volume 9, Number 2

Ian Lucas

• Proving the right product has been installed (ser-
ial numbers, software versions, etc.)

• Proving the product has been installed correctly.
Although it may be a fairly subjective decision,
the idea is to perform the minimum of checks to
give enough confidence to continue to the more
thorough OQ.

• Proving that support manuals and Standard Oper-
ating Procedures (SOPs) exist (without actually
executing them)

From the above criteria, you can see how many IQs
are checklists to indicate that the environment has been
set-up before performing application dependent checks.
Operational Qualification

The intent of the OQ is to push the system process-
es and parameters through as many possible operating
ranges in the time available. Note that ‘possible’ is a
wider range than ‘normal.’

As the finish line (i.e., live production) is usually
very close by the time OQ is being performed, it is a fact

159

Figure 6
Log File Example

Journal of Validation Technology

Ian Lucas

of life that the system will be much more visible to the
greater user community, (especially senior manage-
ment), and the commercial pressure will be on to mini-
mize this OQ time.

This emphasizes why as much stress testing that
can be performed during system testing (even if real-
istic simulations are used) is so valuable later in the
project.

For process control systems, some or all of the IQ
and OQ can be combined and called the Site A c c e p-
tance Test (SAT). As these systems involve physical
hardware, cabling, Programmable Logic Controllers
(PLCs), Supervisory Control and Data A c q u i s i t i o n
(SCADA) or Distributed Control System (DCS), and
potentially Manufacturing Execution System (MES)
software, there may be a combination of several OQs
or SATs to perform. For such complex systems, it is
important to be able to clearly show how all these
tests and qualifications mesh together to allow a
qualified person to declare the system fit for delivery
to the user department.

Performance Qualification
The PQ (sometimes referred to as User A c c e pt a n c e

Testing) is normally the qualification where both t h e
process and the automation are tested as one. I like to
refer to this stage as ‘a typical day in the life of the
s y stem.’Although many systems do not have ‘typi-
cal days,’ the intent is to show the system will work
as the user specified.

For batch-related systems, a qualification approach
would be to run several batches through the full oper-
ation of the system to prove a correct and consistent
result. Although three is a number bandied around, the
aim should be three consecutive batches that give cor-
rect and consistent results. If this is not the case, more
batches should be performed under formal qualifica-
tion conditions until the problems are corrected and
this is the case.

Some of the less obvious tests that should be per-
formed at this time include:

• SOPs and manuals are correctly written for their
purpose

• Spares exist where applicable
• Correct support procedures and Service Level

Agreements (SLAs) exist to allow the system to go
l i v e

If confidence is high after OQ, PQ is sometimes
performed on ‘live’ batches. These batches are obvi-
ously more keenly scrutinized, and their output/results
kept to form the PQ results.

Conclusion

In conclusion, the testing exercise on any system is
no different to any other area of computer validation.
That is, there is no simple ‘cook book’ on how much
to do, or what approach to take. The points made in
this article are intended to show that there is no sub-
stitute for well constructed code that simply and intu-
itively performs the requirements of the user.

Testing does nothing to change this. It only shows
or disproves this aim.

For all future systems, more effort should be made
at this debugging and unit testing level, that will in turn,
simplify testing by providing a more reliable base to
work from. Disciplines that may assist in this area
i n c l u d e :

• Questioning at all phases of the project to force
clarification of requirements as early as possi-
b l e

• Hypothesizing adverse actions and events and dis-
cussing solutions

• Managing tighter control over developers by mak-
ing them more aware of the implications of their
w o r k

H o w e v e r, as systems will always be individually
configured for specific applications, the testing phase
will always remain a vital component in the total vali-
dation package. A logical approach needs to be taken
in developing the overall testing strategy for each sys-
tem that best utilizes the time, environment, and avail-
able resources. The key points to remember are:

• Construct the overall testing case by building on
each testing phase in both the development and
live environments

• Wherever possible, avoid duplicating tests on
assertions already proved

• Test for both explicit and implicit requirements
• Keep realigning focus to remain clear on the objec-

t i v e s
• Ensure results and attachments are clearly anno-

160

February 2003 • Volume 9, Number 2

Ian Lucas

tated, and form appropriate evidence for docu-
mented assertions

Only personnel who intimately know the require-
ments, and the workings of the computer system,
can truly say how thoroughly a system was tested.

Involving these individuals early, together with
an overall test strategy that uses common sense and
creativity, will maximize the effectiveness of testing,
by locating problems earlier in the lifecycle.

Good luck in these testing times! ❏

About the Au t h o r
Ian Lucas is the Director of SeerPharma Pty Ltd. in
Melbourne, Australia. He has over 20 years experi-
ence as a software developer/manager, and over 13
years experience implementing computerized man-
ufacturing solutions for the pharmaceutical industry.
Lucas assists pharmaceutical companies in Aust-
ralia and Asia in all aspects of computer system
implementation and computer validation require-
ments. He can be reached by phone at 61-3-
98971990, by fax at 61-3-98971984, or by e-mail at
ian.lucas@seerpharma.com.au.

Reference
1. ISPE. GAMP. 3.0. “Appendix 10.” (March) 1998.

Additional Guidance
• Many general software testing references can be

found at www.testingstuff.com
• ISPE. GAMP 4.0. December 2001.
• ANSI/IEEE 829. “Software Testing Documenta-

tion.” 1998.
• ANSI/IEEE 1008. “Standard for Software Unit

Testing.” 1987.
• ISO/IEC 12119. “Information Technology – Soft-

ware Packages – Quality Requirements and Te s t-
ing. 1994.

• BSI. BS-7925-1. “Software Testing – Vo c a b u l a r y. ”
1 9 9 8 .

• BSI. BS-7925-2. “Standard for Software Compo-
nent Testing.” 1998.

161

DCS: Distributed Control System
FAT: Factory Acceptance Te s t
FS: Functional Specification
IQ: Installation Qualification
MES: Manufacturing Execution System
OQ: Operational Qualification
PC: Personal Computer
PLC: Programmable Logic Controller
PQ: Performance Qualification
S AT: Site Acceptance Test
S C A D A : Supervisory Control and Data

Acquisition
S L A : Service Level A g r e e m e n t
S O P : Standard Operating Procedure
U AT: User Acceptance Te s t i n g
U R S : User Requirement Specification

Article Acronym Listing

