nne pharmaplan<sup>®</sup>

### Autoclaves Qualification & Validation

### By Holger Fabritz



### nne pharmaplan<sup>®</sup>

### Contents

- Types of autoclaves
- Regulatory Aspects
- GMP Risk Analysis
- URS / FDS
- Design Qualification
- Installation Qualification / Operational Qualification
- Performance Qualification / Process Validation
- Responsibilities
- Summary

- Types of Autoclaves -

### • Steam Autoclaves

- Sterilisation with
  - Steam / Air Mixture
  - Saturated Steam
  - with possible initial vacuum sequence(s)
- Cooling with
  - Air cooled down by heat exchanger

### Hot Water Spray Autoclaves

- Sterilisation with
  - Spraying of Water
  - (Flooding with water)
- Cooling with
  - Water cooled down by heat exchanger

### • Hot Air Sterilisers



#### nne pharmaplan<sup>®</sup>

- Types of Autoclaves -





- Regulatory Aspects -

### • Ph. Eur. 6

- 5.1.1, Methods of Preparation of Sterile Products
- 5.1.2, Biological Indicators of Sterilisation
- 5.1.5, Application of the F0 Concept to Steam Sterilisation of Aqueous Preparations

#### • USP 29

- <55> Biological Indicators Resistance Performance Tests
- <1035> Biological Indicators for Sterilisation
- <1211> Sterilization and Sterility Assurance of Compendial Articles





- Regulatory Aspects -

### **GMP-Regulations**

- EU-GMP-Guideline Part 1, Annexes 1, 15 & 17
- Code of Federal Regulations (CFR) 21, Part 210: Current Good Manufacturing Practice in Manufacturing, Processing, Packing of Holding of Drugs; General
- 21 CFR Part 211: Current Good Manufacturing Practice for finished Pharmaceuticals
- 21 CFR Part 11: Electronic Records; Electronic Signatures

#### **FDA Guidance for Industry**

- Sterile Drug Products Produced by Aseptic Processing
- Documentation for Sterilisation Process Validation

#### **European Medicines Agency (EMEA)**

- CPMP/QWP/054/98 Corr., Decision Trees for the Selection of Sterilisation Methods
- CPMP/QWP/3015/99, Note for Guidance on Parametric Release Holger Fabritz - Expertentreff 14. September 2007 in Baden







- Regulatory Aspects -

#### • GAMP

- The Good Automated Manufacturing Practice (GAMP) Guide for Validation of Automated Systems in Pharmaceutical Manufacture, Vol. 4
- PDA Technical Reports
- PDA Technical Report No. 1, Validation of Steam Sterilisation Cycles
- HTM (Health Technical Memorandum)
- 2010; Sterilisation; Part 3: Validation and verification; NHS Estates; Department of Health; UK
- International, European and National Standards (ISO / EN / DIN) / Others
- EN 285, Sterilisation, Steam Sterilisation, Large Sterilisers
- DIN 58950, Sterilisation , Steam Sterilisers for Pharmaceutical Products
- EN 554, Sterilisation of Medical Devices





International Organization for

Standardization







<sup>• ...</sup> 

- GMP Risk Analysis -

### **GMP** Risk Analysis at the beginning of the qualification activities:

- Definition of GMP-relevant issues to be considered in the design and further qualification steps:
  - <u>GMP relevance of single components</u> (e.g. heat exchanger, sterilisation chamber, valves)
  - <u>Control System</u> → computer validation, definition of the GMP-relevant instrumentation including requirements for accuracy and recording, GMPrelevant sensors (double measurement of critical parameters)
  - Utilities: quality of media  $\rightarrow$  piping quality
  - Material specification incl. necessary certificates
  - Additional test devices

     (e.g. WIT-test possibility for aeration filter, incl. sensors)
  - <u>Documentation</u> including welding documentation, wiring check, software documentation etc.
- Possibility to have a traceability to the subsequent qualification steps
- → Influence of Risk Analysis on Engineering activities (URS) & basis for DQ / IQ / OQ / ....

### - GMP Risk Analysis -

| 1 | 2                                  | 3                                       | 4        |           | 5 6                                                                                                                                                           |                                                                                                                                              | 7            |        |   |        |        |        |   |
|---|------------------------------------|-----------------------------------------|----------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|---|--------|--------|--------|---|
|   | Process step /                     | Possible failure                        | GMP Risk |           | Explanation                                                                                                                                                   | Tests / Measures                                                                                                                             | Traceability |        |   |        |        |        |   |
|   | Equipment                          |                                         | [ Y/N ]  | [ A/B/C ] |                                                                                                                                                               |                                                                                                                                              | D            | I<br>Q | Q | P<br>Q | C<br>Q | N<br>V | / |
|   | Components with<br>product contact | Inadequate material of steel surfaces   | Y        | A         | Corrosion could deteriorate the product.                                                                                                                      | Steel: 316L min. certified by EN10204 2.2                                                                                                    |              |        |   |        |        |        |   |
|   |                                    | Inadequate plastics or<br>gaskets       | Y        | А         | Material might not be inert against product.                                                                                                                  | Plastics/gaskets: Food graded materials certified acc. to CFR<br>Title 21 §177.2600.                                                         |              |        |   |        |        |        |   |
|   |                                    | Wrong surface finishes                  | Y        | A         | Rough surface might lead to adherence of<br>product or bad cleanability.                                                                                      | Surface finishing or surface roughness is defined and proven. Certificate of manufacturer is available.                                      |              |        |   |        |        |        |   |
|   |                                    | Bad quality of weld seams<br>(pipework) | Y        | A         | Weld seams of product or clean media<br>pipes have another material and<br>surface roughness than the tubes.<br>Risk of porosities or material<br>impurities. | Weld seams of stainless steel pipes should be welded under<br>inert gas conditions and with appropriate welding<br>material (TIG technique). |              |        |   |        |        |        |   |
|   |                                    |                                         |          |           | s. a.                                                                                                                                                         | As far as technically possible orbital welding should be applied.                                                                            |              |        |   |        |        |        |   |
|   |                                    | Quality of weld seams is not traceable. | Y        | В         | When pipework is completed, the weld<br>seams cannot be checked visibly any<br>more.                                                                          | Weld seams of pipework for product or clean media transfer<br>should be visually checked by endoscope.                                       |              |        |   |        |        |        |   |
|   |                                    |                                         |          |           | Required by ISPE publications                                                                                                                                 | 100% of handmade weld seams and an appropriate<br>percentage of orbital weld seams have to be checked<br>accordingly.                        |              |        |   |        |        |        |   |
|   |                                    |                                         |          |           | Requirement of good documentation<br>practice.                                                                                                                | Test report contains every weld seam with a single test.                                                                                     |              |        |   |        |        |        |   |

10 of 39

- Definition of all (as possible) relevant GMP-critical points (e.g. sterility of cooling media, coldest spots)
- Definition of the user needs for documentation and operation (e.g. batch documentation, operating instructions etc.)

- Reference to Pharmacopoeias, guidelines and standards to be used  $(\rightarrow EMEA CPMP/QWP/054/98$  Decision trees for the selection of sterilisation methods) Description of the sterilisation process (e.g. standard sterilisation,
- Basis for GMP Risk Analysis and influenced by the results (e.g. documentation requirements, number of critical sensors)
- To be issued by the User (Pharmaceutical Enterprise)

F0-sterilisation) on basis of the product properties

- User Requirement Specification (URS) -

- User Requirement Specification (URS) -

- Completed by detailed technical specifications:
  - Volume of sterilisation chamber
  - Standards for electrical standards, wiring, valves,
  - Standards for materials to be used (stainless steel)including surface roughness (< 0,8 µm or higher values?)</li>
  - Interfaces to existing systems
  - Drying / Air Filters (e.g. for stoppers for dry powder filling, clean room clothes)
- Definition of requirements for FAT / SAT

- User Requirement Specification (URS) -

- Detail description of requirements for Computer Validation
  - Audit Trail
  - User Access
  - Backup / Recovery
  - Disaster Recovery
- Definition of requirements for qualification (in case that supplier should support qualification)

# $\rightarrow$ Combined with commercial requirements as request for an offer to be submitted to different potential suppliers

- Functional Design Specification (FDS) -
- To be issued by the potential suppliers
- FDS should comprise detailed proposals for technical solutions for the URS requirements
- All requirements of the URS must be commented by the supplier (can be met or can't be met)
- In case of deviation from a requirement of the URS, an explanation and alternative proposals for technical solutions are necessary

nne pharmaplan<sup>®</sup>





**Change Control / Requalification** 

- Design Qualification (DQ) -
- is performed by documented comparison of URS and FDS, focussed on GMP- relevant topics
- all requirements set up be the URS (resulting from the risk analysis) should be met, traceability to risk analysis and URS should be given
- deviations from the requirements of the URS must be evaluated whether acceptable or not ( $\rightarrow$  GMP-requirements)
- Supplier Audits (quality system, software development) should be implemented in this phase
   Note: Implementation of supplier audit in Computer
   Validation strategy necessary
- → Approval of DQ protocol and report respective approval of URS/FDS comparison by defined persons (VMP)
- $\rightarrow$  Start of project change control

- Summary of RA/URS/FDS/DQ -

#### **Some practical experiences:**

- Results of GMP Risk Analysis are often <u>not</u> considered in URS GMP Risk Analysis too detailed (discussion about construction of valves)
- Important company standards are not added to URS (Welding standards for pipes)
- FDS does not answer URS (standard documents by suppliers)
- Design Qualification finalised too late / after FAT
- Changes are performed but without change control
- •
- → Mistakes in early project stages lead to irritations/discussions/deviations during IQ/OQ/PQ

- Factory Acceptance Test (FAT) / Site Acceptance Test (SAT) -

#### FAT

- Qualification staff should join FAT
- Preliminary documentation should be available and should be checked during FAT (incl. IQ and OQ - protocols)
- First formal check of P&I-Diagram by qualification staff
- Definition of test program on basis of suppliers possibilities
- Structured FAT can substitute some IQ(OQ)-testing

#### SAT

- Basis for SAT should be mechanical completion of autoclave
- SAT should be performed as Pre-IQ / Pre-OQ / can substitute some IQ / OQ testing.

### nne pharmaplan<sup>®</sup>

### - Installation Qualification (IQ) -







- Installation Qualification (IQ) -

#### ...Further points to be checked

- Calibration of the different sensors
  - Three points for temperature/pressure
  - One point for timer or paper speed of the recorder
- Availability of relevant SOPs (operation, maintenance), at least as draft version
- Check of the supplier documentation
  - Completeness
  - Formal correctness
  - Correctness of content

### **Finalisation of IQ**

- Deviations must be evaluated
- In case of GMP-critical deviations (e.g. wrong type of sensors), IQ not successful → remedy of deviation and repetition of IQ (Change Control)
- In case of non GMP-critical deviations, a pre-approval of the IQ is possible in order to start next qualification step

Holger Fabritz - Expertentreff 14. September 2007 in Baden



### - Operational Qualification (IQ) -

### **Pre-requisites**

- (Pre-)Approval of IQ
- Used measuring devices (e.g. Kaye system, data loggers) should be calibrated before performing measurement (and afterwards)

#### Function testing of all procedures & sequences

- Tightness and stability of piping after performing a sterilisation cycle (Visual checks!)
- Loading and unloading tests
- Interlocks of doors
- Check of programs
  - Fractionated pre-vacuum
  - Heating phase
  - Equilibration time
  - Sterilisation time
  - Drying and Cooling
  - Correct re-start after power failure

21 01 39



- Operational Qualification (OQ) -

### ...Points to be checked

### **Check of alarms**

- Temperature too high or too low
- Pressure too high or too low (pressure variations)
- Time limits of process steps
- Utility supply
- Cable break of sensors
- ...

### **Computer Validation related points**

- User access and audit trail
- Data storage / Print Out
- Electromagnetic failure, radio frequency test
- ...





#### DIN 58950-1:2003-04

## Bowie-Dick-Test for sterilisation cycles with saturated steam

- Use of test kids
- Colour change of indicator complete

### **Integrity of aeration filter**

Water Intrusion Test for hydrophobic filters

...Points to be checked

**Check of chamber tightness** 

Check of steam quality (should be covered by

qualification of clean steam system)

- Possible acceptance criteria: pressure drop  $\leq 1,3$  mbar / min
- Procedure: Evacuation of the chamber on a predefined pressure and closing of all valves. Measurement for 10 min





- Operational Qualification (OQ) -

## **Autoclaves: Qualification & Validation**

nne pharmaplan<sup>®</sup>

- Operational Qualification (OQ) -



- Operational Qualification (OQ) -

#### ...Points to be checked:

# Heat distribution check of the empty chamber (Identification of cold spots)

- Acceptance Criteria
  - Correct process incl. recording without alarms
  - Pre-defined maximum standard deviation not exceeded for validation sensors
  - Pre-defined maximum allowed deviation from the mean value for single validation sensors not exceeded for validation sensors
  - Pre-defined maximum allowed deviation from the mean value of the validation sensors for control and documentation sensors not exceeded

### - Operational Qualification (OQ) -

#### ...Points to be checked: Heat distribution check of the empty chamber (Identification of cold spots)

• <u>Method</u>

- Repeated measurement of the empty chamber (e.g. 3 times)
- Use of in minimum 10 to 12 sensors / m3 of chamber volume
- One sensor should be near to the control sensor respect. near to the condensate drain
- Documentation of the exact localisation of the used sensors

#### Finalisation of OQ

- Deviations must be evaluated
- In case of GMP-critical deviations (e.g. bugs in sterilisation cycles), OQ not successful → remedy of deviation and repetition of IQ (Change Control)
- In case of non GMP-critical deviations, a pre-approval of the OQ is possible in order to start next qualification step

### nne pharmaplan®



Autoclave Chamber with location of validation sensors

- Summary IQ / OQ -

#### **Some Experiences**

- Surface roughness out of specified limits
- Valves incorrect mounted
- Documentation incomplete or wrong, e.g. material certificates not available
- Heat distribution out of specified range
- Failures during procedures (bugs in programming)
- •

nne pharmaplan<sup>®</sup>

- Performance Qualification (PQ)-
- Process Validation (PV) -

#### Definition as Performance Qualification or as Process Validation possible (in reality combination of both aspects)

- Focus of PQ on autoclave (heat penetration, reduction of viable germs on bio-indicators)
- Focus of PV on product quality (e.d. decomposition of active ingredient, increase of particulate contamination)

# Test with product / material to be sterilised or with adequate placebo

**Combination of heat penetration test controlled by external temperature sensors and bio-indicators** 

# Detailed test plan including a risk based approach for planned procedure to be defined

Holger Fabritz - Expertentreff 14. September 2007 in Baden

#### **Bio-indicators:**

### **Bio-indicators to be used defined in Pharmacopoeias**

- Ph.Eur.6, 5.1.2
- USP 29 <1035>

#### **Determination of population in independent laboratory of each batch**

- viable spores >  $10^5 10^7$
- D-Value (> 1,5 min at +121 °C)

Independent determined number viable population should be taken for calculation of Sterility Assurance Level (SAL)

#### **Bio-indicators**

- Incubation for ≥ 14 days between +55 and +60 °C (first results after 1 day possible)
- Parallel growth promotion test for each single sterilisation run
- Possible contamination of equipment should be considered and must be avoided by adequate measures (e.g. additional prolonged sterilisation run of empty autoclave after runs with bio-indicators)

#### **Procedure**

- Pre-requisites and principle procedure of temperature mapping equivalent to temperature mapping of empty chamber
- Definition of the loading scheme(s) (SOP) to be validated
- Adequate and reasoned bracketing possible; validation of worst case loads
- Location of temperature sensor as near as possible to bio-indicators
- Location of temperature sensors inside product, if possible

### nne pharmaplan<sup>®</sup>



Holger Fabritz Expertentreff 14. September 2007 in Eugen -

32 of 39

#### **Procedure:**

Selection of cold spots on basic of experience and scientific approach (to be described in detail in the PQ/PV protocol):

- Small tubes
- Between primary and secondary packaging
- Contact areas of different materials

Consider maximum temperature and cycle time to determine maximum degradation

**Repeat validation run 3 times** 

Re-Validation of sterilisation process (e.g. every 6 / 12 months)

### nne pharmaplan<sup>®</sup>



### Acceptance Criteria:

### Heat distribution

- Correct process incl. recording without alarms
- Predefined maximum standard deviation not exceeded for validation sensors
- Pre-defined maximum allowed deviation from the mean value for each single validation sensor is not exceeded

### **Microbiological evaluation**

- Sterility Assurance Level (SAL) of 10<sup>-6</sup> to be reached
- Growth of control bio-indicator (positive control)

#### **Acceptance Criteria:**

#### Drying effectiveness, if applicable

- Evaluation of remaining humidity by adequate methods for critical material (e.g. rubber stoppers for powder filling lines) by
  - gravimetric methods (e.g. clothes, rubber stoppers)
  - analytical method (Karl-Fischer-titration)
- Optical control for metallic or plastic parts

Validation of sterilisation process for parametric release, points to consider:

#### Guidelines

- EU-GMP-Guide Part 1, Annex 17
- CPMP/QWP/3015/99: Note for guidance on parametric release
- Follow the requirements of the relevant guidelines
- Clear justification for the chosen approach
- Define the relevant physical parameters on basis of an risk analysis
- Definition of an overkill procedure under consideration of the bioburden

| The pharmaceutical manufacturer is responsible for the |
|--------------------------------------------------------|
| whole qualification on basis of VMP                    |

- Responsibilities -

**Autoclaves: Qualification & Validation** 

GMP Risk Analysis should evaluate risks & define test measurements by team work betw. Autoclave manufacturer, engineering/qualification and pharmaceutical producer

Qualification work is usually performed by autoclave supplier / engineering. The approval of test protocols and test reports should be in the responsibility of pharmaceutical producer.

### - Summary -

- Define relevant requirements to be compliant with current GMPrequirements on basis of a GMP Risk Analysis during initial specification phase and verify them during Design Qualification
- Perform adequate IQ- and OQ-procedure incl. an adequate approach for Computer Validation. The traceability to GMP Risk Analysis should be considered.
- Define the strategy for PQ/PV with detailed justification and under consideration of the product properties (separate GMP risk assessment)
- Consider the relevant guidelines and recommendations especially for parametric release
- The final responsibility of qualification / validation is held by the pharmaceutical producer.

manufacturer experience.

→ Adequate qualification and validation shouldn't be a point of concern during inspections.

Sterilisation is a well known process with a lot of autoclave

 $\rightarrow \quad \mbox{Rational approaches to reduce} \\ \mbox{validation work is possible.}$ 

nne pharmaplan<sup>®</sup>

### **Autoclaves: Qualification & Validation**

- Summary -

 $\rightarrow$